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1. Introduction

Let O(2n) = O"(2n) L O~ (2n) be the orthogonal group of order 2n with O*(2n), the
connected component that contains the identity Ip,. Its subspace G, ={J ¢
O"(2n) | J2 = —I,,} is known as the Grassmannian of complex structures on the 2n-
dimensional Euclidean space R*". It is the space of minimal geodesics form I, to
—L, on O"(2n) [12]. It serves as the classifying space for all complex n-bundles
whose real reductions are trivial [4]. It has two connected components

CS, ={AJpA" | A € OT(2n)}; CS, ={AJyA" | 4 € O (2n)},

where

0 1 0 1 .
JO_(—I O)GB---EB(_I 0>(ncoples),

both diffeomorphic to the homogeneous space O1(21)/U(n).

For a topological space X let [ X, X] be the set of homotopy classes of self-maps of
X, and End(H*(X)), the set of all endomorphisms of the integral cohomology ring.
Sending a self-map to the induced endomorphism gives rise to a representation

Ix: [X, X] — End(H*(X)), f— /"

in view of the obvious monoid structure on the both sets. According to the rational
homotopy theory, if X is a flag manifold (i.e. a homogeneous space G/K with G is a
compact connected Lie group and K C G, a Borel subgroup), this representation is
‘nearly faithful” in the sense that it has finite kernel and finite cokernel.
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Therefore, the problem of determining End(H *(X)), for a flag manifold X, is a step
toward a homotopy classification of all self-maps of X. This problem has been stu-
died in some detail for the complex Grassmannians ([10]), and for some compact Lie
groups module its maximal torus ([3, 11]). This paper studies the problem for CS,,,
with an intention to devote to geometry in the applications.

The ring H*(CS,) can be described as follows. Let y, be the complex n-bundle
obtained by furnishing the trivial real bundle CS, x R* — CS,, the complex structure

K:CS, x R — CS, x R*, K(J,v) = (J, Jv),
and let 1 4+ ¢y + - - - + ¢, be its total Chern class.

THEOREM 1 (cf. [4]). The classes ¢; € H¥(CS,), i <n—1, are all divisible by 2.
Further, if we let d; = %ci, then dy, ..., d,—; form a simple system of generators for
H*(CS),), and are subject to the relations

Ri & —2di ydipy + -+ (=) 2didoiy + (—=1)dyy =0, 1<i<n—1,
with d, = 0, s = n, being understood.

Let £ be an endomorphism of H*(CS,) and let /¥ be the N-iteration of f defined
inductively by fN = fo fN=1, N > 0. Since d, is the only generator in dimension 2,
fsends d; to a multiple of itself. The main results of this paper are

THEOREM 2. If f(d)) = ad, with a # 0, then fid)) = d'd;, i <n— 1.

THEOREM 3. If f(d)) = 0, there exists N = 1 so that
fNd) =0, foralli#2[n/2]—1.

In Theorem 3, the conclusion f¥(d;) = 0 cannot be extended to i = 2[n/2] — 1. In
Section 8, we shall present examples of self-maps f of CS), so that the induced endo-
morphisms f* satisfy f*(d) =0, i <n—2, and f*N(d,_;) # 0 for all N > 0.

We turn to applications of the previous results. Let CS? be the rationalization of
CS,,. From the minimal model for CS, given in Lemma 7.3, one can show that the
monoid of homotopy classes [CS?, CS?] is anti isomorphic to the monoid of endo-

morphisms of H*(CS,; Q) (cf. Theorem 1.1 in [6]). Thus, Theorem 2 offers a complete
classification on self-homotopy equivalencies of CS?. In particular, Theorem 2 implies

COROLLARY 1. Any space in the genus of CS, (see [7] for the definition) is
homotopy equivalent to CS,,.

The self-map f, of CS,, by

—J if n 1s even

I = { —DopJhy, if 1 is odd, € 8 b= (=D @ Lo,

is clearly a fixed point free involution (note that, the involution on G, by J — —J
exchanges the two connected components precisely when 7 is odd). Our next result
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implies that, cohomologically, f, is the only fixed point free self-map of CS,, unless
n=4.

THEOREM 4. Let f'is a self-map of CS,, with Lefschetz number L(f) = 0, and let f*
be the induced endomorphism.

(1) Ifn#4then f*(d)) = (-1)'d, 1 <i<n—1;
(2) If n =4 there are the two additional possibilities

(f*(d1), [*(dr), f*(d3)) = (0,0, either — ds or — ds + didy).
COROLLARY 2. If n # 4, any self-map f of CS,, with f*(d)) # —d, has a fixed point.

COROLLARY 3. Any self-map of CS, has a periodic point of order 2.

The natural inclusion R2"~D ¢ R*" induces a smooth fiber bundle CS,, %> $2—1
over the 2(n — 1) sphere S?"~1 (See Section 8). If p admits a cross-section, say s, then
the composed map

1 CSni 2D 7, 201 % g
where t is antipodal, is clearly fixed point free (hence L(f) =0 ), and satisfies
f*(d)) =0 for i <n—1 (since f factors through the sphere). On the other hand,

S2=1) admits an almost complex structure if and only if when p has a cross-section.
Thus Theorem 4 implies the classical result, originally due to Borel and Serre [1]:

COROLLARY 4. If n # 2,4, S2=1) does not admit any almost complex structure.

The existence of various kinds of geodesics is a central topic in geometry. For a
Riemannian manifold M and an isometry g on M, a nontrivial geodesic ¢ is called
g-invariant if there exists a period ¢ so that goa(f) = a(t+c¢), t € R. The case
g = id corresponds to the classical notation of closed geodesic.

THEOREM 5. If fis a self-homotopy equivalence of CS,, , the induced action f, ® 1 on
the odd dimensional rational homotopy group moqa(CS,) @ Q is the identity.

Since dim(7oqq(CS,) ® Q) =2 for n =5 (by Lemma 7.3), a combination of
Theorem 5 with the results in [9] gives

COROLLARY 6. With respect an arbitrary Riemannian metric on CS,, n =5, any
isometry has infinitely many invariant geodesics.

The paper is arranged as follows: After preliminary discussions in Sections 2, 3
and 4, Theorems 2 and 3 will be established in Sections 5 and 6. Section 7 is devoted
to proofs of Theorems 4 and 5.
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Finally we remark that results similar to Theorems 2 and 3 hold for the flag mani-
fold HS, = Sp(n)/U(n), i.e. the Grassmannian of quaternionic structures on C*". For
ignoring the grading, the two algebras H*(CS,;1; Q) and H*(HS,; Q) are isomorphic.

2. The Cohomology Ring
A sequence A = (i}, ..., i) of integers will be called a strict partition A of i if
O<ij<---<i and {4+ ---4+i =1

For a i>0 let P(i) be the set of all strict partitions of i and, for a 1=
(i1, iay ..., 1) € P(i), put d, = d; d;, - - - d;,. From Theorem 1 we have:

LEMMA 2.1. H°4(CS,,) = 0 and the set of monomials {d; | . € P(i)} forms a basis for
the Z-module H*(CS,).

As for the multiplicative structure we grade the polynomial ring Z[d;, dy, . . ., d,_1]
by assigning deg(d;) = 2i. Theorem 1 also tells

LEMMA 2.2 (The first description of the ring H*(CS,)).
H*(CSH) = Z[dl, dz, ey dnfl]/(Rr, r= l, 2, R 1) .

More explicitly, the relations R,’s can be written as follows
Ry: d% —dr, =0;
Ry: d3 —2dyds + dy = 0;
Ry: d3 — 2dydy + 2dyds — dg = 0;

Rn—2: di,Q - 2dn—3dn—l = 0;
Rn,12 d,zz_l =0.

from the first [(n + 1)/2] — 1 relations one finds that each d5; can be expressed as a
polynomial gy; in doqq’s. For instance, the first four such polynomials are

Q(=d) =di;

g4(= dy) = 2d\ds — d};

go(= do) = 2dyds + d3 — 4d(d5 + 2d;

gs(= dy) = 2d,d7 + 2dsds — 6d3d} + 8d3ds — 4d3ds — 3d}.

Consequently, substituting d,;’s by g»;’s in the remaining n — [(n + 1)/2] relations
yields some equations in doqq’s. Let kK = [1/2]. Remaining d,; instead of the gy;’s in
doaq’s for the sake of simplicity, these equations are
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P -1
Lid; = 2d_ydryy +2d,2dyy — - 4 2(=1)" dar_op11d2—1 = 0,
k<r<2k-—-1,
when »n is even; and are

Ly d} = 2d, ydpyy +2dadryy — - - -+ 2(=1) P dyady = 0,
k+1<r<2k,

when 7 is odd. Thus we get

LEMMA 2.3 (The second description of the ring H*(CS),)).

!
HYCS,) = Zldy, ds, . .., do 11/ (s 7 = [”“ZL } =1y,

Fora A e P(i), let D; € Z[d,, ds, ..., da—1] be obtained from d; by substituting d>;
by g»;. Lemma 2.1 gives

LEMMA 2.4 (Basis Theorem). H°Y(CS,) =0 and the set of monomials {D; | /. €
P(i)} is a basis for H*(CS,).

3. The Hard Lefschetz Theorem
Let f be an endomorphism of H*(CS},), and let k = [n/2]. According to Lemma 2.4 f

is given by
fdbim1) = azi—1dri—y + Z a, Dy, 1<i<k, (3.1
7€0Qi—1)
where

@i, a,€Z and QQRi—1)=PQ2i— 1\{2i—1}.
The leading coefficient of the polynomial f{d»;_;) gives rise to a sequence
(a1, as, ..., axy—1) which will be termed as the character sequence of f.

Since, in the second description of the ring H*(CS,), the first relation appears in
degree 4[(n+ 1)/2] > deg(dak—1), f can be regarded as an endomorphism of the
free algebra Z[d|, ds, ..., d>_1], defined by (3.1);, that preserves the ideal generated
by I.’s.

Let M be a m-dimensional compact Kaehler manifold with Kachler class
u € H*(M; Q). The hard Lefschetz theorem states:

LEMMA 3.1. If 0 < r < m, multiplication by u™~" gives an isomorphism
H'(M; Q) — H™ " (M; Q).

The use of this theorem in the proof of next result is adopted from Hoffman [10].
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LEMMA 3.2. Suppose that f(ds,—1) = a* 'dy_1, 1 <t < i,a # 0. Then we have either
Adsimr) = a* iy or azioy = —a*".

Proof. Fora A€ QQi—1), D, is a polynomial in dp,_;’s, ¢t < i, of homogeneous

degree 2(2i — 1). It follows from the assumption that
AD,)=d*"'D;, e QQi-1).

Since CS,, is a Kaehler manifold of complex dimension m = (n(n — 1))/2 with
Kaehler class di, {d]""**2D, | 2 € PQ2i — 1)} is a basis for H*"~4+2(CS,;; Q) by Lem-
mas 2.4 and 3.1. Thus, if we define a matrix

N = (Ni#)).,yeP(Zifl)

by the relations
d"***D;D, = N, d}", N, €Q 3.2)
in H*"(CS,; Q) = Q, then N is nonsingular by the Poincare duality.
For u € Q(2i — 1) applying f to
d" 2D dyi oy = Nyaiid)!

gives

a"1’2i+1d1””4i+2DH (azi—lei—l + Z ang) = Nﬂ~2i—lamd1m,
1€0(2i—1)

Rewriting everything as a multiple of d}" by using (3.2) we get

Nysioi(asy —a* ™) + Z N, ,a;, =0. (3.3)
1€0@i-1)
Similarly applying f'to d{""*"2d3, | = Ny_12i1d]" yields
Noizipimi(@;_y — @®@D) + 2ay; Z Njimra;+
1€0@i-1)
+ Y Nuaua; =0. (3.4)

1,2.€0Q2i—1)

Multiplying (3.3) by a;, summing over A € Q(2i — 1), and subtracting the resulting
equation from (3.4) gives rise to

Noioipim1(@;_y — @7 D) + (apimy + a* ) Z N;sic1ay = 0. (3.5)
1€0@i—1)
If ayiy = —a*~!, we are done. Assume next as_; + a*~!' # 0. Dividing (3.5) by
ayi_y + a*~ ! gives
Nojoipim1(@ioy — a* 1) + Z N;sic1a; = 0.

7€0Qi—1)
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Combining this with (3.3) for all x € Q(2i — 1) gives a system

> Nuylay = S0 =0, de PQi-1),
neP2i—1)

where J,,2-1 is the Kronecker delta. The nonsigularity of N implies

2%cl g 21
a, = 0pi1a” ", ie fldio1) =a" day. O

COROLLARY 3.3. If f(d)) = ad, with a # 0, then ayi_, = +a*~', i < k.

Proof. Since, in the second description of the ring H*(CS,), the first relation
appears in degree 4[(n + 1)/2] > deg(da—1), from (3.1); we find that the character
sequence of f? is (a},d3,...,a3 ;). It now follows from Lemma 3.2 that
B, =D, O

For a d € H”(CS,,) define the rational M(d) € Q by the relation
dd"™" = M(d)d"

on H*"(CS,). In particular, the number M(d;) is the ratio of the degree of the special
Schubert variety corresponding to d; by the degree of CS,, [5].

Put e; =¢(1,...,n— 1), where e(t, ..., t,_1) is the ith elementary polynomial in
t1,...,t;,—1. The following computation has been made in [5, Proposition 4]
LEMMA 3.3. M(d;) = 4 'e;/ej(e; —1)---(e; —i+1).

We shall need the following consequence of Lemma 3.3.

LEMMA 3.4. If fldy) = ad with a # 0, then f(d;) # —a*ds + 4a>d3.
Proof. Assume not. Applying f to the relation d3d"™" = M(ds)d]" gives

(—d’ds +4a’d})d" "™ = M(dz)d"dy". 3.7)

Rewriting everything as a multiple of d/", by using (3.6) we get M(d;) = 2. This
implies that 8e; = ej(e; — 1)(e; —2) by Lemma 3.3. From the Newton’s formula
we have

§(s3+3(s = 3s2)s1) = s1(s1 — D51 — 2), (3.8)
where s, = 1 4. 4 (n — 1)*. With

53 = Bn(n — 1)]2, S = %(n —Dn@2n—1), and s = %n(n - 1),
(3.8) turns out to be:

24 = (n* — 1Tn+42)(n — n.

However, this has no solution in n. O
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4. The g-Sequences

A sequence of m integers (s, ..., s,) Will be called a g-sequence of length m if, for
every integer r with k41 <r <2k —2, the products s;5,_; are independent of
i < [5]. In other words, the following inductive strings of relations:

S18k = $28k—1 =+ = S S

$28k = S38k—1 = -0 = SpeSipo- (525

Sk—3Sk = Sk—28k—15

2
Sk—28k = Sk_q

hold among the entries s;’s. We classify all such sequences in

LEMMA 4.1. A g-sequence of length m = 3 belongs to one of the three types:

Type 1: (s1,81¢,...,51¢""") with siq # 0;
Type 2: (51,82, ,52,0,...,0) with s + 55+ --- + s[@] £0;
Type 3: (0,0,...,0,s,). i

Proof. The proof is done by induction on m. If m =3 then s;s3 = s3. The
sequence (s, 52, 53) is of type 1 when s, # 0; belongs to type 2 if s, =0 but
s1 # 0; and agrees with type 3 in the remaining case. The inductive procedure can be
carried out easily, by the observation that if (sq, ..., s;41) is of length m + 1, then,
beside

(1) s18k =281 = -+ + = S[ks) Sg 1 [y ONE has

(2) the subsequence (s2,...,5m+1) is a g-sequence of length m, therefore, falls into
one of the three types by the inductive hypothesis. O

By considering f as an endomorphism of the free algebra Z[d,, ds, ..., dyi_1] pre-

serving the ideal generated by /,’s, we have, in Z[d|, ds, ..., day—1], that

S =xp e+ Xl + o Xeil, k< r<2k—1 4.1
when n = 2k and that

SE) = xp ol + Xt bt + o Xl K+ 1<r <2k (4.2)

when n = 2k + 1. Clearly we can assume that the polynomial x, ; has the homoge-
neous degree deg(x, ) = 4(r — s). In particular x, , is an integer. This is the observa-
tion that brings g-sequences into our consideration.

LEMMA 4.2. Let (a,...,ay—1) be the character sequence of f. If n =2k (resp.
n=2k+1), then (ay, ..., ax_1) (resp. (as, ..., ay._1)) is a g-sequence.
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Proof. Suppose that n =2k (resp. n =2k +1). For an r with k <r<2k—1
(resp. with k£ + 1 < r < 2k — 1) comparing the coefficient of dy;_1dos_1, s+t =1+ 1;
1 <s,t <k, in (4.1), (resp. (4.2),) gives

A1 W—py1 = Xppy, SH+HEt=r+1; 1<s,t<k 4.3)
Lemma 4.1 for n = 2k (resp. for n = 2k + 1) is verified by (4.3), with k <r <2k -3
(resp. with k+ 1 < r < 2k — 3). O

5. The Proof of Theorem 2

Assume in this section that f{(d;) = ad; # 0. Combining Lemma 4.1, Lemma 4.2 with
Corollary 3.3 we find that the sequence (ay, ..., ax—_1) agrees with

(a,aq, ..., ad"™"), q==+d*
when n = 2k; and agrees with
(a,a3,a3q, ...,a3q" " q::l:az, as =+

when n = 2k + 1. We proceed further by showing the following lemma:

LEMMA 5.1. Assume as the above. Then

(1) g=da? and
(2) a3 = a® when n =2k + 1.

Proof. Suppose, otherwise, that ¢ = —a?. From (4.3)2_> we find

4k—4
Xok—22k—2 = —d " .

The relation (4.1);_5 (resp. (4.2)2x_2) becomes

Abi—a) = —a*lyy + X225 3bp—3 + -+
Xok—2klk, 1 n : 2k, 5.0)
Xok—2httlir1, fn=2k+1.
If k is even comparing the coefficient of d2_1 on both sides of (5.1) gives
a;_, = —a* (5.2)
If k is odd comparing the coefficient of d7 ,d; we get
2 2 4 Ak—4 e if n=2k;
dai_,a; = —4a™ " + {O 0= 2% + 1. (5.3)

where e € Z is the coefficient of d i_z in Xox—2 .k, wWhich is seen to be 0 by examining
the coefficient of di_zdk+2 in (5.1). The contradictions in (5.2) or (5.3) verify (1).
For (2), assume that a3 = —a’. Then the character sequence of f is

(a9 —a3, ..., _azk_l)9
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and the relation (4.2),4 turns to be

Sier1) = az(kﬂ)lkﬂ .

Comparing the coefficient of d>;_ one gets

2arp—1(fids) — 2f(d)f(dn)) = 2a**TD(dy — 2d,d»).

With d» = & and ay—; = —a**~! we find
Ady) = —d’dy + 4d’ 4y
This contradiction to Lemma 3.4 establishes (2). O

Proof of Theorem 2. With f(d)) = ad,, a # 0, a»i_1 = a*~' by Lemma 5.1. It fol-
lows from Lemma 3.2 that
Adviy) = a*doy, i<k

Consequently f(dy) = a®dy;, since do; = go; € Z[dy, ds, . .., do—1] is of homogeneous
degree 4i. O

6. The Proof of Theorem 3

Theorem 3 can be easily deduced from

LEMMA 6.1. If f(d|) =0, then the g-sequence (ay, ..., ay._1) when n =2k (resp.
(as, ..., ax_1) when n = 2k + 1) must be of type 3.

Proof of Theorem 3. With f(d,) = 0 the character sequence is (0,...,0, ay_1) by
Lemma 6.1. Assume that /™ (d;) = 0 for some m; and 1 < ¢ < i < 2k — 1. We proceed
to show f"*1(d;) = 0.

If i is even, d; is the polynomial g; in dy,...,di_>. f"(d;)) =0 follows from
fMi(d,) =0, t <i If iis odd, then @; =0 implies that f{(d;) is a polynomial in
di, ..., di_>. Again fi(d) =0, t < i, implies /"*!(d;) = 0.

Summarizing f¥(d;) =0, i < 2k — 1, for some N. It remains to show ¥ (dy) =0
when n = 2k + 1. However this follows directly from the relation

Ry: doy = 2dydy—y — 2drdo—a + - -+ (= 1) 2d;_1dyy1 + d3. O

The proof of Lemma 6.1 for even # is straightforward.

Proof of Lemma 6.1 for n = 2k. With a; = 0 the g-sequence (ay, ..., ay._) cannot
be type 1 by Lemma 4.1. Suppose, on the contrary, that it is of type 2. Then from
(4.3), we find x,, =0, r < 2k — 1, or equivalently, (4.1), becomes

S = xr,rfllrfl +- xl",klk7 k<r<2k-1 (61),,

Applying f'to both sides of (6.1),, substituting (6.1),, kK + 1 < s < r, in the right hand
side of the resulting equality yield
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fz(lr) = yr,r—2lr—2 +--- +yr,klk, k<r<2k-—1,

where y, ; are certain polynomials in x,;’s and f{(x.;)’s. Repeating this procedure we
find the iterated endomorphism f* satisfies /%(/,) = 0, k < r < 2k — 1, hence induces
a ring homomorphism g: H*(CS,) — Z[d,, ..., dy._1] so that the diagram

fk
Z[db d3""’d2k71] - Z[dlsd37"'vd2/€71]

r g )
H*(CS,)

commutes, where p is the obvious quotient map. Since CS,, has finite dimension, and
since the ring Z[d,, ds, . .., dy_1] is a domain, g = 0. Thus f*(d»_;) = 0, and conse-
quently @&, | =0, i < k. This contradiction verifies Lemma 6.1 for n = 2k. O

We complete the proof of Theorem 3 by establishing Lemma 6.1 for odd n.

DEFINITION. The sequence (cy,. .., ¢y ) whose entries are defined by the relations
co=c=1; i1 =204, i<k
02 = 20100101 — 202020 + -+ (=D P 2¢ip e + (=17, i<k

will be called the h-sequence of length 2k.

It is obvious that if (cy, ..., ¢¢) is the h-sequence of length 2k and if k¥’ < k, then
the subsequence (cy, ..., cor) is the A-sequence of length 2k’. It is also clear that all
h-sequences are classified by their lengths. For instance it is straightforward to see
that the first ten entries in a /-sequence of length >10 are given by

1,1,2,3,6, 10, 20, 35, 70, 146.

It is, indeed, a trivial exercise from the definition that

ASSERTION 1. If (ci, ..., ca) is a h-sequence, then ¢; > 0, i < 2k.

Again we use dy; to represent the polynomial g;;. Consider the graded homo-
morphism of free algebras

ﬁ N Z[dl, d3, ey d2k—l] e Z[d]]
defined by
B(dy) =di;  P(dai1) =2p(d)f(dri—2), 2<i<k;

h-sequences plays the role in writing (d;) as a multiple of d/.

ASSERTION 2. Let (cy, ..., cx) be the h-sequence of length 2k. Then f is given by
B(d) = ¢id,, i < 2k.

What we need is the following variation of /.

ASSERTION 3. If o.: Z[dy, ds, . .., doy—1] = Z[d\] is the homomorphism defined by
a(d) = di; w(dhi-1) = 20(d))(i-2), 2<i<Kk;
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and
a(dag—1) = 4o(dr)o(dak—2),

then
(1) a(d) =cidy, 1<i<2k—2; a(dy_1)="2cy_1d¥;
(2) a(dw) = (2cop—1 + czk)d%k.
Proof. The two homomorphisms « and f§ are related by
u(dhi1) = Bdhi-1), 2<i<k; and o(da-1) = 2B(dax-1)-
(1) follows from Assertion 2. Finally since doy = 2ddpi_1 + h with
h=—2dydys + -+ (=) 2d_rdisr + (1) 7'd,

a polynomial in d, ..., dy_3, we get
) = 20(d)oldok—1) + B(h)
= der_1di + Pldo — 2didoj—y) = Qexy + cu)d i O
In the next result the homomorphisms « is applied to simplify some polynomial
equalities in Z[d, ..., dy_1] to equalities in Z[d;]

LEMMA 6.2. If fidy) = 0, then

(1) in the relation (4.2)s, X226 = 0; and
(2) the g-sequence (as,...,axy—1) cannot be of type 1.

Proof. Recall from Section 2 that the polynomial /; is given by
d3 = Qdidy—y — 2drdhy—r + -+ (= 1) 2dy_ydiry + (=)' d7)

From this we find that, with f{d;) = 0, f(lx) is independent of dy;_;. Thus comparing
the coefficient of dy;_; in (4.2)2; gives

0 = xo 21 (4d doye — 4d3dog_1) + X ok 1 (dos_1 — ddyday_2) +
+ ok 2k—2(—2doi—3 + 4di dri—s) + - - - £ Xop 14123 — 4d, db).

Applying the ring homomorphism o« to this equality yields
0 = Xop 2k (do(dy) (i) — 4ou(d Dor(dog—1)),

1.e. ka,zkczkdfk“ = 0 by Assertion 3. xy 2 = 0 follows from ¢y > 0.
For (2) the relation (4.2),; takes the form

SUhi) = Xok pre—1bok—1 + Xou 2k—2bok—2 + - - - + X2k 1 Lt (6.2)

by (1). Assume on the contrary that

1 = dzsz #0, 2<i<k
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Let b;; € Z be the coefficient of dh;_1drok—j—ip+1, 1 i<k —j—i+1)/2, in xp.
If k is odd examining the coefficient of d}! in (6.2) gives a2 =0.
If & is even we get

a_ @i, = by & (by comparing the coefficient of di_\di,; in (6.2))

= 0 (by comparing the coefficient of dfﬁldk% in (6.2)).

This contradiction to aszg # 0 verifies (2). O

Proof of Lemma 6.1 for n = 2k + 1. With f(d;) = 0 the g-sequence (a3, ..., ax_1)
is of either type 2 or 3 by (2) of Lemma 6.2. If it is of type 2,
X, =0, k+1<r<2k—1

by (4.3),, and xp 2x = 0 by (1) of Lemma 6.2. The same argument as that in the proof
of Lemma 6.1 for n = 2k yields the contradiction ay;_; =0, i < 2k — 1. O

7. The Proofs of Theorem 4 and 5

For a topological space X and an odd prime p > 1, let
Stﬁ'("fl): HY(X; Z,) — HTP0=V(X; Z,)

be the Steenrod mod-p operators. The naturality of these operators imposes a bunch
of restrictions on those endomorphisms of H*(X) that are induced by self-maps.
This, besides Theorems 2 and 3, underlies the proof of Theorem 4.

For an integer k > 1 let D(k) be the set of all odd primes p such that
l <p <2k —1 and that p is prime to 2k — 1. As examples

D33) ={3}; D(4) = {3,5}; D(5) ={5,7}; ..., etc.
Obviously D(k) # ¢ for all k > 2.

For a self-map f of CS,, we let (aj, ..., ax_1) be the character sequence of the
induced endomorphism f*. Again we set k = [n/2].

LEMMA 7.1. If a; =0, then (ay, ..., axy—1) = (0,...,0) mod p, p € D(k).
Proof. If ay =0, (a1, ...,ay—1) is a g-sequence of type 3 by Lemma 6.1. It
remains to show ay,_; = 0 mod p, p € D(k).
The action of St on the universal Chern classes ¢;’s is given by (cf. [1])
S Ve; = (i + 1(p — 1))cigsp-1) + h mod p,

where /1 is a polynomial decomposable in ¢;, j < i+ #(p — 1). Since the generators d;’s
are related with the Chern classes of y, by the formula ¢;(y,) = 2d; (Theorem 1), this
implies that

Slﬁ’(ﬁ_l)di = 2k — D)dy_1 + 'modp whenever 2k — 1 =i+ t(p — 1),
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where /' is decomposable in d;’s, j < i+ t(p — 1). For a p € D(k) applying f* to
SEP Dy, = 2k — Ddy—y + I

gives
SePVf (da—p) = (2k — 1f*(dag—1) +/*(H)mod p.

Since ay;_1 =0, i < k, the indecompositable component of the equality is
(Zk — 1)a2k71d2k,1 =0 modp.

Now ay,—1 = 0 mod p follows from that p is prime to 2k — 1. O

For a self-map f of a finite complex X, its Lefschetz number is defined by

L(f) =1+ (=I)Tr{f*: H'(X; Q) > H(X; Q)},
If X = CS, the formula can be simplified, since H°4(CS,) = 0, as

L(f) =1+ Tr{f*: H'(X) > H'(X)}.

LEMMA 7.2. Suppose that f*(d;) = 0. Then we have

(1) L(f)=1whenn=2,3,5 and,
(2) L(f) =1modp for every p € D(k) when n > 5.

Proof. By Lemma 2.2 we have

H*(CSy) = Z[d\)/d};  H*(CS3) = Z[dy]/d}.

Thus f*(d)) = 0 implies that L(f) = 1 when n =2 or 3.
Consider the case n = 5. With f*(d,) = 0, f*(d;) = 0 for i = 2, 4 by the relations R;
and R,. Assuming

S (d3) = ads + bdidr, a,beZ,

and applying /* to Ry : d} — 2dhdy = 0 yields (ads + bd, )’ =0.
Using R;, i=1,2,3, to rewrite this in terms of the basis drdy, didrd; for
HY(CSs; Z) we obtain

Qa* — b )dyds + 2b(a + b)d drds = 0.

L(f) =1 now follows from a = b = 0. This completes the proof of (1).
For a prime p the Z,-cohomology algebra of CS,, is

H*(CS,; Zy) = Zyldy, ds, . ..., dy 1]/ L,

where L is the ideal generated by /.’s mod-p. Let Z,[d], ..., dr—1]* be the Z, vector
space spanned by d'd;* ... d5}_,, > (2i — 1)r; = t, and put

LY =LNZd, ... dyi]*.
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Then we have the exact sequence:
0— L* = Z,[dy,...,dy 1} — H*(CS,; Z,) — 0.

Since /™, as an endomorphism of Z,[d|, ds, ..., dy_1], preserves the ideal, L* is an
invariant subspace of f*. i.e. f* induces an exact ladder:

0 — L' — Zld,...,dy]* — HCS;Z,) — 0
V) a \ .

0 — L — Zd,...,dy1" — HYCS;Z,) — 0
It follows that, for each ¢ > 0,
Tr(f* on H*(CS,; Z,)) = Tr(f* on Z,[dy, ..., dy_11*") — Tr(f* on L*).

Assume now that n > 5, p € D(k) and that f*(d;) = 0. Then ay;_; =0 modp,
i < k, by Lemma 7.1. Consequently
Tr(f* on Z,[dy, ..., dy_1]"") = 0 and Tr(f* on L*) =0

for all # > 0. These verifies

L(f)=1+ ) Tr(f* on H*(CS,; Z,)) = 1 mod p. O

t>0
Proof of Theorem 4. Let f be a self-map of CS, with L(f) =0. If f*(d,) = ad,,
a#0, then L(f) =T <;<,_1(1 +d’) by Theorem 2 (the Poincare polynomial of
CS, is T <;j<,1(1 +7) by Lemma 2.1). Now L(f)=0 implies a = —1, and
f(d;) = (—1)'d; follows from Theorem 2.
If f*(d;) =0, there must be n =4 by Lemma 7.2, and f*(d>) =0 by R;. With
L(f) = 0 we can assume that

f*(d5) = —ds + bd\dr, beZ.

Applying f* to R3 : d32 = 0, rewriting everything in the resulting equation as multi-
ples of the generator d\drds € H'*(CSy) = Z by using Ry, Ry, R3, we get 2b(h — 1)
didyd; =0, ie. either f*(d3) = —d; or f*(d;) = —ds+ did>. These finish the
proof. O

Consider the free algebra

O(CSy) = Zlx1, x3, - X2-1] @ Az(Vpestys Vppsiggs - - -2 V1)

the tensor product of the polynomial algebra in x;’s with the exterior algebra in y,’s.
It is graded by deg(x;) = 2i and deg(y,) = 4r — 1. The differential §: ®(CS,) —
d(CS,,) of degree 1 given by

o(x)=0 and O0,) =L(x1,Xx3, ..., X2%_1)

furnishes ®(CS,) with the structure of a differential graded commutative algebra
over Z. Indeed Lemma 2.3 implies that
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LEMMA 7.3 (cf. [4, Proposition 3]). The homomorphism
g D(CS,) — H*(CSy),  given by g(x2i1) = dai—1; g(yr) =0

is the minimal model (over Z) for H*(CS,).
Proof of Theorem 5. Let f be a self-homotopy equivalence of CS,. Then

fid) =+d,, and fid) = (£l)'d; foralli<n—1
by Theorem 2. The relations (4.1), (resp. (4.2),) becomes
n+1

f*() =1 for |:

:|<r<n—l

In views of Lemma 7.3, a minimal model
O(f): D(CS,) = D(CSy)

for f can be chosen to be ®(f)(x2i_1) = (£1)'x2_; and
O(f)yr) = yr-

By the rational homotopy theory [8] the forms y, ® I’s € ®(CS,) ® Q constitute a
basis for Hom(myqq(CS,), Q) and the induced chain endomorphism ®(f)® 1 of
d(CS,) ® O, module decompositables, agrees with the dual action of f, on
7.(CS,). Thus the proof is done by (7.1). O

8. Examples

This section serves as a supplement to Theorem 3. We present self-maps f of CS,,, for
even n, so that f*(d;) = 0 when i # 2k — 1, but f*¥(dy._1) # 0 for all N > 0.

Let ey, ..., es be the standard basis for the Euclidean space R* and let $*~2 be
the unit sphere in the subspace spanned by e;, i < 4k. The map

p: CSy — S™72 p(J) = Jegr—y € SH72,

is a fiber bundle projection whose fiber inclusion over eq_; € S*~2 is

| CSyct = CSuy 1) =J @ (_01 é)

In fact the class dy;_; is cospherical in the sense that
(1) 7*(e) = do_1, where e € H*2(S%~2) = Z is a generator (cf. [4]).

On the other hand the homotopy exact sequence of p gives the exact sequence of
vector spaces over Q

s = T o(CSu 1) ® 0 — T 2(CS) @ 05
— 7[4k_2(S4k_2) ® Q - 7f4k—3(CS2k—]) ® Q >
From the minimal model for H*(CSy; Q) (Lemma 7.3) we find
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)
(©)
4)

T45—2(CS2%—1) ® O = m4—3(CS2%-1) ® O = 0.

This implies that

there exists a map o« S*2 — CSy so that deg(poa)#0. Thus if we let
Jo = oo p, for a o satisfying 2), then f; satisfies

f3(d;) =0 for all i+#2k—1 but f:¥(dy_1) =deg(po oc)ngk,l. Finally it is
worth to point out that

the class f; (dy—1) € H*2(CSy) is always divisible by 1 (4k — 3)! since f;, fac-
tors through the sphere S*~2 and since 2d;_; is the (2k — 1)th Chern class
of the bundle y,, [2].
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