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1. Introduction

Let Oð2nÞ ¼ Oþ
ð2nÞ tO�

ð2nÞ be the orthogonal group of order 2n with Oþ
ð2nÞ, the

connected component that contains the identity I2n. Its subspace Gn ¼ fJ 2

Oþ
ð2nÞ j J2 ¼ �I2ng is known as the Grassmannian of complex structures on the 2n-

dimensional Euclidean space R2n. It is the space of minimal geodesics form I2n to

�I2n on Oþ
ð2nÞ [12]. It serves as the classifying space for all complex n-bundles

whose real reductions are trivial [4]. It has two connected components

CSn ¼ fAJ0A
t j A 2 Oþ

ð2nÞg; CS�
n ¼ fAJ0A

t j A 2 O�
ð2nÞg;

where

J0 ¼
0 1
�1 0

� �
� � � � �

0 1
�1 0

� �
ðn copiesÞ;

both diffeomorphic to the homogeneous space Oþ
ð2nÞ=UðnÞ.

For a topological space X let ½X;X� be the set of homotopy classes of self-maps of

X, and EndðH �ðXÞÞ, the set of all endomorphisms of the integral cohomology ring.

Sending a self-map to the induced endomorphism gives rise to a representation

lX: ½X;X� ! EndðH �ðXÞÞ; f ! f �

in view of the obvious monoid structure on the both sets. According to the rational

homotopy theory, if X is a flag manifold (i.e. a homogeneous space G=K with G is a

compact connected Lie group and K � G, a Borel subgroup), this representation is

‘nearly faithful’ in the sense that it has finite kernel and finite cokernel.
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Therefore, the problem of determining EndðH �ðXÞÞ, for a flag manifold X, is a step

toward a homotopy classification of all self-maps of X. This problem has been stu-

died in some detail for the complex Grassmannians ([10]), and for some compact Lie

groups module its maximal torus ([3, 11]). This paper studies the problem for CSn,

with an intention to devote to geometry in the applications.

The ring H �ðCSnÞ can be described as follows. Let gn be the complex n-bundle

obtained by furnishing the trivial real bundleCSn � R2n ! CSn the complex structure

K : CSn � R2n ! CSn � R2n; KðJ; vÞ ¼ ðJ; JvÞ;

and let 1þ c1 þ � � � þ cn be its total Chern class.

THEOREM 1 (cf. [4]). The classes ci 2 H2iðCSnÞ, i4 n� 1, are all divisible by 2.

Further, if we let di ¼
1
2 ci, then d1; . . . ; dn�1 form a simple system of generators for

H �ðCSnÞ, and are subject to the relations

Ri: d
2
i � 2di�1diþ1 þ � � � þ ð�1Þi�12d1d2i�1 þ ð�1Þid2i ¼ 0; 14 i4 n� 1;

with ds ¼ 0; s5 n, being understood.

Let f be an endomorphism of H �ðCSnÞ and let fN be the N-iteration of f defined

inductively by fN ¼ f � fN�1, N > 0. Since d1 is the only generator in dimension 2,

f sends d1 to a multiple of itself. The main results of this paper are

THEOREM 2. If fðd1Þ ¼ ad1 with a 6¼ 0, then fðdiÞ ¼ aidi, i4 n� 1.

THEOREM 3. If fðd1Þ ¼ 0, there exists N5 1 so that

fNðdiÞ ¼ 0; for all i 6¼ 2½n=2� � 1:

In Theorem 3, the conclusion fNðdiÞ ¼ 0 cannot be extended to i ¼ 2½n=2� � 1. In

Section 8, we shall present examples of self-maps f of CSn so that the induced endo-

morphisms f � satisfy f �ðdiÞ ¼ 0, i4 n� 2, and f �Nðdn�1Þ 6¼ 0 for all N > 0.

We turn to applications of the previous results. Let CS 0
n be the rationalization of

CSn. From the minimal model for CSn given in Lemma 7.3, one can show that the

monoid of homotopy classes ½CS 0
n ;CS

0
n � is anti isomorphic to the monoid of endo-

morphisms ofH �ðCSn;QÞ (cf. Theorem 1.1 in [6]). Thus, Theorem 2 offers a complete

classification on self-homotopy equivalencies ofCS 0
n . In particular, Theorem 2 implies

COROLLARY 1. Any space in the genus of CSn (see [7] for the definition) is

homotopy equivalent to CSn.

The self-map fn of CSn by

fnðJÞ ¼
�J if n is even
�fI2n JfI2n if n is odd,

�
J 2 CSn; fI2n ¼ ð�1Þ � I2n�1;

is clearly a fixed point free involution (note that, the involution on Gn by J ! �J

exchanges the two connected components precisely when n is odd). Our next result
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implies that, cohomologically, fn is the only fixed point free self-map of CSn unless

n ¼ 4.

THEOREM 4. Let f is a self-map of CSn with Lefschetz number Lð f Þ ¼ 0, and let f �

be the induced endomorphism.

ð1Þ If n 6¼ 4 then f �ðdiÞ ¼ ð�1Þidi; 14 i4 n� 1;

ð2Þ If n ¼ 4 there are the two additional possibilities

ð f �ðd1Þ; f
�ðd2Þ; f

�ðd3ÞÞ ¼ ð0; 0; either� d3 or� d3 þ d1d2Þ:

COROLLARY 2. If n 6¼ 4, any self-map f of CSn with f �ðd1Þ 6¼ �d1 has a fixed point.

COROLLARY 3. Any self-map of CSn has a periodic point of order 2.

The natural inclusion R2ðn�1Þ � R2n induces a smooth fiber bundle CSn !
p
S2ðn�1Þ

over the 2ðn� 1Þ sphere S2ðn�1Þ (See Section 8). If p admits a cross-section, say s, then

the composed map

f : CSn !
p
S2ðn�1Þ !

t
S2ðn�1Þ !

s
CSn;

where t is antipodal, is clearly fixed point free (hence Lð f Þ ¼ 0 ), and satisfies

f �ðdiÞ ¼ 0 for i < n� 1 (since f factors through the sphere). On the other hand,

S2ðn�1Þ admits an almost complex structure if and only if when p has a cross-section.

Thus Theorem 4 implies the classical result, originally due to Borel and Serre [1]:

COROLLARY 4. If n 6¼ 2; 4; S2ðn�1Þ does not admit any almost complex structure.

The existence of various kinds of geodesics is a central topic in geometry. For a

Riemannian manifold M and an isometry g on M, a nontrivial geodesic s is called

g-invariant if there exists a period c so that g � sðtÞ ¼ sðtþ cÞ; t 2 R. The case

g ¼ id corresponds to the classical notation of closed geodesic.

THEOREM 5. If f is a self-homotopy equivalence of CSn , the induced action f� 	 1 on

the odd dimensional rational homotopy group poddðCSnÞ 	Q is the identity.

Since dimðpoddðCSnÞ 	QÞ5 2 for n5 5 (by Lemma 7.3), a combination of

Theorem 5 with the results in [9] gives

COROLLARY 6. With respect an arbitrary Riemannian metric on CSn, n5 5, any

isometry has infinitely many invariant geodesics.

The paper is arranged as follows: After preliminary discussions in Sections 2, 3

and 4, Theorems 2 and 3 will be established in Sections 5 and 6. Section 7 is devoted

to proofs of Theorems 4 and 5.
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Finally we remark that results similar to Theorems 2 and 3 hold for the flag mani-

fold HSn ¼ SpðnÞ=UðnÞ, i.e. the Grassmannian of quaternionic structures on C2n. For

ignoring the grading, the two algebrasH �ðCSnþ1;QÞ andH �ðHSn;QÞ are isomorphic.

2. The Cohomology Ring

A sequence l ¼ ði1; . . . ; irÞ of integers will be called a strict partition l of i if

0 < i1 < � � � < ir and i1 þ � � � þ ir ¼ i:

For a i > 0 let PðiÞ be the set of all strict partitions of i and, for a l ¼

ði1; i2; . . . ; irÞ 2 PðiÞ, put dl ¼ di1di2 � � � dir . From Theorem 1 we have:

LEMMA 2.1. HoddðCSnÞ ¼ 0 and the set of monomials fdl j l 2 PðiÞg forms a basis for

the Z-module H2iðCSnÞ.

As for the multiplicative structure we grade the polynomial ring Z½d1; d2; . . . ; dn�1�

by assigning deg ðdiÞ ¼ 2i. Theorem 1 also tells

LEMMA 2.2 (The first description of the ring H �ðCSnÞ).

H �ðCSnÞ ¼ Z½d1; d2; . . . ; dn�1�=hRr; r ¼ 1; 2; . . . ; n� 1i :

More explicitly, the relations Rr’s can be written as follows

R1: d
2
1 � d2 ¼ 0;

R2: d
2
2 � 2d1d3 þ d4 ¼ 0;

R3: d
2
3 � 2d2d4 þ 2d1d5 � d6 ¼ 0;

..

.

Rn�2: d
2
n�2 � 2dn�3dn�1 ¼ 0;

Rn�1: d
2
n�1 ¼ 0:

from the first ½ðnþ 1Þ=2� � 1 relations one finds that each d2i can be expressed as a

polynomial g2i in dodd’s. For instance, the first four such polynomials are

g2ð¼ d2Þ ¼ d 2
1;

g4ð¼ d4Þ ¼ 2d1d3 � d 4
1 ;

g6ð¼ d6Þ ¼ 2d1d5 þ d 2
3 � 4d 3

1d3 þ 2d 6
1 ;

g8ð¼ d8Þ ¼ 2d1d7 þ 2d3d5 � 6d 2
1d

2
3 þ 8d 5

1d3 � 4d 3
1d5 � 3d 8

1 :

Consequently, substituting d2i’s by g2i’s in the remaining n� ½ðnþ 1Þ=2� relations

yields some equations in dodd’s. Let k ¼ ½n=2�. Remaining d2i instead of the g2i’s in

dodd’s for the sake of simplicity, these equations are
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lr: d
2
r � 2dr�1drþ1 þ 2dr�2drþ2 � � � � þ 2ð�1Þr�1d2r�2kþ1d2k�1 ¼ 0;

k4 r4 2k� 1;

when n is even; and are

lr: d
2
r � 2dr�1drþ1 þ 2dr�2drþ2 � � � � þ 2ð�1Þr�2d2r�2kd2k ¼ 0;

kþ 14 r4 2k;

when n is odd. Thus we get

LEMMA 2.3 (The second description of the ring H �ðCSnÞÞ.

H �ðCSnÞ ¼ Z½d1; d3; . . . ; d2k�1�=hhlr; r ¼

�
nþ 1

2

�
; . . . ; n� 1ii:

For a l 2 PðiÞ; let Dl 2 Z½d1; d3; . . . ; d2k�1� be obtained from dl by substituting d2j
by g2j. Lemma 2.1 gives

LEMMA 2.4 (Basis Theorem). HoddðCSnÞ ¼ 0 and the set of monomials fDl j l 2

PðiÞg is a basis for H2iðCSnÞ:

3. The Hard Lefschetz Theorem

Let f be an endomorphism of H �ðCSnÞ, and let k ¼ ½n=2�. According to Lemma 2.4 f

is given by

fðd2i�1Þ ¼ a2i�1d2i�1 þ
X

l2Qð2i�1Þ

alDl; 14 i4 k; ð3:1Þ

where

a2i�1; al 2 Z and Qð2i� 1Þ ¼ Pð2i� 1Þnf2i� 1g:

The leading coefficient of the polynomial fðd2i�1Þ gives rise to a sequence

ða1; a3; . . . ; a2k�1Þ which will be termed as the character sequence of f.

Since, in the second description of the ring H �ðCSnÞ, the first relation appears in

degree 4½ðnþ 1Þ=2� > degðd2k�1Þ, f can be regarded as an endomorphism of the

free algebra Z½d1; d3; . . . ; d2k�1�, defined by (3.1)i, that preserves the ideal generated

by lr’s.

Let M be a m-dimensional compact Kaehler manifold with Kaehler class

u 2 H2ðM;QÞ. The hard Lefschetz theorem states:

LEMMA 3.1. If 04 r4m; multiplication by um�r gives an isomorphism

HrðM;QÞ ! H2m�rðM;QÞ:

The use of this theorem in the proof of next result is adopted from Hoffman [10].
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LEMMA 3.2. Suppose that fðd2t�1Þ ¼ a2t�1d2t�1, 14 t < i, a 6¼ 0. Then we have either

fðd2i�1Þ ¼ a2i�1d2i�1 or a2i�1 ¼ �a2i�1.

Proof. For a l 2 Qð2i� 1Þ, Dl is a polynomial in d2t�1’s, t < i, of homogeneous

degree 2ð2i� 1Þ. It follows from the assumption that

fðDlÞ ¼ a2i�1Dl; l 2 Qð2i� 1Þ:

Since CSn is a Kaehler manifold of complex dimension m ¼ ðnðn� 1ÞÞ=2 with

Kaehler class d1, fd
m�4iþ2
1 Dl j l 2 Pð2i� 1Þg is a basis for H2m�4iþ2ðCSn;QÞ by Lem-

mas 2.4 and 3.1. Thus, if we define a matrix

N ¼ ðNlmÞl;m2Pð2i�1Þ

by the relations

dm�4iþ2
1 DlDm ¼ Nl;md

m
1 ; Nl;m 2 Q ð3:2Þ

in H2mðCSn;QÞ ¼ Q, then N is nonsingular by the Poincare duality.

For m 2 Qð2i� 1Þ applying f to

dm�4iþ2
1 Dmd2i�1 ¼ Nm;2i�1d

m
1

gives

am�2iþ1dm�4iþ2
1 Dm a2i�1d2i�1 þ

X
l2Qð2i�1Þ

alDl

 !
¼ Nm;2i�1a

mdm
1 :

Rewriting everything as a multiple of dm
1 by using (3.2) we get

Nm;2i�1ða2i�1 � a2i�1Þ þ
X

l2Qð2i�1Þ

Nm;lal ¼ 0: ð3:3Þ

Similarly applying f to dm�4iþ2
1 d 2

2i�1 ¼ N2i�1;2i�1d
m
1 yields

N2i�1;2i�1ða
2
2i�1 � a2ð2i�1ÞÞ þ 2a2i�1

X
l2Qð2i�1Þ

Nl;2i�1al þ

þ
X

m;l2Qð2i�1Þ

Nm;lamal ¼ 0: ð3:4Þ

Multiplying (3.3) by al, summing over l 2 Qð2i� 1Þ, and subtracting the resulting

equation from (3.4) gives rise to

N2i�1;2i�1ða
2
2i�1 � a2ð2i�1ÞÞ þ ða2i�1 þ a2i�1Þ

X
l2Qð2i�1Þ

Nl;2i�1al ¼ 0: ð3:5Þ

If a2i�1 ¼ �a2i�1, we are done. Assume next a2i�1 þ a2i�1 6¼ 0. Dividing (3.5) by

a2i�1 þ a2i�1 gives

N2i�1;2i�1ða2i�1 � a2i�1Þ þ
X

l2Qð2i�1Þ

Nl;2i�1al ¼ 0:
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Combining this with (3.3) for all m 2 Qð2i� 1Þ gives a systemX
m2Pð2i�1Þ

Nlmðam � dm;2i�1a
2i�1Þ ¼ 0; l 2 Pð2i� 1Þ;

where dm;2i�1 is the Kronecker delta. The nonsigularity of N implies

am ¼ dm;2i�1a
2i�1; i.e. fðd2i�1Þ ¼ a2i�1d2i�1: &

COROLLARY 3.3. If fðd1Þ ¼ ad1 with a 6¼ 0, then a2i�1 ¼ 
a2i�1, i4 k.

Proof. Since, in the second description of the ring H �ðCSnÞ, the first relation

appears in degree 4½ðnþ 1Þ=2� > degðd2k�1Þ, from (3.1)i we find that the character

sequence of f 2 is ða21; a
2
3; . . . ; a

2
2k�1Þ. It now follows from Lemma 3.2 that

a22i�1 ¼ a2ð2i�1Þ. &

For a d 2 H2rðCSnÞ define the rational MðdÞ 2 Q by the relation

ddm�r
1 ¼ MðdÞdm

1

on H2mðCSnÞ. In particular, the number MðdiÞ is the ratio of the degree of the special

Schubert variety corresponding to di by the degree of CSn [5].

Put ei ¼ eið1; . . . ; n� 1Þ, where eiðt1; . . . ; tn�1Þ is the ith elementary polynomial in

t1; . . . ; tn�1. The following computation has been made in [5, Proposition 4]

LEMMA 3.3. MðdiÞ ¼ 4i�1ei=e1ðe1 � 1Þ � � � ðe1 � iþ 1Þ.

We shall need the following consequence of Lemma 3.3.

LEMMA 3.4. If fðd1Þ ¼ ad1 with a 6¼ 0, then fðd3Þ 6¼ �a3d3 þ 4a3d 3
1.

Proof. Assume not. Applying f to the relation d3d
m�r
1 ¼ Mðd3Þd

m
1 gives

ð�a3d3 þ 4a3d 3
1Þa

m�3dm�3
1 ¼ Mðd3Þa

mdm
1 : ð3:7Þ

Rewriting everything as a multiple of dm
1 , by using (3.6) we get Mðd3Þ ¼ 2. This

implies that 8e3 ¼ e1ðe1 � 1Þðe1 � 2Þ by Lemma 3.3. From the Newton’s formula

we have

8
3 s3 þ

1
2 ðs

2
1 � 3s2Þs1

� �
¼ s1ðs1 � 1Þðs1 � 2Þ; ð3:8Þ

where sk ¼ 1k þ � � � þ ðn� 1Þk. With

s3 ¼
1
2 nðn� 1Þ
� 	2

; s2 ¼
1
6 ðn� 1Þnð2n� 1Þ; and s1 ¼

1
2 nðn� 1Þ;

(3.8) turns out to be:

24 ¼ ðn2 � 17nþ 42Þðn� 1Þn:

However, this has no solution in n. &
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4. The g-Sequences

A sequence of m integers ðs1; . . . ; smÞ will be called a g-sequence of length m if, for

every integer r with kþ 14 r4 2k� 2, the products sisr�i are independent of

i4 ½r2�. In other words, the following inductive strings of relations:

s1sk ¼ s2sk�1 ¼ � � � ¼ s½kþ1
2 �skþ1�½kþ1

2 �;

s2sk ¼ s3sk�1 ¼ � � � ¼ s½kþ2
2 �skþ2�½kþ2

2 �;

..

.

sk�3sk ¼ sk�2sk�1;

sk�2sk ¼ s2k�1

hold among the entries si’s. We classify all such sequences in

LEMMA 4.1. A g-sequence of length m5 3 belongs to one of the three types:

Type 1: ðs1; s1q; . . . ; s1qm�1Þ with s1q 6¼ 0;

Type 2: ðs1; s2; . . . ; s½m2 �; 0; . . . ; 0Þ with s21 þ s22 þ � � � þ s2½m2 �
6¼ 0;

Type 3: ð0; 0; . . . ; 0; smÞ.

Proof. The proof is done by induction on m. If m ¼ 3 then s1s3 ¼ s22. The

sequence ðs1; s2; s3Þ is of type 1 when s2 6¼ 0; belongs to type 2 if s2 ¼ 0 but

s1 6¼ 0; and agrees with type 3 in the remaining case. The inductive procedure can be

carried out easily, by the observation that if ðs1; . . . ; smþ1Þ is of length mþ 1, then,

beside

ð1Þ s1sk ¼ s2sk�1 ¼ � � � ¼ s½kþ1
2 �skþ1�½kþ1

2 �, one has

ð2Þ the subsequence ðs2; . . . ; smþ1Þ is a g-sequence of length m, therefore, falls into

one of the three types by the inductive hypothesis. &

By considering f as an endomorphism of the free algebra Z½d1; d3; . . . ; d2k�1� pre-

serving the ideal generated by lr’s, we have, in Z½d1; d3; . . . ; d2k�1�, that

fðlrÞ ¼ xr;rlr þ xr;r�1lr�1 þ � � � þ xr;klk; k4 r4 2k� 1 ð4:1Þ

when n ¼ 2k and that

fðlrÞ ¼ xr;rlr þ xr;r�1lr�1 þ � � � þ xr;kþ1lkþ1; kþ 14 r4 2k ð4:2Þ

when n ¼ 2kþ 1. Clearly we can assume that the polynomial xr;s has the homoge-

neous degree degðxr;sÞ ¼ 4ðr� sÞ. In particular xr;r is an integer. This is the observa-

tion that brings g-sequences into our consideration.

LEMMA 4.2. Let ða1; . . . ; a2k�1Þ be the character sequence of f. If n ¼ 2k ðresp.

n ¼ 2kþ 1Þ, then ða1; . . . ; a2k�1Þ ðresp. ða3; . . . ; a2k�1ÞÞ is a g-sequence.
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Proof. Suppose that n ¼ 2k (resp. n ¼ 2kþ 1). For an r with k4 r4 2k� 1

(resp. with kþ 14 r4 2k� 1) comparing the coefficient of d2t�1d2s�1, sþ t ¼ rþ 1;

14 s; t4 k, in (4.1)r (resp. (4.2)r) gives

a2t�1a2ðr�tÞþ1 ¼ xr;r; sþ t ¼ rþ 1; 14 s; t4 k ð4:3Þ

Lemma 4.1 for n ¼ 2k (resp. for n ¼ 2kþ 1) is verified by (4.3)r with k4 r4 2k� 3

(resp. with kþ 14 r4 2k� 3). &

5. The Proof of Theorem 2

Assume in this section that fðd1Þ ¼ ad1 6¼ 0. Combining Lemma 4.1, Lemma 4.2 with

Corollary 3.3 we find that the sequence ða1; . . . ; a2k�1Þ agrees with

ða; aq; . . . ; aqk�1Þ; q ¼ 
a2

when n ¼ 2k; and agrees with

ða; a3; a3q; . . . ; a3q
k�2Þ; q ¼ 
a2; a3 ¼ 
a3

when n ¼ 2kþ 1. We proceed further by showing the following lemma:

LEMMA 5.1. Assume as the above. Then

ð1Þ q ¼ a2, and

ð2Þ a3 ¼ a3 when n ¼ 2kþ 1.

Proof. Suppose, otherwise, that q ¼ �a2. From (4.3)2k�2 we find

x2k�2;2k�2 ¼ �a4k�4:

The relation (4.1)2k�2 (resp. (4.2)2k�2) becomes

fðl2k�2Þ ¼ �a4k�4l2k�2 þ x2k�2;2k�3l2k�3 þ � � � þ

þ
x2k�2;klk; if n ¼ 2k;

x2k�2;kþ1lkþ1; if n ¼ 2kþ 1:

(
ð5:1Þ

If k is even comparing the coefficient of d 4
k�1 on both sides of (5.1) gives

a4k�1 ¼ �a4k�4: ð5:2Þ

If k is odd comparing the coefficient of d 2
k�2d

2
k we get

4a2k�2a
2
k ¼ �4a4k�4 þ

e if n ¼ 2k;
0 if n ¼ 2kþ 1;

�
ð5:3Þ

where e 2 Z is the coefficient of d 2
k�2 in x2k�2;k, which is seen to be 0 by examining

the coefficient of d3k�2dkþ2 in (5.1). The contradictions in (5.2) or (5.3) verify (1).

For (2), assume that a3 ¼ �a3. Then the character sequence of f is

ða;�a3; . . . ;�a2k�1Þ;
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and the relation (4.2)kþ1 turns to be

fðlkþ1Þ ¼ a2ðkþ1Þlkþ1:

Comparing the coefficient of d2k�1 one gets

2a2k�1ð fðd3Þ � 2fðd1Þfðd2ÞÞ ¼ 2a2ðkþ1Þðd3 � 2d1d2Þ:

With d2 ¼ d21 and a2k�1 ¼ �a2k�1 we find

fðd3Þ ¼ �a3d3 þ 4a3d31

This contradiction to Lemma 3.4 establishes (2). &

Proof of Theorem 2. With fðd1Þ ¼ ad1, a 6¼ 0, a2i�1 ¼ a2i�1 by Lemma 5.1. It fol-

lows from Lemma 3.2 that

fðd2i�1Þ ¼ a2i�1d2i�1; i4 k:

Consequently fðd2iÞ ¼ a2id2i, since d2i ¼ g2i 2 Z½d1; d3; . . . ; d2k�1� is of homogeneous

degree 4i. &

6. The Proof of Theorem 3

Theorem 3 can be easily deduced from

LEMMA 6.1. If fðd1Þ ¼ 0, then the g-sequence ða1; . . . ; a2k�1Þ when n ¼ 2k ðresp.

ða3; . . . ; a2k�1Þ when n ¼ 2kþ 1Þ must be of type 3.

Proof of Theorem 3. With fðd1Þ ¼ 0 the character sequence is ð0; . . . ; 0; a2k�1Þ by

Lemma 6.1. Assume that fmi ðdtÞ ¼ 0 for some mi and 14 t < i < 2k� 1. We proceed

to show fmiþ1ðdiÞ ¼ 0.

If i is even, di is the polynomial gi in d1; . . . ; di�2. fmi ðdiÞ ¼ 0 follows from

fmi ðdtÞ ¼ 0, t < i. If i is odd, then ai ¼ 0 implies that fðdiÞ is a polynomial in

d1; . . . ; di�2. Again fmi ðdtÞ ¼ 0, t < i, implies fmiþ1ðdiÞ ¼ 0.

Summarizing fNðdiÞ ¼ 0, i < 2k� 1, for some N. It remains to show fNðd2kÞ ¼ 0

when n ¼ 2kþ 1. However this follows directly from the relation

Rk: d2k ¼ 2d1d2k�1 � 2d2d2k�2 þ � � � þ ð�1Þi�12dk�1dkþ1 þ d 2
k: &

The proof of Lemma 6.1 for even n is straightforward.

Proof of Lemma 6:1 for n ¼ 2k. With a1 ¼ 0 the g-sequence ða1; . . . ; a2k�1Þ cannot

be type 1 by Lemma 4.1. Suppose, on the contrary, that it is of type 2. Then from

(4.3)r we find xr;r ¼ 0, r4 2k� 1, or equivalently, (4.1)r becomes

fðlrÞ ¼ xr;r�1lr�1 þ � � � þ xr;klk; k4 r4 2k� 1: ð6:1Þr

Applying f to both sides of (6.1)r, substituting (6.1)s, kþ 14 s4 r, in the right hand

side of the resulting equality yield
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f 2ðlrÞ ¼ yr;r�2lr�2 þ � � � þ yr;klk; k4 r4 2k� 1;

where yr;s are certain polynomials in xt;i’s and fðxr;jÞ’s. Repeating this procedure we

find the iterated endomorphism f k satisfies f kðlrÞ ¼ 0, k4 r4 2k� 1, hence induces

a ring homomorphism g: H �ðCSnÞ ! Z½d1; . . . ; d2k�1� so that the diagram

Z½d1; d3; . . . ; d2k�1� !
f k

Z½d1; d3; . . . ; d2k�1�

p # % g

H �ðCSnÞ

;

commutes, where p is the obvious quotient map. Since CSn has finite dimension, and

since the ring Z½d1; d3; . . . ; d2k�1� is a domain, g ¼ 0. Thus f kðd2i�1Þ ¼ 0, and conse-

quently ak2i�1 ¼ 0, i4 k. This contradiction verifies Lemma 6.1 for n ¼ 2k. &

We complete the proof of Theorem 3 by establishing Lemma 6.1 for odd n.

DEFINITION. The sequence ðc1; . . . ; c2kÞ whose entries are defined by the relations

c1 ¼ c2 ¼ 1; c2i�1 ¼ 2c2i�2; i4 k;

c2i ¼ 2c1c2i�1 � 2c2c2i�2 þ � � � þ ð�1Þi�22ci�1ciþ1 þ ð�1Þi�1c2i ; i4 k

will be called the h-sequence of length 2k.

It is obvious that if ðc1; . . . ; c2kÞ is the h-sequence of length 2k and if k0 4 k, then

the subsequence ðc1; . . . ; c2k0 Þ is the h-sequence of length 2k0. It is also clear that all

h-sequences are classified by their lengths. For instance it is straightforward to see

that the first ten entries in a h-sequence of length 510 are given by

1; 1; 2; 3; 6; 10; 20; 35; 70; 146:

It is, indeed, a trivial exercise from the definition that

ASSERTION 1. If ðc1; . . . ; c2kÞ is a h-sequence, then ci > 0; i4 2k.

Again we use d2i to represent the polynomial g2i. Consider the graded homo-

morphism of free algebras

b : Z½d1; d3; . . . ; d2k�1� ! Z½d1�

defined by

bðd1Þ ¼ d1; bðd2i�1Þ ¼ 2bðd1Þbðd2i�2Þ; 24 i4 k;

h-sequences plays the role in writing bðdiÞ as a multiple of d i
1.

ASSERTION 2. Let ðc1; . . . ; c2kÞ be the h-sequence of length 2k: Then b is given by

bðdiÞ ¼ cid
i
1; i4 2k:

What we need is the following variation of b.

ASSERTION 3. If a : Z½d1; d3; . . . ; d2k�1� ! Z½d1� is the homomorphism defined by

aðd1Þ ¼ d1; aðd2i�1Þ ¼ 2aðd1Þaðd2i�2Þ; 24 i < k;
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and

aðd2k�1Þ ¼ 4aðd1Þaðd2k�2Þ;

then

ð1Þ aðdiÞ ¼ cid
i
1; 14 i4 2k� 2; aðd2k�1Þ ¼ 2c2k�1d

2k�1
1 ;

ð2Þ aðd2kÞ ¼ ð2c2k�1 þ c2kÞd 2k
1 .

Proof. The two homomorphisms a and b are related by

aðd2i�1Þ ¼ bðd2i�1Þ; 24 i < k; and aðd2k�1Þ ¼ 2bðd2k�1Þ:

(1) follows from Assertion 2. Finally since d2k ¼ 2d1d2k�1 þ h with

h ¼ �2d2d2k�2 þ � � � þ ð�1Þi�22dk�1dkþ1 þ ð�1Þi�1d 2
k;

a polynomial in d1; . . . ; d2k�3, we get

aðd2kÞ ¼ 2aðd1Þaðd2k�1Þ þ bðhÞ

¼ 4c2k�1d
2k
1 þ bðd2k � 2d1d2k�1Þ ¼ ð2c2k�1 þ c2kÞd

2k
1 : &

In the next result the homomorphisms a is applied to simplify some polynomial

equalities in Z½d1; . . . ; d2k�1� to equalities in Z½d1�

LEMMA 6.2. If fðd1Þ ¼ 0, then

ð1Þ in the relation ð4:2Þ2k, x2k;2k ¼ 0; and

ð2Þ the g-sequence ða3; . . . ; a2k�1Þ cannot be of type 1.

Proof. Recall from Section 2 that the polynomial l2k is given by

d 2
2k ¼ ð2d1d2k�1 � 2d2d2k�2 þ � � � þ ð�1Þi�22dk�1dkþ1 þ ð�1Þi�1d 2

kÞ
2:

From this we find that, with fðd1Þ ¼ 0, fðl2kÞ is independent of d2k�1. Thus comparing

the coefficient of d2k�1 in (4.2)2k gives

0 ¼ x2k;2kð4d1d2k � 4d 2
1d2k�1Þ þ x2k;2k�1ðd2k�1 � 4d1d2k�2Þ þ

þ x2k;2k�2ð�2d2k�3 þ 4d1d2k�4Þ þ � � � 
 x2k;kþ1ð2d3 � 4d1d2Þ:

Applying the ring homomorphism a to this equality yields

0 ¼ x2k;2kð4aðd1Þaðd2kÞ � 4aðd 2
1Þaðd2k�1ÞÞ;

i.e. x2k;2kc2kd
2kþ1
1 ¼ 0 by Assertion 3. x2k;2k ¼ 0 follows from c2k > 0.

For (2) the relation (4.2)2k takes the form

fðl2kÞ ¼ x2k;2k�1l2k�1 þ x2k;2k�2l2k�2 þ � � � þ x2k;kþ1lkþ1 ð6:2Þ

by (1). Assume on the contrary that

a2i�1 ¼ a3q
i�2 6¼ 0; 24 i4 k:
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Let bj;i 2 Z be the coefficient of d2i�1d2ð2k�j�iÞþ1, 14 i4 ð2k� j� iþ 1Þ=2, in x2k;j.

If k is odd examining the coefficient of d 4
k in (6.2) gives a4k ¼ 0.

If k is even we get

a2k�1a
2
kþ1 ¼ bkþ1;k2

(by comparing the coefficient of d2k�1d
2
kþ1 in ð6:2ÞÞ

¼ 0 (by comparing the coefficient of d3k�1dkþ3 in ð6:2ÞÞ:

This contradiction to a3q 6¼ 0 verifies (2). &

Proof of Lemma 6:1 for n ¼ 2kþ 1. With fðd1Þ ¼ 0 the g-sequence ða3; . . . ; a2k�1Þ

is of either type 2 or 3 by (2) of Lemma 6.2. If it is of type 2,

xr;r ¼ 0; kþ 14 r4 2k� 1

by (4.3)r, and x2k;2k ¼ 0 by (1) of Lemma 6.2. The same argument as that in the proof

of Lemma 6.1 for n ¼ 2k yields the contradiction a2i�1 ¼ 0, i4 2k� 1. &

7. The Proofs of Theorem 4 and 5

For a topological space X and an odd prime p > 1, let

St2tðp�1Þ
p : HqðX;ZpÞ ! Hqþ2tðp�1ÞðX;ZpÞ

be the Steenrod mod-p operators. The naturality of these operators imposes a bunch

of restrictions on those endomorphisms of H �ðXÞ that are induced by self-maps.

This, besides Theorems 2 and 3, underlies the proof of Theorem 4.

For an integer k > 1 let DðkÞ be the set of all odd primes p such that

1 < p < 2k� 1 and that p is prime to 2k� 1: As examples

Dð3Þ ¼ f3g;Dð4Þ ¼ f3; 5g;Dð5Þ ¼ f5; 7g; . . . ; etc:

Obviously DðkÞ 6¼ f for all k > 2.

For a self-map f of CSn, we let ða1; . . . ; a2k�1Þ be the character sequence of the

induced endomorphism f �. Again we set k ¼ ½n=2�.

LEMMA 7.1. If a1 ¼ 0, then ða1; . . . ; a2k�1Þ � ð0; . . . ; 0Þ mod p, p 2 DðkÞ.

Proof. If a1 ¼ 0, ða1; . . . ; a2k�1Þ is a g-sequence of type 3 by Lemma 6.1. It

remains to show a2k�1 � 0 mod p, p 2 DðkÞ.

The action of St�p on the universal Chern classes ci’s is given by (cf. [1])

St2tðp�1Þ
p ci � ðiþ tðp� 1ÞÞciþtðp�1Þ þ h mod p;

where h is a polynomial decomposable in cj, j < iþ tðp� 1Þ. Since the generators di’s

are related with the Chern classes of gn by the formula ciðgnÞ ¼ 2di (Theorem 1), this

implies that

St2tðp�1Þ
p di � ð2k� 1Þd2k�1 þ h0mod p whenever 2k� 1 ¼ iþ tðp� 1Þ;
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where h0 is decomposable in dj’s, j < iþ tðp� 1Þ. For a p 2 DðkÞ applying f � to

St2ðp�1Þ
p d2k�p � ð2k� 1Þd2k�1 þ h0

gives

St2ðp�1Þ
p f �ðd2k�pÞ � ð2k� 1Þf �ðd2k�1Þ þ f �ðh0Þmod p:

Since a2i�1 ¼ 0, i < k, the indecompositable component of the equality is

ð2k� 1Þa2k�1d2k�1 � 0 mod p:

Now a2k�1 � 0 mod p follows from that p is prime to 2k� 1. &

For a self-map f of a finite complex X, its Lefschetz number is defined by

Lð f Þ ¼ 1þ
X

ð�1ÞrTrf f �: HrðX;QÞ ! HrðX;QÞg;

If X ¼ CSn the formula can be simplified, since HoddðCSnÞ ¼ 0, as

Lð f Þ ¼ 1þ
X

Trff �: HrðXÞ ! HrðXÞg:

LEMMA 7.2. Suppose that f �ðd1Þ ¼ 0. Then we have

ð1Þ Lð f Þ ¼ 1 when n ¼ 2; 3; 5 and,

ð2Þ Lð f Þ � 1 mod p for every p 2 DðkÞ when n > 5:

Proof. By Lemma 2.2 we have

H �ðCS2Þ ffi Z½d1�=d
2
1; H �ðCS3Þ ffi Z½d1�=d

4
1 :

Thus f �ðd1Þ ¼ 0 implies that Lð f Þ ¼ 1 when n ¼ 2 or 3.

Consider the case n ¼ 5. With f �ðd1Þ ¼ 0, f �ðdiÞ ¼ 0 for i ¼ 2; 4 by the relations R1

and R2. Assuming

f �ðd3Þ ¼ ad3 þ bd1d2; a; b 2 Z;

and applying f � to R3 : d
2
3 � 2d2d4 ¼ 0 yields ðad3 þ bd1d2Þ

2
¼ 0.

Using Ri, i ¼ 1; 2; 3, to rewrite this in terms of the basis d2d4, d1d2d3 for

H6ðCS6;ZÞ we obtain

ð2a2 � b2Þd2d4 þ 2bðaþ bÞd1d2d3 ¼ 0:

Lð f Þ ¼ 1 now follows from a ¼ b ¼ 0. This completes the proof of (1).

For a prime p the Zp-cohomology algebra of CSn is

H �ðCSn;ZpÞ ¼ Zp½d1; d3; . . . ; d2k�1�=L;

where L is the ideal generated by lr’s mod-p. Let Zp½d1; . . . ; d2k�1�
2t be the Zp vector

space spanned by dr1
1 d r2

3 . . . d rk
2k�1,

P
ð2i� 1Þri ¼ t, and put

L2t ¼ L \ Zp½d1; . . . ; d2k�1�
2t:
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Then we have the exact sequence:

0 ! L2t ! Zp½d1; . . . ; d2k�1�
2t
! H2tðCSn;ZpÞ ! 0:

Since f �, as an endomorphism of Zp½d1; d3; . . . ; d2k�1�, preserves the ideal, L2t is an

invariant subspace of f �. i.e. f � induces an exact ladder:

0 ! L2t ! Zp½d1; . . . ; d2k�1�
2t

! H2tðCSn;ZpÞ ! 0
# f

� # #

0 ! L2t ! Zp½d1; . . . ; d2k�1�
2t

! H2tðCSn;ZpÞ ! 0

:

It follows that, for each t > 0,

Trð f � on H2tðCSn;ZpÞÞ ¼ Trð f � on Zp½d1; . . . ; d2k�1�
2t
Þ � Trð f � on L2tÞ:

Assume now that n > 5; p 2 DðkÞ and that f �ðd1Þ ¼ 0. Then a2i�1 � 0 mod p,

i4 k, by Lemma 7.1. Consequently

Trð f � on Zp½d1; . . . ; d2k�1�
2t
Þ ¼ 0 and Trð f � on L2tÞ ¼ 0

for all t > 0. These verifies

Lð f Þ � 1þ
X
t>0

Trð f � on H2tðCSn;ZpÞÞ � 1 mod p: &

Proof of Theorem 4. Let f be a self-map of CSn with Lð f Þ ¼ 0. If f �ðd1Þ ¼ ad1,

a 6¼ 0, then Lð f Þ ¼ P14 i4 n�1ð1þ aiÞ by Theorem 2 (the Poincare polynomial of

CSn is P14 i4 n�1ð1þ t2iÞ by Lemma 2.1). Now Lð f Þ ¼ 0 implies a ¼ �1, and

fðdiÞ ¼ ð�1Þidi follows from Theorem 2.

If f �ðd1Þ ¼ 0, there must be n ¼ 4 by Lemma 7.2, and f �ðd2Þ ¼ 0 by R1. With

Lð f Þ ¼ 0 we can assume that

f �ðd3Þ ¼ �d3 þ bd1d2; b 2 Z:

Applying f � to R3 : d
2
3 ¼ 0, rewriting everything in the resulting equation as multi-

ples of the generator d1d2d3 2 H12ðCS4Þ ¼ Z by using R1;R2;R3, we get 2bðb� 1Þ

d1d2d3 ¼ 0, i.e. either f �ðd3Þ ¼ �d3 or f �ðd3Þ ¼ �d3 þ d1d2. These finish the

proof. &

Consider the free algebra

FðCSnÞ ¼ Z½x1; x3; . . . ; x2k�1� 	 LZðy½nþ1
2 �; y½nþ1

2 �þ1; . . . ; yn�1Þ;

the tensor product of the polynomial algebra in xi’s with the exterior algebra in yr’s.

It is graded by degðxiÞ ¼ 2i and degðyrÞ ¼ 4r� 1. The differential d: FðCSnÞ !

FðCSnÞ of degree 1 given by

dðxiÞ ¼ 0 and dðyrÞ ¼ lrðx1; x3; . . . ; x2k�1Þ

furnishes FðCSnÞ with the structure of a differential graded commutative algebra

over Z. Indeed Lemma 2.3 implies that
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LEMMA 7.3 (cf. [4, Proposition 3]). The homomorphism

g: FðCSnÞ ! H �ðCSnÞ; given by gðx2i�1Þ ¼ d2i�1; gðyrÞ ¼ 0

is the minimal model (over Z) for H �ðCSnÞ.

Proof of Theorem 5. Let f be a self-homotopy equivalence of CSn. Then

fðd1Þ ¼ 
d1; and fðdiÞ ¼ ð
1Þidi for all i4 n� 1

by Theorem 2. The relations (4.1)r (resp. (4.2)r) becomes

f �ðlrÞ ¼ lr for

�
nþ 1

2

�
4 r4 n� 1

In views of Lemma 7.3, a minimal model

Fð f Þ: FðCSnÞ ! FðCSnÞ

for f can be chosen to be Fð f Þðx2i�1Þ ¼ ð
1Þix2i�1 and

Fð f ÞðyrÞ ¼ yr:

By the rational homotopy theory [8] the forms yr 	 1’s2 FðCSnÞ 	Q constitute a

basis for HomðpoddðCSnÞ;QÞ and the induced chain endomorphism Fð f Þ 	 1 of

FðCSnÞ 	Q; module decompositables, agrees with the dual action of f� on

p�ðCSnÞ. Thus the proof is done by (7.1). &

8. Examples

This section serves as a supplement to Theorem 3. We present self-maps f of CSn, for

even n, so that f �ðdiÞ ¼ 0 when i 6¼ 2k� 1, but f �Nðd2k�1Þ 6¼ 0 for all N > 0.

Let e1; . . . ; e4k be the standard basis for the Euclidean space R4k and let S4k�2 be

the unit sphere in the subspace spanned by ei; i < 4k. The map

p: CS2k ! S 4k�2; pðJÞ ¼ Je4k�1 2 S4k�2;

is a fiber bundle projection whose fiber inclusion over e4k�1 2 S4k�2 is

l: CS2k�1 ! CS2k; lðJ0Þ ¼ J0 �
0 1
�1 0

� �
:

In fact the class d2k�1 is cospherical in the sense that

(1) p�ðeÞ ¼ d2k�1, where e 2 H2k�2ðS4k�2Þ ¼ Z is a generator (cf. [4]).

On the other hand the homotopy exact sequence of p gives the exact sequence of

vector spaces over Q

� � � ! p4k�2ðCS2k�1Þ 	Q ! p4k�2ðCS2kÞ 	Q!
p�

! p4k�2ðS
4k�2Þ 	Q ! p4k�3ðCS2k�1Þ 	Q ! � � �

From the minimal model for H �ðCS2k;QÞ (Lemma 7.3) we find
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p4k�2ðCS2k�1Þ 	Q ¼ p4k�3ðCS2k�1Þ 	Q ¼ 0:

This implies that

(2) there exists a map a: S4k�2 ! CS2k so that degðp � aÞ 6¼ 0. Thus if we let

fa ¼ a � p, for a a satisfying 2), then f �a satisfies

(3) f �a ðdiÞ ¼ 0 for all i 6¼ 2k� 1 but f �Na ðd2k�1Þ ¼ degðp � aÞNd2k�1. Finally it is

worth to point out that

(4) the class f �a ðd2k�1Þ 2 H4k�2ðCS2kÞ is always divisible by 1
2 ð4k� 3Þ! since fa fac-

tors through the sphere S4k�2 and since 2d2k�1 is the ð2k� 1Þth Chern class

of the bundle g2k [2].
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