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APPROXIMATION THEOREMS THROUGHOUT REVERSE
MATHEMATICS

SAM SANDERS

Abstract. Reverse Mathematics (RM) is a program in the foundations of mathematics where the aim
is to find the minimal axioms needed to prove a given theorem of ordinary mathematics. Generally, the
minimal axioms are equivalent to the theorem at hand, assuming a weak logical system called the base
theory. Moreover, many theorems are either provable in the base theory or equivalent to one of four
logical systems, together called the Big Five. For instance, the Weierstrass approximation theorem, i.e., that
a continuous function can be approximated uniformly by a sequence of polynomials, has been classified
in RM as being equivalent to weak König’s lemma, the second Big Five system. In this paper, we study
approximation theorems for discontinuous functions via Bernstein polynomials from the literature. We
obtain many equivalences between the latter and weak König’s lemma. We also show that slight variations
of these approximation theorems fall far outside of the Big Five but fit in the recently developed RM of new
‘big’ systems, namely the uncountability of R, the enumeration principle for countable sets, the pigeon-hole
principle for measure, and the Baire category theorem.

§1. Introduction and preliminaries.

1.1. Aim and motivation. The aim of the program Reverse Mathematics (RM;
see Section 1.2.1 for an introduction) is to find the minimal axioms needed to
prove a given theorem of ordinary mathematics. Generally, the minimal axioms are
equivalent to the theorem at hand, assuming a weak logical system called the base
theory. The Big Five phenomenon is a central topic in RM, as follows.

[...] we would still claim that the great majority of the theorems
from classical mathematics are equivalent to one of the big five.
This phenomenon is still quite striking. Though we have some
sense of why this phenomenon occurs, we really do not have a
clear explanation for it, let alone a strictly logical or mathematical
reason for it. The way I view it, gaining a greater understanding of
this phenomenon is currently one of the driving questions behind
reverse mathematics. (see [57, p. 432])

A natural example is the equivalence between the Weierstrass approximation
theorem and weak König’s lemma from [83, IV.2.5]. In [68], Dag Normann and
the author greatly extend the Big Five phenomenon by establishing numerous
equivalences involving the second-order Big Five systems on one hand, and well-
known third-order theorems from analysis about possibly discontinuous functions
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2 SAM SANDERS

on the other hand, working in Kohlenbach’s higher-order RM (see Section 1.2.1).
Moreover, following [68, Section 2.8], slight variations/generalisations of these
third-order theorems cannot be proved from the Big Five and much stronger systems.
Nonetheless, an important message of [68] is just how similar second- and higher-
order RM can be, as the latter reinforces the existing Big Five with many further
examples.

In this paper, we develop the RM-study of approximation theorems, often
involving Bernstein polynomials Bn, defined as follows:

Bn(f, x) :=
n∑
k=0

f
(
k/n

)
pn,k(x), where pn,k(x) :=

(
n

k

)
xk(1 – x)n–k. (1.1)

Weierstrass [92] and Borel [9, p. 80] already study polynomial approximations while
Bernstein [6] provides the first explicit polynomials, namelyBn as above, and showed
that for continuous f : [0, 1] → R, we have for all x ∈ [0, 1] that

f(x) = lim
n→∞

Bn(f, x), (1.2)

where the convergence is uniform. Approximation results for discontinuous
functions are in [18, 33, 43, 71] and1 take the form (1.2) for points of continuity and
the form (1.3) if the left and right limits f(x –) and f(x+) exist at x ∈ (0, 1):

f(x+)+f(x–)
2 = limn→∞ Bn(f, x). (1.3)

We stress that for generalf : [0, 1] → R, (1.2) may hold at x where f is discontinuous,
i.e., (1.2) is much weaker than continuity at x. For instance, Dirichlet’s function 1Q

satisfies (1.2) for all rationals and is discontinuous everywhere.
In this paper, we develop the RM-study of approximation theorems based on

(1.2) and (1.3) for regulated, semi-continuous, cliquish, and Riemann integrable
functions. Scheeffer and Darboux study regulated functions in [20, 80] without
naming this class, while Baire introduced semi-continuity in [4]. Hankel studies
cliquish functions using an equivalent definition in [30]. Thus, there is plenty of
historical motivation for our RM-study.

In particular, we show that many approximation theorems for discontinuous
functions are equivalent to weak König’s lemma in Theorem 2.3. We also show that
slight variations fall far outside of the Big Five, but do yield equivalences for four
new ‘Big’ systems, namely the uncountability of R [78], the enumeration principle for
countable sets [64], the Baire category theorem [79], and the pigeon-hole principle for
measure [79]. These new Big systems boast equivalences involving principles based
on pointwise continuity and it is perhaps surprising that the same holds for the
weaker condition (1.2). Moreover, the equivalences for these new Big systems are
robust as follows:

A system is robust if it is equivalent to small perturbations of itself.
([57, p. 432]; emphasis in original)

1Picard studies approximations of Riemann integrablef : [0, 1] → R in [71, p. 252] related to Berstein
polynomials following [18, p. 64].
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APPROXIMATION THEOREMS THROUGHOUT REVERSE MATHEMATICS 3

In particular, our equivalences generally go through for many variations of the
function classes involved, with examples in Theorems 3.3 and 3.8. There is an
apparent tension here with the earlier observation that slight variations in the
theorems can greatly affect the logical strength required to prove them. We attempt
to explain this phenomenon in Remark 3.11.

Finally, in Section 1.2.1, we provide an introduction to RM; we introduce essential
higher-order concepts in Sections 1.2.2–1.2.4. We establish the equivalences for
weak König’s lemma in Section 2 and the equivalences for the ‘new’ big systems in
Section 3.2–3.4.

1.2. Preliminaries and definitions. We briefly introduce RM in Section 1.2.1. We
introduce some essential axioms (Section 1.2.2) and definitions (Section 1.2.3)
needed in the below. We discuss the definition of countable set in higher-order
RM in Section 1.2.4.

1.2.1. Reverse Mathematics. RM is a program in the foundations of mathematics
initiated around 1975 by Friedman [27, 28] and developed extensively by Simpson
and others [22, 82, 83]. The aim of RM is to identify the minimal axioms needed to
prove theorems of ordinary, i.e., non-set theoretical, mathematics.

First of all, we refer to [84] for a basic introduction to RM and to [22, 82, 83] for an
overview of RM. We expect basic familiarity with RM, in particular Kohlenbach’s
higher-order RM [46] essential to this paper, including the base theory RCA�0 , also
introduced in Section 4.2. An extensive introduction can be found in, e.g., [61, 62, 65]
and elsewhere.

Secondly, as to notations, we have chosen to include a brief introduction as a
technical appendix, namely Section 4. All undefined notions may be found in the
latter, while we do point out here that we shall sometimes use common notations
from type theory. For instance, the natural numbers are type 0 objects, denoted n0

or n ∈ N. Similarly, elements of Baire space are type 1 objects, denoted f ∈ NN or
f1. Mappings from Baire space NN to N are denoted Y : NN → N or Y 2.

Thirdly, the main topic of this paper is the RM-study of real analysis, for which
the following notations suffice. Both in RCA0 and RCA�0 , real numbers are given by
Cauchy sequences (see Definition 4.4 and [83, II.4.4]) and equality between reals
‘=R’ has the same meaning in second- and higher-order RM. Functions on R are
defined as mappings Φ from NN to NN that respect real equality, i.e., x =R y →
Φ(x) =R Φ(y) for any x, y ∈ R, which is also called function extensionality.

Fourth, experience bears out that the following fragment of the Axiom of Choice
is often convenient when (first) proving equivalences. This principle can often be
omitted by developing a more sophisticated alternative proof (see, e.g., [63]).

Principle 1.1 (QF-AC0,1). For any Y 2, we have:

(∀n ∈ N)(∃f ∈ NN)(Y (f, n) = 0) → (∃(fn)n∈N)(∀n ∈ N)(Y (fn, n) = 0). (1.4)

As discussed in [46, Remark 3.13], this principle is not provable in ZF while
RCA�0 + QF-AC0,1 suffices to prove the local equivalence between (epsilon–delta)
continuity and sequential continuity, which is also not provable in ZF.

Finally, the main difference between Friedman–Simpson and Kohlenbach’s
framework for RM is whether the language is restricted to second-order objects
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4 SAM SANDERS

or if one allows third-order objects. An important message of [68] and this paper is
that the second-order Big Five are equivalent to third-order theorems concerning
possibly discontinuous functions, as is also clear from Theorems 2.3 and 2.4.

1.2.2. Some comprehension functionals. In second-order RM, the logical hard-
ness of a theorem is measured via what fragment of the comprehension axiom
(broadly construed) is needed for a proof. For this reason, we introduce some
axioms and functionals related to higher-order comprehension in this section. We are
mostly dealing with conventional comprehension here, i.e., only parameters over N
and NN are allowed in formula classes like Π1

k and Σ1
k .

First of all, the functional ϕ in (∃2) is also Kleene’s quantifier ∃2 and is clearly
discontinuous at f = 11 ... in Cantor space:

(∃ϕ2 ≤2 1)(∀f1)
[
(∃n0)(f(n) = 0) ↔ ϕ(f) = 0

]
. (∃2)

In fact, (∃2) is equivalent to the existence ofF : R → R such thatF (x) = 1 ifx >R 0,
and 0 otherwise (see [46, Proposition 3.12]). Related to (∃2), the functional �2 in
(�2) is called Feferman’s � (see [3]) and may be found—with the same symbol—in
Hilbert–Bernays’ Grundlagen [34, Supplement IV]:

(∃�2)(∀f1)
[
(∃n)(f(n) = 0) → [f(�(f)) = 0 ∧ (∀i < �(f))(f(i) 	= 0)] (�2)

∧ [(∀n)(f(n) 	= 0) → �(f) = 0]
]
.

We have (∃2) ↔ (�2) over RCA�0 (see [46, Section 3]) and ACA�0 ≡ RCA�0 + (∃2)
proves the same sentences as ACA0 by [35, Theorem 2.5].

Secondly, the functional S2 in (S2) is called the Suslin functional [46]:

(∃S2 ≤2 1)(∀f1)
[
(∃g1)(∀n0)(f(gn) = 0) ↔ S(f) = 0

]
. (S2)

The system Π1
1-CA�0 ≡ RCA�0 + (S2) proves the same Π1

3-sentences as Π1
1-CA0 by

[75, Theorem 2.2]. By definition, the Suslin functional S2 can decide whether a
Σ1

1-formula as in the left-hand side of (S2) is true or false. We similarly define the
functional S2

k which decides the truth or falsity of Σ1
k-formulas from L2; we also

define the system Π1
k-CA

�
0 as RCA�0 + (S2

k), where (S2
k) expresses that S2

k exists. We
note that the operators �n from [17, p. 129] are essentially S2

n strengthened to return
a witness (if existent) to the Σ1

n-formula at hand.
Thirdly, full second-order arithmetic Z2 is readily derived from ∪kΠ1

k-CA
�
0 , or

from

(∃E3 ≤3 1)(∀Y 2)
[
(∃f1)(Y (f) = 0) ↔ E(Y ) = 0

]
, (∃3)

and we therefore define ZΩ
2 ≡ RCA�0 + (∃3) and Z�2 ≡ ∪kΠ1

k-CA
�
0 , which are

conservative over Z2 by [35, Corollary 2.6]. Despite this close connection, Z�2 and ZΩ
2

can behave quite differently, as discussed in, e.g., [61, Section 2.2] and Section 3.1.
The functional from (∃3) is also called ‘∃3’, and we use the same convention for
other functionals.

Finally, Kleene’s quantifier ∃2 plays a crucial role throughout higher-order RM.
We recall that (∃2) is equivalent to the existence of a discontinuous function on
R (or NN) by [46, Proposition 3.12], using so-called Grilliot’s trick. Thus, ¬(∃2) is
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APPROXIMATION THEOREMS THROUGHOUT REVERSE MATHEMATICS 5

equivalent to Brouwer’s theorem, i.e., all functions on the reals (and Baire space)
are continuous. We will often make use of the latter fact without explicitly pointing
this out.

1.2.3. Some definitions. We introduce some required definitions, stemming from
mainstream mathematics. We note that subsets of R are given by their characteristic
functions as in Definition 1.2, well-known from measure and probability theory. We
shall generally work over ACA�0 as some definitions make little sense over RCA�0 .

First of all, we make use the usual definition of (open) set, where B(x, r) is the
open ball with radius r > 0 centred at x ∈ R. We note that our notion of ‘measure
zero’ does not depend on (the existence of) the Lebesgue measure.

Definition 1.2 (Sets).

• A subset A ⊂ R is given by its characteristic function FA : R → {0, 1}, i.e., we
write x ∈ A for FA(x) = 1, for any x ∈ R.

• A subset O ⊂ R is open in case x ∈ O implies that there is k ∈ N such that
B(x, 1

2k
) ⊂ O.

• A subset O ⊂ R is RM-open in case there are sequences of reals
(an)n∈N, (bn)n∈N such that O = ∪n∈N(an, bn).

• A subset C ⊂ R is closed if the complement R \ C is open.
• A subset C ⊂ R is RM-closed if the complement R \ C is RM-open.
• A set A ⊂ R is enumerable if there is a sequence of reals that includes all

elements of A.
• A set A ⊂ R is countable if there is Y : R → N that is injective on A, i.e.,

(∀x, y ∈ A)(Y (x) =0 Y (y) → x =R y).

• A setA ⊂ R is measure zero if for any ε > 0 there is a sequence of open intervals
(In)n∈N such that ∪n∈NIn covers A and ε >

∑∞
n=0 |In|.

• A setA ⊂ R is dense inB ⊂ R if for k ∈ N, b ∈ B , there is a ∈ Awith |a – b| <
1

2k
.

• A setA ⊂ R is nowhere dense inB ⊂ R if A is not dense in any open sub-interval
of B.

As discussed in Section 1.2.4, the study of regulated functions already gives rise to
open sets that do not come with additional representation beyond the second item
in Definition 1.2. We will often assume (∃2) from Section 1.2.2 to guarantee that
basic objects like the unit interval are sets in the sense of Definition 1.2.

Secondly, we study the following notions, many of which are well-known and hark
back to the days of Baire, Darboux, Dini, Jordan, Hankel, and Volterra [4, 5, 20, 21,
30, 31, 41, 90]. We use ‘sup’ and other operators in the ‘virtual’ or ‘comparative’ way
of second-order RM (see, e.g., [83, X.1] or [15]). In this way, a formula of the form
‘supA > a’ or ‘x ∈ S’ makes sense as shorthand2 for a formula in the language of
all finite types, even when supA or the closure S need not exist in RCA�0 .

2For instance, ‘supA > a’ simply abbreviates (∃x ∈ A)(x > a), while ‘x ∈ S’ means that there is a
sequence of elements in S converging to x.
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6 SAM SANDERS

Definition 1.3. For f : [0, 1] → R, we have the following definitions:

• f is upper semi-continuous at x0 ∈ [0, 1] if f(x0) ≥R lim supx→x0
f(x).

• f is lower semi-continuous at x0 ∈ [0, 1] if f(x0) ≤R lim infx→x0 f(x).
• f has bounded variation on [0, 1] if there is k0 ∈ N such that k0 ≥

∑n
i=0 |f(xi ) –

f(xi+1)| for any partition x0 = 0 < x1 < ··· < xn–1 < xn = 1.
• f is regulated if for every x0 in the domain, the ‘left’ and ‘right’ limit f(x0 –)

= limx→x0– f(x) and f(x0+) = limx→x0+ f(x) exist.
• f is cadlag if it is regulated and f(x) = f(x+) for x ∈ [0, 1).
• f is a U0-function ([1, 29, 40, 54]) if it is regulated and for all x ∈ (0, 1) :

min(f(x+), f(x –)) ≤ f(x) ≤ max(f(x+), f(x –)). (1.5)

• f is Baire 1 if it is the pointwise limit of a sequence of continuous functions.
• f is Baire 1∗ if3 there is a sequence of closed sets (Cn)n∈N such [0, 1] = ∪n∈NCn

and f�Cm is continuous for all m ∈ N.
• f is quasi-continuous at x0 ∈ [0, 1] if for � > 0 and any open neighbourhood U

of x0, there is non-empty open G ⊂ U with (∀x ∈ G)(|f(x0) – f(x)| < ε).
• f is cliquish at x0 ∈ [0, 1] if for � > 0 and any open neighbourhood U of x0,

there is a non-empty open G ⊂ U with (∀x, y ∈ G)(|f(x) – f(y)| < ε).
• f is pointwise discontinuous if for any x ∈ [0, 1], k ∈ N there is y ∈ B(x, 1

2k
)

such that f is continuous at y.
• f is locally bounded if for any x ∈ [0, 1], there is N ∈ N such that (∀y ∈
B(x, 1

2N
) ∩ [0, 1])(|f(y)| ≤ N ).

As to notations, a common abbreviation is ‘usco’, ‘lsco’, and ‘BV ’ for the first
three items. Cliquishness and pointwise discontinuity on the reals are equivalent, the
non-trivial part of which was already observed by Dini [21, Section 63]. Moreover, if
a function has a certain weak continuity property at all reals in [0, 1] (or its intended
domain), we say that the function has that property. The fundamental theorem
about BV -functions was proved already by Jordan in [41, p. 229].

Theorem 1.4 (Jordan decomposition theorem). A BV -function f : [0, 1] → R is
the difference of two non-decreasing functions g, h : [0, 1] → R.

Theorem 1.4 has been studied in RM via second-order codes [60]. For a BV -
function f : [0, 1] → R, the total variation is defined as

V 1
0 (f) := sup0≤x0<···<xn≤1

∑n
i=0 |f(xi) – f(xi+1)|. (1.6)

Thirdly, the following sets are often crucial in proofs relating to discontinuous
functions, as can be observed in, e.g., [1, Theorem 0.36].

Definition 1.5. The sets Cf andDf (if they exist) respectively gather the points
where f : R → R is continuous and discontinuous.

One problem with the sets Cf,Df is that the definition of continuity involves
quantifiers over R. In general, deciding whether a given R → R-function is

3The notion of Baire 1∗ goes back to [23] and equivalent definitions may be found in [44]. In particular,
Baire 1∗ is equivalent to the Jayne-Rogers notion of piecewise continuity from [39].
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APPROXIMATION THEOREMS THROUGHOUT REVERSE MATHEMATICS 7

continuous at a given real, is as hard as ∃3 from Section 1.2.2. For these reasons, the
sets Cf,Df only exist in strong systems. A solution is discussed in just below.

In this section, we introduce oscillation functions and provide some motivation
for their use. We have previously studied usco, Baire 1, Riemann integrable, and
cliquish functions using oscillation functions (see [77, 79]). As will become clear,
such functions are generally necessary for our RM-study.

Fourth, the study of regulated functions in [64, 66, 67, 78] is really only possible
thanks to the associated left- and right limits (see Definition 1.3) and the fact that
the latter are computable in ∃2. Indeed, for regulated f : R → R, the formula

fis continuous at a given real x ∈ R (C)

involves quantifiers over R but is equivalent to the arithmetical formula f(x+) =
f(x) = f(x –). In this light, we can define the setDf—using only ∃2—and proceed
with the usual (textbook) proofs. An analogous approach, namely the study of usco,
Baire 1, Riemann integrable, and cliquish functions, was used in [77, 79]. To this
end, we used oscillation functions as in Definition 1.6. We note that Riemann, Ascoli,
and Hankel already considered the notion of oscillation in the study of Riemann
integration [2, 30, 72], i.e., there is ample historical precedent.

Definition 1.6 (Oscillation functions). For any f : R → R, the associated
oscillation functions are defined as follows: oscf([a, b]) := supx∈[a,b] f(x) –
infx∈[a,b] f(x) and oscf(x) := limk→∞ oscf(B(x, 1

2k
)).

We stress that oscf : R → R is only4 a third-order object, as clearly indicated by
its type. Now, our main interest in Definition 1.6 is that (C) is equivalent to the
arithmetical formula oscf(x) = 0, assuming the latter function is given. Hence, in
the presence of oscf : R → R and ∃2, we can define Df and proceed with the usual
(textbook) proofs, which is the approach we often took in [77, 79]. Indeed, one can
generally avoid the use of oscillation functions for usco functions.

1.2.4. On countable sets. In this section, we discuss the correct definition of
countable set for higher-order RM, where we hasten to add that ‘correct’ is only
meant to express ‘yields many equivalences over weak systems like the base theory’.

First of all, the correct choice of definition for mathematical notions is crucial to
the development of RM, as can be gleaned from the following quote.

Under the old definition [of real number in [81]], it would be
consistent with RCA0 that there exists a sequence of real numbers
(xn)n∈N such that (xn + �)n∈N is not a sequence of real numbers.
We thank Ian Richards for pointing out this defect of the old
definition. Our new definition [of real number in [16]], given above,
is adopted in order to remove this defect. All of the arguments and
results of [81] remain correct under the new definition. [16, p. 129]

In short, the early definition of ‘real number’ from [81] was not suitable for the
development of RM, highlighting the importance of the right choice of definition.

4To be absolutely clear, the notation ‘oscf ’ and the appearance of f therein in particular, is purely
symbolic, i.e., we do not make use of the fourth-order object 	f.oscf in this paper.
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8 SAM SANDERS

Similar considerations exist for the definition of continuous function in constructive
mathematics (see [14, 91]), i.e., this situation is not unique to RM.

Secondly, we focus on identifying the correct definition for ‘countable set’. Now,
going back to Hankel [30], the sets Cf and Df of (dis)continuity points of f :
[0, 1] → R play a central role in real analysis as is clear from, e.g., the Vitali–Lebesgue
theorem which expresses Riemann integrability in terms of Cf . For regulated f :
[0, 1] → R, the set of discontinuity points satisfies Df = ∪k∈NDk for

Dk := {x ∈ [0, 1] : |f(x) – f(x+)| > 1
2k

∨ |f(x) – f(x –)| > 1
2k
}, (1.7)

whereDk is finite via a standard compactness argument. In this way,Df is countable
but we are unable to construct an injection (let alone a bijection) from the former
to N in, e.g., Z�2 . Hence, we readily encounter countable sets ‘in the wild’, namely
Df for regulated f, for which the set-theoretic definition based on injections and
bijections can apparently not be established in weak logical systems. Similarly, while
Dk is closed, Z�2 does not prove the existence of an RM-code for Dk . In this way,
theorems about countable (or RM-closed) sets in the sense of Definition 1.2 cannot
be applied to Df or Dk in fairly strong systems like Z�2 and the development of the
RM of real analysis therefore seemingly falters.

The previous negative surprise notwithstanding, (1.7) also provides the solution
to our problem: we namely have Df = ∪k∈NDk , i.e., the set Df is

the union over N of finite sets.

Moreover, this property of Df can be established in a (rather) weak logical system.
Thus, we arrive at Definition 1.7 which yields many equivalences involving the
statement the unit interval is not height-countable (see Section 3.2 and [78]) on one
hand, and basic properties of regulated functions on the other hand.

Definition 1.7. A set A ⊂ R is height-countable if there is a height function
H : R → N for A, i.e., for all n ∈ N, An := {x ∈ A : H (x) < n} is finite.

Height functions can be found in the modern literature [37, 47, 56, 73, 89], but
also go back to Borel and Drach circa 1895 (see [10–12]) Definition 1.7 amounts to
‘union over N of finite sets’, as is readily shown in ACA�0 .

Finally, the observations regarding countable sets also apply mutatis mutandis to
finite sets. Indeed, finite as eachDn from (1.7) may be, we are unable to construct an
injection to a finite subset of N, even assuming Z�2 . By contrast, one readily5 shows
that Dn from (1.7) is finite as in Definition 1.8.

Definition 1.8 (Finite set). Any X ⊂ R is finite if there is N ∈ N such that for
any finite sequence (x0, ... , xN ) of distinct reals, there is i ≤ N such that xi 	∈ X .

The number N from Definition 1.8 is called a size bound for the finite set
X ⊂ R. Analogous to countable sets, the RM-study of regulated functions should
be based on Definition 1.8 and not on the set-theoretic definition based on
injections/bijections to finite subsets of N or similar constructs.

5The standard compactness argument that shows that Dk is finite as in Definition 1.8 goes through
in ACA�0 + QF-AC0,1 by (the proof of) Theorem 3.3.
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APPROXIMATION THEOREMS THROUGHOUT REVERSE MATHEMATICS 9

In conclusion, Definitions 1.7 and 1.8 provide the correct definition of countable
set in that they give rise to many RM-equivalences involving basic properties of
regulated functions, as established in [78]. By contrast, the set-theoretic definition
involving injections and bijections, does not seem to seem suitable for the
development of (higher-order) RM.

§2. Equivalences involving weak König’s lemma. We establish equivalences
between WKL0 and approximation theorems for Bernstein polynomials for
(dis)continuous functions. We sketch similar results for the other Big Five systems
ACA0 and ATR0. The RM-study of Bernstein polynomial approximation of course
hinges on the following set, definable inACA�0 as the defining formula is arithmetical:

Bf := {x ∈ [0, 1] : f(x) = lim
n→∞

Bn(f, x)}. (2.1)

Similarly, the left and right limits of regulated functions can be found using (∃2) (see
[64, Section 3]), which is another reason why we shall often incorporate the latter in
our base theory.

First of all, we establish the equivalence between WKL0 and the Weierstrass
approximation theorem via Bernstein polynomials ([6]), as the proof is instructive
for that of Theorem 2.2 and essential to that of Theorems 2.3 and 2.4.

Theorem 2.1 (RCA�0 ). The following are equivalent:

• WKL0.
• For continuous f : [0, 1] → R and x ∈ (0, 1), we have

f(x) = lim
n→∞

Bn(f, x), (2.2)

where the convergence is uniform.

Proof. First of all, it is well-known that RCA0 can prove basic facts about basic
objects like polynomials, as established in, e.g., [83, II.6]. Similarly, the following
can be proved in RCA0, for pn,k(x) :=

(
n
k

)
xk(1 – x)n–k and any x ∈ [0, 1], m ≤ n:

pm,n(x) ≥ 0 and
∑
k≤n

(
x – kn

)2
pn,k(x) = x(1–x)

n and
∑
k≤n pn,k(x) = 1 (2.3)

using, e.g., binomial expansion and similar basic properties of polynomials.
Secondly, by [83, IV.2.5], WKL0 is equivalent to the Weierstrass approximation

theorem for codes of continuous functions. Every code for a continuous function on
[0, 1] denotes a third-order (continuous) function by [68, Theorem 2.2], which can
be established directly by applying QF-AC1,0 from RCA�0 to the formula expressing
the totality of the code on [0, 1]. Hence, the upward implication follows.

Thirdly, for the remaining implication, WKL0 implies that continuous functions
are uniformly continuous on [0, 1], both for codes (see [83, IV.2.3]) and for third-order
functions (see [68, Theorem 2.3]). Hence, fix continuous f : [0, 1] → R and k0 ∈
N and let N0 ∈ N be such that (∀x, y ∈ [0, 1])(|x – y| < 1

2N0
→ |f(x) – f(y)| <

1
2k0+1 ). Clearly, f is bounded on [0, 1], say by M0 ∈ N. Now fix x0 ∈ (0, 1), choose
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n ≥ 22M0+2N0+k0+1, and consider

|f(x0) – Bn(f, x0)| = |f(x0) –
∑n
k=0 f

(
k
n

)
pn,k(x0)|

= |
∑n
k=0

(
f(x0) – f

(
k
n

))
pn,k(x0)|

≤
∑n
k=0

∣∣f(
k
n

)
– f(x0)

∣∣pn,k(x0)

=
∑
i=0,1

∑
k∈Ai

∣∣f(
k
n

)
– f(x0)

∣∣pn,k(x0), (2.4)

where A0 := {k ≤ n : |x0 – kn | ≤
1

2N0
} and A1 := {0, 1, ... n} \ A0, and where the

second equality follows by the final formula in (2.3). The sets Ai (i = 0, 1) exist
in RCA0 by bounded comprehension (see [83, X.4.4]). Now consider∑
k∈A0

∣∣f(
k
n

)
– f(x0)

∣∣pn,k(x0) ≤ 1
2k0+1

∑
k∈A0

pn,k(x0) ≤ 1
2k0+1

∑
k≤n pn,k(x0) = 1

2k0+1 ,

where the final equality follows by (2.3). For the other sum in (2.4), we have

∑
k∈A1

∣∣f(
k
n

)
– f(x0)

∣∣pn,k(x0) ≤ 2M0
∑
k∈A1

(x0– k
n

)2

1/22N0
pn,k(x0) ≤ 2M0

∑
k≤n

(x0– k
n

)2

1/22N0
pn,k(x0),

where k ∈ A1 implies (x0– kn )2

1/22N0
≥ 1 by definition and where pn,k(x0) ≥ 0 is also used.

Now apply the second formula from (2.3) to the final formula in the previous centred
equation to obtain∑

k∈A1

∣∣f(
k
n

)
– f(x0)

∣∣pn,k(x0) ≤ 2M022N0 x0(1–x0)
n ≤ 1

2k0+1 .

Thus, we have obtained |f(x0) – Bn(f, x0)| ≤ 1
2k0

and uniform convergence. �

Next, we wish to generalise the previous theorem to discontinuous functions, for
which the following theorem from the literature (see, e.g., [33, Theorem 5.1] or [18,
Section 4, p. 68]) is essential, namely to Theorems 2.3 and 2.4.

Theorem 2.2 (ACA�0 ). For any f : [0, 1] → [0, 1] and x ∈ (0, 1) such that f(x+)
and f(x –) exist6, we have

f(x+)+f(x–)
2 = limn→∞ Bn(f, x). (2.5)

Proof. First of all, the proof of the theorem is similar to that of Theorem 2.1,
but more complicated as f(x0) in (2.4) is replaced by f(x0+)+f(x0–)

2 in (2.6). In
particular, (2.6) involves more sums than (2.1), but the only ‘new’ part is to show
that (2.11) becomes arbitrarily small. An elementary proof of this fact is tedious but
straightforward. For this reason, we have provided a sketch with ample references.

Secondly, fix k0 ∈ N and x0 ∈ R such that the left and right limits f(x0 –) and
f(x0+) exist. By definition, there is N0 ∈ N such that for any y, z ∈ [0, 1]:

x0 – 1
2N0
< z < x0 < y < x0 + 1

2N0
→

[
|f(x0+) – f(y)| < d 1

2k0+1 ∧ |f(x0 –) – f(z)| < d 1
2k0+1

]
.

6Using (∃2), rational approximation yields Φ : [0, 1] → R2 such that Φ(x) = (f(x+), f(x –)) in case
the limits exist at x ∈ [0, 1]. In this way, ‘	x.f(x+)’ makes sense for regulated functions.
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Note that increasing N0 does not change the previous property. Now use (∃2)
to define A0 := {k ≤ n : x0 ≤ k/n < x0 + 1

2N0
}, A1 := {k ≤ n : x0 – 1

2N0
≤ k/n <

x0}, and A2 := {k ≤ n : |x0 – k/n| ≥ 1
2N0

} and consider:

Bn(f, x0) – f(x0+)+f(x0–)
2 =

∑n
k=0

(
f

(
k
n

)
– f(x0+)+f(x0–)

2

)
pn,k(x0)

=
∑2
i=0

∑
k∈Ai

(
f

(
k
n

)
– f(x0+)+f(x0–)

2

)
pn,k(x0), (2.6)

where the first equality follows by the final formula in (2.3) for x = x0.

Thirdly, we note that k ∈ A2 implies (x0– kn )2

1/22N0
≥ 1 by definition, yielding

∑
k∈A2

pn,k(x0) ≤
∑
k∈A2

(x0– kn )2

1/22N0
pn,k(x0) ≤

∑
k≤n

(x0– kn )2

1/22N0
pn,k(x0), (2.7)

where the second inequality holds since pn,k(x0) ≥ 0 by (2.3). Now apply the second
formula in (2.3) to (2.7) to obtain

∑
k∈A2

pn,k(x0) ≤ 22N0 x0(1–x0)
n . Since f is assumed

to be bounded on [0, 1], we have for n ≥ 22N0+k0+1:

|
∑
k∈A2

(
f

(
k/n

)
– f(x0+)+f(x0–)

2

)
pn,k(x)| < 1

2k0+1 . (2.8)

Fourth, we consider another sum from (2.6), namely the following:∑
k∈A0

(
f

(
k
n

)
– f(x0+)+f(x0–)

2

)
pn,k(x0)

=
∑
k∈A0

(f( kn ) – f(x0+))pn,k(x0) + f(x0+)–f(x0–)
2 (

∑
k∈A0

pn,k(x0)
)
. (2.9)

By the choice of N0, the first sum in (2.9) satisfies

|
∑
k∈A0

(f( kn ) – f(x0+))pn,k(x0)| ≤
∑
k∈A0

|f( kn ) – f(x0+)|pn,k(x0)

≤ 1
2k0+1

∑
k∈A0

pk,n(x0) ≤ 1
2k0+1 , (2.10)

where the final step in (2.10) follows from the final formula in (2.3). The same,
namely a version of (2.9) and (2.10), holds mutatis mutandis for A1. Thus, consider
(2.11) which consists of the second sum of (2.9) and the analogous sum for A1:

f(x0+)–f(x0–)
2 (

∑
k∈A0

pn,k(x0) –
∑
k∈A1

pn,k(x0)). (2.11)

Now, pn,k(x) is well-known as the binomial distribution and the former’s properties
are usually established in probability theory via conceptual results like the central
limit theorem. In particular, for large enough N0 and associated n, the sums∑
k∈Ai pn,k(x0) for i = 0, 1 from (2.11) can be shown to be arbitrarily close to

1
2 . In light of (2.11), a proof (in ACA�0 ) of this limiting behaviour of

∑
k∈Ai pn,k(x0)

(for i = 0, 1) establishes (2.5) and the theorem.
Finally, an elementary proof of the limit behaviour of

∑
k∈Ai pn,k(x0) (i = 0, 1)

proceeds along the following lines, based on the de Moivre–Laplace theorem which
is apparently a predecessor to the central limit theorem.

• First of all, Stirling’s formula provides approximations to the factorial n!. There
are many elementary proofs of this formula (see, e.g., [13, 19, 24, 38]).
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• Secondly, the de Moivre–Laplace theorem states approximations to the sum∑k2
k=k1

pn,k(x) in terms of the Gaussian integral
∫
e

–t2

2 dt ([70]). There are
elementary proofs of this approximation using (only) Stirling’s formula, namely
[25, Chapter VII, Section 3, p. 182] or [19, Theorem 6, p. 228].

• Thirdly, applying the previous for
∑
k∈Ai pn,k(x0) (i = 0, 1), one observes that

the only non-explicit term in the latter is
∫ +∞

0 e
–t2

2 dt =
√

2�
2 ; the former sum

is therefore arbitrarily close to 1
2 for N0 and n large enough.

It is a tedious but straightforward verification that the above proofs can be formalised
in ACA�0 (and likely RCA0). Alternatively, one establishes basic properties of the Γ-
function (see [13]) and derives the de Moivre–Laplace theorem [70]. �

The final part of the previous proof involving
∑
k∈Ai pn,k(x0), amounts to the

special case of the theorem for (a version of) of the Heaviside function as follows:

H (x) :=

{
1, x ≥ 0,
0, otherwise.

Building on the previous theorem, we can now develop the RM-study of
approximation theorem for discontinuous functions.

Theorem 2.3 (RCA�0 ). The following are equivalent, where I ≡ [0, 1].

(a) WKL0.
(b) For any function f : [0, 1] → R, f is continuous on (0, 1) if and only if the

equation (2.2) holds uniformly on (0, 1).
(c) For any cadlag f : I → R and x ∈ (0, 1), we have

f(x+)+f(x–)
2 = limn→∞ Bn(f, x), (2.12)

with uniform convergence if Cf = I.
(d) For any U0-function f : I → R and any x ∈ (0, 1), (2.12) holds, with uniform

convergence if Cf = I.

If we additionally assume QF-AC0,1, the following are equivalent to WKL0.

(e) For any regulated f : I → R and x ∈ (0, 1), (2.12) holds, with uniform
convergence if Cf = I.

(f) For any locally bounded f : I → R and any x ∈ (0, 1) such that f(x+) and
f(x –) exist, (2.12) holds, with uniform convergence if Cf = I.

(g) The previous item restricted to any function class containing C ([0, 1]).

Proof. First of all, to derive item (b) from WKL0, let f : [0, 1] → R be such that
(2.12) holds uniformly. Now fix k0 ∈ N and let N0 ∈ N be such that for n ≥ N0 and
x ∈ (0, 1), |Bn(f, x) – f(x)| < 1

2k0
. Then BN0(f, x) is uniformly continuous, say

with modulus h ([83, IV.2.9]). Fix x, y ∈ (0, 1) with |x – y| < 1
2h(k0) and consider

|f(x) – f(y)| ≤ |f(x) – BN0(f, x)| + |BN0(f, x) – BN0(f, y)|

+ |BN0(f, y) – f(y)| ≤ 3
2k0
.
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To show that item (a) follows from items (b)–(g), note that each of the latter implies
the second item from Theorem 2.1, i.e., WKL0 follows.

Secondly, to show that item (a) implies items (b)–(g), we invoke the law of excluded
middle as in (∃2) ∨ ¬(∃2). In case ¬(∃2), all functions on the reals are continuous by
[46, Proposition 3.12]. In this case, WKL0 implies the other items from the theorem
by Theorem 2.1. In case (∃2) holds, items (b)–(g) follow by Theorem 2.2, assuming
we can provide an upper bound to the functions at hand. To this end, iff : [0, 1] → R

is unbounded, apply QF-AC0,1 to the formula

(∀n ∈ N)(∃x ∈ [0, 1])(|f(x)| > n), (2.13)

yielding a sequence (xn)n∈N such that |f(xn)| > n for all n ∈ N; the latter sequence
has a convergent sub-sequence, say with limit y ∈ [0, 1], by sequential compactness
[83, III.2]. Clearly, f is not locally bounded at y and hence also not regulated. We
note that for unbounded cadlag or U0-functions, (2.13) reduces to (∀n ∈ N)(∃q ∈
[0, 1] ∩Q)(|f(q)| > n), i.e., we can use QF-AC0,0 (included in RCA�0 ). �

The ‘excluded middle trick’ from the previous proof should be used sparingly
as some of our mathematical notions do not make much7 sense in RCA�0 . Using
suitable modulus functions (for the definition of f(x+) and f(x –)), one could
express uniform convergence of (2.12) for regulated functions; this does not seem
to yield very elegant results, however.

Next, we briefly treat equivalences involvingACA�0 (andATR0) and approximation
theorems via Bernstein polynomials. Note that the functions g, h in the second item
of Theorem 2.4 can be discontinuous and recall the set from (2.1). For the final
item, there are many function classes between BV and regulated, like the functions
of bounded Waterman variation (see [1]).

Theorem 2.4 (RCA�0 ). The following are equivalent to ACA0 :

(a) (Jordan) For continuous f : [0, 1] → R in BV , there are continuous and non-
decreasing g, h : [0, 1] → R such that f = g – h.

(b) For continuousf : [0, 1] → R inBV , there are non-decreasing g, h : [0, 1] → R

such that f = g – h and Bg = Bh = [0, 1].
(c) For continuousf : [0, 1] → R inBV , there are non-decreasing g, h : [0, 1] → R

such that f = g – h and Bg and Bh are dense in [0, 1].
(d) For continuousf : [0, 1] → R inBV , there are non-decreasing g, h : [0, 1] → R

such that f = g – h and Bg and Bh have measure 1.
(e) For continuousf : [0, 1] → R inBV , there are non-decreasing g, h : [0, 1] → R

such that f = g – h and Bg and Bh are non-enumerable.

Proof. The equivalence between ACA0 and item (a) is proved in [60] for RM-
codes. Now, RM-codes for continuous functions denote third-order functions by
[68, Theorem 2.2], working in RCA�0 . Moreover, a continuous and non-decreasing
function on [0, 1] is determined by the function values on [0, 1] ∩Q, i.e., one readily
obtains an RM-code for such functions in RCA�0 . In this way, item (a) is equivalent
to ACA0 as well. Item (b) follows from item (a) by Theorem 2.2. To show that item

7Following Definition 1.2, the unit interval is not a set in RCA�0 ; a more refined framework for the
study of open sets may be found in [69].
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(b) implies item (a), invoke the law of excluded middle as in (∃2) ∨ ¬(∃2). In case
(∃2) holds, ACA0 and item (a) is immediate. In case ¬(∃2) holds, all functions on R

are continuous [46, Proposition 3.12] and item (a) trivially follows from item (b).
The other items are treated in (exactly) the same way. �

We could also generalise Theorem 2.4 using pseudo-monotonicity [1, Definition
1.14], originally introduced by Josephy [42] as the largest class such that composition
withBV maps toBV . The RM ofATR0 as in [68, Theorem 2.25] includes the Jordan
decomposition theorem restricted to BV -functions with an arithmetical graph. One
readily shows that ATR0 is equivalent to the third-to-fifth items in Theorem 2.4 with
‘continuous’ removed and restricted to ‘arithmetical f : [0, 1] → R’.

Next, we establish an equivalence for (∃2) involving Bernstein polynomials. We
note that ‘splittings’ as in Theorem 2.5 are rare in second-order RM, but not in
higher-order RM, as studied in detail in [76]. One can prove that WKL0 in the
theorem cannot be replaced by weak weak König’s lemma (see, e.g., [83, X.1]).

Theorem 2.5 (RCA�0 ). The following are equivalent to (∃2) :

(a) There is f : [0, 1] → [0, 1] and x ∈ (0, 1) such that f(x) 	= limn→∞ Bn(f, x).
(b) WKL0 (or ACA0) plus: there is f : [0, 1] → R and x ∈ (0, 1) such that f(x) 	=

limn→∞ Bn(f, x).
(c) WKL0 (or ACA0) plus: there is f : [0, 1] → R that is not bounded (or: not

Riemann integrable, or: not uniformly continuous).

We cannot remove WKL0 from the second or third item.

Proof. That (∃2) implies items (a) and (b) follows by applying Theorem 2.2 to the
(suitably modified) Heaviside function. Item (c) follows from (∃2) by considering,
e.g., Dirichlet’s function 1Q for the Riemann integrable case. Now let f : [0, 1] →
[0, 1] be as in item (a) and use Theorem 2.2 to conclude that f is discontinuous; then
(∃2) follows by [46, Proposition 3.12].

Next, assume item (b) and suppose f : [0, 1] → R as in the latter is continuous
on [0, 1]. Then WKL0 implies that f is bounded [68, Theorem 2.8]; now use Theorem
2.2 to obtain a contradiction, i.e., f must be discontinuous and (∃2) follows as
before. That item (c) implies (∃2) follows in the same way. Finally, observe that by
Theorem 2.1,RCA�0 + ¬WKL0 proves: there isf : [0, 1] → R and x ∈ (0, 1) such that
f(x) 	= limn→∞ Bn(f, x). Since ¬WKL0 → ¬(∃2), the final sentence follows and we
are done. �

Finally, the previous results are not unique: [8, Theorem 2] expresses that for
f : [– 1, 1] → R of bounded variation and x0 ∈ (– 1, 1), the lim sup and lim inf of
the Hermite–Fejér polynomial Hn(f, x) is some (explicit) term involving f(x0+)
andf(x0 –); this term reduces tof(x) in case f is continuous at x. The proof of this
convergence result is moreover lengthy but straightforward, i.e., readily formalised in
ACA�0 . Perhaps surprisingly, the general case essentially reduces to the particular case
of the Heaviside function, like in Theorem 2.2. A more complicated, but conceptually
similar, approximation result may be found in [51]. Moreover, the Bohman–Korovkin
theorem [55] suggests near-endless variations of Theorem 2.3.
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§3. Equivalences involving new Big systems.

3.1. Introduction. In the below sections, we establish equivalences between the
new Big systems from [64, 78, 79] and properties of Bernstein polynomials for
(dis)continuous functions, as sketched in Section 1.1.

• The uncountability of R is equivalent to the statement that for regulated
functions, the Bernstein polynomials converge to the function value for at
least one real (Section 3.2).

• The enumeration principle enum for countable sets is equivalent to the statement
that for regulated functions, the Bernstein polynomials converge to the function
value for all reals outside of a given sequence (Section 3.3).

• The pigeon-hole principle for measure is equivalent to the statement that for
Riemann integrable functions, the Bernstein polynomials converge to the
function value almost everywhere (Section 3.4).

• The Baire category theorem is equivalent to the statement that for semi-
continuous functions, the Bernstein polynomials converge to the function value
for at least one real (Section 3.5).

The second item provides interesting insights into the coding practice of RM: while
the Banach space C ([0, 1]) can be given a code in RCA�0 + WKL, the relatively
powerful principle enum is required to code the Banach space of regulated functions
by item (c) of Theorem 3.8.

Now, by the results in [64, 65], the relatively strong system Z�2 + QF-AC0,1 cannot
prove the uncountability of R formulated as follows

NIN[0,1] : there is no injection from [0, 1] to N,

where Z�2 proves the same second-order sentences as second-order arithmetic Z2 (see
[35] and Section 1.2.2); the system ZΩ

2 does prove NIN[0,1], as many of the usual
proofs of the uncountability of R show. The above-itemised principles, i.e., the
Baire category theorem, the enumeration principle, and the pigeon-hole principle
for measure, which are studied in Sections 3.3 and 3.4, all imply NIN[0,1]. In this way,
certain approximation theorems are classified in the Big Five by Theorems 2.3 and
2.4, while slight variations or generalisations go far beyond the Big Five in light of
Theorems 3.3, 3.8, 3.17, and 3.15, but are still equivalent to known principles, in
accordance with the general theme of RM.

Finally, at least two of the above systems yield conservative extensions of ACA0,
where PHP[0,1] expresses that for a sequence of closed sets of measure zero, the union
also has measure zero (see Section 3.4).

Theorem 3.1.

• The system ACA�0 + NIN[0,1] is Π1
2-conservative over ACA0.

• The system ACA�0 + PHP[0,1] is Π1
2-conservative over ACA0.

Proof. Kreuzer shows in [50] that ACA�0 + (			) is Π1
2-conservative over ACA0,

where (			) expresses the existence of the Lebesgue measure 			3 as a fourth-order
functional on 2N and [0, 1]. To derive NIN[0,1] in the former system, letY : [0, 1] → N

be an injection and derive a contradiction from the sub-additivity of 			 as follows:

			([0, 1]) = 			(∪n∈NEn) ≤
∑
n∈N 			(En) = 0,
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where En := {x ∈ [0, 1] : Y (x) = n} is at most a singleton, i.e., 			(En) = 0. The
system ACA�0 + (			) trivially proves PHP[0,1]. �

3.2. The uncountability of the reals. In this section, we establish equivalences
between approximation theorems involving Bernstein polynomials and the uncount-
ability of the reals. Our results also improve the base theory used in [78].

First of all, we will study the uncountability of the reals embodied by the
following principle, motivated by the observations in Section 1.2.4. As discussed in
Section 3.1, Z�2 + QF-AC0,1 does not8 prove NINalt, and the same for the equivalent
approximation theorems in Theorem 3.3.

Principle 3.2 (NINalt). The unit interval is not height-countable.

This principle was first introduced in [78] where many equivalences are established,
mainly for basic properties of regulated functions and related classes.

Secondly, we have the following theorem involving equivalences for NINalt.
Item (d) is defined using Bf from (2.1) and constitutes a variation of Volterra’s
early theorem from [90] that there is no f : R → R satisfying Cf = Q. In light of
the first equivalence, the restriction in item (c) is non-trivial.

Theorem 3.3 (ACA�0 + QF-AC0,1). The following are equivalent.

(a) The uncountability of R as in NINalt.
(b) For regulated f : [0, 1] → R, there is x ∈ (0, 1) \Q where f is continuous.
(c) For regulated and pointwise discontinuousf : [0, 1] → R, there isx ∈ (0, 1) \Q

where f is continuous.
(d) (Volterra) There is no regulated f : [0, 1] → R, such that Bf = Q.
(e) For regulated f : [0, 1] → R, there is x ∈ (0, 1) where f is continuous.
(f) For regulatedf : [0, 1]→R, there isx ∈ (0, 1) wheref(x) = limn→∞ Bn(f, x).
(g) For regulated f : [0, 1] → R, the set Bf is not (height-)countable.

Proof. First of all, (a)→(b) is proved by contraposition as follows: let f :
[0, 1] → R be regulated and discontinuous on [0, 1] \Q. In particular, [0, 1] \Q =
Df = ∪k∈NDk whereDk is as in (1.7). To show thatDk is finite, suppose it is not, i.e.,
for anyN ∈ N, there are x0, ... xN ∈ Dk . Use (∃2) andQF-AC0,1 to obtain a sequence
(xn)n∈N in Dk . Since sequential compactness follows from ACA0 [83, III.2.2], the
latter sequence has a convergent sub-sequence, say with limit y ∈ [0, 1]. Then either
on the left or on the right of y, one finds infinitely many elements of the sequence.
Then either f(y+) or f(y –) does not exist, a contradiction, and Dk is finite.

To establish ¬NINalt, let (qm)m∈N be an enumeration of Q without repetitions
and define a height function H : [0, 1] → N for [0, 1] as follows: H (x) = n in case
x ∈ Dn and n is the least such number, H (x) = m in case x = qm otherwise. By
contraposition and using QF-AC0,1, one proves that the union of two finite sets is
finite, implying thatDk ∪ {q0, ... , qk} is finite. A direct proof inACA�0 is also possible
as the second set has an (obvious) enumeration. Hence, [0, 1] is height countable, as
required for ¬NINalt.

8Note that an injection is a special kind of height function, i.e., NINalt implies that there is no injection
from [0, 1] to N.
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Secondly, (b)→(d) is immediate by Theorem 2.2 and the fact that f(x+) =
f(x –) = f(x) in case x ∈ Cf . Now assume item (d) and suppose NINalt is false,
i.e.,H : [0, 1] → N is a height function for [0, 1]. Define g : [0, 1] → [0, 1] using (∃2):

g(x) :=

{
1

2H (x) x 	∈ Q,

0 x ∈ Q.

To show that g(x+) = g(x –) = 0 for any x ∈ (0, 1), consider

(∀k ∈ N)(∃N ∈ N)(∀y ∈ (x – 1
2N
, x))(|g(y)| < 1

2k
). (3.1)

Suppose (3.1) is false, i.e., there is k0 ∈ N such that (∀N ∈ N)(∃y ∈ (x –
1

2N
, x))(|f(y)| ≥ 1

2k
). Modulo the coding of real numbers, apply QF-AC0,1 to

obtain a sequence of reals (yn)n∈N such that

(∀N ∈ N)(yN ∈ (x – 1
2N
, x) ∧ |g(yN )| ≥ 1

2k0
). (3.2)

Using �2, we can guarantee that each yn is unique using the (limited) primitive
recursion9 available in RCA�0 . Now, by definition, the set C := {x ∈ [0, 1] : H (x) ≤
k0} is finite, say with upper boundK0 ∈ N. Apply (3.2) forN = K0 + 2 and note that
y0, ... , yK0+2 are in C by the definition of g, a contradiction. Hence, (3.1) is correct,
implying that g is regulated. Now apply item (d) to obtain x0 ∈ (0, 1) \Q such that
g(x0) = limn→∞ Bn(g, x0). However, g(x0) > 0 and Bn(g, x0) = 0, a contradiction,
and NINalt must hold. The equivalence involving item (c) is immediate as g is
continuous at every rational point in [0, 1], i.e., pointwise discontinuous.

Thirdly, we immediately have (b)→(e)→(f) by Theorem 2.2, and to show that
item (f) implies NINalt, we again proceed by contraposition. To this end, let H :
R → N be a height function for [0, 1] and define h(x) := 1

2H (x)+1 . We now prove
prove limn→∞ Bn(h, x) = 0 for all x ∈ [0, 1]. As Bernstein polynomials only invoke
rational function values, Bn(h, x) = Bn(h̃, x) for all x ∈ [0, 1] and n ∈ N, where

h̃(x) :=

{
0 if x 	∈ Q,

1
2H (x)+1 otherwise,

(3.3)

which is essentially a version of Thomae’s function [68, 86]. Similar to g above,
one verifies that h̃ is continuous on [0, 1] \Q using the fact that H is a height
function. By Theorem 2.2, we have 0 = h̃(x) = limn→∞ Bn(h̃, x) for x ∈ (0, 1) \
Q. By the uniform continuity of the polynomials pk,n(x) on [0, 1], we also have
limn→∞ Bn(h̃, q) = 0 for q ∈ [0, 1] ∩Q. As a result, we obtain limn→∞ Bn(h, x) = 0
for all x ∈ [0, 1], which implies the negations of items (e) and (f), as h(x) > 0 for
all x ∈ [0, 1]. Clearly, item (g) implies item (f) while the former readily follows
from NINalt. Indeed, if item (g) is false for some regulated f : [0, 1] → R, then
Cf ⊂ Bf = ∪n∈NEn by Theorem 2.2 for a sequence of finite sets (En)n∈N. Since
Df = ∪n∈NDn, [0, 1] is height-countable as Dn ∪ En is finite by the first paragraph
of the proof. �

9Define h(z) := (�m)(z < x – 1
2m ),H (0) := y0 and H (n + 1) = yh(H (n)).
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We note that the base theory in the previous theorem is much weaker than in [78].
Indeed, in the latter, the base theory also contained various axioms governing finite
sets, all provable from the induction axiom. It seems that the latter can always be
replaced by proofs by contradiction involving QF-AC0,1.

It is interesting that we can study items (b) and (d) without using (basic) real
analysis, while items (e) and (f) seem to (really) require the study of the Bernstein
approximation of (3.3). Theorem 3.3 goes through for ‘regulated’ replaced by
‘bounded variation’ if we assume, e.g., a small fragment of the classical function
hierarchy, namely that a regulated function has bounded Waterman variation [1].

Next, we show that we can weaken the conclusion of item (e) in Theorem 3.3 to the
weak continuity notions from Definition 3.4; these are a considerable improvement
over, e.g., quasi-continuity in [78] and go back over a hundred years, namely to
Young [93] and Blumberg [7].

Definition 3.4 (Weak continuity). For f : [0, 1] → R, we have that:

• f is almost continuous (Husain, see [7, 36]) at x ∈ [0, 1] if for any open G ⊂ R

containing f(x), the set f–1(G) is a neighbourhood of x.
• f has the Young condition at x ∈ [0, 1] if there are sequences (xn)n∈N, (yn)n∈N

on the left and right of x with the latter as limit and limn→∞ f(xn) = f(x) =
limn→∞ f(yn).

With these definitions in place, we now have the following corollary to
Theorem 3.3, which establishes a nice degree of robustness for the RM of NINalt.

Corollary 3.5. Theorem 3.3 holds if we replace ‘continuity’ in item (e) by ‘almost
continuity’ or ‘the Young condition’.

Proof. Assuming NINalt, the function h : [0, 1] → R from the proof of
Theorem 3.3 does not satisfy either weak continuity notion anywhere. Indeed,
the sequences from the Young condition are immediately seen to violate the fact
that H from the proof of Theorem 3.3 is a height-function for [0, 1]. Similarly, take
anyx0 ∈ [0, 1] and note that fork0 ∈ N such that 1

2k0
< h(x0), the setf–1(B(x0,

1
2k0

))
is finite, as H is a height-function for [0, 1]. �

3.3. The enumeration principle. In this section, we establish equivalences between
approximation theorems involving Bernstein polynomials and the enumeration
principle for height-countable sets as in Principle 3.6. Our results significantly
improve the base theory used in [64] and provide the ‘definitive’ RM of Jordan’s
decomposition theorem [41], especially in light of the new connection to Helly’s
selection theorem as in Principle 3.7.

First of all, we will study Principle 3.6, motivated by Section 1.2.4.

Principle 3.6 (enum). A height-countable set in [0, 1] can be enumerated.

We stress that textbooks (see, e.g., [1, p. 28] and [74, p. 97]) generally only prove
that certain sets are (height) countable, i.e., no enumeration is provided, while the
latter is readily assumed in other places, i.e., enum is implicit in the mathematical
mainstream. By the results in [64], ACA�0 + enum proves ATR0 and Π1

1-CA�0 + enum
proves Π1

2-CA0, i.e., enum is rather ‘explosive’, in contrast toNIN[0,1] by Theorem 3.1.
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A variation of enum for countable sets, called cocode0, is studied in [64] where
many equivalences are established; the base theories used in [64] are however
not always elegant. Now, most proofs in [64] go through mutatis mutandis for
‘countable’ replaced by ‘height-countable’; the latter’s central role was not known
during the writing of [64]. We provide some examples in Theorem 3.8, including new
results for Bernstein approximation. We also need the following principle which is
a contraposed version of Helly’s selection theorem [32, 58]; the RM of the latter for
codes of BV -functions is studied in, e.g., [49].

Principle 3.7 (Helly). Let (fn)n∈N be a sequence of [0, 1] → [0, 1]-functions inBV
with pointwise limit f : [0, 1] → [0, 1] which is not in BV . Then there is unbounded
g ∈ NN such that g(n) ≤ V 1

0 (fn) ≤ g(n) + 1 for all n ∈ N.

Intuitively, Helly is a rather weak statement that significantly simplifies the RM-
study of enum and NINalt.

Next, we establish Theorem 3.8 where we note that the base theory is weaker than
in [64]. Indeed, in the latter, the base theory also contains various axioms governing
countable sets, mostly provable from the induction axiom.

Theorem 3.8 (ACA�0 + QF-AC0,1). The following are equivalent.

(a) The enumeration principle enum.
(b) For regulated f : [0, 1] → R, there is a sequence (xn)n∈N enumerating Df .
(c) For regulated f : [0, 1] → R and p, q ∈ [0, 1] ∩Q, supx∈[p,q] f(x) exists10.
(d) For regulated and pointwise discontinuous f : [0, 1] → R, there is a sequence

(xn)n∈N enumerating Df .
(e) For regulated f : [0, 1] → R, there is (xn)n∈N enumerating [0, 1] \ Bf .
(f) (Jordan) Forf : R → Rwhich is inBV ([0, a]) for all a > 0, there are monotone
g, h : R → R such that f(x) = g(x) – h(x) for x ≥ 0.

(g) The combination of:
(f.1) Helly’s selection theorem as in Principle 3.7.
(f.2) (Jordan) Forf : [0, 1] → R inBV , there are non-decreasing g, h : R → R

such that f(x) = g(x) – h(x) for x ∈ [0, 1].

Proof. The implication (a)→(b) follows by noting that Dk as in (1.7) is finite,
as established in the proof of Theorem 3.3, and applying enum. The implication
(b)→(e) follows from Theorem 2.2. The implication (b)→(c) is immediate as we
can replace the supremum over p, q in supx∈[p,q] f(x) by a supremum over [p, q] ∩
(Q ∪Df).

For the implication (e)→(a), let A be height-countable, i.e., there is H : R →
N such that An := {x ∈ [0, 1] : H (x) < n} is finite. Note that we can use �2 to
enumerate A ∩Q, i.e., we may assume the latter is empty. Now define g : [0, 1] as

g(x) :=

{
1

2n+1 if x ∈ A and n is the least natural such thatH (x) < n,
0 if x 	∈ A.

(3.4)

10To be absolutely clear, we assume the existence of a ‘supremum operator’ Φ : Q2 → R such that
Φ(p, q) = supx∈[p,q] f(x) for all p, q ∈ [0, 1] ∩ Q. For Baire 1 functions, this kind of operator exists in
ACA�0 by [68, Section 2], even for irrational intervals.
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The function g satisfies g(x+) = g(x –) = 0 for x ∈ (0, 1), which is proved in
exactly the same way as in the proof of Theorem 3.3. Let (xn)n∈N be the sequence
provided by item (e) and note that by Theorem 2.2, (∀n ∈ N)(x 	= xn) implies
g(x) = g(x+)+g(x–)

2 = 0 for any x ∈ (0, 1). Hence, (xn)n∈N includes all elements of
A, and (∃2) can remove all elements not in A, as required for enum. Item (b) trivially
implies item (d), while g from (3.4) is continuous on the rationals and therefore
pointwise discontinuous, i.e., item (d) also implies item (a). To show that item (c)
implies enum, apply the former to g as in (3.4). In particular, one enumerates Dg
using the usual interval-halving technique.

For the implication (a)→(f), let f be as in the former and define Dn,k as

Dn,k := {x ∈ [0, n] : |f(x) – f(x+)| > 1
2k

∨ |f(x) – f(x –)| > 1
2k
},

where we note that BV -functions are regulated (using QF-AC0,1) by [65, Theorem
3.33]. As for Dk in (1.7), this set is finite and Df = ∪n,k∈NDn,k can be enumerated
thanks to enum. Now consider the variation function defined as

V y0 (f) := sup0≤x0<···<xn≤y
∑n
i=0 |f(xi) – f(xi+1)|, (3.5)

where the supremum is over all partitions of [0, y]. Since we have an enumeration
of Df , (3.5) can be defined using ∃2 by restricting the supremum to Q and this
enumeration. By definition, g(x) := 	x.V y0 (f) is non-decreasing and the same
for h(x) := g(x) – f(x). For the reverse implication, let A be height-countable,
i.e., there is H : R → N such that An := {x ∈ [0, 1] : H (x) < n} is finite. Then let
f : R → R be the indicator function of An on [0, n], which is BV on [0, n] by
[65, Theorem 3.33]. Now apply item (f) and note that (∃2) can enumerate Dg for
monotone g by [65, Theorem 3.33], i.e., enum now follows.

To establish item (g) using enum, sub-item (f.2) is a special case of item (f). For
sub-item (f.1), consider Helly’s selection theorem, usually formulated as follows.

Let (fn)n∈N be a sequence of BV -functions such that fn and V 1
0 (fn) are uniformly

bounded. Then there is a sub-sequence (fnk )k∈N with pointwise limitf ∈ BV.

To establish the centred statement, Helly’s original proof from [32, p. 287] or
[58, p. 222] goes through in ACA�0 + enum as follows: for a sequence (fn)n∈N in
BV as above, one uses enum to obtain sequences of monotone functions (gn)n∈N

and (hn)n∈N such thatfn = gn – hn. Then (gn)n∈N and (hn)n∈N have convergent sub-
sequences with limits g and h that are monotone, which is (even) provable in ACA�0 .
Essentially by definition, f = g – h is then the limit of the associated sub-sequence
of (fn)n∈N. To obtain sub-item (f.1), use the contraposition of the centred statement,
i.e., if the limit function f is not in BV , then (∀N ∈ N)(∃n)(V 1

0 (fn) ≥ N ). As in
the previous paragraph, V 1

0 (fn) can be defined using ∃2, given enum. The function
g ∈ NN from the conclusion of sub-item (f.1) is therefore readily obtained (using
QF-AC0,0 and ∃2).

For the remaining implication (g)→(a), let A be height-countable, i.e., there is
H : R → N such that An := {x ∈ [0, 1] : H (x) < n} is finite. As above, we may
assume A ∩Q = ∅ as ∃2 can enumerate the rationals in A. Define fn(x) := 1An (x),
which is BV by [65, Theorem 3.33] and note limn→∞ fn = f where f := 1A. If
f ∈ BV , apply sub-item (f.2) and recall that (∃2) can enumerate Dg for monotone
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g by [65, Theorem 3.33], i.e., enum now follows. If f 	∈ BV , let g0 ∈ NN be the
function provided by sub-item (f.1) and note that V 1

0 (fn) ≤ g0(n) + 1 implies that
An is finite and has size bound g0(n) + 2. Now let g̃ : [0, 1] → R be (3.4) with ‘ 1

2n ’
replaced by ‘ 1

2n(g0(n)+2) ’. Clearly, for any partition of [0, 1], we have
∑n
i=0 |g̃(xi) –

g̃(xi+1)| ≤
∑n
i=0

1
2i

≤ 2, i.e., g̃ is in BV . Applying sub-item (f.2) to g̃, enum follows
as before, and we are done. �

Regarding item (e) in Theorem 3.8, basic examples show that Cf 	= Bf , while the
first equivalence in Theorem 3.3 shows that the restriction in item (d) is non-trivial.
Item (c) expresses that the Banach space of regulated functions requires enum, in
contrast to, e.g., the Banach space of continuous functions ([83, IV.2.13]). Moreover,
the use of monotone functions in Theorem 3.8 can be replaced by weaker conditions,
as follows.

Corollary 3.9. One can replace ‘monotone’ in items ( f ) or (g) by:

• U0-function, or:
• regulated f : [0, 1] → R such that for all x ∈ (0, 1), we have

|f(x) – limn→∞ Bn(f, x)| ≤ |f(x+)–f(x–)
2 |. (3.6)

Proof. By [68, Theorem 2.16], (∃2) suffices to enumerate the discontinuity points
for functions satisfying the items in the corollary. �

Next, Helly’s theorem as in Principle 3.7 is useful in the RM of the uncountability
of R, as follows.

Theorem 3.10 (ACA�0 + Helly). The following are equivalent.

(a) The uncountability of R as in NINalt.
(b) (Volterra) There is no f : [0, 1] → R in BV , such that Bf = Q.
(c) For f : [0, 1] → R in BV , there is x ∈ (0, 1) where f is continuous.
(d) For f : [0, 1] → R in BV , there is x ∈ (0, 1) where f(x) = limn→∞ Bn(f, x).
(e) For f : [0, 1] → R in BV , there is x ∈ (0, 1) such that (1.5) or (3.6).

Proof. That NINalt implies the items (b)–(e) follows as in the proof of
Theorem 3.3, namely by considering Dk from (1.7). For f ∈ BV with variation
bounded by 1, this set has at most 2n elements, as each element of Dn contributes
at least 1

2n to the total variation, by definition. Hence, Dk is finite without the use of
QF-AC0,1. Now, NINalt implies thatDf = ∪k∈NDk is not all of [0, 1], i.e.,Cf 	= ∅ and
the other items follow. To derive NINalt from items (b)–(e), let H : [0, 1] → N be a
height-function for [0, 1] and consider the finite sets An = {x ∈ [0, 1] : H (x) < n}
and Bn = An \Q. As above, 1Bn is in BV but limn→∞ 1Bn = 1R\Q is not in BV .
Let g0 ∈ NN be the function provided by Helly’s selection theorem and let g1 ∈ NN

be such that |An ∩Q| ≤ g1(n) for all n ∈ N, which is readily defined using ∃2. By
definition, |An| ≤ g0(n) + g1(n) + 1 for all n ∈ N and define

g(x) := 1
2H (x)+1

1
(g0(H (x))+g1(H (x)+1)+1) .

The latter is in BV (total variation at most 1) and is totally discontinuous, i.e., item
(c) is false, as required. The other implications follow in the same way. �
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We believe that Helly’s selection theorem as in Principle 3.7 is weak and in
particular does not imply NIN[0,1].

Finally, we attempt to explain why seemingly related mathematical notions behave
so differently in higher-order RM.

Remark 3.11 (Second-order-ish functions). As discussed in detail in [68], quasi-
continuous and cliquish [0, 1] → [0, 1] functions are intimately related from the
pov of real analysis. Nonetheless, RCA�0 + WKL0 proves that the former have a
supremum while Z�2 + QF-AC0,1 cannot prove the existence of a supremum for
the latter. A similar observation can be made for many pairs of function classes,
including cadlag and regulated functions.

The crucial observation here is that for quasi-continuous and cadlag functions,
the function value f(x) for any x ∈ [0, 1] is determined if we know f(q) for any
q ∈ [0, 1] ∩Q, provably in ACA�0 . We refer to such function classes as second-order-
ish as their definition comes with an obvious second-order approximation device.
By contrast, cliquish and regulated functions are not determined in this way, i.e.,
they apparently lack the latter device.

With the gift of hindsight, properties of second-order-ish function classes can be
established in RCA�0 extended with the Big Five systems, which is one of the main
observations of [68]. By contrast, basic properties of non-second-order-ish functions
can often not be proved in Z�2 or even Z�2 + QF-AC0,1. Thus, our equivalences seems
to be robust as long as we stay within the second-order-ish function classes, or
dually: within the non-second-order-ish ones.

3.4. Pigeon hole principle for measure spaces. We introduce Tao’s pigeonhole
principle for measure spaces from [85] and obtain equivalences involving the approx-
imation theorem for Riemann integrable functions via Bernstein polynomials. The
latter is studied in [18] where it is claimed this result goes back to Picard [71].

First of all, the pigeonhole principle as in PHP[0,1] is studied in [79], with a number
of equivalences for basic properties of Riemann integrable functions.

Principle 3.12 (PHP[0,1]). If (Xn)n∈N is an increasing sequence of measure zero
and closed sets of reals in [0, 1], then

⋃
n∈NXn has measure zero.

By the main result of [88], not all nowhere dense measure zero sets are the
countable union of measure zero closed sets, i.e., PHP[0,1] does not generate ‘all’
measure zero sets.

Secondly, fragments of the induction axiom are sometimes used in an essential
way in second-order RM (see, e.g., [59]). An important role of induction is to provide
‘finite comprehension’ (see [83, X.4.4]). As in [79], we need the following fragment
of finite comprehension, provable from the induction axiom.

Principle 3.13 (INDR). For F : (R× N) → N, k ∈ N, there is X ⊂ N such that

(∀n ≤ k)
[
(∃x ∈ R)(F (x, n) = 0) ↔ n ∈ X

]
.

In particular, the following rather important result seems to require INDR.

Theorem 3.14 (ACA�0 + INDR). For Riemann integrable f : [0, 1] → R with
oscillation function oscf : [0, 1] → R, the set Dk := {x ∈ [0, 1] : oscf(x) ≥ 1

2k
} is

measure zero for any fixed k ∈ N.
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Proof. The theorem follows from [79, Corollary 3.4]. A sketch of the proof
of the latter is as follows: let f : [0, 1] → R be Riemann integrable with oscil-
lation function oscf : [0, 1] → R, such that Dk0 := {x ∈ [0, 1] : oscf(x) ≥ 1

2k0
}

has measure ε > 0 for some fixed k0 ∈ N. For a partition P given as 0 =
x0, t0, x1, t1, x1, ... , xk–1, tk, xk = 1 with small enough mesh, one obtains two
partitions P′, P′′: as follows: in case [xi , xi+1] ∩Dk0 	= ∅, replace ti by respectively
t′i and t′′i such that |f(t′i ) – f(t′′i )| ≥ 1

2k0
; these reals exist by definition of Dk0 .

By definition, S(f,P′) and S(f,P′′) are at least ε/2k0+1 apart, i.e., f is not
Riemann integrable, a contradiction. The definition of P′, P′′ can be formalised
using INDR. �

Thirdly, we establish Theorem 3.15 where we recall the set Bf from (2.1).

Theorem 3.15 (ACA�0 + INDR + QF-AC0,1). The following are equivalent.
(a) The pigeonhole principle for measure spaces as in PHP[0,1].
(b) (Vitali–Lebesgue) For Riemann integrable f : [0, 1] → R with an oscillation

function, the set Cf has measure 1.
(c) For Riemann integrable f : [0, 1] → R with an oscillation function, the set Bf

has measure 1.
(d) For Riemann integrable f : [0, 1] → R with an oscillation function, the set of

all x ∈ (0, 1) such that (1.5) (or (3.6)) has measure 1.
(e) For Riemann integrable and pointwise discontinuous f : [0, 1] → R with an

oscillation function, the set Bf has measure 1.
(f) For Riemann integrable lsco f : [0, 1] → R, the set Bf has measure 1.

We can replace ‘usco’ by ‘cliquish with an oscillation function’ in the above.

Proof. First of all, assume PHP[0,1] and let f : [0, 1] → R be as in item (b) of
the theorem. By Theorem 3.14, eachDk := {x ∈ [0, 1] : oscf(x) ≥ 1

2k
} has measure

zero. By [79, Theorem 1.17], oscf is usco and henceDk is closed; both facts essentially
follow by definition as well. ThenPHP[0,1] implies thatDf = ∪kDk has measure zero,
yielding item (b). By Theorem 2.2, Bf has measure one, i.e., item (c) follows, and
the same for items (d) and (e).

For item (f), we proceed in essentially the same way:Df exists inACA�0 + QF-AC0,1

by [79, Theorem 2.4], and we just need to define some kind of ‘replacement’ set for
Dk . To this end, let f : [0, 1] → R be lsco and consider:

f(x) ≤ q ∧ (∀N ∈ N)(∃z ∈ B(x, 1
2N

) ∩ Q)(f(z) > q + 1
2l

). (3.7)

Using (∃2), let Eq,l be the set of all x ∈ [0, 1] satisfying (3.7). Since f is lsco, (3.7)
is-essentially by definition-equivalent to

the formula (3.7) with ‘ ∩ Q’ omitted.

Intuitively, the setEq,l provides a ‘replacement’ set forDk . Indeed, since f is lsco, the
set Eq,l is closed. Moreover, we also have Df = ∪l∈N,q∈QEq,l , by the epsilon–delta
definition of (local) continuity. ThatEq,l has measure zero is proved in the same way
as for Dk in Theorem 3.14. Again, PHP[0,1] implies that Df has measure zero and
Theorem 2.2 implies that Bf has measure one, as required for item (f).

To derivePHP[0,1] from item (f) (or the items (b)–(e)), let (Xn)n∈N be an increasing
sequence of closed and measure zero sets. Since Q has an enumeration, if ∪n∈NXn \
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Q has measure zero, so does ∪n∈NXn, say in ACA�0 . Hence, we may assume that
Q ∩ ∪n∈NXn = ∅. Now consider the following function, which is usco, cliquish, and
its own oscillation function by [79, Theorems 1.16–1.18]:

h(x) :=

{
0 x 	∈ ∪m∈NXm,

1
2n+1 x ∈ Xn and n is the least such number,

(3.8)

and which satisfiesBn(h, x) = 0 for all x ∈ [0, 1]. Now, h is Riemann integrable with
integral equal to zero on [0, 1], which can be proved using the obvious11 epsilon–
delta proof. Moreover, since Q ∩ ∪n∈NXn = ∅, h is continuous at any rational and
therefore pointwise discontinuous, i.e., the equivalence for item (e) readily follows.
By item (f), Bf has measure 1, implying that for almost all x ∈ (0, 1), we have
h(x) = limn→∞ Bn(h, x) = 0, i.e., ∪n∈NXn has measure zero, and PHP[0,1] follows.
Note that item (d) also guarantees that h(x) = 0 almost everywhere, i.e., ∪n∈NXn
has measure zero. For the final sentence of the theorem, recall that the function
h : [0, 1] → R from (3.8) is cliquish. �

In light of Theorem 3.14, Riemann integrable functions can almost be proved to
be continuous ae. However, PHP[0,1] is needed to establish that Df = ∪k∈NDk has
measure zero. The restriction in item (e) is non-trivial as is it consistent with Z�2 that
there are Riemann integrable functions that are totally discontinuous.

As to generalisations of the previous theorem, there are a surprisingly large
number of rather diverse equivalent definitions of ‘Baire 1’ on the reals [5, 48,
53], including B-class-1-measurability and fragmentedness by [48, Theorem 2.3] and
[52, Section 34, paragraph VII]. One readily shows that h from (3.8) satisfies these
definitions, say in ACA�0 , i.e., the previous theorem can be formulated for these
notions. By contrast, the restriction of item (b) or (e) in Theorem 3.15 to (the
standard definition of) Baire 1 functions, can be proved in ACA�0 by [79, Theorem
3.7]. In general, the function h from (3.8) is rather well-behaved and therefore
included in many (lesser known than Baire 1) function classes.

3.5. Baire category theorem. We introduce the Baire category theorem and obtain
equivalences involving the approximation theorem for usco and cliquish functions
via Bernstein polynomials. The RM of BCT[0,1] as in Principle 3.16 and PHP[0,1] is
often similar (see [79]), which is why we treat the former in less detail.

First of all, we shall study the Baire category theorem formulated as follows. We
have established a substantial number of equivalences in [79] between this principle
and basic properties of usco functions and related classes.

Principle 3.16 (BCT[0,1]). If (On)n∈N is a decreasing sequence of dense open sets
of reals in [0, 1], then

⋂
n∈NOn is non-empty.

We assume that On+1 ⊆ On for all n ∈ N to avoid the use of induction to prove
that a finite intersection of open and dense sets is again open and dense.

Secondly, we have the following theorem where we recall the set Bf from (2.1).

11Fix ε > 0 and n0 ∈ N such that 1
2n0 < ε. Then ACA�0 + QF-AC0,1 proves that for any partition

P with mesh < 1
2n0+2 , the Riemann sum S(h, P) is < ε in absolute value. To this end, cover Xn0 by a

sequence of intervals of total length at most 1
2n0+2 and find a finite sub-covering.
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Theorem 3.17 (ACA�0 ). The following are equivalent.

(a) The Baire category theorem as in BCT[0,1].
(b) For usco f : [0, 1] → R, the set Cf is non-empty.
(c) For cliquish f : [0, 1] → R with an oscillation function, we have Cf 	= ∅.
(d) For usco f : [0, 1] → R, the set Bf is non-empty.
(e) For cliquish f : [0, 1] → R with an oscillation function, Bf is non-empty.

Proof. For the implications (d)→(a) and (e)→ (a), let (On)n∈N be a decreasing
sequence of dense open sets of reals in [0, 1]. In case there is q ∈ Q with q ∈ ∩n∈NOn,
BCT[0,1] follows. For the case where ∅ = Q ∩ (∩n∈NOn), we proceed as follows.
For Xn := [0, 1] \On, consider h as in (3.8), which is usco, cliquish, and its own
oscillation function by [79, Theorems 1.16–1.18]. Hence, the set Bh from (2.1)
is non-empty given item (d) or (e). We now show that limn→∞ Bn(h, x) = 0 for
all x ∈ [0, 1], finishing the proof. To this end, recall that Q ⊂ ∪n∈NXn and define
Qn := Xn ∩Q where Q = ∪n∈NQn. Now consider h̃ : [0, 1] → R as follows:

h̃(x) :=

{
0 x 	∈ Q,

1
2n+1 x ∈ Qn and n is the least such number,

(3.9)

which is really a modification of Thomae’s function (see [68, 86]). Then h̃ is
continuous on [0, 1] \Q since eachXn is nowhere dense and closed. By Theorem 2.2,
we have 0 = h̃(x) = limn→∞ Bn(h̃, x) for x ∈ (0, 1) \Q. By the uniform continuity
of the polynomials pk,n(x) on [0, 1], we also have limn→∞ Bn(h̃, q) = 0 for
q ∈ [0, 1] ∩Q. Since Bernstein polynomials only invoke rational function values,
we have Bn(h, x) = Bn(h̃, x) for any x ∈ [0, 1] and n ∈ N. Hence, we conclude
limn→∞ Bn(h, x) = 0 for x ∈ [0, 1], as required.

Finally, the implications (a)→(b)→(d) and (a)→(c)→(e) follow from [79,
Theorem 2.3 and 2.16] and Theorem 2.2. For the first implication, one now defines
a variation of Eq,l based on (3.7) to replace Dk , while the third one follows by the
textbook proof. �

As also stated in [79], much to our own surprise, the ‘counterexample’ function
from (3.8) has nice properties that are provable in weak systems, including the
behaviour of the associated Bernstein polynomials.

Finally, we discuss certain restrictions of the above theorems.

Remark 3.18 (Restrictions, trivial, and otherwise). It should not be a surprise
that suitable restrictions of principles that imply NIN[0,1], are again provable from the
(second-order) Big Five. We discuss three examples pertaining to the above where
two are perhaps surprising.

First of all, item (b) in Theorem 3.8 is equivalent toATR0 if we restrict to functions
with an arithmetical or Σ1

1-graph by [68, Section 2.6]. The results in the latter pertain
to bounded variation functions but are readily adapted to regulated functions, which
also only have countably many points of discontinuity. Thus, the same restriction of
item (e) in Theorem 3.8 is equivalent to ATR0 in the same way. Similar results hold
for the restriction to quasi-continuous functions.
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Secondly, item (b) in Theorem 3.8 is provable12 from ATR0 (and extra induction)
when restricted to Baire 1 functions by [68, Section 2.6]. By Theorem 2.2, the same
holds for the restriction to Baire 1 functions of (e) in Theorem 3.8. However, this
restriction does not seem to be a ‘real’ one as many a textbook tells us that

regulated functions are Baire 1 on the reals. (3.10)

Of course, (3.10) is true but Z�2 + QF-AC0,1 cannot prove it by [68, Theorem 2.35].
In general, the usual picture of the classical hierarchy of function classes looks
very different in weak logical systems and even in Z�2 . Indeed, by Theorem 3.3,
it is consistent with Z�2 + QF-AC0,1 that there are regulated functions that are
discontinuous everywhere.

Thirdly, similar to the previous paragraph, item (b) of Theorem 3.17 restricted to
Baire 1 functions is provable in ACA�0 by [79, Theorem 2.9]. Again, this restriction
does not seem ‘real’ as it is well-known that

usco functions are Baire 1 on the reals, (3.11)

but Z�2 + QF-AC0,1 cannot prove (3.11) by [79, Corollary 2.8]. Unfortunately, the
second-order coding of usco and lsco functions from [26] is such that the Baire 1
representation of usco and lsco is ‘baked into’ the coding, in light of [26, Section 6].
It would therefore be more correct to refer to the representations from [26] as codes
for usco functions that are also Baire 1. What is worse, (3.11) implies enum is therefore
not an ‘innocent’ background assumption in RM, as ACA�0 + enum proves ATR0

and Π1
1-CA�0 + enum proves Π1

2-CA0 (see Section 3.3).

§4. Appendix. Technical Appendix: introducing Reverse Mathematics. We discuss
the language of Reverse Mathematics (Section 4.1) and introduce—in full detail—
Kohlenbach’s base theory of higher-order Reverse Mathematics (Section 4.2). Some
common notations may be found in Section 4.3.

4.1. Introduction. We sketch some aspects of Kohlenbach’s higher-order RM [46]
essential to this paper, including the base theory RCA�0 (Definition 4.1).

First of all, in contrast to ‘classical’ RM based on second-order arithmetic Z2,
higher-order RM uses L� , the richer language of higher-order arithmetic. Indeed,
while the former is restricted to natural numbers and sets of natural numbers, higher-
order arithmetic can accommodate sets of sets of natural numbers, sets of sets of
sets of natural numbers, et cetera. To formalise this idea, we introduce the collection
of all finite types T, defined by the two clauses:

(i) 0 ∈ T and (ii) If 
, � ∈ T then (
 → �) ∈ T,

where 0 is the type of natural numbers, and 
 → � is the type of mappings from
objects of type 
 to objects of type �. In this way, 1 ≡ 0 → 0 is the type of
functions from numbers to numbers, and n + 1 ≡ n → 0. Viewing sets as given
by characteristic functions, we note that Z2 only includes objects of type 0 and 1.

12Here, ATR0 is just an upper bound and better results can be found in [78, Section 3.5].
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Secondly, the language L� includes variablesx�, y�, z�, ... of any finite type � ∈ T.
Types may be omitted when they can be inferred from context. The constants of L�
include the type 0 objects 0, 1 and <0,+0,×0,=0 which are intended to have their
usual meaning as operations on N. Equality at higher types is defined in terms of
‘=0’ as follows: for any objects x�, y� , we have

[x =� y] ≡ (∀z�11 ... z
�k
k )[xz1 ... zk =0 yz1 ... zk], (4.1)

if the type � is composed as � ≡ (�1 → ··· → �k → 0). Furthermore, L� also includes
the recursor constant R
 for any 
 ∈ T, which allows for iteration on type 
-objects
as in the special case (4.2). Formulas and terms are defined as usual. One obtains
the sub-language Ln+2 by restricting the above type formation rule to produce only
type n + 1 objects (and related types of similar complexity).

4.2. The base theory of higher-order Reverse Mathematics. We introduce Kohlen-
bach’s base theory RCA�0 , first introduced in [46, Section 2].

Definition 4.1. The base theory RCA�0 consists of the following axioms.

(a) Basic axioms expressing that 0, 1, <0,+0,×0 form an ordered semi-ring with
equality =0.

(b) Basic axioms defining the well-known Π and Σ combinators (aka K and S in
[3]), which allow for the definition of 	-abstraction.

(c) The defining axiom of the recursor constant R0 : for m0 and f1 :

R0(f,m, 0) := m and R0(f,m, n + 1) := f(n,R0(f,m, n)). (4.2)

(d) The axiom of extensionality: for all �, � ∈ T, we have

(∀x�, y�, ϕ�→�)
[
x =� y → ϕ(x) =� ϕ(y)

]
. (E�, �)

(e) The induction axiom for quantifier-free formulas of L� .
(f) QF-AC1,0: the quantifier-free Axiom of Choice as in Definition 4.2.

Note that variables (of any finite type) are allowed in quantifier-free formulas of
the language L� : only quantifiers are banned. Recursion as in (4.2) is called primitive
recursion; the class of functionals obtained from R� for all � ∈ T is called Gödel’s
system T of all (higher-order) primitive recursive functionals.

Definition 4.2. The axiom QF-AC consists of the following for all 
, � ∈ T:

(∀x
)(∃y�)A(x, y) → (∃Y
→�)(∀x
)A(x,Y (x)), (QF-AC
, �)

for any quantifier-free formula A in the language of L� .

As discussed in [46, Section 2], RCA�0 and RCA0 prove the same sentences ‘up to
language’ as the latter is set-based and the former function-based. This conservation
results is obtained via the so-called ECF-interpretation, which we now discuss.

Remark 4.3 (The ECF-interpretation). The (rather) technical definition of ECF
may be found in [87, p. 138, Section 2.6]. Intuitively, the ECF-interpretation [A]ECF
of a formula A ∈ L� is just A with all variables of type two and higher replaced by
type one variables ranging over so-called ‘associates’ or ‘RM-codes’ (see [45, Section
4]); the latter are (countable) representations of continuous functionals. The ECF-
interpretation connects RCA�0 and RCA0 (see [46, Proposition 3.1]) in that if RCA�0
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proves A, then RCA0 proves [A]ECF, again ‘up to language’, as RCA0 is formulated
using sets, and [A]ECF is formulated using types, i.e., using type zero and one objects.

In light of the widespread use of codes in RM and the common practise of
identifying codes with the objects being coded, it is no exaggeration to refer to ECF
as the canonical embedding of higher-order into second-order arithmetic.

4.3. Notations and the like. We introduce the usual notations for common
mathematical notions, like real numbers, as also introduced in [46].

Definition 4.4 (Real numbers and related notions in RCA�0 ).
(a) Natural numbers correspond to type zero objects, and we use ‘n0’ and ‘n ∈ N’

interchangeably. Rational numbers are defined as signed quotients of natural
numbers, and ‘q ∈ Q’ and ‘<Q’ have their usual meaning.

(b) Real numbers are coded by fast-converging Cauchy sequences q(·) : N → Q,
i.e., such that (∀n0, i0)(|qn – qn+i | <Q

1
2n ). We use Kohlenbach’s ‘hat function’

from [46, p. 289] to guarantee that every q1 defines a real number.
(c) We write ‘x ∈ R’ to express thatx1 := (q1

(·)) represents a real as in the previous
item and write [x](k) := qk for the kth approximation of x.

(d) Two reals x, y represented by q(·) and r(·) are equal, denoted x =R y, if
(∀n0)(|qn – rn| ≤ 2–n+1). Inequality ‘<R’ is defined similarly. We sometimes
omit the subscript ‘R’ if it is clear from context.

(e) Functions F : R → R are represented by Φ1→1 mapping equal reals to equal
reals, i.e., extensionality as in (∀x, y ∈ R)(x =R y → Φ(x) =R Φ(y)).

(f) The relation ‘x ≤� y’ is defined as in (4.1) but with ‘≤0’ instead of ‘=0’.
Binary sequences are denoted ‘f1, g1 ≤1 1’, but also ‘f, g ∈ C ’ or ‘f, g ∈ 2N’.
Elements of Baire space are given by f1, g1, but also denoted ‘f, g ∈ NN’.

(g) For a binary sequence f1, the associated real in [0, 1] is 𝕣(f) :=
∑∞
n=0

f(n)
2n+1 .

(h) Sets of type � objects X�→0, Y �→0, ... are given by their characteristic
functions F �→0

X ≤�→0 1, i.e., we write ‘x ∈ X ’ for FX (x) =0 1.

For completeness, we list the following notational convention for finite sequences.

Notation 4.5 (Finite sequences). The type for ‘finite sequences of objects of type
�’ is denoted �∗, which we shall only use for � = 0, 1. Since the usual coding of pairs
of numbers goes through in RCA�0 , we shall not always distinguish between 0 and
0∗. Similarly, we assume a fixed coding for finite sequences of type 1 and shall make
use of the type ‘1∗’. In general, we do not always distinguish between ‘s�’ and ‘〈s�〉’,
where the former is ‘the object s of type �’, and the latter is ‘the sequence of type
�∗ with only element s�’. The empty sequence for the type �∗ is denoted by ‘〈〉�’,
usually with the typing omitted.

Furthermore, we denote by ‘|s | = n’ the length of the finite sequence s�
∗

=
〈s�0 , s

�
1 , ... , s

�
n–1〉, where |〈〉| = 0, i.e., the empty sequence has length zero. For

sequences s�
∗
, t�

∗
, we denote by ‘s ∗ t’ the concatenation of s and t, i.e., (s ∗ t)(i) =

s(i) for i < |s | and (s ∗ t)(j) = t(|s | – j) for |s | ≤ j < |s | + |t|. For a sequence s�
∗
,

we define sN := 〈s(0), s(1), ... , s(N – 1)〉 for N 0 < |s |. For a sequence α0→�, we
also writeαN = 〈α(0), α(1), ... , α(N – 1)〉 for anyN 0. By way of shorthand, (∀q� ∈
Q�

∗
)A(q) abbreviates (∀i0 < |Q|)A(Q(i)), which is (equivalent to) quantifier-free

if A is.
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Appliquées (Serie 5), vol. 9 (1903), pp. 329–375.

[11] ———, Sur l’approximation les uns par les autres des nombres formant un ensemble dénombrable.
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la limite d’une suite de polynômes. Math. Sb., vol. 41 (1934), no. 3, pp. 503–510.
[44] B. Kirchheim, Baire one star functions. Real Analysis Exchange, vol. 18 (1992/93), no. 2, pp.

385–399.
[45] U. Kohlenbach, Foundational and mathematical uses of higher types, Reflections on the

Foundations of Mathematics, Lecture Notes in Logic, 15, ASL, 2002, pp. 92–116.
[46] ———, Higher order reverse mathematics, Reverse Mathematics 2001, Lecture Notes in Logic,

21, ASL, 2005, pp. 281–295.
[47] A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis,

vol. 1. Metric and Normed Spaces, Graylock Press, Rochester, 1957. Translated from the first Russian
edition by Leo F. Boron.

[48] G. Koumoullis, A generalization of functions of the first class. Topology and its Applications, vol.
50 (1993), no. 3, pp. 217–239.

[49] A. P. Kreuzer, Bounded variation and the strength of Helly’s selection theorem. Logical Methods
in Computer Science, vol. 10 (2014), no. 4, p. 16, 15.

[50] ——— Measure theory and higher order arithmetic. Proceedings of the American Mathematical
Society, vol. 143 (2015), no. 12, pp. 5411–5425.

[51] A. S. Kumar, P. Kumar, and P. Devaraj, Approximation of discontinuous functions by Kantorovich
exponential sampling series. Analysis and Mathematical Physics, vol. 12 (2022), no. 3.

https://doi.org/10.1017/jsl.2024.51 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.51


APPROXIMATION THEOREMS THROUGHOUT REVERSE MATHEMATICS 31

[52] K. Kuratowski, Topology, vol. I , Academic Press, New York, 1966.
[53] P.-Y. Lee, W.-K. Tang, and D. Zhao, An equivalent definition of functions of the first Baire class.

Proceedings of the American Mathematical Society, vol. 129 (2001), no. 8, pp. 2273–2275.
[54] G. G. Lorentz Bernstein Polynomials, Chelsea, 1986.
[55] G. G. Lorentz, M. v. Golitschek, and Y. Makovoz, Constructive Approximation, Grundlehren

der mathematischen Wissenschaften, 304, Springer, Berlin, 1996.
[56] V. H. Moll, Numbers and Functions, Student Mathematical Library, 65, American Mathematical

Society, Providence, 2012.
[57] A. Montalbán, Open questions in reverse mathematics. Bulletin of Symbolic Logic, vol. 17 (2011),

no. 3, pp. 431–454.
[58] I. P. Natanson, Theory of Functions of a Real Variable, Frederick Ungar, 1955.
[59] I. Neeman, Necessary use of �1

1 induction in a reversal. Journal of Symbolic Logic, vol. 76 (2011),
no. 2, pp. 561–574.

[60] A. Nies, M. A. Triplett, and K. Yokoyama, The reverse mathematics of theorems of Jordan and
Lebesgue. The Journal of Symbolic Logic, vol. 86 (2021), 1657–1675.

[61] D. Normann and S. Sanders, On the mathematical and foundational significance of the
uncountable. Journal of Mathematical Logic, (2019). https://doi.org/10.1142/S0219061319500016.

[62] ———, Pincherle’s theorem in reverse mathematics and computability theory. Annals of Pure and
Applied Logic, vol. 171 (2020), no. 5, Article no. 102788, 41 pp.

[63] ———, The axiom of choice in computability theory and reverse mathematics. Journal of Logic
and Computation, vol. 31 (2021), no. 1, pp. 297–325.

[64] ———, On robust theorems due to Bolzano, Jordan, Weierstrass, and cantor in reverse mathematics.
Journal of Symbolic Logic, (2022), p. 51. https://doi.org/10.1017/jsl.2022.71

[65] ———, On the uncountability of R. Journal of Symbolic Logic, (2022), p. 43. https://doi.org/10.
1017/jsl.2022.27

[66] ———, Betwixt Turing and Kleene, LNCS 13137, Proceedings of LFCS22, 2022, p. 18.
[67] ———, On the computational properties of basic mathematical notions. Journal of Logic and

Computation, (2022), p. 44. https://doi.org/10.1093/logcom/exac075
[68] ———, The biggest five of reverse mathematics. Journal for Mathematical Logic, (2023), p. 56.

https://doi.org/10.1142/S0219061324500077
[69] ———, On sequential theorems in reverse mathematics, submitted, 2024, pp. 16.
[70] A. Papoulis and P. S. Unnikrishna, Probability, Random Variables, and Stochastic Processes,

fourth ed., McGraw-Hill, New York, 2002.
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