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Bubble growth, departure and sliding in low-pressure flow boiling has received
considerable attention in the past. However, most applications of boiling heat transfer
rely on high-pressure flow boiling, for which very little is known, as experimental
data are scarce and very difficult to obtain. In this work, we conduct an experiment
using high-resolution optical techniques. By combining backlit shadowgraphy and
phase-detection imaging, we track bubble shape and physical footprint with high spatial
(6 wm) and temporal (33 jus) resolutions, as well as bubble size and position as bubbles
nucleate and slide on top of the heated surface. We show that at pressures above
1 MPa bubbles retain a spherical shape throughout the growth and sliding process. We
analytically derive non-dimensional numbers to correlate bubble velocity and liquid
velocity throughout the turbulent boundary layer and predict the sliding of bubbles on
the surface, solely from physical properties and the bubble growth rate. We also show that
these non-dimensional solutions can be leveraged to formulate elementary criteria that
predict the effect of pressure and flow rate on bubble departure diameter and growth time.
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1. Introduction

Boiling is an exceptionally effective heat transfer process that can achieve some of
the highest heat transfer coefficients across all heat transfer modes (Bergman et al.
2020). Subcooled flow boiling in particular is widely used for thermal management
and energy conversion in power generation systems, such as nuclear reactors. Typically,
power generation systems operate at high pressure (e.g. ~10 MPa) to increase the boiling
temperature of the operating fluid (e.g. water) and, consequently, the thermodynamic
efficiency. Forced flow (e.g. ~1000kgm~2s~!) is used to enhance boiling heat transfer
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and prevent boiling crises (Tong 1967). However, despite decades of operational
experience with high-pressure flow boiling systems, the physics of the boiling process
in such systems is still poorly understood. Thus, their design still relies on empirical
correlations that have a narrow range of applicability and a high degree of uncertainty.
These correlations are often based on expensive experiments that duplicate the geometry,
size and operating conditions of actual applications. They cannot be reliably applied to
new designs without new application-specific experimental data.

By understanding the boiling phenomenon at the level of individual bubbles, it is
possible to construct versatile heat flux partitioning (HFP) models that can be combined
with multiphase computational fluid dynamics (CFD) tools to analyse any system
configuration (Gilman & Baglietto 2017). The HFP models divide the total heat flux at the
boiling surface into several components, each based on a specific heat transfer mechanism
(e.g. evaporation, surface quenching, forced convection and sliding conduction). The
equations used to calculate each heat flux component are developed based on our
understanding of these physical mechanisms and depend on characteristic time and length
scale parameters of the boiling process (e.g. bubble departure frequency and wait time,
bubble departure diameter and nucleation site density). For example, the heat flux due to
evaporation is directly related to the bubble departure volume, while the heat flux due to
surface quenching is proportional to the bubble footprint area. Ultimately, each HFP term
strongly depends on the growth, departure and sliding of bubbles on the heated surface.
However, while bubble departure dynamics at high pressures has been a topic of interest,
there is a lack of high-resolution data to support the development and validation of HFP
models.

Tolubinsky & Ostrovsky (1966), Sakashita & Ono (2009) and Séméria (1963)
measured bubble departure diameters in pool boiling conditions at pressures of 1.0,
5.0 and 13.7MPa, respectively (see figure 1). In general, these data are in good
agreement with semi-empirical correlations (e.g. Cole & Rohsenow (1969) obtained from
Kocamustafaogullari 1983), which indicate that the departure diameter should decrease
as the pressure (i.e. surface tension and liquid—vapour density ratio) decreases. However,
departure diameter measurements at flow boiling conditions do not appear to follow
this trend. One may observe that the departure diameter in flow boiling conditions is
somehow larger than the departure diameter in pool boiling. This contradicts the idea
that detaching forces induced by the forced flow (e.g. drag) should make bubbles depart
faster and smaller, as shown experimentally and theoretically with refrigerants (Klausner
et al. 1993). This discrepancy may arise from experimental limitations. In some cases,
these measurements were obtained from still photographs that cannot be used to track
the history of individual bubbles from nucleation till departure (e.g. Griffith, Clark &
Rohsenow 1958; Treschev 1964). In some other cases, they do not even represent departure
diameters. For instance, Unal 1976) measured bubble diameters from a sapphire adiabatic
tube downstream of a 10 m long heated section, far away from the point of nucleation.

If high-pressure bubble departure diameters in flow boiling conditions were at least
as small as in pool boiling conditions, the departure diameter could be 10-100 pm.
Imaging bubbles this small requires microscopic lenses with short working distances
and optical access, which is challenging to arrange in high-pressure and temperature
experiments. To the authors’ best knowledge, there is a severe lack of high-resolution
experimental measurements of bubble parameters at the pressure and temperature of
typical industrial boilers or nuclear reactors. To close this knowledge gap, we have
developed an experimental test facility and optical measurement techniques to accurately
capture growth, departure and sliding of bubbles in these operating conditions.
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Figure 1. Summary of high-pressure bubble departure diameter data in the literature.

The present study also aims to determine the required complexity needed to describe
this sliding process, and to predict bubble departure diameter and growth time. One
notable mechanistic modelling framework is the force-balance technique, which uses
conservation of momentum to obtain an equation of motion for an individual bubble.
To this end, one requires accurate knowledge of all the relevant external forces that act
on the bubble; otherwise, the results may yield unphysical results. This was recently
demonstrated by Bucci, Buongiorno & Bucci (2021), who performed experimental and
analytical investigations of forces acting on an individual bubble during pool boiling. Their
findings suggest that plausible magnitudes for all the external forces and resulting bubble
acceleration can only be precisely quantified if the bubble shape is accurately known at
all times. Several studies demonstrated that these conclusions also apply to quasi-static
injection of bubbles through orifices (Duhar & Colin 2006; Di Marco, Giannini & Saccone
2015; Lebon, Sebilleau & Colin 2018). One major source of uncertainty comes from
contact line surface tension forces. At sufficiently high Bond, Weber or capillary numbers,
the bubble shape may become asymmetric. In this case, the contact line surface tension
force also becomes asymmetric and prevents the bubble from sliding. The difficulty
with quantifying this force arises from its dependence on the advancing and receding
contact angles (6, and 6,, respectively), which themselves are strong functions of the
temperature and operating conditions, as well as surface composition and texture. This
makes calculating asymmetric contact line surface tension forces a very difficult task
that can significantly impact predictions. In fact, Favre et al. (2023) showed that a small
change (~5°) in the contact angle and contact angle hysteresis can impact the force
balance prediction accuracy by several fold. While this striking result casts doubt on
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using force-balance models, such issues may be alleviated in our high-pressure flow
boiling conditions. Smaller bubbles (i.e. with much lower Bond, Weber and capillary
numbers) may be spherical and may depart by sliding over the heated surface (i.e. the
contact line surface tension becomes negligible). We show that, under these conditions,
it is possible to simplify the bubble equation of motion eliminating the need for solving
complex differential equations, which, in a CFD modelling framework, would consume
computational time, be difficult to implement and might make the simulation unstable.
Precisely, we have made physical considerations and order-of-magnitude analyses to obtain
closed-form analytical solutions to model bubble sliding and, importantly, to predict the
measured bubble departure diameter and growth time.

2. Experimental approach

We run our experiments using the test section shown in figure 2. A detailed description of
the facility can be found in Kossolapov (2021). A short description is provided hereafter.
More details on the flow loop capabilities and operation can be found in Appendix A.

Briefly, the test section features a square channel with a hydraulic diameter Dy
of 11.78 mm. It is preceded by a straight vertical entrance channel with the same
cross-sectional area. This entrance channel is 765 mm long (i.e. 65 hydraulic diameters)
to ensure that the flow is hydrodynamically developed at the test section inlet. In our
operating conditions (see table 1), the channel Reynolds number (Re., = GDy,/ 1, where
G, Dy, and pu; are the mass flux, hydraulic diameter, and liquid viscosity, respectively)
ranges from 36 800 to 157 000, implying that the flow is fully turbulent (White 2008).

Each side of the test section channel has optical access, provided by sapphire windows.
One of the sides features a sapphire window coated with a thin, electrically conductive
indium tin oxide (ITO) layer. This ITO layer is in contact with the flow, and it is used
to release, by Joule effect, the heat to boil the water. The ITO electric power, and
consequently the boiling heat flux, is adjusted to control the number of active nucleation
sites on the ITO surface. In each test (i.e. at each operating condition), the heat flux is
adjusted to only produce non-interacting, discrete bubbles that we can track using our
optical technique.

The optical technique used in this study uses a combination of phase-detection and
backlit shadowgraphy (Kossolapov, Phillips & Bucci 2021). A blue LED is used to back
light the boiling surface. The light easily passes through the liquid but is blocked by
bubbles, casting a shadow that can be easily tracked by a high-speed video (HSV) camera
(Phantom v2512 recording up to 30 000 frames per second with a pixel resolution of 6 jum)
positioned behind the heater (as sketched in figure 2). At the same time, a red LED lights
the boiling surface from the same side as the camera. Where the surface is in contact with
liquid, the red LED light is mostly transmitted. Only a small fraction of the incident beam
is reflected back and captured by the HSV camera. This happens because the indices of
refraction of the sapphire and liquid are similar. Conversely, the vapour has a very different
refraction index. Thus, where the surface is covered by vapour, the light is almost entirely
reflected and captured by the HSV camera. Briefly, dry patches that form at the base of the
bubble appear as bright spots in the HSV images. The presence of a microlayer (i.e. a very
thin liquid layer that may form when a bubble grows on top of the heated surface), if any,
would create multiple reflections, generating interference fringes in the images. However,
we did not detect any microlayer in these high-pressure flow boiling experiments.

A video is recorded in steady-state conditions for each combination of pressure and
mass flux listed in table 1. After the test, HSV images are processed to track the history
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Nominal pressure  Mass flux G~ Heat flux Subcooling
GD,
(MPa) (kgm=2s")) (KWm2) Reyp=—1 (K) Number of bubbles tracked
i
1 500 514 36800 12.6 171
1000 503 73 600 11.6 250
2000 1006 147300 12.1 3602
2 500 178 44200 10.2 964
994 495 87900 10.3 962
1504 489 132900 9.9 1122
4 500 291 52900 10.3 803
988 361 104 600 10.2 1943
1500 613 158900 10.2 2424

Table 1. Operating conditions under investigation and number of individual bubble histories tracked.

of individual bubbles generated from specific nucleation sites. By post-processing these
images, we can measure the physical size of the bubbles, represented by the equivalent
circular bubble radius of the optical footprint, as sketched in figure 2. By tracking bubbles
over time, we can also measure their displacement from the nucleation site until they leave
the field of view. Details on the bubble size measurement and tracking algorithm can be
found in Appendix A. The number of bubble histories tracked for each operating condition
can be found in table 1.

3. Results and discussion
3.1. Bubble appearance and growth

Figure 3 shows a series of phase-detection (labelled PD) images during flow boiling at
0.2MPa, a relatively low saturation pressure, obtained from the study by Kossolapov
(2021). As revealed by these images, and also shown by Sinha, Narayan & Srivastava
(2022), when a vapour bubble grows in low-pressure conditions, it is dragged and rolled
in the direction of the flow, creating an asymmetric microlayer (shown as white fringes)
and dry spot (shown in solid white). This asymmetric shape leads to contact line surface
tension forces that inhibit bubble sliding. This bubble asymmetry can also be seen in the
side view images, where there is a clear difference in the advancing and receding contact
angles. These observations are in striking contrast to the images of vapour bubbles at
high pressures collected in this study and shown in figure 4. At high pressures, we did
not observe a microlayer, the optical footprint is rather circular and the physical footprint
appears to be close to the centre of the bubble, indicating spherical symmetry. Even at
the lowest pressure (i.e. 1.0 MPa), the physical footprint is located near the centroid of
the optical footprint up until the bubble leaves the nucleation site. The physical size of
the bubbles at the moment of departure from the nucleation site also appears to be very
different. For instance, the equivalent departure radius of vapour bubbles at 0.2 MPa is
approximately 0.25 mm, while the departure radii of bubbles at high pressures are well
below 0.05 mm. The assumption of spherical symmetry can be validated by comparing
the magnitude of surface tension and other forces (i.e. buoyancy, viscous and inertial
forces) acting on the bubble as pressure increases. Consider the Bond, capillary and Weber
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Figure 4. Phase-detection images of flow boiling at different pressures. The dashed orange line represents the
location of a nucleation site. The solid blue line shows the vertical displacement of a bubble over time.

numbers given by

_ (p1 = pu)gD;

Bo —Y (3.1)
U
Ca = % (3.2)
and
U?D
We = %, (3.3)

respectively, where p is the density, o is the liquid-vapor surface tension, and g is the
acceleration of gravity. The characteristic length and velocity scales are taken to be the
departure diameter D, and local liquid velocity Uy, respectively. From 0.2 to 1.0 MPa,
for example, surface tension decreases by 30 %, liquid density by 6 %, liquid viscosity by
60 %, while vapour density increases by 78 %. Ultimately, the most important effect is the
decrease in the bubble departure diameter, which drops by a factor of five, resulting in
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the Bond number decreasing by a factor of 20. With pressure, the characteristic velocity
U, will drop according to the bubble diameter; therefore, the capillary number and Weber
number will also decrease. Other factors that may cause spherical asymmetry, such as
shear (Taylor 1934) or turbulence deformations (Ni 2024), should also be negligible in our
conditions. Overall, dimensional arguments and experimental observations both indicate
that bubbles should become more spherical as pressure increases. Further discussion and
more quantitative justification of these assumptions can be found in Appendix A.

To model bubble departure and sliding, we must account for the change in bubble size
with time. Therefore, we measure the bubble radius over time as it grows and slides on the
surface. Figures 5—7 summarize the statistical distribution of bubble sizes with time for
each operating pressure, coloured as blue, yellow and red for 1, 2 and 4 MPa, respectively,
where the last bubble size measurement occurs when it leaves the high-speed camera field
of view. Data are grouped by mass flux: 500kgm~—2s~! in figure 5, 1000kgm—2s~!
in figure 6 and 1500 or 2000kgm~2s~! in figure 7. At each frame, or time step, the
equivalent bubble radius is visualized using a box and whisker plot, alongside dots to show
any statistical outliers. To the right of the statistical distributions are samples of individual
bubble growth histories, depicted using the same colour scheme noted above.

Unfortunately, due to the of lack wall and local fluid temperature measurements, we
cannot formulate a model of the bubble growth. Instead, we provide a simple but physically
motivated and tractable semi-empirical correlation that will be used as an input in our
mechanistic departure and sliding models. The measurements show that the equivalent
bubble radius is mostly proportional to the square root of time, and can be fitted to the
equation

Ry = Cra/1, (3.4)

where Cgp is an empirical constant. The value of Cgp is chosen so that the mean absolute
error between (3.4) and the instantaneous bubble radius distributions, shown as box and
whisker plots in figures 5-7, is minimized. Equation (3.4) is shown as a solid black line
over the experimental data in figure 5(a,c,e). Dashed black lines corresponding to an
uncertainty in Crp equal to £35 % are also shown for illustrative purposes. We note that
it could be possible to correlate bubble growth with other power laws (e.g. Ry = at?),
but there would be no major improvement in the prediction accuracy compared with the
square root of time fit. Instead, a square root of time dependency is physically motivated
and hints toward a heat-diffusion-controlled growth. As discussed by Mikic, Rohsenow
& Griffith (1970), bubble growth can be limited by two mechanisms, namely inertia
and heat diffusion from the superheated liquid. Since the time scale associated with
inertial-controlled bubble growth is of the order of nanoseconds for our condition, we
expect bubble growth to be heat-diffusion controlled, which should result in the bubble
radius increasing with the square root of time. Other effects, such as the translational
motion of the bubble, can increase the growth rate (Legendre, Borée & Magnaudet 1998),

but such effects are only pronounced at high bubble Reynolds numbers (Rep = W),
which is not the case in our conditions. With these considerations in mind, we refer to the
work of Plesset & Zwick (1954) to provide an interpretation of the fitting coefficient Cgp.
According to Plesset & Zwick (1954), the heat-diffusion-controlled growth of the bubble

radius in a uniformly superheated liquid can be predicted by

1207 p; cp,i
Ry ~ BVt = | — 22PN, — Ty (3.5)
T oy hpy
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Figure 5. Bubble growth statistics (a,c,e) and selected histories (b,d, f) from 1 to 4 MPa at a mass flux of
500kgm~2s~L.

Note that our Cgp is equivalent to the theoretical parameter B in (3.5). Since we could
not measure the nucleation temperature 7T, it is impossible to evaluate the parameter B
experimentally. However, we can estimate (7, — Ts,s) based on the correlation by Jens &
Lottes (1951) and the measured wall heat flux. The empirical Crp, bubble radius mean
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Figure 6. Bubble growth statistics (a,c,e) and selected histories (b,d, f) from 1 to 4 MPa at a mass flux of
1000kgm~2 ™1,

absolute error and theoretical B are reported in table 2, where, on average, the ratio Crp/B

is 0.55 £ 0.21. Our bubbles grow slower than predicted by (3.5). This is expected, as (3.5)
was obtained for a spherical bubble growing in a uniformly superheated liquid, while our
bubbles grow in the presence of subcooled liquid, which slows the growth down.
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Figure 7. Bubble growth statistics (a,c,e) and selected histories (b,d, f) from 1 to 4 MPa at the highest mass

It can be seen both in figures 5-7 that the heat-diffusion-controlled growth fitting
(3.4) is less accurate at 1 MPa. This error is typically largest long after the bubble has
nucleated, i.e. near the end of when bubbles are tracked. This is because the bubble growth
rate at 1 MPa starts to decrease and it eventually appears to stop growing. Considering
the fact that bubbles at 1 MPa are significantly larger than bubbles at 2 and 4 MPa,
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fluxes tested (2000kgm~2s~! at 1 MPa and 1500kgm~2s~! at 2-4 MPa).
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Nominal pressure Mass flux G Empirical Cgp Theoretical B
(MPa) (kgm=2s~y  (10*ms~12)  (10~*ms~'/2)  Cgp/B
1 500 30.0 52.1 0.58
1000 25.5 52.9 0.48
2000 27.6 61.9 0.45
2 500 5.96 19.4 0.31
994 10.7 24.9 0.43
1504 8.65 25.1 0.34
4 500 7.45 8.54 0.87
988 5.70 9.01 0.63
1500 9.00 10.2 0.88

Table 2. Summary of empirical Crp measurements and their comparison against theoretical predictions.

it is plausible that their size makes effects of subcooling more substantial, preventing
the bubbles from growing further. The growth statistics for 2 and 4 MPa, on the other
hand, generally demonstrate better agreement, but contain more outliers. This is primarily
because many more bubbles can be tracked at higher pressures due to their smaller size and
shorter time near the nucleation site; therefore, more outliers will inevitably be measured.
However, the relative number of outliers is small, as illustrated in the sample of the red
growth histories in figures 5—7, where many of the individual bubbles follow the expected
growth trend quite well. On average, (3.4) fits the bubble size measurements within 27 %
across all operating conditions and, overall, measurements indicate that bubble growth
is consistently proportional to the square root of time (i.e. heat-diffusion controlled),
particularly during the times when the bubble is still near the nucleation site. However,
while we acknowledge that our treatment of bubble growth is not complete, and a more
precise and mechanistic growth model will be an important goal of future studies, (3.4)
provides a reasonable boundary condition for the sliding and departure models, which is
the focus of this work.

In passing, we also observe that, for a given mass flux, an increase of pressure decreases
the bubble growth rate. For instance, when increasing the pressure from 1 to 2 MPa, the
liquid—vapour density ratio decreases by a factor of two, while the thermal diffusivity
and Jakob number Ja = ¢ (T, — Tsar)/h1y only decrease by 3 % and 6 %, respectively.
The Jakob number does not change as much because the reduction of latent heat is nearly
balanced out by the reduction in nucleation temperature due to decreased surface tension.
Therefore, the primary reason why Cgrp decreases with increasing pressure is because
of the increase in vapour density, which explains the slower bubble expansion as liquid
evaporates.

Mass flux, on the other hand, does not have an obvious effect on the bubble size,
which supports the numerical findings of Legendre et al. (1998), but it of course affects
the local liquid velocity near the bubble. The secondary axes of the plots in figures 5-7
show the equivalent bubble radius in wall units, where the friction velocity is estimated
using the friction factor correlation given by McAdams (Todreas & Kazimi 2011) (see
Appendix A for details). Note that, as mass flux increases, the thickness of the viscous
sublayer decreases, the local fluid velocity near the bubble increases and creates stronger
detaching forces that promote bubble sliding.
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Figure 8. Schematic of a force balance on a single, sliding vapour bubble.

3.2. Bubble sliding

We now revisit figures 3 and 4 to discuss the observed sliding phenomenon in detail. It
can be seen that the bubble continues to adhere to the boiling surface as it slides vertically
upward in the direction of the bulk flow. This is evidenced by presence of a bright patch,
indicating a dry spot, in the centre of the bubble optical footprint. At 0.2 MPa, bubbles do
not physically lift off from the boiling surface until they are far away (0.75 mm, ~1.5D;)
from their original nucleation site (Kossolapov 2021). At higher operating pressures, the
distance at which bubbles lift off from the boiling surface is even larger (relative to the
bubble size). This is expected because the bubble asymmetry at 0.2 MPa should yield
contact line surface tension forces that reduce bubble acceleration in the vertical direction.
One can also see an increase in the number of visible bubbles at a given mass flux as
pressure increases from 1 to 2—4 MPa. This behaviour can be explained qualitatively,
as increasing pressure decreases surface tension, which in turn decreases the nucleation
temperature and wait time. The vertical displacement of individual bubbles is illustrated
with solid blue lines in figure 4. It can be seen that the bubble trajectory is nonlinear
with time, as the bubble accelerates as it grows. One explanation for this observation is
that a larger bubble is exposed to larger local fluid velocities, which aids in accelerating
the bubble away from its original nucleation site position. To better understand sliding
from a mechanistic point of view, a momentum balance is written for a growing vapour
bubble that is surrounded by a forced flow of liquid, shown schematically in figure 6. By
assuming axisymmetric growth of a spherical bubble with negligible momentum transfer
due to evaporation, the momentum balance can be written as (Bucci 2020)

dU
pUVb—b:ﬁ[ pvng—i-% thﬁ—//pvndS—// pmdS—i—// 7-ndS,
dr v, CL Sp Sty Sty

(3.6)

where Vj, is the volume bubble, p is pressure, T is the viscous stress, U is the bubble
velocity, CL is the contact line and the meaning of the other symbols is obvious from
figure 8. We have assumed that the only body force is the weight of the bubble, and the
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only major surfaces forces are the contact line surface tension forces, viscous stresses along
the liquid—vapour interface and pressure forces from the liquid and vapour phase. Because
the average flow field and gravity are in the vertical direction, only the vertical direction
of the momentum balance is needed to predict sliding. This simplification coupled with
some common algebraic manipulations yields

dUp )
P Vp—— = otdl-i+ (pr— pv)gVe —
cL

(ph—pc)ndS-i+// T-ndS-i, (3.7)
d N Sh

where the forces (on the right-hand side) from left to right are the contact line surface
tension force, buoyancy force and total hydrodynamic force (given by the third and fourth
terms). The quantity py, is the hydrodynamic pressure of the liquid, and p. is a reference
pressure, taken to be the liquid pressure at the bubble base. This is done to algebraically
shift the effect of hydrostatics from the liquid pressure surface integral to the buoyancy
force term (given by the second term in (3.7)) (Bucci 2020). Because most of the bubbles
that are observed during sliding appear to be spherical and symmetric, the net contact
line surface tension force can be neglected. The total hydrodynamic force (i.e. the last two
terms on the right-hand side of (3.7)) is modelled as the combination of a quasi-steady
drag force and a virtual (or added) mass force (Favre et al. 2023). Quasi-steady drag of a
bubble inside a turbulent shear flow near a wall near our conditions has yet to be measured
or simulated. However, drag models for rigid spheres and clean bubbles within linear
shear flows bounded by a wall (i.e. without turbulence) have been extensively studied and
match our operating conditions well because most bubbles remain in the viscous sublayer
(see figure 22a in Appendix A). We also note that turbulence typically does not have a
systematic effect on mean drag forces (Wu & Faeth 1994; Sridhar & Katz 1995; Bagchi &
Balachandar 2003; Salibindla et al. 2020), while the presence of a wall does (Zeng et al.
2009; Shi et al. 2020, 2021); therefore, a model based on measurements or simulations
of bubble drag within a linear shear flow bounded by a wall should sufficiently capture
drag on the bubbles we observe. Additional effects that may impact drag, such as bubble
interactions and wake effects, should also be negligible due to our low bubble Reynolds
numbers (often below 10, see figure 22b). Typically, wakes from flow over rigid spheres
do not appear until Re, > 20, while vortex shedding does not occur until approximately
Rep, > 200 (Clift, Grace & Weber 2005). More recent studies have also confirmed this fact
for flows over spheres in turbulent environments. Wu & Faeth (1995), for example, did
not observe vortex shedding until Re, < 300 and note that velocity fluctuations are the
same as the surrounding turbulent fluctuations (i.e. without bubbles) for Re, < 300. This
indicates that there should not be severe distortions in the flow field for upstream bubbles,
provided their Re;, values are low. All this allows us to assume that the drag force on our
bubbles and the velocity field around them are approximately the same as the case of a
single isolated bubble. Substituting these assumptions into (3.7) yields

dU, 1
vab? = (p1 — pv)gVp + EplSpCD(Ul — Up)|U; — Upl + Fam x, (3.8)

where §), is the projected area of the bubble (i.e. TER%), Cp is the drag coefficient and
Fapm x 1s the added mass force. The drag coefficient can be calculated using the model
by Mazzocco et al. (2018), which is the drag coefficient for a solid sphere (Zeng et al.
2009) corrected to account for the different boundary conditions between a solid sphere
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and vapour bubble (Legendre & Magnaudet 1997)

24
Cp=1.13-— (140.104Re)™) (3.9)
Rey,
with the bubble Reynolds number defined as
Uy — Up|D
Rep = P10 = UblDs (3.10)
i

Finally, we note that thermally induced surface tension gradients (i.e. Marangoni forces)
are of little concern in our conditions, especially compared with Marangoni forces from
surface contaminants (Clift et al. 2005). We note that, if the bubbles were contaminated,
then the bubble interface would be a rigid boundary with a no-slip boundary condition,
making bubbles behave more like rigid spheres (Harper, Moore & Pearson 1967), in which
case the drag coefficient by Zeng et al. (2009) may be used. To elucidate these effects, we
compare the Mazzocco et al. (2018) and Zeng et al. (2009) correlation in Appendix A
and observe that the change in bubble sliding predictions are nearly negligible. The liquid
velocity at the bubble centroid U is calculated using the Van Driest (1956) eddy-diffusivity
model and McAdams’ friction factor correlation (Todreas & Kazimi 2011) (more details
of the liquid flow analysis are provided in Appendix A). The distance from the wall at
any given point in time is taken as the bubble radius R}, because the bubble will remain
adhered to the wall during sliding. To model the added mass force, we use the approach
and results by Favre et al. (2023) and van der Geld (2009), which consider the effect of a
nearby wall on the flow field surrounding the bubble. The vertical component of the added
mass force then becomes

Famx = Cam xp1 Vi (3—b - — (3.11)
where Caprx = 0.636. The second term in (3.11) represents added inertia due to displacing
the liquid as the bubble moves, while the first term actually promotes bubble sliding if
the liquid velocity is faster than the vapour bubble, which is expected to be the case.
With these closure relations in mind, (3.8) can be written as the following nonlinear
ordinary differential equation:

dU, 1
(v + Cam xPD)Vo—— = (o1 — P)&Vb + = PiSpCp(U; — Up)|U; — Up|
dr — 2

F
B Fp

Ry
+ 3Cam xp1Vp (U — Ub)ITb . (3.12)

Fa

This equation implies that bubble acceleration will remain positive during the growth
phase, and that there are three terms that contribute to bubble sliding. In an effort to
simplify this expression, (3.12) can be adjusted to solve for the bubble acceleration

Py + CAM,xpl dUp
ol dr

p 3 U= Uyl Ry
= (1 - —U> g+ sCp————(U; — Up) +3Cam x(U; — Up)—-. (3.13)
ol 8 Ry Ry
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Next, it will be assumed, and later justified, that Re, < 10 for most cases, implying

27.12
Cp =~ , (3.14)
Rey,

which yields the following simplification:

+C dU 3 27.12
v+ Camep1 dUp (1 B @) 3 2Ml(Ul Uy
ol dr o1 16 piR;
Ry
+ 3Cam (U — Uh)R—b- (3.15)

Then, by relating the fact that R, = Cgp+/t, we obtain

+ Camepr AU, 81.36v U —U,
pv+ Camep1 dUp (1 B &) ¢+ i L. | Y (3.16)
o dr Pl 16Cgp !

Finally, the bubble equation of motion is scaled to wall units, where the velocity is scaled
by the friction velocity U, = \/ty/p1, and the length is scaled by v;/U,. Because the
bubble remains adhered to the wall and is relatively small in size during sliding, this
scaling procedure is both convenient and physically meaningful. Using y to denote the
distance from the wall, where y = R;, = Cgrg+/t, one obtains

du 201 81.361; Ut —-ut  2evu 1—py/pi Vv
. > +3Camx T T3 2
dy pv+ Camxpi \ 16Cxp y U Camx+ po/p1\ Crg

1T I

(3.17)

Because the liquid velocity profile is strictly a function of y™, the differential equation can
be solved analytically with an integration factor, yielding the exact solution

y+ -1 -1
/0 Myt U + oyt dyt
Uf =
b

S (3.18)
which can be readily solved using a conventional eddy-diffusivity model. It is noted that
the gravitational component in this equation is very small for the operating conditions
here, i.e. [T < 1, and so it is neglected for the sake of simplicity

Uf =22 : (3.19)
which results in a function that is dependent on just one non-dimensional number, I7;.
A phenomenological interpretation of I1; can be understood by considering how drag,
added mass and inertial forces change as bubbles get smaller. Precisely, smaller bubbles
will have less inertia but a larger area-to-volume ratio and drag coefficient, as shown in
(3.13). This results in larger bubble acceleration, which makes them more rapidly approach
the velocity of the surrounding liquid. Therefore, I1; as defined in (3.17) can be viewed as a
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Figure 9. Experimentally measured bubble velocities and distances from wall across all operating conditions,
with theoretical predictions overlayed.

ratio of drag (first term in parentheses) and added mass forces (second term in parentheses)
to bubble and liquid inertial forces (first and second terms in the denominator outside the
parentheses), where bubbles with larger values of I7; will more closely match the liquid
velocity, all else being equal. The simplified analytical model for bubble velocity (i.e.
(3.19)) is compared against all measured bubble velocity data in figure 9 (black solid line),
where the experimentally measured bubble velocities and radii (represented as distance
from the wall) for all operating conditions are plotted in wall units. In plotting (3.19),
the quantity I7; is held constant at 5.8 as it falls within the typical spread of measured
IT; values (3.3-8.3). We also plot the theoretical profile for the liquid velocity (black
dashed line) according to Van Driest (1956), which in the limiting case of short distance
from the wall is linear, whereas at far distances from the wall it is logarithmic. Notably,
(3.19) can be further simplified in a few special cases. When the bubble always remains
in the viscous sublayer while sliding, the solution becomes (shown as a red dotted line in
figure 9)

I n
Uf = —yt = Lyt
I +1 I +1
It can be seen from the data that the measured bubble velocity follows this linear trend (i.e.
equation 20) up until values of y* ~ 10 are reached. Once the bubble leaves the viscous

sublayer and gets into the turbulent core, where U;r = (1/k)Iny™ + C™, then the bubble
velocity may be expressed as (shown as a blue dotted line in figure 9)

+171+1 +171 +171 + +171

I + 1y yHe Myt

(3.20)

Ul =U +

where k = 0.41, C* = 5.0 and y;! is the location at which the log law and linear velocity
profile intersect (~10.80). The slip ratio (i.e. ratio of bubble velocity to liquid velocity) is
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a constant value less than unity when the bubble is in the sublayer (see (3.20)). Far from
the wall, as y* approaches infinity, (3.21) becomes

1
kI’
and thus the slip ratio tends to unity. Overall, the measured bubble velocities can
be explained by the analytical solutions proposed here, further suggesting that the
high-pressure bubble dynamics can be properly accounted for without considering other
forces related to bubble asymmetry, which are difficult to measure in practice and add
significant complexity to bubble departure modelling. We acknowledge that this analysis
assumes that the velocity profile is unaffected by the presence of bubbles, as mentioned
before, and re-emphasize that this concern is alleviated in the limiting case of small
bubbles and U, ~ Uj (i.e. low Rej, and negligible slip), which is the case in high-pressure
flow boiling conditions. The analytic bubble velocity expressions can also be used to
calculate the vertical displacement of the bubble. For example, if the bubble remains in
the viscous sublayer (i.e. U;r = y™), then from (3.4) and (3.20), we get

Uiy =U - (3.22)

2 2
xb([) — %L%ﬁ/z'
3 +1 vy

Otherwise, the bubble displacement can be computed using a specific eddy-diffusivity
model and relatively simple numerical integration

(3.23)

t
xp(1) = / U U, dt. (3.24)
0

The combination of (3.20), (3.21) and (3.24) (taking y,” = 10.8) results in a completely
analytical expression for the bubble trajectory during sliding. Note that, in both (3.23)
and (3.24), we assumed that a bubble begins to slide as soon as it nucleates, an idea
supported by the optical measurements in figure 4. To validate this approach, results
from the numerical integration of the exact differential equation (3.13), analytical solution
((3.20), (3.21) and (3.24)) and experimentally measured bubble trajectories are shown in
figures 10—-12. Like the bubble growth predictions, variations in the bubble growth fitting
parameter Crp can also explain most of the statistical spread in the bubble trajectory
data. Unlike the bubble growth results, there is a clear dependence on the mass flux due
to the derivations and analysis described above. Increasing pressure tends to slow down
the bubble because of the decrease in Cgp (e.g. see (3.23)). Finally, one can observe the
excellent agreement between the differential equation solution and the simplified analytical
solution, even though simplified drag coefficients were used, and buoyancy was neglected.
A sensitivity study on the impact of drag and buoyancy was performed, and it was found,
and shown in Appendix A, that the simplification of the drag coefficient had a larger, yet
insignificant, impact on the model predictions. Figures 10—12 also show the magnitude of
the forces acting on the bubble during sliding. At a fixed pressure, when Cgp is effectively
constant, increasing mass flux increases the magnitude of the drag force. This is of course
expected, as viscous drag forces are approximately proportional to the velocity of the flow
(noting that the slip ratio is approximately uniform), which will obviously increase with
mass flux, because of both the larger mean fluid velocity and smaller viscous sublayer
thickness. At a fixed mass flux, increasing pressure, i.e. smaller Cgp, tends to increase the
role of drag forces, as suggested by (3.16).

In passing, we note that the bubble sliding phenomenon can be conceptualized and
modelled as a small particle moving in a liquid medium, leading to simple and convenient
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Figure 10. Distance bubble travels (a,c,e) and forces acting on bubble (b,d, f) while sliding at a mass flux of
500kgm~2s~L.
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Figure 11. Distance bubble travels (a,c,e) and forces acting on bubble (b.d, f) while sliding at a mass flux of
1000kgm~2s~1,
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Figure 12. Distance bubble travels (a,c,e) and forces acting on bubble (b,d, f) while sliding at the highest
mass fluxes tested (2000kgm~2s~! at I MPa and 1500kgm™2s~! for 2-4 MPa).
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Figure 13. Proposed departure criterion illustrated with departure data at 1 MPa, with a mass flux and heat flux
of 1000kgm~2s~! and 500 kW m~2, respectively. Note that the scales for the graph and images are different.

equations of motion that are strongly supported by experimental measurements. The major
conceptual difference between the two phenomena is the fact that the vapour bubble is
growing with time. If the bubble remains at a fixed size, then the equation of motion is
simply

dU, 9y, 9y,
—+ —Up=—=U,. 3.25
@ T R (529

This first-order differential equation predicts that the particle velocity reaches the liquid
velocity after ~1.1R§ /v;. In the case of the growing vapour bubble, there is always some
non-zero slip that causes the bubble to never exactly reach the liquid velocity, unless the
quantity I is very large, in which case the bubble velocity is essentially the liquid velocity
for all practical purposes.

3.3. Bubble departure

The observations of the HSV images and the analysis in the previous section support the
hypothesis that bubble sliding begins as soon as the bubble nucleates. This interesting
finding leaves us with an open question: How to define the bubble departure diameter and
growth time? We may define the bubble departure diameter as the equivalent diameter
that the bubble has when its optical footprint stops covering its original nucleation site,
allowing for a new bubble to nucleate. This is defined to be consistent with the departure
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Figure 14. Departure diameter (a) and growth time (b) predictions as a function of pressure for various mass
fluxes. Solid lines show predictions from (3.13), while the dashed lines show predictions from (3.29) and (3.30).
For the sake of illustration, Cgg = B/2 and ¢” = 500kW m~2.

diameter and growth time definitions adopted in HFP models. This criterion is illustrated
in figure 13, where the bubble is first covering the nucleation site and later moves past
it after ~0.2ms with a diameter of 0.1 mm, which define the grow time and departure
diameter, respectively. For a spherical bubble, the departure criterion can be represented
mathematically as the time at which

t
xp(t) = / Up(t) dt = Rp(1). (3.26)
0

Equation (3.26) can be readily solved analytically. In the case where the bubble departs
from the nucleation site while inside the viscous sublayer (which will be shown to be
the case the vast majority of the time), the growth time and departure diameter can be
evaluated as

3+ 1 vy
gy = ———— ——, 3.27
2 m U2 62D
and
6(I1; +1) vy
D;=C —_— 3.28
d RB om0 (3.28)
respectively. In the limit where IT; > 1, Up = U
3y
t, = ——, 3.29
6v;
Dy = Cgrs,[ 777 (3.30)
UT

which provide extremely simple expressions for the departure diameter and growth
time. To demonstrate that these simple formulae can be sufficiently accurate, the
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departure diameter and growth time determined numerically using (3.26) and the complete
force-balance model (i.e. (3.13)) are compared against (3.29) and (3.30). Results are shown
in figure 14, where it is immediately clear that, for most pressures above 1 MPa, the simple
analytical expressions for departure diameter and growth time compare extremely well
with the more complex force-balance model. Note that (3.27) and (3.28) would lie in
between the predictions of the force balance and (3.29) and (3.30) and are not shown
in figure 14 for the sake of clarity.

It can also be seen that (3.29) and (3.30) consistently underpredict the results at lower
pressures. Assuming the bubble remains in the viscous sublayer, this can be understood by
considering the effect pressure has on the quantity /77 and, consequently, (3.27) and (3.28).
Because decreasing pressure increases Cgrp, I11 also decreases (see (3.17)). Since I1; is
directly related to the vapour-liquid slip velocity ratio (3.20), decreasing I1; increases the
relative slip between the two phases, making the assumption inherent to (3.29) and (3.30)
(i.e. Up = Uj) less accurate. It must also be confirmed that the bubble remains in the
sublayer during sliding. Figure 14 shows that the bubble (see curve labelled D;“) remains
in the viscous sublayer beyond a pressure of approximately 2 MPa, and is never far inside
the turbulent core. Therefore, both assumptions (i.e. that the bubble remains in the viscous
sublayer and that U;, = U;) are more accurate at elevated pressures.

Based on (3.29) and (3.30), one can easily interpret how different operating conditions
affect bubble departure. For example, it can be readily deduced that the departure diameter
is approximately inversely proportional to the mass flux (o< G°) and directly proportional
to Cgp, while the growth time is inversely proportional to o« G'*® and does not at all depend
on how fast the bubble grows. This observation can be deduced from the fact that the speed
of the bubble is directly related to its size while in the viscous sublayer, which makes the
time at which the bubble departs independent of its growth rate.

Interestingly, it can also be observed that all departure diameters shown in figure 14 lie
below the Cole—Rohsenow predictions for pool boiling conditions (purple dash-dotted line
figure 14). This is expected due to the presence of drag and added mass forces promoting
bubble sliding. However, it must be noted that this finding should not be extrapolated to
pressures lower than what was investigated in this study, as bubble deformation effects,
due to their size, will create non-negligible surface tension forces (Favre et al. 2023) that
make our force-balance model and analytical solution invalid.

Equation (3.26) can also be used to measure the departure diameter and growth time
experimentally. This is achieved by our bubble tracking algorithm, where the intersection
of the two curves in figure 13 is determined using linear interpolation. A comparison
between average experimental measurements and theoretical predictions is shown in
figure 15. The error bars in the departure diameter and growth time measurements come
mostly from the spatial (~5-6 um) and temporal (33-67 ws) resolutions of the optical
technique. In general, departure diameter predictions improve as pressure increases, as
expected based on the model assumptions. It can also be seen that the growth time
predictions are also reasonably accurate at higher pressures, but are not quite as precise
as the departure diameter predictions. This happens because bubbles may not be precisely
tracked the instant they are nucleated. Therefore, the experimentally measured growth
time becomes less accurate the faster the bubbles depart. This is not the case for departure
diameter, because the measurement is only taken when the detected bubble leaves the
nucleation site area. In general, it is concluded that the model is in agreement with the
optical measurements and their associated uncertainty. It is also clear that the measured
departure diameters are indeed far smaller than what has been reported in past literature
studies (see figure 1), as was expected. Even though there is no universal definition of
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Figure 15. Departure diameter (a) and growth time () predictions and measurements as a function of mass
flux for various pressures.

departure diameter, our solution offers a physically sound view of the bubble departure
process in high-pressure flow boiling compared with approaches previously used in
the literature. Additionally, our analytical solution may offer much more tractable and
computationally efficient ways to evaluate bubble departure and growth time compared
with numerically solving complex equations of motion. In passing, we note that the
assumption of departure diameter approaching zero as pressure increases has also been
made in recent CFD flow boiling models (Kommajosyula 2020), which is consistent with
our mathematical models and experimental measurements.

Moreover, (3.29) and (3.30) can provide a simple and meaningful way to predict the
effect of pressure and flow rate on the bubble departure process. As an example, we can
use them to evaluate what would be the spatial and temporal resolutions needed to measure
these quantities at pressurized water reactor conditions (~15MPa and >2000kgm~2s~1).
The departure diameter would be of the order of 100 nm and the growth time less than
10 pus. Such a small diameter cannot be resolved with the optical technique used in this
study, which is limited to approximately 6 um. It may be possible to achieve sub-pm
spatial resolution with optical microscopes, but such devices will have to be positioned
a few millimetres away from the boiling surface, which makes the fabrication of a seal
capable of withstanding ~15 MPa increasingly difficult. In fact, flow boiling at a pressure
of 7.6 MPa was attempted in the present study (shown in figure 16), but the uncertainty
in the optical measurements was quite large. At a pressure of 7.6 MPa and mass flux
of 1000kgm~2s~!, departing bubbles appear to be a few pixels or even less than one
pixel. Based on the images shown in figure 16, the departure diameter appears to be
approximately 2-3 pm. If we refer to figure 14, it can be seen that the model predicts a
departure diameter of approximately 2 um at a pressure of 7.6 MPa and 1000 kg m—2s~!
mass flux, which indicates that the present model and measurements are approximately
in agreement, but will need to be validated with future measurements. Based on these
findings and limitations, future studies that focus on bubble departure in high-pressure
flow boiling applications will either have to use a more advanced optical set-up with higher
spatial resolution or make use of light with shorter wavelengths (e.g. ultraviolet or X-rays,
provided that these techniques have sufficient temporal resolution).
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Figure 16. Bubble columns appearing from two nucleation sites in 10 °C subcooled flow boiling at 7.6 MPa
with a mass flux and heat flux of 1000kg m—2s~! and 220 kW m~2, respectively.

4. Conclusions

We conducted an experimental investigation on the growth, departure and sliding of
vapour bubbles in high-pressure flow boiling using high-resolution optical techniques.
With these techniques we could track bubble shape, size and position as bubbles
nucleate and slide on top of the heated surface. In our experimental conditions, the
radii of bubbles approximately grow with the square root of time, which hints towards
a heat-diffusion-controlled process. We also observed that the bubble shape is essentially
spherical throughout the growth and sliding process, as their small size makes surface
tension forces dominate over inertial, viscous and gravitational forces.

These observations allowed us to simplify the bubble equation of motion and
constitutive laws, e.g. for the drag coefficient, to obtain non-dimensional expressions
for the bubble trajectory in the direction of the flow. Specifically, we identified a
non-dimensional number, I1;, that relates the bubble velocity to the liquid velocity and
depends only on bubble growth rate and physical properties. In the viscous sublayer, the
slip ratio is fixed, while in the turbulent flow region, the relative velocity between the
bubble and the liquid is fixed and the slip ratio tends to unity. Notably, in high-pressure
flow boiling, as the bubble growth rate gets smaller, I7; tends to infinity, making the
bubble velocity essentially equal to the liquid velocity. This observation yields analytic
expressions for bubble departure diameter and growth time that only depend on bubble
growth rate, liquid kinematic viscosity and shear velocity. This offers a much more
tractable and computationally effective way to evaluate these quantities compared with
numerically solving complex equations of motion. For this reason, these expressions can
readily and efficiently be used in two-phase CFD modelling frameworks.

Unfortunately, due to the of lack wall and local fluid temperature measurements, we
could not formulate a comprehensive mechanistic model of the bubble growth. In future
works, we will focus on implementing these measurements and study the effect of
subcooling and nucleation temperature on bubble growth in high-pressure flow boiling.
Future work may also focus on surface effects and bubble coalescence during sliding,
as the formation of large vapour bubbles that lift off the surface becomes increasingly
important as heat fluxes approach the critical heat flux (CHF) limit.
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Appendix A
A.l. High-pressure flow boiling test facility

A schematic of the flow boiling test facility, including the required instrumentation, is
shown in figure 17. The facility is designed to operate at 15.5 MPa and it is possible to
adjust the flow rate and water temperature to duplicate pressurized water reactor flow
conditions. Essentially, a circulation pump is used in the working fluid (high pressure,
high temperature) loop to establish the required mass flux through the test section, which
is measured by a venturi-type flow meter (FM). The temperature of the flow loop upstream
of the test section is raised and controlled by a series of tape heaters wrapped around
the working fluid tubing. To control the system pressure, a pressurizing pump is used to
take room temperature water from a tank and inject it into the system. Simultaneously,
a controlled discharge of water is established with a backpressure regulator. Both these
mechanisms create a ‘feed-and-bleed’ dynamic. Both streams are also sent through a
heat exchanger, which cools the bleed stream and preheats the feed stream. A piston
accumulator is installed near the test section outlet to minimize the pressure difference
between the sapphire windows that separate the working fluid from the test section interior.
Deionized water was used as the working fluid for all experiments. Before each test, argon
gas was sparged through the water in the tank to remove oxygen. The average experimental
uncertainties of the test facility measurements are shown in table 3.

A.2. Bubble tracking algorithm

The algorithm to track the size and trajectory of bubbles was developed in
MATLAB®. Figure 18 shows a flowchart depicting the key steps within the algorithm.
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Parameter Uncertainty

System pressure +0.02 MPa

Subcooling +1.1K
Mass flux +20kgm2 5!
Heat flux +100kW m—2

Table 3. Uncertainty of measurements from high-pressure flow boiling test facility.
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Figure 18. Flowchart for bubble tracking algorithm.

Before the algorithm begins, nucleation sites that consistently produce bubbles are
manually identified. Once nucleation site regions of interest are identified, the algorithm
begins by cropping the raw image to only show the region surrounding a nucleation site.
Then, each cropped image, or frame, i of a video is resized by a factor of five to improve
the detection of the bubble perimeter. Once the region of interest has been enlarged, each
image is binarized and a series of built-in MATLAB® functions are used to calculate the
number of white regions (i.e. detected bubbles) and their respective centroid and area.
To track the bubbles over the course of a video, bubbles detected in frame i of the video
are compared with the bubbles detected in the preceding frame i — 1. This comparison is
illustrated in figure 19 and briefly described here. Consider a bubble in frame i — 1 and
compare its centroid with the centroid of all bubbles in frame i. The pair of centroids that
yields the smallest Euclidean distance is considered to be the same bubble, provided the
trajectory of the bubble is positive in the vertical direction; if the trajectory is negative in
the vertical direction, then this pair is discarded. This procedure continues for all bubbles
in frame i — 1. Once all these bubbles are paired, then any remaining unpaired bubbles in
frame i are either ignored or recorded as newly nucleated bubbles, depending on their
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Figure 19. Illustration of the procedure used to correlate bubble positions between two consecutive frames.

Euclidean distance from the nucleation site. If the distance is close enough, then the
bubble is considered to be newly nucleated; otherwise, the bubble is discarded. It should
be noted that the algorithm requires videos recorded at a high frame rate relative to the
bubble motion so that bubble tracking can be achieved. Additionally, there must be little
interaction between bubbles since effects such as bubble coalescence are not considered.
For this reason, only low heat flux data are reported in the present study, as flow boiling at
higher heat fluxes will produce too many bubbles that will undoubtedly interact with each
other.

A.3. Image processing uncertainty analysis

The uncertainty of the bubble radius measurement is associated with the limited spatial
resolution of the optical set-up, and are quantified by analysing the pixel intensity profiles
of the recorded images. An example of a pixel intensity profile is shown in figure 20, which
shows the pixel intensity along the central cross-section of a bubble. It can be seen that the
transition from the dark interior of the bubble to the bright background happens within a
span of approximately ten pixels. Therefore, the uncertainty of the radius is assumed to be
45 pixels. The uncertainty of the bubble centroid is assumed to be small in comparison
(less than one pixel), because the pixel intensity profile is symmetric about the bubble
centre, which means that the position of the centroids will be the same no matter what
threshold value is used to binarize the images. The nucleation site position is calculated as
the initial position of newly nucleated bubbles; therefore, the uncertainty in the nucleation
site position is also assumed to be relatively small.

A.4. Further justification of spherical bubble assumption and drag coefficient

To justify the assumption that the bubble remains approximately spherical (§ 3.2), (3.13)
is used to calculate the Bond, capillary and Weber numbers at departure for different mass
fluxes and pressures. The velocity of the liquid surrounding the bubble is assumed to
follow the law of the wall velocity profile, where the velocity is scaled by the shear (or

friction) velocity U; = 4/t,,/p;. The wall shear stress is estimated from the McAdams

shear stress correlation 1, = 0.023Rec_ho'2G2/ p1. The law of the wall velocity profile
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Figure 20. Shadowgraph image of bubble on the surface (@) and the intensity profile of the image at the
cross-section drawn through the middle of one bubble (b). Dashed red line in (@) indicates the position of the
cross-section.

is calculated with the Van Driest (1956) eddy-diffusivity model, yielding the turbulent
kinematic viscosity v; = v;f(y™). The resulting liquid velocity equation is then given by

yt dy*
U =U; —_—, (A1)
o L+v/vy

which can be simplified to a linear or logarithmic function depending on the magnitude
of yt.

Results are shown in figure 21, where all dimensionless quantities are far less than
unity at the mass fluxes and pressures used in the present study. Even at mass fluxes
as high as 2000kgm~2s~!, the capillary and Weber numbers are still much less than
unity, indicating that surface tension forces should keep the bubble spherical in shape.
Deformation effects from turbulence and shear forces should also be negligible for these
values of Bond, capillary, and Weber numbers. Taylor (1934) provided an analytical
solution to predict the deformation of a bubble or droplet

Rinax — Rnin _ 191y + 1607 T Dy
Rinax + Rnin 16p, + 160 o

(A2)

and has been confirmed to agree well with recent direct numerical simulation results
(Soligo, Roccon & Soldati 2020). Note that (A2) depends on a parameter resembling the
standard capillary number, which in our conditions is of the order of 1073, Additionally,
the work of Ni (2024) suggests that our bubble shapes should hardly be affected by the
turbulent environment, provided the turbulent Weber number, shear Weber number and
Bond number are sufficiently small. In our conditions, we estimate the turbulent Weber
number We; with the global energy dissipation rate (t,,G/ ,olzDh) and find We, to be much
less than unity, which should be small enough for turbulence-induced deformations to
be negligible. We acknowledge that these estimations do not account for anisotropy in
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Figure 21. Bond, capillary and Weber numbers as a function of pressure at two different mass fluxes.
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Figure 22. Cumulative distribution function of the measured bubble diameter in wall units () and bubble
Reynolds number (b) at different operating pressures.

turbulence and variations in the energy dissipation rate as the bubble grows, and so
turbulence induced deformations may need to be re-evaluated in future numerical studies.

The choice and sensitivity of drag coefficient depends on the bubble shape, Reynolds
number and distance from the wall. The bubble shape has been well established as
spherical, but the drag coefficient we assume is only strictly valid if the bubble remains
in the viscous sublayer and has a low Reynolds number. Cumulative distribution functions
of our measured dimensionless bubble sizes y* and Rej, are shown in figure 22. At high
pressures, the vast majority of bubbles are within the viscous sublayer, and the bubble
Reynolds number is typically of the order of 10 or less. Therefore, most bubbles are
indeed inside a linear shear flow bounded by a wall and have a drag coefficient that is
well approximated by (3.14), as shown in figure 23. It can be seen that the simplified drag
model starts to deviate at a bubble Reynolds number of approximately 10, near the upper
bound of measured Re;, at high pressures. Ignoring nonlinear effects, the discrepancy in
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Figure 24. Sensitivity of drag coefficient and buoyancy to bubble sliding predictions.

the drag coefficient would cause the bubble velocity in the simulations to match the liquid
velocity more closely, because Cp is larger, which would make the quantity I7; larger as
well. Therefore, the analytical solution acts as a lower bound for the bubble velocity, while
the liquid velocity is always a strict upper bound. Finally, the sensitivity to the choice
of drag coefficient was evaluated. An alternative drag coefficient correlation that seems
suitable is the curve fit developed by Zeng et al. (2009) in the case of significant surface
contamination. This correlation and the drag coefficient for a clean spherical bubble in a
uniform flow (Mei, Klausner & Lawrence 1994) are used to predict the bubble trajectory
for the sake of comparison. The results are shown in figure 24, where the panel (a) shows
different bubble trajectories overlayed on each other, and (b) shows the difference in
displacement between the model in question and the model that utilizes the Mazzocco et al.
(2018) correlation (i.e. the force-balance model used in the present study). Additionally,
the case of zero buoyancy is also included to show the effect of buoyancy on sliding. It
can be seen that nearly all model predictions lie on top of each other, with the largest
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Figure 25. Sensitivity of diameter averaging scheme to bubble departure diameter predictions.

difference (~10 %) between the models occurring beyond 1 ms, well beyond the time of
departure. It is also clear that the choice of drag coefficient impacts the model predictions
more (by approximately one order of magnitude) than the inclusion of buoyancy, but not
dramatically.

A.S. Evaluating different types of departure diameter schemes

Under each experimental operating condition, a distribution of measured departure
diameters emerges. However, most modelling frameworks rely solely on a single
representative departure diameter value. Therefore, in the present study, we take the
arithmetic average of the measured departure diameter data as the most representative
value; however, number averaging is not the only approach. Other common averaging
schemes to quantify an average particle size include the Sauter mean diameter and De
Broukere mean diameter, given by

50}
i=1

=
Dy3 =

n ’
2.0
i=1

(A3)

and

3 b
i=1

n b
S0
i=1

(A4)

Dy 43 =
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respectively. A comparison between the three different departure diameter measurements
is shown in figure 25. As shown, the discrepancy between the three averaging schemes is
not substantial; therefore, for the sake of simplicity, we use the number average departure
diameter in this study.
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