
J. Fluid Mech. (2024), vol. 992, A15, doi:10.1017/jfm.2024.515

The starting vortices generated by bodies with
sharp and straight edges in a viscous fluid

John E. Sader1,2,†, Wei Hou3, Edward M. Hinton4, D.I. Pullin1 and
Tim Colonius3

1Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
2Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
3Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena,
CA 91125, USA
4School of Mathematics and Statistics, The University of Melbourne, Vic 3010, Australia

(Received 19 September 2023; revised 20 May 2024; accepted 20 May 2024)

A two-dimensional body that moves suddenly in a viscous fluid can instantly generate
vortices at its sharp edges. Recent work using inviscid flow theory, based on the
Birkhoff–Rott equation and the Kutta condition, predicts that the ‘starting vortices’
generated by the sharp and straight edges of a body – i.e. the vortices formed immediately
after motion begins – can be one of three distinct self-similar types. We explore the
existence of these starting vortices for a flat plate and two symmetric Joukowski aerofoils
immersed in a viscous fluid, using high-fidelity direct numerical simulations (DNS)
of the Navier–Stokes equations. A lattice Green’s function method is employed and
simulations are performed for chord Reynolds numbers ranging from 5040 to 45 255.
Vortices generated at the leading and trailing edges of the flat plate show agreement with
the derived inviscid theory, for which a detailed assessment is reported. Agreement is
also observed for the two symmetric Joukowski aerofoils, demonstrating the utility of the
inviscid theory for arbitrary bodies. While this inviscid theory predicts an abrupt transition
between the starting-vortex types, DNS shows a smooth transition. This behaviour occurs
for all Reynolds numbers and is related to finite-time effects – there is a maximal time
for which the (self-similar) starting vortices exist. We confirm the inviscid prediction that
the leading-edge starting vortex of a flat plate can be suppressed dynamically. This has
implications for the performance of low-speed aircraft such as model aeroplanes, micro
air vehicles and unmanned air vehicles.
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Figure 1. Starting vortex generated by a flat plate that moves suddenly. (a) Schematic showing the flat plate
with its translational and angular velocities. The x and y-components of the Cartesian frame are always parallel
and perpendicular to the plate, respectively; the origin is at the plate centre (this differs from PS21). (b) Phase
plane for the starting vortices generated at the trailing (right) edge of the plate for zero initial angle of attack,
α0 = 0, where m and p are the translational and rotational power laws in (1.1), respectively. Plate rotation is
away from the three-quarter-chord position, i.e. d /= 1/2. The critical line (solid and diagonal blue line) is (1.6).
Nominal shapes of type I, II and III vortices are illustrated (dashed lines). Type I and II vortices are independent
of β ≡ Ω0a/U0, defined in (1.4), whereas type-III vortices are swept further downstream with decreasing β.

1. Introduction

The flow generated by a thin aerofoil that suddenly moves at finite angle of attack has
been widely studied over the last century (Prandtl 1924; Wagner 1925; Kaden 1931;
Anton 1939, 1956; Rott 1956; Wedemeyer 1961; Blendermann 1967; Pullin 1978). A key
characteristic of this flow is the generation of a ‘starting vortex’ that is localised to the
sharp trailing edge of the aerofoil, immediately after the plate starts to move. Proximity
to the trailing edge causes the starting vortex to exhibit self-similar behaviour in time.
This property has been utilised in its calculation, based on inviscid theory, leading to the
widely recognised rolled-up vortex that moves approximately normal to the aerofoil for
small time (Kaden 1931; Anton 1956; Pullin 1978). This starting vortex has been confirmed
using direct numerical simulations (DNS) of the Navier–Stokes equations (Krasny 1991;
Koumoutsakos & Shiels 1996; Luchini & Tognaccini 2002; Jones 2003; Eldredge 2007;
Michelin, Smith & Llewellyn 2009; Nitsche & Xu 2014; Xu & Nitsche 2015; Luchini
& Tognaccini 2017; Xu, Nitsche & Krasny 2017) and physical experiments (Pierce 1961;
Pullin & Perry 1980; Auerbach 1987).

Pullin & Sader (2021), henceforth denoted PS21, recently calculated the starting vortex
generated at the trailing edge of a flat plate that suddenly, and simultaneously, translates
and rotates; see figure 1(a). This was achieved using an inviscid vortex-sheet formulation
that invokes the Kutta condition at its trailing edge. The motion of the flat plate was
specified by two independent power laws in time, m and p, such that

U(T) = U0Tm, Ω(T) = Ω0Tp, (1.1a,b)

where U(T) and Ω(T) are the translational and angular velocities of the plate, as shown
in figure 1(a), U0 and Ω0 are the (constant and dimensional) translational and angular
velocity scales, respectively, and the dimensionless convective time is

T ≡ tU0

a
. (1.2)
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The starting vortices generated by bodies with sharp edges

Here, t is the dimensional time, and a is the half-chord of the plate. The rotational pivot
position lies in the plane of the plate, and is denoted by

d ≡ x0

a
, (1.3)

where x0 is its dimensional x-coordinate whose origin is at the plate centre. Thus,
d = 0, −1/2 and 1/2 correspond to rotation about the plate centre, quarter-chord and
three-quarter-chord positions, respectively. Importantly, the starting vortex is derived in
the small convective time limit, i.e. T → 0+. The finite-time interval over which it holds
is addressed in this study.

In addition to the rolled-up vortex sheet whose centre moves approximately normal to
the plate, designated a type-I vortex by PS21, this recent study showed that two additional
vortex-sheet types can arise at the trailing edge. The precise vortex type depends on
the relative values of the power laws, m and p. The first additional type was termed
a type-II vortex sheet. It does not roll up, i.e. there is no vortex centre, but moves
strictly parallel to the plate while being convected downstream. That is, the vortex sheet
rotates synchronously with the plate; convection off the plate surface dominates vortex
self-induction. The second additional type was termed a type-III vortex and combines
the features of type I and II vortices. It exhibits the competing effects of convection and
vortex-sheet roll up, yet unlike types I and II, its shape depends on the relative magnitude
of the angular and translational speeds through the dimensionless ‘rotation parameter’

β ≡ Ω0a
U0

. (1.4)

The shape of a type-III vortex approaches that of type II and I vortices as β → 0 and ∞,
respectively, i.e. when the respective plate motion is translation and rotation dominated.
The angle of attack of the plate can be expressed in terms of β

α(T) = α0 + β

1 + p
T1+p, (1.5)

where α0 is the initial angle of attack. Figure 1(b) summarises the key finding of PS21 for
the trailing-edge vortex of a flat plate with zero initial angle of attack, i.e. α0 = 0. This
shows that the vortex shape changes discontinuously as a critical line in the (m, p)-phase
plane is transversed. Type-III vortices constitute singular solutions in the (m, p)-phase
plane, that occur on the critical line

m = 1
3(2p − 1), (1.6)

provided plate rotation is away from the three-quarter-chord position. For rotation at this
singular position, the critical line is m = 1 + 2p.

Hinton et al. (2024) generalised the study of PS21, enabling calculation of the starting
vortex at any ‘sharp and straight edge’ of an arbitrary solid body. A ‘sharp and straight
edge’ is one whose neighbouring upper and lower surfaces are tangent to one another at
the edge, e.g. a flat plate has two such edges. Several findings were reported:

(i) The three vortex-sheet types found for the trailing edge of a flat plate in PS21 apply
to the sharp and straight edges of an arbitrary body.

(ii) The phase diagram for the leading-edge vortex of a flat plate is identical to
figure 1(b), except that (a) type-II vortices do not exist, i.e. no vortex is shed,
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and (b) the critical line is m = 1 + 2p for rotation about the plate’s quarter-chord
position.

(iii) Translation of the sharp and straight edge of an arbitrary body, parallel and normal
to the neighbouring surfaces of this edge, is the physical mechanism that drives the
starting vortex. For example, rotation of a flat plate about a pivot position is a motion
that generates the requisite edge translation.

(iv) Rotation of a flat plate can produce starting vortices of different types at its
leading and trailing edges (provided rotation occurs at either its quarter or
three-quarter-chord positions). This is not possible with pure plate translation. This
highlights a distinction between global motion of the solid body and local translation
of the edge under consideration.

(v) The implication of point (ii), sub-point (a), is that the leading-edge vortex of a
flat plate can be naturally suppressed through control of the plate’s dynamics. The
relevance of this finding to low-speed aircraft that predominantly use thin aerofoils
of low curvature, was discussed.

(vi) Explicit formulas for the lift experienced by a flat plate that is undergoing
simultaneous translation and rotation were derived. This required a new treatment
of the Bernoulli equation in a rotating frame.

(vii) The general theory was applied to Joukowski aerofoils, highlighting its applicability
to bodies of arbitrary shape.

Here, we examine the existence of type I, II and III starting vortices in a viscous fluid,
for (i) a flat plate that is simultaneously translating and rotating, and (ii) two symmetric
Joukowski aerofoils that are translating in two orthogonal directions. This is achieved using
high-fidelity DNS of the Navier–Stokes equations in two spatial dimensions, employing a
lattice Green’s function (LGF) method that discretises the flow in the regions of finite
vorticity only. This approach enables access to start-up flows at high Reynolds number i.e.

Re ≡ cU0

ν
� 1, (1.7)

where the viscous boundary layer and starting vortex are only resolved in the immediate
vicinity of the solid body; ν is the kinematic viscosity and c is the chord of the body.
This study primarily focuses on the flat plate where a comprehensive analysis of vortex
formation is reported. Of particular interest is the change in shape of the starting vortices
as the power laws of the plate motion, m and p, are varied. We include a brief section on
Joukowski aerofoils to illustrate the utility of the theory reported by Hinton et al. (2024)
in predicting the starting vortices of bodies with more complicated shapes.

The study is organised as follows. We begin in § 2 by outlining the LGF/immersed
boundary methodology used to numerically solve the Navier–Stokes equations for a flat
plate and the two Joukowski aerofoils. A comprehensive analysis of the vortices formed
at the edges of a translating and rotating flat plate then follows. This includes analytical
formulas of the maximal time for existence of its starting vortices, which are derived in
§ 3. These formulas are based on the inviscid theory, which was first reported for the
trailing edge of a flat plate in PS21 and later extended to an arbitrary body with any
number of edges by Hinton et al. (2024). This collective theory is henceforth termed
the ‘starting-vortex inviscid theory’, which is abbreviated to ‘SVT’. In § 4, a detailed
comparison of SVT and DNS for the leading and trailing-edge vortices of a flat plate
is reported. This employs the above-mentioned maximal time for existence of a starting
vortex. This comparison confirms the theoretical prediction of Hinton et al. (2024) that
the leading-edge vortex of a flat plate can be suppressed dynamically. Finally, the vortices
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0.1c 

T = 0.060T = 0.030T = 0.015

(a)

(b)

Figure 2. Sample computational mesh (grey region) of the DNS for a flat plate showing vorticity distribution
(red and blue colours); m = 2, p = 0, d = 0 (rotation about plate centre), β = 3.175, Re ≡ cU0/ν = 5040,
where ν and c are the kinematic viscosity and plate chord, respectively, with uniform spatial discretisation
�x = 2.5 × 10−4c. (a) Snapshot of the entire computational domain for T = 0.060. (b) Time evolution of the
mesh near the trailing edge of the plate. The computational mesh spatially adapts to discretise regions of finite
vorticity only. The scale bar applies to all plots. Further details are provided in § 2.

formed at the trailing edges of two symmetric Joukowski aerofoils are briefly examined
in § 5. This illustrates the utility of SVT in predicting the starting vortices of bodies with
more complex shapes. We conclude in § 6 by summarising the key findings of this study
with details of the calculations relegated to Appendix A.

2. Numerical method for solving the Navier–Stokes equations

The starting vortices generated by a flat plate and two Joukowski aerofoils, immersed
in an incompressible and unbounded viscous fluid, are calculated using DNS of the
two-dimensional Navier–Stokes equations

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇P + μ∇2u, ∇ · u = 0, (2.1)

where ρ and μ are the fluid density and shear viscosity, respectively, u is the velocity
field and P is pressure. Equation (2.1) is solved using an immersed boundary method,
combining (i) an LGF approach that tracks regions of finite vorticity, and (ii) a uniform
mesh with spatial computational domain adaptation. The immersed boundary method
enforces no slip at the body’s surface, and the domain adaptation is performed at each
time step. Simulations, and hence discretisation, are performed in the non-inertial frame
of the moving body. This combined numerical method enables accurate simulation of
external and unbounded incompressible flows, by requiring discretisation in the regions of
finite vorticity only. This involves a user-chosen vorticity threshold which is varied until
convergence is achieved, as discussed below.

An example of the computational mesh for a flat plate and its evolution in time is
given in figure 2, showing it is confined to the immediate vicinity of the plate. The
flow in the undiscretised region can be computed analytically using results from the
discretised region, if needed. This is not required here, because we are only interested
in regions of finite vorticity. This numerical approach results in a dramatic improvement
in computational efficiency relative to other methods that require complete discretisation
of the flow domain. Consequently, the present methodology is ideally suited to start-up
problems, where vorticity generation occurs at the solid surfaces.
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We focus on assessing the validity of SVT. Thus, the simulation parameters are
chosen using the following procedure. First, we compute the flow for a relatively low
Reynolds number, Re ≈ 1000. The Reynolds number is then systematically increased
until viscous diffusion is small enough to study the vortical structures, given available
computational resources. Spatial discretisation is simultaneously increased to minimise
numerical diffusion and ensure negligible numerical artefacts. The time step size is chosen
to maintain linear stability of the time marching. The chosen vorticity cutoff threshold for
meshing is 0.001 % of the maximum vorticity; this is varied to ensure convergence. This
threshold value is in accord with Liska & Colonius (2017) that showed it is sufficiently
small for accurate flow simulation.

For further details of the numerical algorithm used in this study, the reader is referred to
Liska & Colonius (2017), Yu, Dorschner & Colonius (2022) and Hou & Colonius (2024).

3. Maximal time for existence of the starting vortices generated by a flat plate

Next, we use SVT to calculate the maximal time that vortices conforming to the type I, II
and III description can exist at the trailing and leading edges of a flat plate. An initial angle
of attack of α0 = 0, and plate rotation away from its quarter-chord and three-quarter-chord
positions, i.e. d /=±1/2, are assumed. A similar analysis can be performed for α0 /= 0 and
d = ±1/2 (not shown).

We first analyse the vortex sheet at the trailing edge, which is given by

xv + iyv = a TqZ(λ), (3.1)

where xv and yv are (dimensional) Cartesian coordinates referenced to the trailing edge, q
is the vortex power law defined in table 1 of PS21, i is the imaginary unit, λ is the similarity
variable that varies monotonically from 0 to 1 along the vortex sheet, with the governing
equation for the self-similar vortex shape, Z(λ), being

Tq−1
(

qZ̄ +
(q

2
+ p

)
(1 − λ)dZ̄

dλ

)
= Tm − iβ̂ Tp−q/2 1 + M(Z)

(2Z)1/2 , (3.2)

where the overbar denotes the complex conjugate, and

β̂ ≡ β

(
1
2

− d
)

, M(Z) ≡
−
∫ 1

0

(
1

Z1/2 − Z′1/2 − 1
Z1/2 + Z̄′1/2

)
dλ′

∫ 1

0

(
1

Z′1/2 + 1
Z̄′1/2

)
dλ′

, (3.3a,b)

with Z′ ≡ Z(λ′). Equation (3.2) is obtained by substituting (3.1) into the Birkhoff–Rott
equation that defines the vortex sheet emanating from the sharp edge that is required to
enforce the Kutta condition. It is obtained from (4.1), (4.4), (5.1), (5.2) and (5.4) of PS21.
Type I, II and III vortices arise when the left-hand side of (3.2) balances the second, first
and both terms on its right-hand side, respectively, as T → 0+.

In arriving at (3.2), a small-time expansion of the trigonometric functions in (4.4) of
PS21 is performed, which is valid provided

β

1 + p
T1+p 	 1. (3.4)
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Specifying a multiplicative factor, 0 < δ 	 1, for (3.4) to hold, gives the maximal time

T(1)
max ≈

⎛
⎜⎜⎝

δ

[
1
2

− d
]

β̂

⎞
⎟⎟⎠

1/(1+p)

, (3.5)

for which (3.2) is valid; where we have used the approximation, (1 + p)1/(1+p) ≈ 1 for
all p ≥ 0. Because type-III vortices arise when both terms in the right-hand side of (3.2)
balance, (3.5) sets the maximal time for which this vortex type exists; the constraint in
(3.5) also applies to all vortex types. This is provided the vortex remains close to the
plate’s sharp and straight trailing edge, which is an overriding assumption of the theory;
this spatial condition applies to any solid body with sharp and straight edges. Note that all
starting vortices obey the self-similar form described by (3.1).

Type I and II vortices arise when one term on the right-hand side of (3.2) dominates the
other, as discussed above. This provides an additional constraint on the maximal time for
which type I and II vortices exist (derived in Appendix A),

T(2)
max ≈ (β̂(2/3) sgn(ε)δ)1/|ε|, (3.6)

where

ε ≡ m − 2p − 1
3

, (3.7)

with type I and II vortices corresponding to ε /= 0. Combining (3.5) and (3.6) gives the
overall maximal time for a starting-vortex type to exist at the trailing edge of a flat plate

Tmax ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎝

δ

[
1
2

− d
]

β̂

⎞
⎟⎟⎠

1/(1+p)

, (β̂(2/3) sgn(ε)δ)1/|ε|

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, Type I and II vortices

⎛
⎜⎜⎝

δ

[
1
2

− d
]

β̂

⎞
⎟⎟⎠

1/(1+p)

, Type-III vortices

,

(3.8)

provided the vortex remains spatially close to the edge. The corresponding expression for
the leading-edge vortex is obtained by replacing 1/2 − d → 1/2 + d in (3.8) and in the
definition of β̂ in (3.3a). This is because their governing equations are of identical form
(Hinton et al. 2024).

To illustrate the utility of (3.8), we use it to determine regions of the (m, p)-phase
plane where each vortex type exists, over an observation time, 0 < T ≤ Tobs. This requires
Tobs ≤ Tmax, where Tmax is defined in (3.8). Figure 3 gives these regions for plate rotation
about its centre, d = 0, observation times of Tobs = 0.01 and 0.1, and rotation parameters
of β̂ = 0.5 and 2, using a nominal value of δ = 0.1(	 1). The diagonal (green) boundaries
– within which type I and II vortices exist (specified by (3.6)) – approach the critical (red)
line, ε = 0, as Tobs is reduced. Thus, figure 3 shows that in any finite-time simulation or
physical measurement, type I and II vortices can only be observed away from this critical
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Figure 3. Regions of the (m, p)-phase plane where type I, II and III vortices of a flat plate exist for 0 <

T ≤ Tobs, using two choices of Tobs = 0.01 (a,b) and 0.1 (c,d); β̂ = 0.5 (a,c) and β̂ = 2 (b,d). The shaded
(green) regions correspond to parameter values, (m, p), where the (small time) starting vortices – obeying
the self-similar form described by (3.1) – are expected to hold at the given observation time, Tobs. Results
given for rotation about the plate centre, d = 0, and a nominal multiplicative factor of δ = 0.1 (	 1) in (3.8).
Type-I-like and type-III-like vortices are not self-similar, but have shapes resembling those of type I and III
vortices, respectively.

line, ε = 0. The horizontal (green) boundary in figure 3(d) is due to (3.5), and specifies
the limit where the governing equation, (3.2), applies. Type-III vortices always occur on
the critical (red) line, ε = 0, for the chosen values of Tobs; increasing Tobs further can
and does eliminate this finding. Type-III like (non-similarity) vortices exist in the (white)
regions between the diagonal green boundaries, because the first and second terms in
the right-hand side of (3.2) are comparable in those regions. Type-I-like (non-similarity)
vortices exist in the white region below the horizontal green boundary.

These findings and (3.8) are used in the next section to guide quantitative comparison
of SVT with the DNS.

4. Direct numerical simulations of a flat plate

High-fidelity DNS is performed to resolve the starting vortices generated at the edges
of a flat plate at their required small times, i.e. T � Tmax, where possible. Results are
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Vortex type m p d Re �x/c

I 2 0 0 5040 2.5 × 10−4

I 0 0 0 8000 2.5 × 10−4

II 0 2 0 32 000 1.25 × 10−4

III 0 0.5 0 32 000 1.25 × 10−4

III 1 2 0 45 255 1.25 × 10−4

III-II 1 2 0.5 45 255 1.25 × 10−4

None-III 1 2 −0.5 45 255 1.25 × 10−4

Table 1. The DNS parameters used for the flat plate. Starting-vortex type, as predicted by SVT, is in the first
column. For d = ±0.5, vortex types generated at the leading edge (LE) and trailing edge (TE) are specified in
the first column using the format: LE–TE. Reynolds number, Re, and spatial discretisation, �x/c, used in each
simulation are listed. The two symmetric Joukowski aerofoils employ �x/c = 2.5 × 10−4 and Re = 8000.

reported for Reynolds numbers ranging from Re = 5040 to 45 255. The maximal values
of the Reynolds numbers are limited by available computational resources, and are used
in the comparison with SVT. We focus on a zero initial angle of attack, α0 = 0, for which
SVT predicts that all three vortex types can exist. The majority of results are reported
for rotation about the plate centre, i.e. d = 0. Two sets of results are reported for rotation
about the quarter-chord and three-quarter-chord positions of the plate, i.e. d = −1/2 and
+1/2, respectively. The latter cases explore the theoretical prediction of SVT that vortices
of different types can occur at the leading and trailing edges (Hinton et al. 2024).

All plots are presented in the frame of the flat plate. In all cases, vortices from SVT are
plotted in their similarity scale, i.e. they do not appear to change size with increasing time.
Instead, the corresponding spatial scale bar, referenced to the plate chord, c, varies with
time and is reported in each figure. Table 1 summarises the plate and DNS parameters
used.

4.1. Type-I vortices
We first explore two cases for which SVT predicts type-I vortices.

4.1.1. The case m = 2, p = 0, d = 0
Figure 4 provides a comparison of the DNS with the predictions of SVT, for the time power
laws, m = 2 and p = 0, and rotation about the plate centre, d = 0. This corresponds to the
plate undergoing a smooth accelerating translation from rest, with its rotational velocity
starting abruptly at T = 0+. The SVT predicts that the time evolution of type-I vortices
depends explicitly on the rescaled time, β̂ T – rather than T alone – which from (1.2) and
(1.4) gives

β̂ T = Ω0(
1
2 − d)t. (4.1)

That is, evolution of type-I starting vortices depends only on the plate rotation (not its
translation). This feature is evident in figure 4, because (i) the vortices predicted by SVT
are precisely antisymmetric (by construction), and (ii) the level of agreement between the
SVT and DNS is identical at the leading and trailing edges. This finding is expected for
rotation-dominated motion about the plate centre.

For the smallest rescaled time of β̂ T = 0.012 – see top row of figure 4 – agreement
between the SVT and DNS is observed. This is despite the DNS vortices diffusing to a
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0.1c 

0.1c 

0.1c 

T = 0.060T = 0.030T = 0.015

β̂T = 0.012

β̂T = 0.024

β̂T = 0.048

Decreasing β̂

Figure 4. Flat plate. Type-I vortex: m = 2, p = 0 and d = 0 for Re = 5040. Comparison of DNS (coloured
vorticity plots) with SVT (solid black lines), showing leading (left) and trailing (right) edges. The leading and
trailing edges are at the ends of the green horizontal lines. The central section of the plate is not shown. Red and
blue colours denote DNS vorticity regions of opposite sign. The colour thresholds to white when the vorticity
magnitude is less than 1 % of the maximum value; this applies to all figures in this study. Scale bars of one
tenth of a chord length, i.e. 0.1c, are given.

T = 0.015 T = 0.030 T = 0.060

β̂ T = 0.012 (0.66, 0.70) (0.32, 0.35) (0.16, 0.17)

β̂ T = 0.024 (1.7, 1.8) (0.83, 0.88) (0.41, 0.44)

β̂ T = 0.048 (4.2, 4.4) (2.1, 2.2) (1.0, 1.1)

Table 2. Flat plate. Type-I vortex: m = 2, p = 0 and d = 0 for Re = 5040. Total dimensionless circulation,
Γ̄0 ≡ Γ0/(U0a), in the trailing-edge vortex for the plots reported in figure 4. Comparison of results for Γ̄0
obtained by integrating the DNS vorticity distributions (first entry in parentheses) with the predictions of SVT
(second entry in parentheses).

greater extent with decreasing β̂ and increasing time, T , as expected. However, the level
of agreement decreases with increasing β̂ T; see middle and bottom rows of figure 4.
This is due to deterioration of the approximation in (3.4) that underlies the governing
equation in (3.2). Indeed, for m = 2, p = 0 with δ = 0.1 (as chosen in § 3), (3.8) gives
β̂ Tmax = β̂ T(1)

max ≈ 0.05, which is similar to β̂ T = 0.048 in the bottom row of figure 4.
This establishes that SVT is near the limit of its validity when β̂ T = 0.048, which causes
a departure from the self-similar structure of the starting vortex.

Table 2 reports the total circulation, Γ0, in the trailing-edge vortex for all plots in
figure 4. Results obtained from SVT (using (2.13) and (2.17) of Hinton et al. 2024)
and those obtained by numerically integrating the vorticity distributions of the DNS are
reported. This integration is performed by segmenting the wake region into two regions:
(i) the half-space to the right of the plate’s trailing edge, and (ii) the spatial region to the
left of this half-space that omits the shear layer adjacent to the plate and the leading-edge
vortex. Figure 5 gives an example of this segmentation. There is an integrable singularity
in the vorticity distribution at the plate’s edge due to the sudden change in boundary
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LGF mesh boundary
Second spatial region

Flat plate
First spatial region

(a)

(b)

Figure 5. Flat plate. Type-I vortex: m = 2, p = 0 and d = 0 for Re = 5040. The DNS vorticity distribution
in the trailing-edge wake region for β̂ T = 0.048 and T = 0.015, also plotted in the lower left-hand corner of
figure 4. (a) Three-dimensional perspective plot of vorticity distribution showing the trailing-edge wake and
the vorticity distribution along the plate. Vorticity data are smoothed using a 3-point moving average across
neighbouring grid points in the direction parallel to the plate. (b) Segmentation of the wake region into two
distinct spatial regions described in the text. The mesh boundary indicated is automatically generated by the
LGF procedure; see figure 2.

condition from no slip to free flow. This singularity does not significantly contribute to
the total circulation. Agreement between SVT and DNS is observed throughout. Similar
agreement is observed for the leading-edge vortex, as may be expected by symmetry (data
not shown).

The results in figure 4 and table 2 collectively demonstrate the robustness of SVT
in accurately predicting both the qualitative (shape) and quantitative (total circulation)
features of the starting vortex.

4.1.2. The case m = 0, p = 0, d = 0
Figure 6 gives results for the trailing-edge vortex when m = p = 0. In contrast to § 4.1.1,
the plate undergoes an abrupt translational motion (in addition to an abrupt rotational
motion) at T = 0+. The SVT also predicts a type-I vortex to exist. However, the
comparison in figure 6 shows the vortex shapes from SVT and the DNS do not coincide,
even for the smallest time of T = 0.018. This is in contrast to the results in figure 4, for
m = 2 and p = 0, where agreement is observed for much longer times.

This difference is due to proximity of m = p = 0 to the critical line, ε = 0, in the
(m, p)-phase plane; as detailed in § 3. For the parameters considered here, (3.8) gives
Tmax = T(2)

max ≈ 2.5 × 10−4. The computed times, T , in figure 6 exceed this value by 2 to
3 orders of magnitude. This establishes that type-I vortices are not expected in the DNS
at the times shown, and indeed are not observed. This feature is due to strong competition
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T = 0.096 T = 0.192T = 0.048T = 0.018

0.1c 0.1c 0.1c 0.1c 

Figure 6. Flat plate. Type-I vortex: m = 0, p = 0, d = 0, β̂ = 1 and Re = 8000. Description as for figure 4.

T = 0.018 T = 0.048 T = 0.096 T = 0.192

(0.93, 1.0) (1.3, 1.4) (1.8, 1.8) (2.7, 2.2)

Table 3. Flat plate. Type-I vortex: m = 0, p = 0, d = 0, β̂ = 1 and Re = 8000. Total dimensionless
circulation, Γ̄0 ≡ Γ0/(U0a), in the trailing-edge vortex for the plots reported in figure 6. Description as per
table 2.

between the two terms on the right-hand side of (3.2), which leads to simultaneous roll-up
and convection of the starting vortex. The (observed) DNS vortex is not self-similar but is
a type–III-like vortex, as defined in § 3. It is not possible to resolve the starting vortex
for T < Tmax ≈ 2.5 × 10−4 with our available computational resources. Despite these
differences in vortex shape, the total circulation in the trailing-edge vortex is well predicted
by SVT, except for the largest time of T = 0.192; see table 3.

In contrast to the trailing-edge vortex, the leading-edge vortex exhibits a
Kelvin–Helmholtz instability (data not shown). Thus, by replacing the smooth plate
acceleration in § 4.1.1 (m = 2) with an abrupt one here (m = 0), fore–aft antisymmetry
in the DNS breaks. This is despite SVT predicting antisymmetry in the leading-
and trailing-edge vortices for T < Tmax, as in § 4.1.1. We refrain from comparing the
leading-edge vortex with SVT, because this theory is outside its regime of validity, as
detailed above.

4.2. Type-II vortices
Next, we switch the time power laws of m and p used in § 4.1.1. That is, we now choose
m = 0 and p = 2, for which table 1 of PS21 predicts a type-II trailing-edge vortex sheet,
i.e. it does not roll up. Hinton et al. (2024) predicts no starting vortex to occur at the
leading edge. A type-II vortex is yet to be observed in a (real) viscous fluid, whether it be
DNS or physical experiment.

4.2.1. The case m = 0, p = 2, d = 0
Figure 7 gives DNS viscous flows generated at the leading and trailing edges, for m =
0, p = 2, d = 0, with Re = 32 000. A higher Reynolds number is possible here because
vorticity is tightly confined to the plane of the flat plate; the LGF method discretises the
regions of finite vorticity only. Agreement is observed between SVT and the DNS. As
predicted by SVT, the trailing-edge vortex moves downstream and parallel to the plate
at small time, T = 0.096. The spatial extent of the DNS trailing-edge vortex precisely

992 A15-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

51
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.515


The starting vortices generated by bodies with sharp edges

β̂ = 0.0625

β̂ = 0.125

β̂ = 0.25

T = 0.384T = 0.192T = 0.096

0.1c 0.1c 0.1c

Figure 7. Flat plate. Type-II vortex: m = 0, p = 2 and d = 0 for Re = 32 000. Description as for figure 4.

matches that of SVT. Also as predicted by SVT, no starting vortex is observed at the
leading edge. Instead, flow at the leading edge resembles a classical Blasius boundary
layer with downstream thickening.

Increasing time beyond T = 0.096, produces some discrepancy between SVT and the
DNS. The greatest difference occurs in the right-hand column of figure 7, for the largest
value of β̂ = 0.25. A plate rotation of α = 0.54◦ exists here, which is incommensurately
small relative to the observed vertical displacement of the wake. This does not explain
the observed deviation. Instead, (3.8) predicts a maximal time of Tmax = T(2)

max ≈ 0.25 for
β̂ = 0.25, which is smaller than the observation time of T = 0.384. Thus, SVT is outside
of its regime of validity, and a type-III-like vortex is expected as per § 3; consistent with
the observed discrepancy.

Note that Tmax = T(2)
max ≈ 0.4 and 0.63 for β̂ = 0.125 and 0.0625, respectively. Thus,

SVT is on the edge of validity for β̂ = 0.125 (Tmax ≈ T = 0.384), whereas it is valid for
β̂ = 0.0625 (T < Tmax). This is also consistent with the observed level of agreement in
the right-hand column of figure 7.

4.2.2. Vorticity distribution in the trailing-edge wake
We note from figure 7 that the DNS vorticity distributions in the trailing-edge wake
consist of two distinct spatial regions. These contain apparently antisymmetric vorticity
distributions (of opposite sign); generated by shear layers on opposite sides of the flat
plate being swept downstream. However, SVT predicts a distinct asymmetry in the
singular vorticity distribution, i.e. a non-zero velocity jump occurs across the vortex sheet.
Figure 8(a) explores this prediction by plotting the vorticity distribution, ω, across the
DNS trailing-edge wake; for the smallest time and rotational parameter reported in figure 7.
The magnitude of the vorticity decreases in the streamwise direction, as expected. SVT in
(4.2) predicts that the wake will terminate at x = 0.548c, and this is clear in figure 8(a).
The data also show that the vorticity distribution is not precisely antisymmetric about the
plane of the plate, y = 0; a slight asymmetry about the vertical axis is evident.

To make a quantitative comparison with SVT, the DNS vorticity distributions (as in
figure 8a) are numerically integrated across the wake, i.e. in the y-direction. This produces
the velocity jump across the wake, γ , which is reported in figure 8(b) together with the
prediction of SVT for m = 0 and p = 2

γ

U0
= 8

√
2

3
β̂ T3/2

(
1 − 2x̄ − 1

T

)3/2

,
1
2

≤ x̄ ≤ 1
2
(1 + T), (4.2)
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–0.006 –0.004 –0.002

0.002 0.004 0.006

0

–200

–100

100

200

Vorticity distribution

Type-II vortex

(m = 0, p = 2)

Velocity jump

Type-II vortex

(m = 0, p = 2)
Increasing  x

0.50 0.550.540.530.520.51

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0

Inviscid theory

DNS

x/c

y/c γ
/
U

0

cω/U0

(a) (b)

Figure 8. Flat plate. Type-II vortex: m = 0, p = 2 and d = 0 for Re = 32 000; for T = 0.096 and β̂ =
0.0625 (top left-hand entry of figure 7). (a) Dimensionless vorticity distribution, cω/U0, plotted across the
trailing-edge wake at the spatial positions, x/c = 0.51, 0.52, 0.53, 0.54, 0.548; the last position is the end of the
trailing-edge vortex as per (4.2), and the trailing edge is at x/c = 0.5; see figure 1. (b) Dimensionless velocity
jump, γ /U0, across the trailing-edge vortex. The DNS is evaluated by numerically integrating the vorticity
distribution, ω, across the wake. The SVT for γ /U0 is (4.2). Note that the chord length, c = 2a.

T = 0.096 T = 0.192 T = 0.384

β̂ = 0.0625 (2.6, 2.7) × 10−4 (1.6, 1.5) × 10−3 (9.6, 8.6) × 10−3

β̂ = 0.125 (5.3, 5.4) × 10−4 (3.1, 3.0) × 10−3 (1.9, 1.7) × 10−2

β̂ = 0.25 (1.1, 1.1) × 10−3 (6.2, 6.1) × 10−3 (3.9, 3.4) × 10−2

Table 4. Flat plate. Type-II vortex: m = 0, p = 2 and d = 0 for Re = 32 000. Total dimensionless circulation,
Γ̄0 ≡ Γ0/(U0a), in the trailing-edge vortex for the plots reported in figure 7. Description as per table 2.

where x̄ ≡ x/c is dimensionless. This formula is obtained from (2.33) and (3.4) of Hinton
et al. (2024); x̄ = 0 and x̄ = 1/2 correspond to the centre and trailing edge of the plate,
respectively. Agreement of (4.2) with the DNS is observed, in spite of a very slight
vorticity asymmetry; see figure 8(b). Similar agreement is obtained for all cases reported in
figure 7, with the discrepancy in the velocity jump, γ , increasing slightly with increasing
time (data not shown). Interestingly, the level of agreement is independent of β̂ for fixed
time, T , indicating that the rotational characteristics of the plate motion are decoupled
from those of its translation. Integrating (4.2) over the spatial extent of the trailing-edge
wake gives its total circulation

Γ0

U0a
= 16

√
2

15
β̂ T5/2, (4.3)

which is compared with the DNS in table 4, for all cases reported in figure 7. Agreement
is again observed. Equation (4.3) is also recovered from (2.31) of Hinton et al. (2024).
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T = 0.195T = 0.096T = 0.048

β̂ = 0.177

β̂  = 0.354

β̂ = 0.707

0.1 c 0.1 c 0.1 c

Figure 9. Flat plate. Type-III vortex: m = 0, p = 0.5 and d = 0 for Re = 32 000. Description as for figure 4.

T = 0.048 T = 0.096 T = 0.195

β̂ = 0.177 (1.9, 1.9) × 10−2 (4.0, 3.8) × 10−2 (8.9, 7.7) × 10−2

β̂ = 0.354 (4.0, 3.9) × 10−2 (8.3, 7.7) × 10−2 (1.8, 1.6) × 10−1

β̂ = 0.707 (8.5, 8.2) × 10−2 (1.8, 1.6) × 10−1 (4.1, 3.3) × 10−1

Table 5. Flat plate. Type-III vortex: m = 0, p = 0.5 and d = 0 for Re = 32 000. Total dimensionless
circulation, Γ̄0 ≡ Γ0/(U0a), in the trailing-edge vortex for the plots reported in figure 9. Description as per
table 2.

These results provide evidence for the robustness and accuracy of SVT. It not only
predicts the vortex shapes, but also the detailed quantitative characteristics of the flow.
We remind the reader that SVT calculates the flow dynamics without any reference to
viscosity. Even so, the requisite properties of the vorticity distribution are accurately
captured.

4.3. Type-III vortices
Finally, we explore another starting-vortex-sheet type that was reported in PS21. The
type-III vortex sheet combines the features of type I and II vortices, with roll up and
convection downstream. Unlike the other vortex types, the shape of type-III vortices
depends on the rotation parameter, β, as discussed above.

4.3.1. The case m = 0, p = 0.5, d = 0
Figure 9 shows results for m = 0, p = 0.5, d = 0 at Re = 32 000. The SVT predicts
type-III vortices at both leading and trailing edges of the plate. Agreement with SVT is
observed in figure 9 for the trailing-edge vortex at the smallest time, T = 0.048. Equation
(3.8) gives Tmax = T(1)

max ≈ 0.68, 0.43, 0.27 for β̂ = 0.177, 0.354, 0.707, respectively; these
values also apply to the leading-edge vortex (which is explored below). Thus, we find that
T � Tmax for all cases in figure 9, although results in the middle and bottom rows of
the right-hand column are closest to the SVT’s limit of validity. Again, this is precisely
where the greatest discrepancies are observed. Note that these vortices are no longer
near the trailing edge. This further limits the validity of SVT, which is consistent with
an increase in the level of disagreement. Table 5 reports results for the total circulation
in the trailing-edge vortex, obtained from the SVT and DNS. The level of agreement is
commensurate with the above discussion.
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0.025c

β̂ = 0.707

T = 0.195

Figure 10. Flat plate. Zoomed-in version of leading-edge vortex in bottom right-hand plot of figure 9; m = 0,
p = 0.5, d = 0 at Re = 32 000.

β̂ = 0.177

β̂ = 0.354

β̂ = 0.707

0.1c 0.1c 0.1c 

T = 0.636T = 0.451T = 0.318

Figure 11. Flat plate. Type-III vortex: m = 1, p = 2 and d = 0 for Re = 45 255. Description as for figure 4.

The leading-edge vortex, in contrast, exhibits the opposite trend, with the level
of agreement increasing with increasing time, T . The reason for this seemingly
counter-intuitive trend appears connected to the observation that the leading-edge vortex
interacts strongly with the shear layer at the plate surface. The thickness of the shear layer
is easily discerned from figure 9; see the region downstream from the leading-edge vortex.
This interaction distorts the leading-edge vortex and appears to sweep it downstream –
producing an elongated vortex relative to SVT and a secondary separation; see figure 10.
As time evolves, the leading-edge vortex also moves perpendicular to the plate. This
weakens its interaction with the shear layer at the plate. The vortex is then observed to
approach what is expected from SVT. Unlike the trailing-edge vortex, the leading-edge
vortex remains close to its edge for all reported times, enabling a greater level of agreement
with SVT at larger times. The Reynolds number of Re = 32 000 used in these simulations
is evidently not sufficiently high to restrict interaction of the leading-edge vortex with the
shear layer at the plate, at the smaller times. Available computational resources do not
permit simulations at higher Re. We refrain from reporting results for the total circulation
in the leading-edge vortex due to its strong overlap with the plate’s shear layer. This
complicates the numerical separation of vorticity contributions from the leading-edge
vortex and the plate’s shear layer, e.g. using the procedure illustrated in figure 5 or a
variant.

4.3.2. The case m = 1, p = 2, d = 0
Figure 11 gives a similar comparison for m = 1, p = 2, d = 0 at Re = 45 255, for which
SVT also predicts type-III vortices. In this case, (3.8) gives Tmax = T(1)

max ≈ 0.82, 0.66,
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T = 0.318 T = 0.451 T = 0.636

β̂ = 0.177 (7.9, 7.7) × 10−3 (2.4, 2.2) × 10−2 (7.3, 6.2) × 10−2

β̂ = 0.354 (1.7, 1.9) × 10−2 (5.0, 5.5) × 10−2 (1.6, 1.6) × 10−1

β̂ = 0.707 (3.8, 4.9) × 10−2 (1.2, 1.4) × 10−1 (3.8, 3.9) × 10−1

Table 6. Flat plate. Type-III vortex: m = 1, p = 2 and d = 0 for Re = 45 255. Total dimensionless circulation,
Γ̄0 ≡ Γ0/(U0a), in the trailing-edge vortex for the plots reported in figure 11. Description as per table 2.

0.52 for β̂ = 0.177, 0.354, 0.707, respectively, for both leading and trailing edges. Thus,
again we have T � Tmax for all results in figure 11. This indicates that SVT holds
throughout, provided the vortex stays close to the edge in question. Agreement is observed
for the trailing-edge vortices in figure 11, except for the longest time, T = 0.636, which
coincides with these vortices not being near the plate (spatial proximity to the edge is
required for SVT to hold).

Interestingly, the discrepancy between SVT and the DNS for the leading-edge vortices
is smaller than observed in § 4.3.1. The leading-edge vortices in figure 11 are further from
the plate relative to figure 9, which decreases their interaction with the plate’s shear layer.
This is consistent with the better level of agreement between SVT and DNS relative to
§ 4.3.1.

Table 6 gives corresponding results for the total circulation in the trailing-edge vortex.
Agreement between SVT and DNS is again observed, except for β̂ = 0.707 and T = 0.318.
This is not expected at first sight because it occurs at the smallest time studied, where SVT
is predicted to be valid; see above. However, the corresponding DNS trailing-edge vortex
in the bottom left-hand plot of figure 11 does not exhibit the significant vortex core present
at larger times, and it displays a strong level of diffusion. In contrast, SVT predicts the
vortex to have the same shape at all times. The observed diffusion in the DNS vortex
may contribute to this difference in total circulation. Resolved DNS at higher Reynolds
numbers is limited by available computational resources.

4.3.3. The case m = 1, p = 2, d = ±1/2
Using SVT, Hinton et al. (2024) predicted that plate rotation about either its quarter-chord
and three-quarter-chord positions, i.e. d = ±1/2, can produce vortices of different types
at the leading and trailing edges. Figure 12 shows a comparison of this inviscid prediction
with the DNS.

In line with Hinton et al. (2024), plate rotation about the three-quarter-chord position,
d = 1/2, produces type III and II vortices at the leading and trailing edges, respectively.
Moreover, the level of agreement between SVT and the DNS as time evolves, is
commensurate with the discussion in the previous sections. Note that the theory in § 3
for Tmax does not apply to cases where d = ±1/2, as discussed.

Plate rotation about the quarter-chord position, d = −1/2, completely suppresses the
leading-edge vortex at the smaller time of T = 0.318 in figure 12. This again agrees
with the prediction of SVT. Doubling the measurement time to T = 0.636 produces a
small separation bubble at the leading edge. This corresponds to an instantaneous angle
of attack of α ≈ 3.5◦, which further highlights the robustness of SVT and the utility of
calculating the starting vortices. The trailing edge generates a type-III vortex, again in
agreement with SVT; the agreement is superior for the smaller time, as expected. Note
that the SVT trailing-edge vortices for d = −1/2 (bottom row of figure 12) are identical
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T = 0.318

d =
1

2

d = –
1

2

T = 0.636

0.1c 0.1c

Figure 12. Flat plate. Different vortex types at leading and trailing edges: m = 1, p = 2, β = 0.707 and d =
±1/2 for Re = 45 255. Results for d = 0 correspond to β̂ = β/2 = 0.354 and are given in the middle row of
figure 11. Remainder of description as for figure 4.

T = 0.318 T = 0.636

d = 1
2 (7.9, 8.2) × 10−4 (2.2, 2.6) × 10−2

d = − 1
2 (3.6, 4.9) × 10−2 (3.3, 3.9) × 10−1

Table 7. Flat plate. Total dimensionless circulation, Γ̄0 ≡ Γ0/(U0a), in the trailing-edge vortex for the plots
reported in figure 12. Description as per table 2.

to those reported in the bottom row of figure 11; the corresponding DNS trailing-edge
vortices are also similar in form. This validation of SVT reinforces its implications to the
aerofoil design of low-speed aircraft, such as micro air vehicles (MAVs) and unmanned air
vehicles (UAVs), which were discussed in Hinton et al. (2024). Dynamic suppression of
the leading-edge vortex can also affect thrust generation in flapping wings (Alben 2010;
Fang et al. 2017; Heydari & Kanso 2021).

The corresponding total circulations in the trailing-edge vortices are reported in table 7.
Agreement is again observed, with a larger discrepancy in the bottom left-hand entry of
table 7. This again coincides with significant diffusion in the DNS trailing-edge vortex
in the bottom left-hand entry of figure 12; see previous paragraph and the corresponding
discussion at end of § 4.3.2 for an explanation of this discrepancy.

5. Joukowski aerofoil

We conclude our study by considering the Joukowski aerofoil which was studied in § 3.5
of Hinton et al. (2024). The purpose is to assess the utility of SVT to an aerofoil of more
complex shape. Two symmetric Joukowski aerofoils of different thickness are considered.
The first is relatively thin with a Joukowski parameter of R = 1.1, and is streamlined. The
second is deliberately chosen to be bluff in its cross-section, with R = 1.5. Illustrations of
these two aerofoils are given in figure 13.

5.1. Starting-vortex inviscid theory
In line with § 3.5 of Hinton et al. (2024), the aerofoil does not rotate but instead translates
in two orthogonal directions with independent power laws in time. Specifically, each
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R  = 1.1 R  = 1.5

Figure 13. The two symmetric Joukowski aerofoils considered in this study. Each has a sharp and straight
trailing edge, which is evident by their upper and lower surfaces being tangent at the trailing edge. The
Joukowski parameter, R, is defined in (3.29) of Hinton et al. (2024) and specifies the aerofoil thickness.

aerofoil moves with the following velocity components:

U(T) = U0VTm, V(T) = U0WTn, (5.1a,b)

where U and V are the velocity components parallel and perpendicular to the aerofoil’s
symmetric axis, respectively, U0 is the dimensional velocity scale, V and W are
dimensionless positive constants that control the relative magnitudes of the velocity
components, and the translational power laws are m, n ≥ 0.

We focus on the case of m = 0 and n = 2 reported in § 3.5.1 of Hinton et al. (2024).
The SVT predicts that type-II vortices form at the trailing edge. Analytical formulas for
the spatial extent of the trailing-edge vortex, the velocity jump across the trailing-edge
vortex and its total circulation are given by

γ

U0
= 8

√
2

3

(
1 − x

xmax

)3/2 √
R
VWT3/2, 0 ≤ x ≤ xmax, (5.2a)

Γ0

U0a
= 16

√
2

15

√
V
R
W T5/2, (5.2b)

where the (dimensional) spatial extent of the wake is

xmax = VT
R

a, (5.3)

and a is the half-chord of a Joukowski aerofoil with R = 1; x = 0 corresponds to the
trailing edge of the Joukowski aerofoil (this differs from the origin of the flat plate above).
Note that the chord length of the symmetric Joukowski aerofoil defined in (3.29) of Hinton
et al. (2024) is

c = 2R2

2R − 1
a. (5.4)

The dimensionless time, T , is as defined in (1.2).

5.2. Direct numerical simulations
Figure 14 shows a comparison of the trailing-edge vortex calculated using SVT with the
DNS; simulation parameters are reported in the caption of table 1. Agreement in the spatial
extent of this vortex is observed especially for R = 1.1. Some discrepancy emerges when
the aerofoil’s finite thickness (upstream from its trailing edge) becomes visible in the plots.
In these cases, the wake’s spatial extent exceeds that of the straight trailing edge and the
vortex cannot be considered close to a ‘sharp and straight edge’ (see definition in § 1). This
is a fundamental constraint of SVT and is consistent with the discrepancies observed in the
second row of figure 14. Increasing the Reynolds above Re = 8000 results in separation
upstream of the trailing edge for R = 1.5 (near the maximum width of the aerofoil), which
complicates further numerical investigation.
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T = 0.388T = 0.194T = 0.097

R = 1.1

R = 1.5

T = 0.432T = 0.216T = 0.108

0.1c 0.1c 0.1c

Figure 14. Joukowski aerofoils. Type-II vortex: m = 0, n = 2, V = 1, W = 0.25, for Re = 8000; here c is the
chord of the aerofoil. Leading (left) and trailing (right) edges of the aerofoils are shown. Description as for
figure 4.

Γ̄0 ≡ Γ0/(U0a)

R = 1.1 (8.1, 10.3) × 10−4 (5.0, 5.8) × 10−3 (3.0, 3.3) × 10−2

R = 1.5 (8.9, 9.3) × 10−4 (5.2, 5.3) × 10−3 (3.0, 3.0) × 10−2

Table 8. Joukowski aerofoil. Total dimensionless circulation, Γ̄0 ≡ Γ0/(U0a), in the trailing-edge vortex for
the respective plots reported in figure 14; where a is the half-chord of a Joukowski aerofoil for R = 1. The entry
positions in this table (and corresponding times, T) coincide with figure 14. Description as per table 2.

Table 8 reports the total circulation in the trailing-edge wake, computed by SVT and
DNS. The level of agreement is similar to that in table 4 for type-II vortices generated by a
flat plate (for a much higher Reynolds number, Re = 32 000). Some discrepancy exists for
R = 1.1 with SVT overestimating the total wake circulation, especially for the smallest
time. This appears to correlate with a wide and short wake, for which a vortex-sheet
description may exhibit some error. The wake’s aspect ratio (width over length) decreases
with increasing time, which is seen to align with improved agreement between SVT and
the DNS. Results for R = 1.5 in table 8 display enhanced agreement relative to R = 1.1,
with a similar trend for increasing time, despite the elongated wake of the DNS relative
to SVT; see second row of figure 14. This is consistent with the vorticity generating
mechanism (the aerofoil’s no-slip condition) being decoupled from downstream effects
where the flow accelerates (not included in SVT). These collective results for the total
wake circulation align with those for the velocity jump distribution across the wake in
figure 15. Agreement between SVT and DNS again improves slightly with increasing time
(data not shown).
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0.02

0.04

0.06

0.08

0.02 0.04 0.06 0.080 0.02 0.04 0.060

Inviscid theory

DNS

0.02

0.04

0.06

0.08

Inviscid theory

DNS

R = 1.1

T = 0.194

R = 1.5

T = 0.216

(a) (b)

x/cx/c

γ
/
U

0

Figure 15. Joukowski aerofoil. Type-II vortex: m = 0, n = 2, for Re = 8000. Dimensionless velocity jump,
γ /U0, across the trailing-edge vortex. The DNS is evaluated by numerically integrating the vorticity
distribution across the wake. The SVT for γ /U0 is (5.2a). (a) Thinner aerofoil, R = 1.1. (b) Thicker aerofoil,
R = 1.5, where DNS data are shown to the spatial extent predicted by SVT; DNS data extend slightly further
downstream. These plots correspond to trailing-edge wakes shown in the central column of figure 14.

6. Conclusions

Starting vortex inviscid theory predicts that three distinct types of starting vortex sheets –
types I, II and III – can be generated by an arbitrary body with sharp and straight edges
that suddenly moves. This study investigated the existence of these vortices in a viscous
fluid for a flat plate and two symmetric Joukowski aerofoils.

The motion of a translating and rotating flat plate is characterised by two respective
power laws in time, m and p, which select the vortex type. An abrupt transition between
the starting-vortex types is predicted to occur in the (m, p)-phase plane; see figure 1. Type-I
vortex sheets had been previously reported, while PS21 introduced types II and III to the
literature and were yet to be observed in a (real) viscous fluid. Hinton et al. (2024) extended
these findings using inviscid theory to an arbitrary body with sharp and straight edges.

In this study, we reported a detailed assessment of these inviscid predictions using
high-fidelity DNS of the Navier–Stokes equations. We also used SVT to calculate the
time interval over which each starting-vortex type exists. It was found that for finite-time
observations of a flat plate, there is a smooth (rather than abrupt) transition between the
vortex types, as m and p are varied. This is because the time interval over which type I
and II vortices exist becomes vanishingly small as the critical (m, p)-phase plane line for
type-III vortices is approached. We compared SVT with the DNS for values of m and p
that span all vortex types. Agreement was observed when SVT was predicted to be valid.
This included the velocity jump across a type-II vortex sheet and the total circulation in
the wake of all vortex types. Moreover, different vortex types at the leading and trailing
edges of a flat plate were observed in the DNS, for plate rotation about its quarter-chord
and three-quarter-chord positions. Dynamic suppression of the leading-edge vortex for
plate rotation about its quarter-chord position was confirmed. This position coincides with
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the aerodynamic centre of the aerofoil and is relevant to the aerofoil design of low-speed
aircraft, such as MAVs and UAVs.

The predictions of SVT for two symmetric Joukowski aerofoils that translate in two
orthogonal directions were also compared with DNS. Agreement was again observed for
type-II vortices when their spatial extent does not exceed that of its sharp and straight
edge – an overarching assumption of SVT. When this does occur, SVT was found to
(i) underestimate the spatial extent of the wake, due to an accelerating flow downstream
of the trailing edge, but (ii) accurately predict both the velocity jump across the wake and
its total circulation. These comparisons highlight the utility of SVT for bodies of arbitrary
shape.

This study confirms the existence of type II and III vortices in a viscous fluid, and
validates the accuracy of SVT. We emphasise that SVT is predictive with no adjustable
parameters. The inviscid theory reported by PS21, and its generalisation by Hinton et al.
(2024) for an arbitrary body – collectively referred to as the SVT – can therefore be used
with confidence to calculate starting vortices in a viscous fluid.
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Appendix A. Additional time constraint for the existence of type I and II vortices
generated by a flat plate

In this appendix, we derive the maximal time for type I and II vortices of a flat plate to
exist, which supplements the time constraint in (3.5).

For type-I vortices, the second term on the right-hand side of (3.2) must dominate the
first i.e.

iβ̂ Tp−q/2 1 + M(Z)

(2Z)1/2 � Tm, (A1)

where q = 2( p + 1)/3, as per table 1 of PS21. Balancing the left and right-hand sides of
(3.2), gives Z = O(β̂2/3), and the inequality in (A1) becomes

Tε 	 β̂2/3, (A2)

where

ε ≡ m − 2p − 1
3

, (A3)

which is strictly positive for a type-I vortex, i.e. ε > 0; see (1.6) and figure 1.
Type-II vortices occur in the opposite regime, i.e.

iβ̂ Tp−q/2 1 + M(Z)

(2Z)1/2 	 Tm, (A4)

where q = 1 + m. Balancing the left- and right-hand sides of (3.2) shows that Z = O(1),
from which (A4) becomes
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T−(3/2)ε 	 β̂−1, (A5)

where ε < 0 for type-II vortices.
Combining (A2) and (A5) produces

T |ε| 	 β̂(2/3) sgn(ε), (A6)

where ε /= 0; note that ε = 0 corresponds to a type-III vortex sheet, which is not
considered in this appendix. The time constraint in (A6) is in addition to (3.4), and the
overarching spatial constraint that the vortex remains close to the trailing edge.

Choosing the same multiplicative factor as (3.5) for the inequality in (A6) to hold, i.e.
0 < δ 	 1, gives the additional maximal time for existence of type I and II vortices

T(2)
max ≈ (β̂(2/3) sgn(ε)δ)1/|ε|, (A7)

where it is understood that β̂ is finite and the parenthesised term is less than unity. This
shows that type I and II vortices, corresponding to ε > 0 and ε < 0, respectively, are more
easily observed for large and small, β̂, respectively. In § 3, we combine (A7) with (3.5) to
give the overall maximal time for existence of any starting vortex.
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