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Abstract

In this article we construct a p-adic three-dimensional eigenvariety for the group
U(2,1)(E), where E is a quadratic imaginary field and p is inert in E. The eigenvariety
parametrizes Hecke eigensystems on the space of overconvergent, locally analytic,
cuspidal Picard modular forms of finite slope. The method generalized the one developed
in Andreatta, Iovita and Stevens [p-adic families of Siegel modular cuspforms Ann. of
Math. (2) 181, (2015), 623–697] by interpolating the coherent automorphic sheaves
when the ordinary locus is empty. As an application of this construction, we reprove a
particular case of the Bloch–Kato conjecture for some Galois characters of E, extending
the results of Bellaiche and Chenevier to the case of a positive sign.
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1. Introduction

Families of automorphic forms have been a rather fruitful area of research since their introduction
by Hida [Hid86] in 1986 for ordinary modular forms and their generalizations, notably the
Coleman–Mazur eigencurve, but also to other groups than GL2. Among examples of applications
we can for example cite some cases of the Artin conjecture, for many modular forms the parity
conjecture, and generalizations to a bigger class of automorphic representations of instances of
Langlands’ philosophy (together with local–global compatibility).

The goal of this article is to present a new construction of what is called an ‘eigenvariety’, i.e. a
p-adically rigid-analytic variety which parameterizes Hecke eigensystems. More precisely, the idea
is to construct families of eigenvalues for an appropriate Hecke algebra acting on certain rather
complicated cohomology groups which are large Qp-Banach spaces, into which we can identify
classical Hecke eigenvalues. For example Hida and Emerton consider for these cohomology groups
some projective systems of étale cohomology on a tower of Shimura varieties, whereas Ash and
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Stevens [AS08] and Urban [Urb11] instead consider cohomology of a large system of coefficients
on a Shimura variety. Another construction which was introduced for GL2 by Andreatta, Iovita
and Stevens [AIS14] and Pilloni [Pil13] was to construct large coherent Banach sheaves on some
open neighborhood of the rigid modular curve (more precisely on strict neighborhoods of the
ordinary locus at p) indexed by p-adic weights and that vary p-adically. Their approach was
then improved in [AIP15, ABI+16] to treat the case of Siegel and Hilbert modular forms, still
interpolating classical automorphic sheaves by large (coherent) Banach sheaves. This method
relies heavily on the construction of the Banach sheaves for which the theory of the canonical
subgroup is central. For example in the case of GL2, the idea is to construct a fibration in open ball
centered in the images through the Hodge–Tate map of generators of the (dual of the) canonical
subgroup inside the line bundle associated to the conormal sheaf ω on the modular curve X0(p).
This rigid sub-bundle has then more functions but as the canonical subgroup does not exist
on the entire modular curve this fibration in open balls only exists on a strict neighborhood of
the ordinary locus. Following the strategy of [AIP15, ABI+16], Brasca [Bra16] extended this
eigenvariety construction to groups that are associated to PEL Shimura varieties whose ordinary
locus (at p) is non-empty, still using the canonical subgroup theory as developed in [Far11].

As soon as the ordinary locus is empty, the canonical subgroup theory gives no information
and without a generalization of it the previous strategy seems vacuous. To my knowledge no
eigenvarieties has been constructed using coherent cohomology when the ordinary locus is empty.
Fortunately we developed in [Her19] a generalization of this theory, called the canonical filtration,
for (unramified at p) PEL Shimura varieties. The first example when this happens is the case of
U(2, 1)E/Q, where E is a quadratic imaginary field, as the associated Picard modular surface has
a non-empty ordinary locus if and only if p splits in E. In this article we present a construction
of an eigenvariety interpolating p-adically (cuspidal) Picard modular forms when p is inert in E.
The strategy is then to construct new coherent Banach sheaves on strict neighborhoods of the
µ-ordinary locus using the (two-step) canonical filtration, and we get the following result,

Theorem 1.1. Let E be a quadratic imaginary field and p 6= 2 a prime, inert in E. Fix a
neat level K outside p, and a type1 (KJ , J) outside p, i.e. a compact open KJ trivial at p,
together with J a finite dimensional complex representation of KJ , and we assume moreover
that K ⊂ Ker J ⊂ KJ . Let N be the places where K is not hyperspecial (or very special) and Ip
a Iwahori subgroup at p. There exists two equidimensional of dimension-3 rigid spaces,

E κ−→W,

with κ locally finite, together with dense inclusions Z3 ⊂ W and Z ⊂ E such that κ(Z) ⊂ Z3,
and each z ∈ Z coincides with Hecke eigensystem for H = HNp ⊗ Z[Up, Sp] acting on cuspidal
Picard modular forms of weight κ(z), type (KJIp, J) that are finite slope for the action of Up.
More precisely, we have a map H −→ O(E), which induces an injection,

E(Qp) ↪→ Hom(H,Qp)×W(Qp),

and such that for all w ∈W(Qp), κ
−1(w) is identified by the previous map with eigenvalues for H

on the space of cuspidal, overconvergent and locally analytic Picard modular forms of weight w,
type (KJ , J) which are finite slope for the action of Up. When z ∈ Z is of weight w (necessarily
in Z3), then the system of Hecke eigenvalues for H moreover coincide with one of H acting on
classical previous such forms.

1 In first approximation we can simply think of (KJ , J) being (K, 1). Forms of type (K, 1) are simply forms of
level K.
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In order to get the previous result we need to have a control on the global sections of the
Banach sheaves mentioned before the theorem. A general strategy to prove such a control result
is developed in [AIP15] and rely on a vanishing theorem for cuspidal functions on the toroidal
and minimal compactifications of the corresponding Shimura varieties. This kind of vanishing
results have been proven in great generality in [Lan13] (though it does not apply here directly),
but in the simpler case of U(2, 1), as the boundary of the toroidal compactification is quite
simple, we managed to simplify a part of the argument of [AIP15]. In a forthcoming work, we
will use this method together with the technics developed in [Her19] to construct eigenvarieties
for more general PEL Shimura datum.

The second part of this article focuses on a very nice application of eigenvarieties to construct
Galois extensions in certain Selmer groups. The method follows the strategy initiated by Ribet
[Rib76] in the case of unequal characteristics to prove the converse to Herbrand theorem. It was
then understood by Mazur and Wiles how to apply this technic in equal characteristics using
Hida families to prove Iwasawa’s main conjecture. In his PhD [Bel02], Bellaïche understood
that using a certain endoscopic representation together with a generalization of Ribet’s lemma
he could produce some extensions of Galois representations, and then how to delete the wrong
extensions to only keep the one predicted by the Bloch–Kato conjecture. This method was then
improved using p-adic families and Kisin’s result on triangulations of modular forms to construct
the desired extensions in Selmer groups as in [BC04] for imaginary quadratic Hecke character
and [SU02] for modular forms using Saito–Kurokawa lifts to GSp4. In the previous constructions,
it seemed necessary that the sign at the center of the functional equation is −1, in order to get
an endoscopic automorphic representation for a bigger group (U(3) in [BC04], GSp4 in [SU02])
related the one we started with. In this article, we study the simplest case with a sign +1.

Let χ be an algebraic Hecke character of E satisfying the polarization

χ⊥ := (χc)−1 = χ|.|−1

and let L(χ, s) be its L-function. In particular χ∞(z) = zaz1−a for all z ∈ C× where a ∈ Z. Denote
by χp : GE −→ F×, where F/Qp is a finite extension, the associated p-adic Galois character, and
H1
f (E,χp) the Selmer group of χp, which is the sub-F -vector space of H1(E,χp) generated by

the extensions,
0 −→ χp −→ V −→ 1 −→ 0,

such that for v 6 | p
dimV Iv = 1 + dim ρIv ,

and for v|p
dimDcris,v(V ) := dimDcris(V|Gv) = 1 + dimDcris,v(ρ).

We will say that such an extension has good reduction everywhere. The conjecture of Bloch
and Kato predicts the equality ords=0 L(χ, s) = dimF H

1
f (E,χp), and in particular the following

result, due to Rubin [Rub91].

Theorem 1.2 (Rubin). Suppose p 6 | |O×E |. If L(χ, 0) = 0, then H1
f (E,χp) 6= {0}.

The previous result follows from Rubin’s work on Iwasawa’s main conjecture for elliptic
curves with complex multiplication (CM) and its proof uses Euler systems. In particular this
construction proves that the Selmer group is non-trivial but does not really construct a particular
extension. For example it is not possible to know if the extension that exists is geometric or
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automorphic in nature. Another proof of this result [BC04] uses families of modular forms given
by the corresponding eigenvarieties, a particular case of transfer as predicted by Langland’s
philosophy, together with a generalization of Ribet’s ‘change of lattice’ lemma. More precisely, if
p is split in E, p 6 | Cond(χ), and the order of vanishing ords=0 L(χ, s) is odd, then Bellaïche and
Chenevier can construct the predicted extension in H1

f (E,χp) by deformation of a non-tempered
automorphic form πn(χ) for U(3), the compact at infinity unitary group in three variables. It
is a natural question to ask why this condition of the order of vanishing being odd is necessary.
If the order of vanishing is even, following multiplicity results on automorphic representations
for unitary groups on three variables of Rogawski [Rog92, Rog90], there exists a non-tempered
automorphic representation πn(χ) for U(2, 1) with Galois representation ρπn(χ),p = 1⊕ χp ⊕ χ⊥p .
In this article we check that we can indeed deform this representation such that the associate
Galois deformation is generically irreducible, and that we can control the reduction at each place,
thus constructing an extension in the Selmer group. More precisely we can reprove the following
case of Rubin’s result.

Theorem 1.3. Let p a prime, unramified in E, such that p 6 | Cond(χ). Suppose moreover that
p 6= 2 if p is inert. If L(χ, 0) = 0 and ords=0 L(χ, s) is even, then

H1
f (E,χp) 6= 0.

In particular, we can extend the result of [BC04] when the order of vanishing is even, and also
to the case of an inert prime p using the corresponding eigenvariety (in this case the ordinary locus
is empty). An advantage of the construction of the eigenvariety presented here is that if a Hecke
eigensystem appears in the classical cuspidal global sections of a coherent automorphic sheaf, then
there is an associated point on the eigenvariety. This argument might be more complicated with
other constructions, as the representation πn(χ) is not a regular discrete series (it does not even
appear in the cohomology in middle degree). Another advantage of using coherent cohomology is
that we can also deal with the limit case whereπn(χ) does not appear in the étale cohomology2

(but it was known to Bellaïche [Bel12] how to get this limit case). Apart from this fact, the
deformation when p is split follows the lines of [BC04], whereas when p is inert the geometry of
the eigenvariety is quite different. In particular, there are fewer refinements (and thus only one
point on E corresponding to πn(χ) instead of three) and we need a bit more care to isolate the
right extension. We also need to be slightly more careful with p-adic Hodge theory to understand
the local–global compatibility at p and a generalization of Kisin’s result on triangulation of refined
families as provided by [Liu15]. Let us also remark that a consequence of this construction and
Chenevier’s method [Che05] to compare the eigenvarieties for U(3) and U(2, 1) (say when p splits)
is that the point πn(χ) when the sign at infinity is +1 together with its good refinement also
appears in the eigenvariety of U(3), despite not being a classical point for this group.

A lot of the ideas developed in this article extend to more general Shimura varieties, and in
particular to Picard modular varieties associated to a general CM field E. More precisely, the
result on the canonical filtration (Theorem 5.8) in this last case remains true as soon as p > 3.
For more general groups the bound on the prime p will grow with the group as predicted in
[Her19]. This is also why we cannot use p = 2 in this article. With this restriction on the prime,
we should also be able to construct the associated eigenvariety, and we hope to come back on this
matter in a following article. For the second part, which deals with the Bloch–Kato conjecture, it
is less clear what to expect. Already for U(2, 1)E/F with E a CM extension, we can use the work

2 That is, when a ∈ {0, 1}, i.e. χ∞(z) = z or χ∞(z) = z.
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of Rogawski and prove that the Galois representation passing through a particular refinement is
irreducible; unfortunately, just as in [BC09], we cannot get rid of the bad extension in H1

f (E,ωp)
anymore (see § 11.5). For higher-dimensional groups, we could probably have similar results as
the one in the book [BC09], but, in addition to the previous remark, results in this case would
be conditional on Arthur’s conjecture, as in [BC09].

2. Shimura datum

2.1 Global datum
Let E/Q a quadratic imaginary field and denote by • the complex conjugation of E. Let
(V = E3, ψ) be the hermitian space of dimension 3 over E, of signature (2, 1) at infinity given by
the matrix

J =

 1

1

1

 .

Let us then denote by

G = GU(V, ψ) = GU(2, 1)

= {(g, c(g)) ∈ GL(V )×Gm,Q : ∀x, y ∈ V, ψ(gx, gy) = c(g)ψ(x, y)} ⊂ GLV ×Gm

the reductive group over Q of unitary similitudes of (V, ψ).
Let p be a prime number, unramified in E. If p = vv is split in E, then

V ⊗Q Qp = V ⊗E Ev ⊕ V ⊗E Ev,

where the action of Ev is by v on V ⊗E Ev. Moreover, the complex conjugation exchanges
V ⊗E Ev and V ⊗E Ev. In particular, G⊗QQp ' GL(V ⊗EEv)×Gm (this isomorphism depends
on the choice of v over p).

We will be particularly interested in the case where p is inert in E; the case when p split has
been studied before (see for example [Bra16]).

Remark 2.1. We could more generally work in the setting of (B, ?) a simple E-algebra of rank 9
with an involution of the second kind, such that (B⊗Qp, ?) is isomorphic to (End(V ⊗Qp), ?V ),3

and replace G with the group,

GB = {g ∈ B× : g?g = c(g) ∈ Gm,Q}.

The construction of the eigenvarieties in the case where B is not split is easier as the associated
Shimura varieties are compact, but some non-tempered automorphic form, for example the one
constructed by Rogawski and studied in [BC04] and the second part of this article, will never be
automorphic for such non-split B.

The Shimura datum we consider is given by

h :

S −→ GR

z = x+ iy 7−→

x iy

z

iy x

 .

3 Here ?V (g) = JtgJ .
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2.2 Complex Picard modular forms and automorphic forms
Classically, Picard modular forms are introduced using the unitary group U(2, 1), but we can
treat the case of GU(2, 1) similarly. Let G(R) = GU(2, 1)(R) the group stabilizing (up to scalar)
the signature matrix J and let

Y = {z = (z1, z2) ∈ C2 : 2=(z1) + |z2|2 < 0}

be the symmetric space associated to G(R), it is isomorphic to the two-dimensional complex unit
ball

B = {(z1, z2) ∈ C2||z1|2 + |z2|2 < 1}.

On Y , there is an action of G(R) through(
A b

c d

)
z =

1

c · z + d
(Az + b) ∈ B, A ∈M2×2(C).

Remark 2.2. It is known that U(2, 1)(R) stabilizes Y , and GU(2, 1)(R) stabilizes X too as if
tAJA = cJ with c ∈ R×, we get detAdetA = |detA|2 = c3 thus c > 0.

This action is transitive and identifies Y with G(R)/K∞ where K∞ = Stab((i, 0)) ⊂
{(A, e) ∈ GU(2)(R)×GU(1)(R)} can be identified with {(A, e) ∈ GU(2)(R)×C× : c(A) = N(e)}.
We write (i, 0) = x0.

The subgroup K∞ is not compact but can be written Z(R)0(U(2)(R)×U(1)(R)), with Z the
center of GU(2, 1). Let L be the C-points of K∞. Then L ' (GL2×GL1)×GL1(C) is the Levi
of a parabolic P in GL3×GL1(C). For any κ = (k1, k2, k3, r) ∈ Z4 such that k1 > k2, there is an
associated (irreducible) representation Sκ(C) of P , of highest weightt1 t2

t3

 , c ∈ (GL2×GL1)×GL1(C) 7−→ tk1
1 t

k2
2 t

k3
3 c

r.

The subgroup K∞ embeds in L ⊂ P by (A, e) 7→ ((A, e), N(e)).
Following [Har90b, Har84, Mil88], such a representation gives Ωκ a locally free sheaf with

G(C)-action on G(C)/P , whose structure as sheaf does not depend on r. Restricting it to
G(R)/K∞ = Y we get a sheaf Ωκ whose sections over X can be seen as holomorphic functions,

f : G(R)/K∞ 7−→ Sκ(C),

such that f(gk) = ρκ(k)−1f(g), for g ∈ G(R), k ∈ K∞, which we call (meromorphic at infinity)
modular forms of weight κ. In an informal way, the choice of the previous integer r normalizes the
action of the Hecke operators and corresponds to normalizing the (norm of the) central character
of the modular forms. We will not use this description of the sheaves, and instead introduced a
modular description of these automorphic sheaves.

Fix τ∞ : E −→ C an embedding, and σ 6= 1 ∈ Gal(E/Q); thus στ∞ = τ∞ is the other
embedding of E. Over C, for any sufficiently small compact open K in G(Af ), the Picard variety
YK(C) of level K can be identified with a (disjoint union of some) quotient of B = GU(2, 1)/K∞,
but also with the moduli space parametrizing quadruples (A, ι, λ, η) where A is an abelian scheme
of genus 3, ι : OE −→ End(A) is an injection, λ is a polarization for which Rosati involution
corresponds to the conjugation · on O, and η is a type-K-level structure such that the action of
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OE on the conormal sheaf ωA = e∗A/SΩ1
A/S

4 decomposes under the embeddings τ∞, στ∞ into two
direct factors of respective dimensions 1 and 2. This is done, for example, explicitly in [dSG16,
§ 1.2.2–1.2.4], and we will be especially interested in the description by ‘moving lattice’ given in
[dSG16, § 1.2.4]. Thus, to every x = (z1, z2) ∈ B, we can associate a complex abelian variety,

Ax = C3/Lx,

where Lx is the OE-module given in [dSG16, (1.25)], and the action of OE on Ax is given by

a ∈ OE 7−→

τ∞(a)

τ∞(a)

τ∞(a)

 ∈M3(C).

There is, moreover, ηx a canonical (K-orbit of) level-N -structure (for K(N) ⊂K ⊂ G(Af )). Over
YK(C) we thus have a sheaf ωA that can be decomposed ωτ,A ⊕ ωστ,A according to the action of
OE , and we can consider the sheaf

ωκ := Symk1−k2 ωστ,A ⊗ det⊗k2ωστ,A ⊗ det⊗k3ωτ,A,

for (k1, k2, k3) a dominant (i.e. k1 > k2) weight. Using the previous description, if we denote by
ζ1, ζ2, ζ3 the coordinates on C3, ωAx,στ is generated by dζ1, dζ2 and ωAx,τ by dζ3.

There is also XK(C) a toroidal compactification of YK(C), [Lar92] and [Bel06b], on which ωκ

extends as ωκ (the canonical sheaf of Picard modular forms) and ωκ(−D) (the sheaf of cuspidal
forms) where D here is the closed subscheme XK\YK together with its reduced structure.

Definition 2.3. We call the module H0(XK(C), ωκ) (respectively H0(XK(C), ωκ(−D)) =:
H0

cusp(XK(C), ωκ)) the space of (respectively, cuspidal) Picard modular forms of level K and
weight κ.

We sometimes say ‘classical’ if we want to emphasis the difference with overconvergent
modular forms defined later. Denote also by V κ the representation of GL2×GL1 given by

(A, e) 7−→ Symk1−k2(A)⊗ detk2A⊗ detk3e.

Definition 2.4. For all g ∈ G(R) = GU(2, 1)(R), write

g =

(
A b

c d

)
, A =

(
a1 a2

a3 a4

)
and for x = (z1, z2) ∈ B, following [Shi78], define

κ(g, x) =

(
a1 − a3z1 c2z1 − c1

a3z2 − b1 d− c2z2

)
, and j(g, x) = (cx+ d).

Finally, define
J(g, x) = (κ(g, x), j(g, x)) ∈ GL2×GL1(C).

The following proposition is well known (see [Hsi14, Lemma 3.7]) and probably already in
[Shi78], but we rewrite it to fix the notations,

Proposition 2.5. There is a bijection between H0(YK(C), ωκ) and functions F : B ×
G(AQ,f ) −→ V κ such that:

4 Here eA/S denotes the unit section of A −→ S.

1334

https://doi.org/10.1112/S0010437X1900736X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1900736X


Families of Picard modular forms

(i) for all γ ∈ G(Z), F (γx, γk) = J(γ, x) · F (x, k);

(ii) for all k′ ∈ K,F (x, kk′) = F (x, k)

given by F (x, k) = f(Ax, ηx ◦ kσ, (dζ1, dζ2, dζ3)).

Proof. For all γ ∈ G(Z), there is an isomorphism between (Ax, ηx) and (Aγx, ηγx ◦ γσ), for
example described in [dSG16, § 1.2.2] or in [Gor92], which sends (dζ1, dζ2, dζ3) to γ∗(dζ1, dζ2,
dζ3) = (γ∗(dζ1, dζ2), γ∗dζ3) as γ preserve the action of OE ; γ∗dζ3 is calculated in [dSG16,
Proposition 1.15] and given by

γ∗dζ3 = j(γ, x)−1dζ3.

Moreover, by the Kodaira–Spencer isomorphism ωAx,τ ⊗ ωAx,στ = Ω1 (see [dSG16, Proposition
1.22] for example), we only need to determine the action of γ on dz1, dz2. But this is done in
[Shi78, 1.15] (or an explicit calculation), given by c(γ)tκ−1(γ, x)j(γ, x), and we get

γ∗(dζ1, dζ2) = tκ(γ, x)
−1

(dζ1, dζ2).

Thus, setting F (x, k) = f(Ax, ηx ◦ kσ, (dζ1, dζ2, dζ3)), we get,

F (γx, γk) = Symk1−k2(tκ(γ, x)
−1

)((detκ(γ, x)))−k2j(γ, x)−k3F (x, k). 2

Thus, to f ∈ H0(YK(C), ωκ) we can associate a function, Φf : G(Q)\G(A) −→ V κ, by

Φf (g) = c(g∞)−k1−k2−k3J(g∞, x0)−1 · F (g∞x0, gf ),

where the action · is the one on V κ, and we use the decomposition g = gQg∞gf ∈
G(Q)G(R)G(Af ). We can check that this expression does not depend on the choice in the
decomposition. This association commutes with Hecke operators. The function Φf does not
necessarily have a unitary central character, but it is nevertheless normalized by κ. Indeed, for
z∞ ∈ C× = Z(R),

Φf (z∞g) = N(z∞)−k1−k2−k3z∞
k1+k2z∞

k3Φf (g) = z−k3
∞ z∞

−k1−k2Φf (g).

Let L : V κ −→ C a non-zero linear form. Define the injective map of right-K∞-modules,

L :
V κ −→ Fonct(K∞,C)

v 7−→ L(J(k, x0)−1v).

We denote by L2
0(G(Q)\G(A),C) the set of cuspidal L2-automorphic forms for G. We have

the following well-known proposition

Proposition 2.6. The map f 7→ ϕf = L ◦ Φf is an isometry from H0
cusp(XK(C), ωκ) =

H0(XK(C), ωκ(−D)) to the subspace of L2
0(G(Q)\G(A),C) of functions ϕ, C∞ in the real

variable, such that:

(i) for all g ∈ G(A), the function ϕg : k ∈K∞ 7→ ϕ(gk) is in L(V κ), and in particular ϕ is right
K∞-finite;

(ii) for all k ∈ K,ϕ(gk) = ϕ(g);

(iii) for all X ∈ p−C , Xϕ = 0, i.e. ϕ is holomorphic;

(iv) ϕ is cuspidal, i.e. for all unipotent radical N of a proper parabolic P of G,∫
N(Q)\N(A)

ϕ(ng) dn = 0.
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This isometry is equivariant under the Hecke action of HN (K(N) ⊂ K).

Using the previous proposition, to every f ∈ H0
cusp(XK , ω

κ), an eigenvector for the Hecke
algebra, we will be able to attach a automorphic form ϕf , and an automorphic representation
Πf (with same central character).

2.3 Local groups
In this subsection, we describe the local group at an inert prime. Let p be a prime, inert in E.
Let Ep ⊃ Qp its p-adic completion. Recall that V ⊗Qp = E3

p and that the hermitian form is given
by the matrix,

J =

 1

1

1

 .

The diagonal maximal torus T of GQp is isomorphic to E×p × E×p ,

T (Qp) =


a e

N(e)a−1

 , a, e ∈ E×p


and contains T 1, isomorphic to E×p × E1

p , where E1
p = {x ∈ Ep : xx = 1} = (OEp)1, the torus of

U(E3, J),

T 1(Qp) =


a e

a−1

 , a ∈ E×p , e ∈ E1
p

 .

We also have the Borel subgroups B = BGL3(E) ∩GQp of upper-triangular matrices,

B(Qp) =


a x y

e xa−1e

N(e)a−1

 , a, e, x, y ∈ E×p and Tr(a−1y) = N(a−1x)

 ,

and B1 the corresponding Borel subgroup, for U(E3, J),

B1(Qp) =


a x y

e xa−1e

a−1

 , a, x, y ∈ E×p , e ∈ E1
p and Tr(a−1y) = N(a−1x)

 .

3. Weight space

Write O = OEp , and denote by T 1(Zp) the torus O× × O1 over Zp. It is the Zp-points of a
maximal torus of U(2, 1). Denote by T = T 1 ⊗Zp O the split torus over Spec(O).

Definition 3.1. The weight space W is the rigid space over Qp given by Homcont(T
1(Zp),Gm).

It coincides with Berthelot’s rigid fiber [Ber96], of the formal scheme (called the formal weight
space) given by

W := Spf(Zp[[T 1(Zp)]]).

If K is an extension of Qp, the K-points of W are given by

W(K) = Homcont(O× ×O1,K×).
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The weight space W is isomorphic to a union of (p + 1)(p2 − 1) open balls of dimension 3
(see Appendix A, compare with [Urb11, § 3.4.2]),

W '
∐

(O××O1)tors

B3(0, 1).

There is also a universal character,

κun : T 1(Zp) −→ Zp[[T 1(Zp)]],

which is locally analytic. We can writeW =
⋃
w>0W(w) as an increasing union of affinoids using

the analycity radius (see Appendix A).

Definition 3.2. To k = (k1, k2, k3) ∈ Z3 is associated a character,

k :
O× ×O1 −→ Qp2

(x, y) 7−→ (στ)(x)k1τ(x)k3(στ)(y)k2 .

Characters of this form are called algebraic, or classical if moreover k1 > k2. They are analytic
and Zariski dense in W.

4. Induction

Set U = U(2, 1)/Zp, T 1 its maximal torus, K = Qp2 and O = OK . We have U ⊗Zp O ' GL3 /O,
and we denote by T its torus, and GL2×GL1 ⊂ P the Levi of the standard parabolic of GL3 /O.
Let T ⊂ B the upper triangular Borel subgroup of GL2×GL1 and U its unipotent radical.

Definition 4.1. Let κ ∈ X+(T ). Then there exists an (irreducible) algebraic representation of
GL2×GL1 (of highest weight κ) given by

Vκ = {f : GL2×GL1 −→ A1 : f(gtu) = κ(t)f(g), t ∈ T, u ∈ U},

where GL2×GL1 acts by translation on the left (i.e. gf(x) = f(g−1x)). The representation Vκ
is called the algebraic induction of highest weight κ of GL2×GL1.

Let I = I1 be the Iwahori subgroup of GL2(O) × GL1(O), i.e. matrices that are upper-
triangular modulo p. Let In be the subset of matrices in B modulo pn, i.e. of the form a b

pnc d

e

 , a, b, c, d ∈ O.

Denote by N0 the opposite unipotent of U , and N0
n the subgroup of N0 of elements reducing

to identity modulo pn. These are seen as subgroups of GL2(O)×GL1(O) rather than formal or
rigid spaces, but could be identified with O-points of rigid spaces. Precisely,

N0 =


1 0

x 1

1

 , x ∈ O

 and N0
n =


 1 0

pnx 1

1

 , x ∈ O

 .
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We identify N0
n with pnO ⊂ (A1

O)an. For ε > 0, denote by N0
n,ε the affinoid,

N0
n,ε =

⋃
x∈pnO

B(x, ε) ⊂ (A1
O)an.

The affinoid N0
n,ε is a rigid space. Actually we could define a rigid space N 0 (which would just

be A1 here) such that N 0(O) = N0, N0
n,ε is an affinoid in N 0 and a neighborhood of N0

n. For L
an extension of Qp, denote by Fε-an(N0

n, L) the set of functions N0
n −→ L which are restriction

of analytic functions on N0
n,ε. Let ε > 0 and κ ∈ Wε(L) an ε-analytic character; we write

V ε-an
κ,L = {f : I −→ L : f(ib) = κ(b)f(i) and fN0 ∈ Fε-an(N0, L)}.

We also write, for ε > 0 and k = b−logp(ε)c,

V ε-an
0,κ,L = {f : Ik −→ L : f(ib) = κ(b)f(i) and fN0

k
∈ Fε-an(N0

k , L)},

where b.c denotes the previous integer, and

V l-an
κ,L =

⋃
ε>0

V ε-an
κ,L and V l-an

0,κ,L =
⋃
ε>0

V ε-an
0,κ,L.

Concretely, V ε-an
0,κ,L is identified with analytic functions on B(0, pb−logpεc) (a ball of dimension 1).

We can identify V l-an
κ,L with F l-an(pO, L) by restricting f ∈ V l-an

κ,L to N0. We can also identify
V l-an

0,κ,L to the germ of locally analytic function on 0.
Let

δ =

p−1

1

1

 ,

which acts on GL2×GL1, stabilizes the Borel subgroup B(K), and defines an action on Vκ,L for
κ ∈ X+(T ), via (δ · f)(g) = f(δgδ−1). The action by conjugation of δ on I does not stabilize it,
but it stabilizes N0. We can thus set, for j ∈ I, j = nb the Iwahori decomposition of j, and set

δ · f(j) = f(δnδ−1b).

We can thus make δ act on V ε-an
κ,L , V l-an

κ,L , V
ε-an

0,κ,L, V
l-an

0,κ,L. Via the identification V ε-an
κ,L ' F l-an(pO, L),

δ ·f(z) = f(pz). Thus δ improves the analycity radius. Moreover, its supremum norm is negative.

Proposition 4.2. Let f ∈ V l-an
0,κ,L. Suppose f is of finite slope under the action of δ, i.e. δ ·f = λf,

λ ∈ L×. Then f comes (by restriction) from a (unique) f ∈ V an
κ,L.

Proof. We have that f ∈ V pn−an
0,κ,L for a certain n; in particular, it defines a function

f :

 a u

pnO b

c

 = In −→ L

that is identified to a function in Fan(pnO, L). But f is an eigenform for δ with eigenvalue
λ 6= 0 ∈ L, and thus f = λ−1δ(f). But if f = f(z), with the identification to Fan(pnO, L), δf is
identified with f(pz), thus f ∈ Fan(pn−1O, L), i.e., δ−1 strictly increases the analyticity radius,
and, by iterating, f ∈ Fan(pO, L), and thus f ∈ V an

κ,L. 2
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Proposition 4.3. For κ = (k1, k2, r) ∈ X+(T ), there is an inclusion,

Vκ,L ⊂ V an
κ,L,

which under the identification of V an
κ,L with Fan(pO, L) identifies Vκ with polynomial functions

of degree less or equal than k1 − k2.

Proposition 4.4. Let κ = (k1, k2, r) ∈ X+(T ). The following sequence is exact,

0 −→ Vκ,L −→ V an
κ,L

dκ−→ V an
(k2−1,k1+1,r),L,

where dκ is given by
f ∈ V an

κ,L 7−→ Xk1−k2+1f,

and

Xf(g) =

 d

dt
f

g
 1

−t 1

1


t=0

.

Proof. Let us first check that dκ is well defined. Indeed, using (k1 − k2 + 1)-times the formula

(Xf)

g
t1 t2

1


=

 d

dt
f

g
t1 t2

1

 1

−t 1

1

t−1
1

t−1
2

1

t1 t2
1


t=0

=

 d

dt
f

g
 1

−t2t−1
1 t 1

1

 tk1
1 t

k2
2


t=0

= t2t
−1
1 (Xf)(g)tk1

1 t
k2
2 = tk1−1

1 tk2+1
2 (Xf)(g)

(and the corresponding formula for the action of
( 1 u

1
1

)
), we deduce that dκf has the right

weight.
We can check (evaluating on

( 1
u 1

1

)
) that on Fan(pO, L) dκ correspond to (d/dz)k1−k2+1,

where z is the variable on pO. Thus, using the previous identification with Vκ and polynomials
of degree less or equal than k1 − k2, we deduce can check that Vκ is exactly the kernel of dκ. 2

Remark 4.5. A more general version of the previous proposition has been developed by Urban,
[Urb11, Proposition 3.2.12], and Jones [Jon11].

5. Hasse Invariants and the canonical subgroups

Let p be a prime. Fix E ⊂ E ⊂ C an algebraic closure of E and fix an isomorphism C ' Qp.
Call τ, στ the two places of Qp that correspond respectively to τ∞, στ∞ through the previous
isomorphism (sometimes if p splits in E we will instead write v = τ and v = στ following the
notation of [BC04]). Suppose now p is inert in E. Let us take K = KpKp ⊂ G(Af ) a sufficiently
small compact open, such that Kp is hyperspecial, and write Y = YK/ Spec(O) the integral model
of Kottwitz [Kot92] of the Picard Variety associated to the Shimura datum of the first section
and the level K (recall O = OE,p). Denote by I = Hom(O,Cp) = {τ, στ} the set of embeddings
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of O into an algebraic closure of Qp (Cp = Q̂p), where σ is the Frobenius morphism of O, which
acts transitively on I, and Gal(E/Q) = {id, σ}.

Recall the (toroidal compactification of the) Picard modular surface X = XK is the
(compactified) moduli space of principally polarized abelian varietiesA−→ S of genus 3, endowed
with an action of OE , and a certain level structure Kp, and such that, up to extending scalars of
S, we can decompose the conormal sheaf of A under the action of O = OE,p,

ωA = ωA,τ ⊕ ωA,στ ,

and we assume dimOS ωA,τ = 1 (and thus dimOS ωA,στ = 2). These two sheaves extend from Y
to X. One reason is that there is a semi-abelian scheme on X together with an action of OE ,
thus its conormal sheaf extend ωA to the boundary, and the OE action allows the splitting to
make sense on the boundary too (see for example [Lan13, Theorem 6.4.1.1]).

Remark 5.1. If p splits in E, there is also a integral model of the Picard Surface, which is above
Spec(Zp), and it has a similar description (of course in this case OE,p ' Zp × Zp).

Remark 5.2. The case of toroidal compactifications of the Picard modular surface is particularly
simple. Contrary to the case of other (PEL) Shimura varieties, there is a unique and thus canonical
choice of a rational polyhedral cone decomposition Σ, and thus a unique toroidal compactification.
This cone decomposition is the one of R+, it is smooth and projective. As a result, the toroidal
compactification is smooth and projective.

5.1 Classical modular sheaves and geometric modular forms
On X, there is a sheaf ω, the conormal sheaf of A, the universal (semi-)abelian scheme, along its
unit section, and ω = ωτ ⊕ ωστ .

For any κ = (k1, k2, k3) ∈ Z3 such that k1 > k2, there is associated a ‘classical’ modular sheaf,

ωκ = Symk1−k2 ωστ ⊗ (detωστ )k2 ⊗ ωk3
τ .

Write κ′ = (−k2,−k1,−k3); this is still a dominant weight, and κ 7→ κ′ is an involution. There is
another way to see the classical modular sheaves.

Write T = HomX,O(O2
X⊗OX , ω) where O acts by στ on the first two-dimensional factor and

τ on the other one. Write T × = IsomX,O(O2
X ⊗ OX , ω), the GL2×GL1-torsor of trivializations

of ω as a O-module. There is an action on T of GL2×GL1 by g · w = w ◦ g−1.
Denote by π : T × −→ X the projection. For any dominant κ as before, define

ωκ = π∗OT × [κ′],

the subsheaf of κ′-equivariant functions for the action of the upper triangular Borel subgroup
B ⊂ GL2×GL1. As the notation suggests, there is an isomorphism, if κ = (k1, k2, k3),

π∗OT × [κ′] ' Symk1−k2 ωστ ⊗ (detωστ )k2 ⊗ ωk3
τ .

Definition 5.3. Recall that X is the (compactified) Picard variety of level K = KpK
p. The

global sections H0(X,ωκ) is the module of Picard modular forms of level K and weight κ. If
D denotes the (reduced) boundary of X, the submodule H0(X,ωκ(−D)) is the submodule of
Picard cusp-forms.
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In the sequel we will be interested in the case Kp = I, the Iwahori subgroup when we speak
about modular forms on the rigid space associated to X. But for moduli-theoretic reason we will
not directly consider an integral model of Xrig

I , but only an integral model of a particular open
subset (the one given by the canonical filtration). Indeed, in this particular setting (U(2, 1) with
p inert), the canonical filtration identifies a strict neighborhood of the µ-ordinary locus in X
with an open in the level I-Picard variety.

Remark 5.4. There is a more general construction of automorphic sheaves ωk1,k2,k3,r given in
[Har84], they are independent of r as sheaves on the Picard variety, and only the G-equivariant
action (and thus the action of the Hecke operators) depends on r. We will only use the previous
definition of the sheaves. We could get more automorphic forms by twisting by the norm character
(which would be equivalent to twist the action of the Hecke operators).

5.2 Local constructions
Let G be the p-divisible group of the universal abelian scheme over Y ⊂ X. Later we will explain
how to extend our construction to all X. The group G is endowed with an action of O, and we
have that its signature is given by {

pτ = 1, qτ = 2,

pστ = 2, qστ = 1,

which means that if we write ωG = ωG,στ ⊕ ωG,τ , the two pieces have respective dimensions
pστ = 2 and pτ = 1. Moreover, G carries a polarization λ, such that λ : G

∼−→ GD,(σ) is O-
equivariant.

The main result of [Her18], see also [GN17], is the following,

Definition 5.5. There exists sections,

h̃aστ ∈ H0(Y ⊗O/p, det(ωG,στ )⊗(p2−1)) and h̃aτ ∈ H0(Y ⊗O/p, (ωG,τ )⊗(p2−1)),

such that h̃aτ is given by (the determinant of) V 2,

ωG,τ
V−→ ω

(p)
G,στ

V−→ ω
(p2)
G,τ ,

and h̃aσ τ is given by a division by p on the Dieudonne crystal of G of V 2, restricted to a lift of
the Hodge Filtration ωGD,στ .

On Y ⊗O/p, the sheaves ωG,τ and ωτ (respectively ωG,στ and ωστ ) are isomorphic. In fact, the
previous sections extends to all X, for example by Koecher’s principle, see [Lan17, Theorem 8.7].

Remark 5.6. (i) These sections are Cartier divisors on X, i.e. they are invertible on an open and
dense subset (cf. [Her18, Proposition 3.22] and [Wed99]).

(ii) Because of the O-equivariant isomorphism λ : G ' GD,(σ), and the compatibility of h̃aτ
with duality (see [Her18, § 1.10]), we deduce that

h̃aτ (G) = h̃aτ (GD) = h̃aτ (G(σ)) = h̃aστ (G).

Thus, we could use only h̃aστ or h̃aτ and define it in this case without using any crystalline
construction. We usually write µ̃ha = h̃aτ ⊗ h̃aστ , but because of the this remark, we will only
use h̃aτ in this article (which is then reduced, see the appendix).

(iii) We use the notation •̃ to denote the previous global sections, but if we have
G/ Spec(OCp/p) a p-divisible O-module of signature (2, 1), we will also use the notation haτ (G) =

v(h̃aτ (G)), where the valuation v on OCp is normalized such that v(p) = 1 and truncated by 1.
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Definition 5.7. We denote by Xord the µ-ordinary locus of X = X ⊗O O/p, which is {x ∈ X :

h̃aτ is invertible}. It is open and dense (see [Wed99]).

Let us recall the main theorem of [Her19] in the simple case of Picard varieties. Recall that
p still denotes a prime, inert in E, and suppose p > 2.

Theorem 5.8. Let n ∈ N×. Let H/Spec(OL), where L is a valued extension of Qp, a truncated

p-divisible O-module of level n+ 1 and signature (pτ = 1, pστ = 2). Suppose

haτ (H) <
1

4pn−1
.

Then there exists a unique filtration (so-called ‘canonical’ of height n) of H[pn],

0 ⊂ Hn
τ ⊂ Hn

στ ⊂ H[pn],

by finite flat sub-O-modules of H[pn], of O-heights n and 2n respectively. Moreover,

degστ (Hn
στ ) + p degτ (Hn

στ ) > n(p+ 2)− p2n − 1

p2 − 1
haτ (H),

and

degτ (Hn
τ ) + p degστ (Hn

τ ) > n(2p+ 1)− p2n − 1

p2 − 1
haτ (H).

In particular, the groups Hn
τ and Hn

στ are of high degree. In addition, points of Hn
τ coincide

with the kernel of the Hodge–Tate map αH[pn],τ,n−((p2n−1)/(p2−1)) haτ (H) and Hn
στ with the one

of αH[pn],στ,n−((p2n−1)/(p2−1)) haτ (H). They also coincide with steps of the Harder–Narasimhan

filtration and are compatible with ps-torsion (s 6 n) and quotients.

Proof. This is exactly [Her19] if p > 5. Here the bound on p is slightly better than the one of
[Her19]. The reason is that we construct Hn

στ using [Her19, Théorème 8.3 and Remarque 8.4]
(with our bound for haτ ). We can then construct Dn

τ ⊂ G[pn]D of O-height 2n by the same
reason. Then setting

Hn
τ := (Dn

τ )⊥ = (G[pn]D/Dn
τ )D ⊂ G[pn],

we can have the asserted bound on degτ H
n
τ . For the assertion on the Kernel of the Hodge–Tate

map, we get an inclusion with the bound on the degree. We can then use [Her19, Proposition
7.6]. Then by [Her19, Remarque 8.4], these groups are steps of the Harder–Narasimhan filtration
(the classical one), and thus we get the assertion of the inclusion Hn

τ ⊂ Hn
στ . By unicity of the

Harder–Narasimhan filtration, we get that (Hn
τ )⊥ = Hn

στ . 2

Definition 5.9. Let H/Spec(OL) as before, with n = 2m. Then we can consider inside H[2m]

the finite flat subgroup,
Km = H2m

τ +Hm
στ .

It coincides, after reduction to Spec(OL/πL) (the residue field of L) with the kernel of F 2m of
H[p2m] (see [Her19, § 2.9.1]).
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Recall that we denoted by X/ Spec(O) the (schematic) Picard surface. Denote by Xrig the
associated rigid space over Ep, there is a specialization map,

sp : Xrig −→ X,

and we denote by Xord ⊂ Xrig the open subspace defined by sp−1(X
ord

).
Let us denote, for v ∈ (0, 1],

X(v) = {x ∈ Xrig : haτ (x) = v(h̃aτ (Gx)) < v} and X(0) = Xord,

the strict neighborhoods of Xord. The previous theorem and technics introduced in [Far10] (see
[Her19, § 2.9]) implies, if v 6 1/4pn−1, that we have a filtration in families over the rigid space
X(v),

0 ⊂ Hn
τ ⊂ Hn

στ ⊂ G[pn].

Let us explain how to get this result. On Y rig(v) this is simply [Her19, Théorème 9.1] which is
essentially [Far10, Théorème 4] (again, see proof of Theorem 5.8 about the bound). The problem
is that the p-divisible group G does not extend to the boundary. But by results of Stroh [Str10,
§ 3.1], there exists

U −→ Xrig,

which is an étale covering of Xrig (actually U is algebraic and exists also integrally) together with

R
p1

⇒
p2

U étale maps, such that

Xrig ' [U/R].

Over U there is a Mumford 1-motive M = [L −→ G̃] such that M [pn] = A[pn] (A is the semi-
abelian scheme), and thus there is a canonical G̃ semi-abelian scheme with an action of OE of
(locally) constant toric rank and thus G̃[pn] is finite flat. Thus applying to G̃[pn] the results of

[Her19], there exists on U(v) = U ×X X(v) the two groups Hn
τ ⊂ Hn

στ . Moreover, over R(v)
p1

⇒
p2

U(v), we have pr∗1Hn
? = pr∗2H

n
? as Hn

? descend to Y (v). Over R we have an isomorphism pr∗1G =
pr∗2G [Str10, 3.1.5], and thus we have over R(v) an isomorphism

G/pr∗1H
n
?
∼−→ G/pr∗2H

n
? .

As R is normal (because smooth) and R is dense in R, by [Str10, Théorème 1.1.2] (due to Faltings
and Chai) there is an isomorphism over R

G/pr∗1H
n
?
∼−→ G/pr∗2H

n
? .

Thus, by faithfully flat descent, Hn
τ ⊂ Hn

στ exist on X(v). In particular, Km = Hm
στ +H2m

τ also
exists on X(v).

A priori, this filtration does not extend to a formal model of X(v), but as X/ Spec(O) is a
normal scheme, we will be able to use the following proposition.

Definition 5.10. ForK/Qp an extension, define the category Adm of admissible OK-algebra, i.e.
flat quotient of power series ringOK〈〈X1, . . . , Xr〉〉 for some r ∈ N. DefineNAdm the sub-category
of normal admissible OK-algebra.
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Proposition 5.11. Let m be an integer, S = Spf R a normal formal scheme over O, and G−→ S
a truncated p-divisible O-module of level 2m+ 1 and signature (pτ = 1, pστ = 2). Suppose that
for all x ∈ Srig, haτ (x) < 1/4p2m−1. Then the subgroup Km := H2m

τ + Hm
στ ⊂ G[p2m] of Srig

extends to S.

Proof. As we know that Km coincides with the kernel of some Frobenius morphism on points,
this is exactly as [AIP15, Proposition 4.1.3]. 2

6. Construction of torsors

6.1 Hodge–Tate map and image sheaves
Let p a prime, inert in E, and O = OE,p, a degree-2 unramified extension of Zp. Let K be a
valued extension of Ep. Let m ∈ N× and v < 1/4p2m−1. Let S = Spec(R) where R is an object
of NAdm/OK , and G −→ S a truncated p-divisible O-module of level 2m and signature,{

pτ = 1, qτ = 2,

pστ = 2, qστ = 1,

where τ : O −→ OS is the fixed embedding. Suppose moreover that for all x ∈ Srig, haτ (x) 6 v.
According to the previous section, there exists on Srig a filtration of G[p2m] by finite flat O-
modules,

0 ⊂ H2m
τ ⊂ H2m

στ ⊂ G[p2m],

of O-heights 2m and 4m respectively. Moreover, we have on S a subgroup Km ⊂ G[p2m], finite
flat of O-height 3m, étale-locally isomorphic (on Srig) to O/p2mO⊕O/pmO, and on Srig, Km =
H2m
τ +H2m

στ [pm].

Proposition 6.1. Let wτ , wστ ∈ v(OK) such that wστ < m − ((p2m − 1)/(p2 − 1))v and wτ <
2m− ((p4m − 1)/(p2 − 1))v. Then, the morphism of sheaves on S π : ωG −→ ωKm , induce by the
inclusion Km ⊂ G, induces isomorphisms,

πτ : ωG,τ,wτ
∼−→ ωKm,τ,wτ and πστ : ωG,στ,wστ

∼−→ ωKm,στ,wστ .

Proof. If G/ Spec(OC) (C a complete algebraically closed extension of Qp), the degrees of the
canonical filtration of G assure that

degστ (G[pm]/Hm
στ ) >

p2m − 1

p2 − 1
v and degτ (G[p2m]/H2m

τ ) >
p4m − 1

p2 − 1
v,

and there is thus an isomorphism,

ωG[pm],τ,wτ
∼−→ ωHn

τ ,τ,wτ ,

and also for στ and G[p2m]. But there are inclusions Hm
στ = H2m

στ [pm] ⊂ Km ⊂ G and H2m
τ ⊂

Km ⊂ G such that the composite,

ωG,στ,wστ −→ ωKm,στ,wστ −→ ωHm
στ ,στ,wστ ,

is an isomorphism, which implies that the first one is. The same reasoning applies for τ . We can
thus conclude the following for general S as in [AIP15, Proposition 4.2.1]. Up to reducing R we can
suppose ωG is a free R/p2m+1-module, and look at the surjection αστ : R2� ωG,στ � ωKm,στ,wστ ;
it is enough to prove that for any (x1, x2) in kerαστ we have xi ∈ pwτR, but, as R is normal, it
suffices to do it for Rp, and even for R̂p, for all codimension-1 prime ideals p that contain (p).
But now R̂p is a complete, discrete valuation ring of mixed characteristic, and this reduces to the
preceding assertion. 2
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Proposition 6.2. Suppose there is an isomorphism KD
m(R) ' O/pmO ⊕ O/p2mO. Then the

cokernel of the στ -Hodge–Tate map,

HTKD
m,στ
⊗ 1 : KD

m(R)[pm]⊗O R −→ ωKm,στ ,

is killed by p(p+v)/(p2−1), and the cokernel of the τ -Hodge–Tate map,

HTKD
m,τ
⊗ 1 : KD

m(R)[pm]⊗O R −→ ωKm,τ ,

is killed by pv/(p
2−1).

Proof. This is true for G/ Spec(OC) by [Her19, Théorème 6.10(2)] with the previous proposition
(because (p+ v)/(p2 − 1) < 1− v, already for m = 1). For a general normal R, we can reduce to
previous case (see also [AIP15, Proposition 4.2.2]): up to reducing Spec(R), we have a diagram,

R2

����

γ // R2

����
KD
n (R)[pn]⊗O R

HTστ ⊗ 1 // ωKn,στ

and Fitt1(γ) (which is just a determinant here) annihilates the cokernel of γ, and it suffices to
prove that p(p+v)/(p2−1) ∈ Fitt1(γ). But as R is normal, it suffices to prove that p(p+v)/(p2−1) ∈
Fitt1(γ)Rp for every codimension-1 prime ideal p that contains (p). But by the previous case, we
can conclude. The same works for τ . 2

Proposition 6.3. Suppose we have an isomorphism KD
m(R) ' O/pmO ⊕O/p2mO. Then there

exist on S = SpecR locally free subsheaves Fστ ,Fτ of ωG,στ and ωG,τ respectively, of ranks

2 and 1, which contain p(p+v)/(p2−1)ωG,στ and pv/(p
2−1)ωG,τ , and which are equipped, for all

wστ < m− ((p2m − 1)/(p2 − 1))v and wτ < 2m− ((p4m − 1)/(p2 − 1))v, with maps,

HTστ,wστ : KD
m(R) −→ Fστ ⊗R Rwστ , and HTτ,wτ : KD

m(R) −→ Fτ ⊗R Rwτ ,

which are surjective after tensoring KD
m(R) with R over O.

More precisely, via the projection,

KD
m(R)� (H2m

τ )D(RK),

we have induced isomorphisms,

HTστ,wστ : KD
m(RK)⊗O Rwστ −→ Fστ ⊗R Rwστ ,

and

HTτ,wτ : (H2m
τ )D(RK)⊗O Rwτ −→ Fτ ⊗R Rwτ .

Proof. This is the same construction as [AIP15, proposition 4.3.1]. To check the assertion about
the isomorphism with H2m

τ , it suffices to show that the map HTτ,wτ factors, but it is true over
Rp (as the canonical filtration is given by kernels of Hodge–Tate maps) for every codimension-1
ideal p, and it is moreover surjective, so it globally factors and is globally surjective, but the two
free Rwτ -modules are free of the same rank 1, so it is an isomorphism. 2
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Moreover the construction of the sheaves F is functorial in the following sense.

Proposition 6.4. Suppose given G,G′ two truncated p-divisible O-module such that for all
x ∈ Srig

haτ (Gx),haτ (G′x) < v,

and an OE-isogeny,
φ : G −→ G′.

Assume moreover that we are given trivializations of the points of KD
m(G) and KD

m(G′). Then
φ∗ induces maps

φ∗τ : F ′τ −→ F ′τ and φ∗στ : F ′στ −→ Fστ ,

that are compatible with inclusion in ω, reduction modulo pw and the Hodge–Tate maps of KD
m .

Proof. Once we know that φ will send KD
m(G) inside KD

m(G′) this is straightforward as F?

corresponds to sections of ωG,? that are modulo pw? generated by the image of HT?. But
Km is generated by the subgroup Hm

στ and H2m
τ each being a breakpoint of the Harder–

Narasimhan filtration HNστ (G[pm]) and HNτ (G[p2m]) respectively, and thus by functoriality of
these filtrations, φ sends each subgroup for G inside the one for G′ and thus sends Km(G) inside
Km(G′). 2

Remark 6.5. Strictly speaking, we cannot apply this section for Srig ⊂ X(v) an affinoid. The
reason is that even if Hn

στ , H
n
τ descend to X(v), it is not the case of G̃[pn]. But we can apply

the results of this section with G̃[pn] for Srig an affinoid of U . As ω
G̃
' ω×X(v)U(v), it is enough

to check Propositions 6.1 and 6.2 over U/ Spec(O). Thus Propositions 6.3 and 6.4 remain true
over Srig and affinoid of X(v) (for Proposition 6.4 we will restrict anyway to the open Picard
variety, but it would remain true looking at an isogeny of semi-abelian schemes).

6.2 The torsors
To simplify the notations, fix w = wτ = wστ < m − ((p2m − 1)/(p2 − 1))v to use the previous
propositions. Let R ∈ OK − NAdm and S = Spf(R). In rigid fiber, we have a subgroup of
Km[pm]/Srig, Hm

τ ⊂ Km[pm] which induces a filtration,

0 ⊂ (Hm
στ/H

m
τ )D(RK) ⊂ KD

m(R),

of cokernel isomorphic to (Hm
τ )D(RK).

Suppose we are given a trivialization,

ψ : O/pmO ⊕O/p2mO ' KD
m(R),

which induces trivializations (first coordinate and quotient),

ψστ : (Hm
στ/H

m
τ )D(RK) ' O/pmO and ψτ : (H2m

τ )D(RK) ' O/p2mO.

Let Grστ −→ S be the Grassmanian of locally direct factor sheaves of rank 1, Fil1Fστ ⊂ Fστ .
Let Gr+

στ −→ Grστ be the G2
m-torsor of trivializations of Fil1Fστ and Fστ/Fil1Fστ . Also let

Gr+
τ −→ S be the Gm-torsor of trivializations of Fτ .

Definition 6.6. We say that a A-point of Grστ (respectively Gr+
στ or Gr+

τ )

Fil1(Fστ ⊗A) (respectively (Fil1(Fστ ⊗A), P στ1 , P στ2 ) or P τ )

is w-compatible with ψτ , ψστ if, respectively:
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(i) Fil1(Fστ ⊗A)⊗R Rw = HTστ,w((Hm
στ/H

m
τ )D(RK)⊗O Rw)⊗R A;

(ii) P στ1 ⊗R Rw = HTστ,w ◦(ψστ ⊗O Rw)⊗R A;
(iii) P στ2 ⊗R Rw = HTστ,w ◦(ψτ ⊗O Rw)⊗R A;
(iv) P τ ⊗R Rw = HTτ,w ◦(ψτ ⊗O Rw)⊗R A.

We can define the functors,

IWστ,w :
R− Adm −→ SET

A 7−→ {w − compatibleFil1(Fστ ⊗R A) ∈ Grστ (A)},

IW+
στ,w :

R− Adm −→ SET

A 7−→ {w − compatible(Fil1(Fστ ⊗R A), P τ1 , P
τ
2 ) ∈ Gr+

στ (A)},

IW+
τ,w :

R− Adm −→ SET

A 7−→ {w − compatibleP τ ∈ Gr+
τ (A)}.

The previous functors are representable by formal schemes, affine over S = Spf(R), and locally
isomorphic to(

1

pwB(0, 1) 1

)
×Spf(OK) Spf(R) for IWστ,w, 1 + pwB(0, 1) for IW+

τ,w

where B(0, 1) = Spf(OK〈T 〉) is the one-dimensional formal unit ball, and(
1 + pwB(0, 1)

pwB(0, 1) 1 + pwB(0, 1)

)
×Spf(OK) Spf(R) for IW+

στ,w.

We also define IW+
w = IW+

τ,w×S IW+
στ,w. The previous constructions are independent of n = 2m

(because Fτ ,Fστ are).
Let T 1 = ResO/Zp Gm × U(1) the torus of U(2, 1) over Zp whose Zp-points are O× ×O1. Its

scalar extension T = T 1 ⊗Zp O is isomorphic to G3
m, and Gr+ = Gr+

τ × Gr+
στ −→ Gr = Grτ is a

T -torsor. Denote by T −→ Spf(O) the formal completion of T along its special fiber, and Tw the
torus defined by

Tw(A) = Ker(T(A)) −→ T(A/pwA).

Then IW+
w −→ IWστ,w is a Tw-torsor.

Denote by IWστ,w, IW+
τ,w, IW+

στ,w, IW+
w , T the generic fibers of the previous formal schemes.

7. The Picard surface and overconvergent automorphic sheaves

7.1 Constructing automorphic sheaves
Let us consider the datum (E, V, ψ,OE ,Λ = O3

E , h), the PEL datum introduced in § 2. Let p
be a prime, inert in E and G the reductive group associated over Zp. We fix Kp a compact
open subgroup of G(Apf ) sufficiently small and C = G(Zp) an hyperspecial subgroup at p. Let
X = XKpC/Spec(O) the (integral) Picard variety associated to the previous datum (cf. [Kot92,
Lan13, LR92]).

Let K/O[1/p] be a finite extension (that we will choose sufficiently large) and still write
X = XOK = X ×SpecO Spec(OK).

Denote by A the universal semi-abelian scheme, Xrig the rigid fiber of X, Xord the ordinary
locus and for v ∈ v(K), X(v) the rigid-analytic open {x ∈ Xrig : haτ (x) < v}. Denote also
X −→ Spf(OK) the formal completion of X along its special fiber, X̃(v) the admissible blow up
of X along the ideal (h̃aτ , p

v) and X(v) its open subscheme where (h̃aτ , p
v) is generated by h̃aτ .
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Lemma 7.1. The formal scheme X(v) is normal.

Proof. As X(v) is smooth, thus normal, and h̃aτ is reduced, this follows from the next lemma.

Lemma 7.2. Let A ∈ OK−Adm such that AK is normal and A/πK is reduced. Then A is normal.

Proof. For R a (noetherian) ring denote by Rnorm its integral closure in its total ring of fractions.
Write, for all x ∈ AK ,

vA(x) = sup{n ∈ Z : π−nK x ∈ A} and |x|A = π
−vA(x)
K .

Then we can check that |f + g|A 6 sup(|f |A, |g|A) and that |fn|A = |f |nA. Indeed, π
−vA(f)
K f ∈

A\πKA. Thus, as A/πKA is reduced, (π
−vA(f)
K f)n ∈ A\πKA and thus vA(fn) = nvA(f). For this

norm, we have that
A = {x ∈ AK : |x|A 6 1}.

Now let us verify that A is normal. Let x ∈ Anorm, in particular, x ∈ Anorm
K . However, as AK is

normal, x ∈ AK . Now write, for ai ∈ A, 0 6 i 6 n and an = 1,

xn + an−1x
n−1 + · · ·+ a1x = −a0.

Then sup16i6n |xian−i|A = |a0|A 6 1, thus |xn|A = |x|nA 6 1, and |x|A 6 1. Thus x ∈ A. 2

By the previous sections, we have on X(v) a filtration of G by finite flat O-modules,

0 ⊂ H2m
τ ⊂ H2m

στ ⊂ G[p2m],

locally isomorphic to O/p2mO and (O/p2mO)2. Moreover, the subgroup Km = H2m
τ +H2m

στ [pm]
extends to X(v) by Proposition 5.11, and over X(v) is locally isomorphic to

O/p2mO ⊕O/pmO.

Definition 7.3. We write

X1(p2m)(v) = IsomX(v),pol(K
D
m ,O/pmO ⊕O/p2mO),

where the condition pol means that we are looking at isomorphisms ψ = (ψ1, ψ2) which induce
an isomorphism ‘in first coordinate’,

ψ1,1 = (ψ1)|(Hm
στ/H

m
τ )D : (Hm

στ/H
m
τ )D ' O/pmO,

such that (ψ1,1)D = ((ψ1,1)(σ))−1, and such that the quotient morphism,

ψ2,1 = ψ1/(ψ1)|(Hm
στ/H

m
τ )D : (H2m

τ )D −→ O/pmO,

is zero.

Remark 7.4. The map ψ1,1 is automatically an isomorphism. Moreover,

(ψ1,1)D : O/pmO −→ Hm
στ/H

m
τ

λ' (Hm
στ/H

m
τ )D,(σ),

where the last morphism is induced by λ, the polarization of A.
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Denote by Bn the subgroup of GL(O/pmO ⊕O/p2mO) of matrices,(
a pmb

0 d

)
such that a−1 = a(σ) i.e. a ∈ (O/pmO)1. We can map O× ×O1 (diagonally) to Bn.

Bn '
(

(O/pmO)1 O/pmO
(O/p2mO)×

)
.

Write also

B∞(Zp) =

(
O1 O
0 O×

)
which surjects to Bn and that we can embed into GL2×GL1 (even in its upper triangular Borel
subgroup) via (

a b

0 d

)
7−→

στ(a) στ(b)

στ(d)

τ(d)

 .

We denote by ψτ and ψστ the inverses of the induced isomorphisms,

ψστ : O/pmO ' (Hm
στ/H

m
τ )D,

and the quotient,
ψτ = ψ−1/ψστ : O/p2nO ' (H2m

τ )D.

We also denote by X1(p2m)(v) the normalization of X(v) in X1(p2m)(v). Over X1(p2m)(v), we
have, by the previous section, locally free subsheaves of OX1(p2m)(v)-modules Fτ ,Fστ of ωG,τ and
ωG,στ together with morphisms,

HTτ,w ◦ψτ [pm] : (O/pmO)⊗O OX1(p2m)(v)
∼−→ Fτ ⊗OK OK/p

w,

HTστ,w ◦ψστ : (O/pmO)⊗O OX1(p2m)(v) ↪→ Fστ ⊗OK OK/p
w,

and denote by Fcan
στ,w the image of the second morphism. It is a locally direct factor of Fστ⊗OK/pw,

and, passing through the quotient, we get a map,

HTστ,w ◦ ψτ [pm] : (O/pmO)⊗O OX1(pm)(v)
∼−→ (Fστ ⊗OK OK/p

w)/(Fcan
στ,w).

Using the construction of torsors of the previous section, we get a chain of maps,

IW+
w

π1−→ IWw
π2−→ X1(p2m)(v)

π3−→ X(v).

Moreover, π1 is a torsor over the formal torus Tw, π2 is affine, and we have an action of O××O1

and Bn on X1(p2m) over X(v). Denote by B the Borel subgroup of GL2×GL1, B its formal
completion along its special fiber, and Bw,

Bw(A) = Ker(B(A) −→ B(A/pwA)).

We can embed T in B (which induce an embedding Tw ⊂ Bw) and O× ×O1 in T, via

(a, b) ∈ O× ×O1 7−→

στ(b)

στ(a)

τ(a)

 ∈ T,
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such that the action of O× × O1 on X1(p2m)(v) and via T on Gr+ preserves IW+
w (over X(v)).

More generally, the action of B∞(Zp) on X1(p2m)(v) (and thus X1(p2m)(v)) and via B on Gr+

preserves IW+
w .

Let κ ∈ Ww(L). The character κ : O× ×O1 −→ O×L extends to a character,

κ : (O× ×O1)Tw −→ Ĝm,

which can be extended as a character of

κ : (O× ×O1)Bw −→ Ĝm,

where Uw ⊂ Bw acts trivially, and even as a character,

κ : B(Zp)Bw −→ Ĝm,

where U(Zp)Uw acts trivially. Let us write π = π3 ◦ π2 ◦ π1.

Proposition 7.5. The sheaf π∗OIW+
w

[κ] is a formal Banach sheaf, in the sense of [AIP15,
Definition A.1.2.1].

Proof. We can use the same dévissage as presented in [AIP15]: denote by κ0 the restriction of
κ to Tw. Then (π1)∗OIW+

w
[κ0] is an invertible sheaf on IWw. Its pushforward via π2 is then a

formal Banach sheaf because π2 is affine, and pushing through π3 and taking invariants over
B∞(Zp)/pn = Bn, π∗OIW+

w
[κ] is a formal Banach sheaf. 2

Definition 7.6. We call wκ†
w := π∗OIW+

w
[κ] the sheaf of v-overconvergent w-analytic modular

forms of weight κ. The space of integral v-overconvergent, w-analytic modular forms of weight κ
and level (outside p) Kp, for the group G is

Mκ†
w (X(v)) = H0(X(v),wκ†

w ).

Remark 7.7. Unfortunately it does not seem clear how to define an involution κ 7→ κ′ on all W
which extends the one on classical weights, and thus we only get that classical modular forms of
(classical, integral) weight κ embed in overconvergent forms of weight κ′ . . . .

7.2 Changing the analytic radius
Let m − ((p2m − 1)/(p2 − 1))v > w′ > w and κ ∈ Ww(L), and thus κ ∈ Ww′(L). There is a
natural inclusion,

IW+
w′ ↪→ IW+

w ,

compatible with the action of (O× ×O1)Bw. This induces a map wκ†
w −→ wκ†

w′ and thus a map,

M †κw (X(v)) −→ M †κw′ (X(v)).

Definition 7.8. The space of integral overconvergent locally analytic Picard modular forms of
weight κ, and level (outside p) Kp, is

M †κ(X) = lim−→
v→0,w→∞

Mκ†
w (X(v)).
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7.3 Classical and overconvergent forms in rigid fiber
Denote by XIw+(p2m)(v) the quotient of X1(p2m)(v) by Ũm ⊂ Bm, which is isomorphic to(

1 O/pmO
1 + pmO/p2mO

)
⊂
(

(O/pmO)× O/pmO
(O/p2mO)×

)
.

Let us also denote by XIw+(p2m)(v) the corresponding rigid space. Over the scheme X, we have
the locally free sheaf ωA = ωA,τ ⊕ ωA,στ , which is locally isomorphic to OX ⊕ O2

X , with the
corresponding action of O. Denote by T the scheme HomX,O(O2

X ⊕OX , ωG) of trivialization of
ωG as a OX ⊗Zp O = OX ⊕ OX -sheaf, and denote by T × its subsheaf of isomorphisms; it is a
GL2×GL1-torsor over X, where g ∈ GL2×GL1 acts on T × by g · φ = φ ◦ g−1. For κ ∈ X+(T )
a classical weight, denote by ωκ the sheaf π∗OT × [κ′], where π : T × −→ X is the projection and
κ −→ κ′ the involution on classical weights. In down-to-earth terms, κ = (k1, k2, l) where k1 > k2

and
ωκ = Symk1−k2 ωG,στ ⊗ (detωG,στ )⊗k2 ⊗ (detωG,τ )⊗l.

We have defined X(v), which is the rigid fiber of X(v). Denote by Tan, T ×an , (GL2×GL1)an the
analytification of the schemes T , T ×,GLg, and Trig, T ×rig, (GL2×GL1)rig Raynaud’s rigid fiber of
the completion along the special fibers of the same schemes. As T ×/B is complete, T ×an/Ban =
T ×rig/Brig, over which there is the diagram,

T ×rig/Urig

f %%

// T ×an/Uan

g
yy

T ×rig/Brig

where f is a torsor over Urig/Brig = Trig (the torus, not to be mistaken with Trig) and g a torsor
over Tan (same remark).

Definition 7.9. Let κ ∈ Ww(K). We denote by ωκ†w the rigid fiber of wκ†
w on X(v). It exists by

[AIP15, Proposition A.2.2.4]. It is called the sheaf of w-analytic overconvergent modular forms
of weight κ. The space of v-overconvergent, w-analytic modular forms of weight κ is the space,

H0(X(v), ωκ†w ).

The space of locally analytic overconvergent Picard modular forms of weight κ (and level Kp)
is the space,

M †κ(X) = lim−→
v→0,w→∞

H0(X(v), ωκ†w ).

The injection of OX(v)-modules Fτ ⊕Fστ ⊂ ωA = ωA,τ ⊕ ωA,στ is an isomorphism in generic
fiber, and this induces an open immersion,

IWw ↪→ T ×rig/Brig ×X(v) X1(p2m)(v).

We also have an open immersion,

IW+
w ↪→ T ×an/Uan ×X(v) X1(p2m)(v).

The action of Bn on X1(p2m)(v) (or X1(p2m)(v)) lifts to an action on IWw (or IWw) because
being w-compatible for Fil1Fτ it only depends on the trivialization of KD

n modulo Bn. Similarly
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the action of Ũn lifts to IW+
w and IW+

w . We can thus define IW0
w and IW+,0

w the respective
quotients of IWw and IW+

w by Bn and Ũn, which induces open immersions,

IW0
w ↪→ T ×rig/Brig ×X(v) X(v) and IW+,0

w ↪→ T ×an/Uan ×X(v) XIw+(p2m)(v).

Proposition 7.10. Suppose w > m− 1 + (p+ v)/(p2 − 1). Then there are embeddings

IW0
w ⊂ (T an/B)X(v) and h : IW0,+

w ⊂ (T an/U)X(v).

Proof. Let S be a set of representatives in I∞ '
(
O1 O
pO O×

)
of In/Ũn which we can suppose of the

form, (
[b]

p[c] [a]

)
, a ∈ (O/pm)×, b ∈ (O1/pm), c ∈ O/pm−1.

Here, [.] denotes any lift. Then h is locally (over X(v)) isomorphic to

h :
∐
γ∈S

1 + pwB(0, 1)

pwB(0, 1) 1 + pwB(0, 1)

1 + pwB(0, 1)

Mγ̃ −→ (GL2×GL1 /U)an,

where M is the matrix which is locally given by the Hodge–Tate map, and thus corresponds to
the inclusion Fτ ⊕Fστ ⊂ ωτ ⊕ ωστ , and if γ ∈ S, then γ̃ is given by

γ̃ =

 στ(b)

pστ(c) στ(a)

τ(a)

 if γ =

(
b

pc a

)
.

But there exists M ′ with integral coefficients such that

M ′M =

(
p(p+v)/(p2−1)I2

pv/(p
2−1)

)
,

and it is easily checked that M ′ ◦ h is then injective if w > m− 1 + (p+ v)/(p2 − 1). The proof
for the other embedding is similar (and easier). 2

Remark 7.11. Of course not every w satisfies m − 1 + (p+ v)/(p2 − 1) < w < m −
((p2m − 1)/(p2 − 1))v for some m. But every w-analytic character κ is w′-analytic for all w′ > w,
and in particular we can choose a w′ which satisfies the previous inequalities, a priori for another
m (for each choice of w′ there is a unique such m).

From now on, we suppose that we have fixedm, and we suppose thatm−1+(p+ v)/(p2 − 1)<
w < m− ((p2m − 1)/(p2 − 1))v.

We could have defined ωκ†w directly, by g∗OIW0,+
w

[κ] where g is the composite,

IW0,+
w −→ IW0

w −→ X(v)

as shown by the next proposition. Remark that X(v) ⊂ XIw(p)(v) via the canonical filtration of
level 1.

Proposition 7.12. The sheaf ωκ†w (defined as the rigid fiber of wκ†
w ) is isomorphic to

g∗OIW0,+
w

[κ].
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Proof. In the rigid setting, we did a quotient by Ũn to get IW0,+
w . But ωκ†w is constructed as

((π2 ◦ π1)∗OIW+ [κ0])(−κ)Bn , and the action of Ũn on (π2 ◦ π1)∗OIW+ [κ0] is trivial and it thus
descends to XIw+(p2m)(v) and is isomorphic to the κ0-variant vectors in the pushforward of
OIW0,+

w
. 2

Proposition 7.13. For κ ∈ X+(T 0) and ω > 0, there is a restriction map,

ωκX(v) ↪→ ωκ
′†
w ,

induced by the inclusion IW0,+
w ⊂ (T an/U). Moreover, locally for the étale topology, this

inclusion is isomorphic to the following composition,

Vκ′ ↪→ V w-an
κ′

res0−→ V w-an
0,κ′ .

Proof. Locally for the étale topology, ωκ is identified with algebraic functions on GL2×GL1

which are invariant by U and varies as κ′ under the action of T , i.e. to Vκ′ . But a function
f ∈ ωκ

′†
w is locally identified with a function,

f :


τ(a)(1 + pwB(0, 1))

pwB(0, 1) τ(b)(1 + pwB(0, 1))

στ(b)(1 + pwB(0, 1))

, a ∈ O1, b ∈ O×
−→ L,

which varies as κ′ under the action on the right of T (Zp)Tw. As κ′ = (k1, k2, k3) ∈ X+(T ) we can
extend f to a κ′-varying function on

Ipw =


 Gm B(0, 1)

pwB(0, 1) Gm

Gm

 ,

extending it ‘trivially’; i.e.

f

 x u

pwz y

t

 = f

 1 0

pwzx−1 1

1

x u

0 y − pwzu
t


= xk1(y − pwzu)k2tk3f

 1 0

pwzx−1 1

1

 .

Under this identification, locally for the étale topology ωκ
′†
w is identified with V w-an

0,κ′ . 2

8. Hecke operators, classicity

As explained in [AIP15] and [Bra16], it is not possible to find a toroidal compactification for
more general PEL Shimura varieties (already for GSp4) that is preserved with all the Hecke
correspondences, but this can be overcome by looking at bounded sections on the open variety. For
the Picard modular variety, there is only one choice of a toroidal compactification, and thus this
problem does not appear, but we will keep the general strategy (and thus we will not have to check
that the correspondences extend to the boundary). Thus, instead we will define Hecke operators
on the open Picard Variety YIw(p) of Iwahori level, and, as bounded sections on the open variety
extend automatically to the compactification (see [AIP15, Theorem 5.5.1, Proposition 5.5.2],
which follows from a theorem of Lutkebohmert), we show that Hecke operators send bounded
functions to bounded functions, and thus induce operators on overconvergent locally analytic
modular forms.
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8.1 Hecke operators outside p
These operators have been defined already in [Bra16, § 4]. We explain their definition quickly,
and refer to [Bra16] (see also [AIP15, § 6.1]) for the details. Let ` 6= p be an integer, and suppose
` 6 | N , the set of places where Kv is not maximal. Let γ ∈ G(Q`) ∩ EndOE,`(O3

E,`) × Q×` , and
consider

Cγ ⇒ YIw(p),

the moduli space of isogeny f : A1 −→ A2 such that:

(i) f is OE-linear, and of degree a power of `;
(ii) f is compatible with polarizations, i.e. f∗λ2 is a multiple of λ1;

(iii) f is compatible with the Kp-level structure (at places that divides N) (we remark that f is
an isomorphism on Tq(Ai) when q 6= ` is a prime);

(iv) f is compatible with the filtration given by the Iwahori structure at p;
(v) the type of f is given by the double class G(Z`)γG(Z`).

Remark 8.1. The space Cγ does not depend on γ, only on the double class G(Z`)γG(Z`).
We could similarly define Cγ without Iwahori level at p (i.e. for YG(Zp)Kp) without the

condition that f is compatible with the filtration given by the Iwahori structure at p. In our
case, this Iwahori structure at p will always be the canonical one, and thus f is automatically
compatible as it sends the canonical filtration of A1 in the one of A2.

Denote by pi : Cγ −→ Y the two (finite) maps that sends f to Ai. Denote by Cγ(pn) the fiber
product with p1 of Cγ with Y1(pn)(v) −→ Y(v) ⊂s YIw(p)(v), where s is the canonical filtration
of A[p]. Denote by f the universal isogeny over Gγ(pn). It induces an O-linear isomorphism,

p∗2(Fτ ⊕Fστ ) −→ p∗1(Fτ ⊕Fστ ).

In particular, we get a B(Zp)Bw-equivariant isomorphism,

f∗ : p∗2ĨW
+

w,|Y1(pn)(v)
∼−→ p∗1ĨW

+

w,|Y1(pn)(v).

We can thus form the composite morphism,

H0(Y1(pn)(v),O
ĨW

+

w

)
p∗2−→ H0(Cγ(pn)(v), p∗2OĨW+

w

)
(f∗)−1

−→ H0(Cγ(pn)(v), p∗1OĨW+

w

)

Tr(p1)
−→ H0(Y1(pn)(v),O

ĨW
+

w

).

As f∗ is an isomorphism, it sends bounded functions to bounded functions, and we can make the
following definition.

Definition 8.2. Let κ ∈ Ww(K) a weight. We define the Hecke operator,

Tγ : Mκ†
v,w −→ Mκ†

v,w,

as the restriction of the previous operator to the bounded, κ-equivariant sections under the action
of B(Zp)Bw. It induces an operator,

Tγ : Mκ† −→ Mκ†.

Definition 8.3. Define H to be the commutative Z -algebra generated by all operators Tγ for
all ` 6 | Np and all double classes γ. These operators commute on overconvergent forms, and thus
H acts on them.
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8.2 Hecke operator at p
Here we stress that, as in the previous sections, the prime p is inert in E. We will define a first
Hecke operator at p, Up. Define C the moduli space over K which parametrizes data (A, λ, i, η, L)
where (A, λ, i, η) ∈ XK(v) and L ⊂ A[p2] is a totally isotropic O-module for λ (i.e. L ⊂ L⊥ :=

(G[p2]/L)D ⊂ G[p2]D
λ' G[p2]) of O-height p3 (and thus L = L⊥) such that

L[p]⊕H1
τ = A[p] and pL⊕H1

στ = A[p].

As remarked by Bijakowski in [Bij16], the second condition is implied by the first one and the
isotropy condition. We then define two projections,

p1, p2 : C −→ XK ,

where p1 is the forgetful map which sends (A, λ, i, η, L) to (A, λ, i, η, L) and p2 sends (A, λ, i, η, L)
to (A/L, λ′, i′, η′). To compare the correspondence with the canonical filtration we will need the
following lemma.

Lemma 8.4. Let p > 2 and G be a p-divisible O-module of unitary type and signature (2, 1).
Let H be a sub-O-module of p-torsion and of O-height 1. Then the two following assertions are
equivalent:

(i) Degτ (H) > 1 + p− 1
2 ;

(ii) haτ (G) < 1
2 and H is the canonical subgroup of G[p] associated to τ .

Let H be a sub-O-module of p-torsion and of O-height 2. Then the two following assertions are
equivalent:

(i) Degστ (H) > p+ 2− 1
2 ;

(ii) haτ (G) < 1
2 and H is the canonical subgroup of G[p] associated to στ .

In both cases we can be more precise: if v = 1 + p−Degτ (H) (respectively 2 + p−Degστ (H)),
then haτ (G) 6 v.

Proof. In both cases we only need to prove that the first assumption implies the second, by the
existence theorem of the canonical filtration (haτ (G) = haστ (G)). Moreover, we only have to prove
that haτ (G) < 1

2 , because then G[p] will have a canonical filtration, and in both cases, H will be
a group of this filtration because it will correspond to a break-point of the Harder–Narasimhan
filtration (for the classical degree, as we only care about filtration in G[p]). Let us do the second
case, as it is the most difficult one (the first case can be treated similarly, even using only technics
introduced in [Far11]). Let v = 2 + p − Degστ (H). We can check that degστ (H) > 2 − v, thus
degστ (HD) < v, and thus, for all ε > 1− v, if E = G[p]/H, then

ωGD,στ,ε ' ωED,στ,ε.

But then the cokernel of αE,στ,ε⊗1 is of degree (1/(p2 − 1)) Degστ (E) (E is a Raynaud subgroup
of type (p . . . p)), and the following square is commutative,

G[p](OK)

αG,στ,ε

��

// E(OK)

αE,στ,ε

��
ωG[p]D,στ,ε

∼ // ωED,στ,ε
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and thus, in particular, deg Coker(αE,στ,ε ⊗ 1) = deg Coker(αG[p],στ,ε ⊗ 1). But according to
[Her19, Proposition 5.25], we can check that the image of αG[p],στ is always included inside
uphaστ (G)/(p2−1)Fp2 + p1/p2OC/p ⊂ ωG[p]D,στ ' OC/p for some u ∈ O×C . Rewriting the inequality
with Degστ (E) = Degστ (G[p])−Degστ (H) we get

min

(
haτ (G),

p2 − 1

p2

)
6 2 + p−Degστ (H) = v,

but as v < 1
2 < 1− 1/p2 we get haτ (G) 6 v. 2

Thus, we can deduce the following,

Lemma 8.5. Let (A, λ, i, η, L) as before with corresponding (A, λ, i, η) ∈ X(v) and v <
1/2(p2 + 1). Then A/L ∈ X(v), and A[p2]/L coincides with the group K1(A/L).

Proof. By hypothesis on L, the map,

H1
τ −→ A[p]/L[p],

is an isomorphism on generic fiber, thus Degτ (A[p]/L[p]) > Degτ (H1
τ ) > 1 + p − v. Thus by

the previous lemma, we get that, haτ (A/L) 6 v and moreover A[p]/L[p] coincide with the first
canonical subgroup associated to τ . Moreover, we deduce that degA[p]/L[p] > 2−v. Now consider
the composite map,

H2
στ −→ A[p2]/L −→ (A[p2]/L)/(A[p]/L[p]) = Q.

Because H1
στ is sent inside A[p]/L[p], we get the factorization,

H2
στ/H

1
στ −→ Q.

This is a generic isomorphism by the second hypothesis on L, and thus Degστ (Q) >
Degστ (H2

στ/H
1
στ ). But by construction, H2

στ/H
1
στ is the canonical subgroup (for στ) of A/H1

στ

and thus Degστ (H2
στ/H

1
στ ) > p + 2 − haστ (A/H1

στ ), and haστ (A/H1
στ ) 6 p2 haστ (A) (this is

[Her19, Proposition 8.1]), and this implies that degQ > 3− p2v. Using the exact sequence,

0 −→ A[p]/L[p] −→ A[p2]/L −→ Q −→ 0,

we get that degA[p2]/L > 5 − p2v − v. A similar argument also shows that degK1(A/L) >
5 − (p2 + 1) haτ (A/L). But using Bijakowski’s proposition recalled in [Her19, Proposition A.2],
we get that if 2(p2 + 1)v 6 1, then A[p2]/L = K1(A/L). 2

Lemma 8.6. Suppose v < 1/2p4. Let G/ Spec(OC) be a p-divisible group such that haτ (G) < v,
then K1 ⊂ G[p2] coincides over OC/p1/2p2

with KerF 2 ⊂ G[p2]. In particular,

haτ (G/K1) = p2 haτ (G).

Proof. This is Appendix B. 2

Proposition 8.7. Let v < 1/2p4. The Hecke correspondence Up defined by the two previous
maps preserves X(v). More precisely, if y ∈ p2(p−1

1 ({x})) where x ∈ X(v), then y ∈ X(v/p2).

Proof. The proof follows from the two previous lemmas as (A/L)/(A[p2]/L) = A. 2
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Denote the universal isogeny over C by

π : A −→ A/L,

which induces maps ωA/L,τ
π?τ−→ ωA,τ and ωA/L,στ

π?στ−→ ωA,στ . We define

π̃? : p∗2T ×an −→ p∗1T ×an

with π̃? = π̃?τ⊕π̃?στ by π̃?τ = π?τ , and π̃?στ sends a basis (e1, e2) of ωA/L,στ to ((1/p)π?e1, π
?e2).

This is an isomorphism.
We will need to slightly change the objects as in [AIP15, Proposition 6.2.2.2].

Definition 8.8. Denote by w0 = m − ((p2m − 1)/(p2 − 1))v and for w = (w1,1, w2,1, w2,2, wσ),
define IW0,+

w as the subspace of T ×/Uan (over X1(pn)(v)) of points for a finite extension L of
K consisting of (A,ψN ,Filστ , P

στ
1 , P στ2 , P τ ) such that there exists a polarized trivialization ψ of

KD
m satisfying:

(i) Filστ is (w0, ψ)-compatible with Hm
τ ;

(ii) P στ1 = a1,1 HTστ,w0(ψ(e1)) + a2,1 HTστ,w0(ψe2) (mod pw0Fστ );
(iii) P στ2 = a2,2 HTστ,w0(ψ(e2)) (mod pw0Fστ + Filστ );
(iv) Pτ = tHTτ,w0(ψ(e2)) (mod pw0Fτ ),

where a1,1 ∈ B(1, pw1,1), a2,2 ∈ B(1, pw2,2), t ∈ B(1, pwσ), a2,1 ∈ B(0, pw2,1).

Let w as before, with w2,1, w2,2 < m − 1 − ((p2m − 1)/(p− 1))v. Write w′ = (w1,1, w2,1 + 1,

w2,2, wσ).

Proposition 8.9. The quotient map,

π̃?
−1

: p∗1T ×an/Uan −→ p∗2T ×an/Uan

sends p∗1IW
0,+
w to p∗2IW

0,+
w′ (i.e. improves the analycity radius).

Proof. Let x = (A,ψN , L) be a point of C. Let (e1, e2) be a basis of KD
m (pmO/p2mOe1 ⊕

O/p2mOe2 = KD
n ) and denote by (e′1, e

′
2) a similar basis for A/L such that if x1, x2 and x′1, x′2

denote the dual basis then πD : K
′,D
m −→ KD

m in these basis is given by(
p

1

)
.

Let (Fil′, w′) ∈ p∗2T ×an/Uan. As πD is a generic isomorphism on the multiplicative part, it is enough
to check the proposition on Fστ . Suppose π̃∗(Fil′, w′) = (Fil, w) ∈ p∗1IW

0,+
w , which means (on the

στ -factor),
1

p
π∗w′1 ∈ a1,1 HTστ,w(e1) + a2,1 HTστ,w(e2) + pw0Fστ ,

π∗w′2 ∈ a2,2 HTστ,w(e2) + pw0Fστ + Fil1.
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But then,

π∗w′1 ∈ pa1,1 HTστ,w(e1) + pa2,1 HTστ,w(e2) + pw0+1Fστ
= a1,1 HTστ,w(πDe′1) + pa2,1 HTστ,w(πDe′2) + pw0+1Fστ ,

and thus, as pF ⊂ π∗F ′,

w′1 ∈ a1,1 HTw,στ (e′1) + pa2,2 HTw,στ (e′2) + pw0F ′,

w′2 ∈ a2,2 HTw,στ (e′2) + Fil′+pw0−1F ′.
As w2,2 6 w0 − 1 we get the result. 2

Suppose v < 1/2(p2 + 1), and define ωκ†w′ = g∗IW0,+
w′ [κ]. Suppose w < m − 1 −

(((p2m − 1))/((p2 − 1)))v. We can then look at the following composition,

H0(Y(v/p2), ωκ†w′)
p?2−→ H0(C, p∗2ω

κ†
w )

(π̃?)−1

−→ H0(C, p∗1ω
κ†
w )

(1/p3) Trp1−→ H0(Y(v), ωκ†w ),

where w′2,1 = w + 1 (we remark that if κ is (w + 1)-analytic, there is an isomorphism between
g∗IW0,+

w′ [κ] and ωκ†w2,1).

Remark 8.10. The normalization of the Trace map is the same as in [Bij17], the normalization
of π? giving a factor p−k2 on algebraic weights.

Definition 8.11. Suppose v < 1/2(p2 + 1). The operator Up is defined as the previous
composition on bounded functions precomposed by H0(Y(v), ωκ†w ) ↪→ H0(Y(v/p2), ωκ†w′). In

particular it is compact as H0(Y(v), ωκ†w ) ↪→ H0(Y(v/p2), ωκ†w′) is.

Proposition 8.12. Let L be a finite extension of K, and x, y ∈ X(v)(L) such that y ∈
p2(p−1

1 (x)), and let κ be a ω-analytic character. Then Up is identified with δ, i.e. there is a
commutative diagram as follows.

(ωκ
′†
w )y

��

(π̃?)−1

// (ωκ
′†
w )x

��
V w-an

0,κ′,L
δ // V w-an

0,κ′,L

We can also define an operator Sp, by considering the two maps,

p1, p2 : XIw(p) −→ XIw(p)

defined by p1 = id and p2(A,Fil(A[p])) = (A/A[p], p−1 Fil(A[p])/A[p]). The map p2 corresponds
to multiplication by p on ω and the universal map π : A −→ A/A[p] over XIw(p) induces a map,

π∗ = p∗2T ×an −→ T ×an .

Define π̃∗ = (1/p)π∗ and consider the operator,

H0(XIw(p), ω
κ†
w )

p∗2−→ H0(XIw(p), p
∗
2ω

κ†
w )

π̃∗
−1

−→ H0(XIw(p), ω
κ†
w ).

The map π∗ preserves the Hasse invariant (as A[p∞]/A[p] ' A[p∞]) and sends the canonical
filtration, if it exists, to itself (if v < 1/4p). In concrete terms, on the classical sheaf ωκ′ ⊂ ωκ†, if we
write κ′ = (k1, k2, k3) ∈ Z3 (and thus κ = (−k2,−k1,−k3)) the previous composition corresponds
to a normalization by p−k1−k2−k3 of the map that sends f(A, dzi) 7→ f(A, pdzi).
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Definition 8.13. Define also the Hecke operator Sp to be the previous composition. The
operator Sp is invertible as p is invertible in T ×.

We define the Atkin–Lehner algebra at p as A(p) = Z[1/p][Up, S
±1
p ]. It acts on the space of

(classical) modular forms too.

Classically it is also possible to define geometrically operators Up and Sp at p on classical
modular forms of Iwahori level at p, and they obviously coincide with ours through the inclusion of
classical forms to overconvergent ones. It is actually proven in [Bij16] that these Hecke operators
preserve a strict neighborhood of the canonical-µ-ordinary locus of XI , given in terms of the
degree.

Remark 8.14. Because of the normalization, the definition of the Hecke operator slightly differs
with the one by convolution on automorphic forms. The reason is that the Hodge–Tate or
automorphic weights do not vary continuously in families. This is already the case in other
constructions. Let us be more specific. Let f ∈ H0(XIw,K , ω

κ) a classical automorphic form of
weight κ = (k1, k2, k3) and Iwahori level at p. To f , as explained in Proposition 2.6 is associated
a (non-scalar) automorphic form Φf (and a scalar one ϕf whose Hecke eigenvalues are the
same as the one of Φf ). The Hecke action on f and Φf is equivariant for the classical (i.e.
non-renormalized) action at p, more precisely at p if we denote Sp and Up the previous (normalized
operators) the classical ones are Sclass

p = p|k|Sp and U class
p = pk2Up. The operators Sclass

p and U class
p

correspond to the two matrices,p p

p

 and

p2

p

1

 ∈ GU(2, 1)(Qp).

Their similitude factor is in both cases p2 = N(p). Let f ∈H0(XIw,K , ω
κ) be a classical eigenform

that is proper for the Hecke operator Up and Sp, of respective eigenvalues µ, λ, then ϕf has
eigenvalues for the corresponding (non-normalized) Hecke operators at p, pk2µ and pk1+k2+k3λ.

8.3 Remarks on the operators on the split case
When p splits in E, the eigenvariety for U(2, 1)E is a particular case of Brasca’s construction
(see [Bra16]). Unfortunately as noted by Brasca, there is a slight issue with the normalization of
the Hecke operators at p constructed in [Bra16, § 4.2.2], where there should be a normalization
in families that depends on the weights, as in [Bij16, § 2.3.1] for classical sheaves (without this
normalization Hecke operators do not vary in family). More explicitly on the split Picard case,
we have four Hecke operators at p (Bijakowski only consider two of them, which are relevant
for classicity), written Ui, i = 0, . . . , 3, following [Bij16, § 2.3.1] (allowing i = 0 and i = 3). The
normalization are the following on classical weights,

U0 =
1

pk3
U c0 , U1 = U c1 , U2 =

1

pk2
U c2 , U3 =

1

pk1+k2
U c3 ,

where U ci denotes the classical Hecke operators, and we choose a splitting of the universal p-
divisible group A[p∞] = A[v∞]×A[v∞] and A[v∞] = A[v∞]D, where v coincide with τ∞ through
the fixed isomorphism C ' Qp. Thus G = A[v∞] has height 3 and dimension 1, and modular
forms of weight κ = (k1 > k2, k3) ∈ Z3

dom are sections of

Symk1−k2 ωGD ⊗ (detωGD)k2 ⊗ ω⊗k3
G .
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8.4 Classicity results
In this section, we will prove a classicity result. As in [AIP15], this is realized in two steps. First
show that a section inM †κ is actually a section of ωκ′ over X(v) (this is called a result of classicity
at the level of sheaves), then we show that this section extends to all XIw, but this is done in
[Bij16].

If n is big enough, there is an action of Ipn ⊂ GL2×GL1 on IW0,+
w which can be derived as

an action of U(g) on OIW0,+
w

denoted by ?. As in § 4, let κ = (k1, k2, r) be a classical weight, and
we denote by dκ the map,

f ∈ OIW0,+
w
7→ Xk1−k2+1 ? f,

which sends ωκ†w to ω(k2−1,k1+1,r)†
w .

Proposition 8.15. Let κ= (k1, k2, r) be a classical weight. There is an exact sequence of sheaves
on X(v),

0 −→ ωκ
′ −→ ωκ†w

dκ−→ ω(k2−1,k1+1,r)†
w .

Proof. This is exactly as in [AIP15, Proposition 7.2.1] (we do not need assumption on w as V 0,w-an
κ,L

is isomorphic to analytic functions on one ball only, and Jones’ theorem applies [Jon11]). 2

Proposition 8.16. On ωκ†w we have the following commutativity,

Up ◦ dκ = p−k1+k2−1dκ ◦ Up.

In particular, if H0(X(v), ωκ†w )<k1−k2+1 denotes the union of generalized eigenspaces for

eigenvalues of slope smaller than k1−k2 +1, and f ∈H0(X(v), ωκ†w )<k1−k2+1, then f ∈H0(X(v),
ωκ
′
).

Proof. We can work étale-locally, in which case by the previous results on ωκ†w locally the first
part reduces to § 4. Now, if f is a generalized eigenvector for Up of eigenvalue λ of slope (strictly)
smaller than k1 − k2 + 1, then dκf is generalized eigenvector of slope λp−k1+k2−1 which is of
negative valuation, but this is impossible as Up (and étale-locally δ) is of norm strictly less
than 1. Thus dκf = 0 and f is a section of ωκ. 2

The previous result is sometimes referred to as a classicity at the level of sheaves. Moreover,
we have the following classicity result of Bijakowski [Bij16].

Theorem 8.17 (Bijakowski). Let f be an overconvergent section of the sheaf ωκ, κ = (k1 > k2,
k3), which is proper for Up of eigenvalue α. Then if

3 + v(α) < k2 + k3,

then f is a classical form of weight κ and level KpI.

9. Constructing the eigenvariety

In this section we will construct the eigenvariety associated to the algebraH⊗A(p) and the spaces
of overconvergent modular forms M †κ. In order to do this, we will use Buzzard’s construction of
eigenvarieties, and we need to show that the spaces M †κ (and a bit more) are projective. The
method of proof follows closely the lines of [AIP15], but as this case is simpler (because the
toroidal compactification is) we chose to write the argument in details.
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9.1 Projection to the minimal compactification
Definition 9.1. Let X∗ be the minimal compactification of Y as a (projective) scheme over
Spec(O). There is a map

η : X −→ X∗,

from the toroidal to the minimal compactification. Denote by X∗rig the rigid fiber and X∗(v) the
image of X(v) in X∗rig. If v ∈ Q this is an affinoid as X∗ord is (detω is ample on the minimal
compactification). Denote also by D the boundary in the toroidal compactification X, and by
abuse of notation in X1(p2m) and X1(p2m)(v).

The idea to check that our spaces of cuspidal overconvergent modular forms are projective
is to push the sheaves to X∗(v), which is affinoid, and use the dévissage of [AIP15, Proposition
A.1.2.2]. But we need to show that the pushforward of the family of sheaves wκ0,un

w (−D) is a
small Banach sheaf. In order to do this, we will do as in [AIP15] and prove that the pushforward
of the trivial sheaf has no higher cohomology, and we will need to calculate this locally.

9.1.1 Description of the toroidal compactification. Let V = O3
E with the hermitian form

〈 , 〉 chosen in the datum. For all totally isotropic factor V ′, we denote by C(V/(V ′)⊥) the cone
of symmetric hermitian semi-definite positive forms on (V/(V ′)⊥) ⊗Z R with rational radical.
Denote by C the set of such V ′, and

C =
∐

V ′∈C non-zero

C(V/(V ′)⊥).

Remark 9.2. The subspaces V ′ are of dimension 1 (if non-zero), and C(V/(V ′)⊥) ' R+.

Fix ψN -level N structure,
ψN : (OE/NOE)3 ' V/NV,

and ψ of level p2m,
ψ : OE/p2me1 ⊕ pmOE/p2me2 ⊂ V/p2mV.

Let Γ ⊂ G(Z) be the congruence subgroup fixing the level outside p, and Γ1(p2m) fixing ψN
and ψ. Suppose that N is big enough so that Γ is neat. Fix S a polyhedral decomposition of
C which is Γ-admissible: on each C(V/(V ′)⊥) = R+ there is a unique polyhedral decomposition
and thus there is a unique decomposition S and it is automatically Γ (or Γ1(p2m))-admissible,
smooth, and projective.

Recall the local charts of the toroidal compactification X. For each V ′ ∈ C non-zero, we have
a diagram,

MV ′

""

//MV ′,σ

{{
BV ′

��
YE

where YE is the moduli space of elliptic curves with complex multiplication by OE of principal
level N structure. Denote by E the universal elliptic curve. Then BV ′ = Ext1(E ,Gm ⊗ OE)
is isogenous to tE , and is a Gm-torsor, MV ′ −→ BV ′ is a Gm-torsor; it is the moduli space of
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principally polarized 1-motives, with ψN -level structure, andMV ′ −→MV ′,σ is an affine toroidal
embedding associated to the cone decomposition of C(V/(V ′)⊥), locally isomorphic over BV ′ to
Gm ⊂ Ga.

Over BV ′ we have a semi-abelian scheme of constant toric rank,

0 −→ Gm ⊗Z OE −→ G̃V ′ −→ E −→ 0.

Denote by ZV ′ the closed stratum ofMV ′,σ.
Recall that X is the toroidal compactification of our moduli space Y (it is unique as the

polyhedral decomposition S is), as defined in [Lar92] or [Lan13] in full generality, and X∗

is the minimal compactification. The toroidal compactification X is proper and smooth, and
X∗ is proper. Moreover, we have a (proper) map,

η : X −→ X∗.

Moreover, η is the identity on Y . As sets,X∗ is a union of Y to which we glue points corresponding
to elliptic curves with complex multiplication, one for each component of D, the boundary of X,
and, over each x ∈ X∗\Y , η−1(x) is a CM elliptic curve.

Denote by M̂V ′,σ the completion of MV ′,σ along the closed stratum ZV ′ . On X there is a
stratification indexed by C/Γ (the open subset Y corresponds to V ′ = {0}). For all non-zero V ′,
the completion of X along the V ′ stratum is isomorphic to M̂V ′,σ, as ΓV ′ , the stabilizer of V ′,
is trivial: V ′ ' OE so ΓV ′ ⊂ O×E , which is finite as E is quadratic imaginary, and thus because Γ
is neat, ΓV ′ = {1}.

As the Hasse invariant on the special fiber of X is defined as the one of the abelian part
of the semi-abelian scheme, we can identify it with the same one on MV ′,σ, which comes from
the special fiber of YV ′ ' YE . Denote by Y, X the formal completions of Y,X along the special
fiber. We have defined X(v) −→ X as an open subset of a blow up. We will describe its boundary
locally. Denote by Y(v) the inverse image of Y. Denote by:

– YE the formal completion along p of YV ′ ;
– YE(v) the open subset of YE(v) along I = (pv,Haτ ) where I is generated by Haτ , but as

every CM elliptic curve is µ-ordinary, YE(v) = YE ;
– BV ′ the formal completion of BV ′ ;
– and define MV ′ ,MV ′,σ,ZV ′ similarly.

Proposition 9.3. The formal scheme X(v) has a stratification indexed by C/Γ, and the stratum

corresponding to V ′ is isomorphic to ZV ′ if V ′ is non-zero, and Y(v) if V ′ = {0}. For all non-zero

V ′ ∈ C the completion of X(v) along the V ′ stratum is isomorphic to M̂V ′,σ (completion along

ZV ′).

Proof. We complete and pull back the stratification of X. The analogous result on X is true since
we can invert the completion along p and the stratum. If V ′ 6= 0, it is simply that the boundary
of X is inside the µ-ordinary locus. For V ′ = 0 the stratum is the pull back of Y inside X(v), i.e.
Y(v). 2

We used the space X1(p2m) in the previous sections, and we would like to describe its
boundary.
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Let C′ be the subset of V ′ ∈ C such that Im(ψ) ⊂ (V ′)⊥/p2m(V ′)⊥. The (unique) polyhedral
decomposition previously considered induces also a (unique) polyhedral decomposition on∐

V ′∈C′ non-zero

C(V/(V ′)⊥),

which is Γ1(p2m) admissible.
For V ′ ∈ C′ non-zero, decompose

0 −→ V ′/p2m −→ (V ′)⊥/p2m −→ (V ′)⊥/(V ′ + p2m(V ′)⊥) −→ 0,

and denote byW the image in (V ′)⊥/(V ′+p2m(V ′)⊥) of ψ(O/p2m⊕pmO/pm). This is isomorphic
to O/pm. Indeed, as (V ′)⊥ contains e1, p

me2 modulo p2m, (V ′)⊥/p2m = O/p2m(e1, e2). Then
V ′ = V ′/p2m is totally isotropic inside, i.e. generated by ae1 + be2 where pm|b (totally isotropic)
and a ∈ O× (direct factor). Thus the image of ψ is generated in (V ′)⊥/(V ′ + p2m(V ′)⊥) by the
image of e1 = a−1be2 which is pm-torsion.

We specify the following.

(i) Denote by YV ′ the rigid fiber of YV ′ .
(ii) Denote by Hm,V ′ the canonical subgroup of level m of the universal elliptic scheme EV ′ over

YV ′ .
(iii) Denote by Y1(pm)V ′ the torsor IsomYV ′ ((Hm,V ′)

D,W∨), and ψV ′ the universal isomorphism.
(iv) Denote by Y1(pm) the normalization of YV ′ in Y1(pm)V ′ .
(v) There is an isogeny i : BV ′ −→ EV ′ , and if we write i′ : EV ′ −→ EV ′/Hm,V ′ , set

B1(pm)V ′(v) = BV ′ ×i,E,i′ EV ′/Hm,V ′ .

(vi) Denote by M1(pm)V ′ ,M1(pm)V ′,σ,Z1(pm)V ′,σ the fibered products of the corresponding
formal schemes with B1(pm)V ′ over BV ′ .

Proposition 9.4. The formal scheme X1(p2m)(v) has a stratification indexed by C′/Γ1(p2m),
for all non-zero V ′, the completion of X1(p2m)(v) along the V ′-stratum is isomorphic to the

completion M̂1(p2m)V ′,σ along Z1(p2m)V ′ .

Proof. This is known in rigid fiber, with the same construction, but the previous local charts are
normal, and thus coincide with the normalization in their rigid fiber of the level Γ-charts. Thus
M1(p2m)V ′,σ is the normalization of MV ′,σ inM1(p2m)V ′,σ. But the completion of M1(p2m)V ′,σ

along Z1(p2m)V ′,σ coincides with the normalization of M̂V ′,σ
V ′

= X̂(v)
V ′

inside M1(p2m)V ′,σ =

̂X1(pn)(v)
V ′

. 2

9.2 Minimal compactification
Let X∗ be the minimal compactification of Y of level Γ. As a topological space, it corresponds
to adding a finite set of points to Y , corresponding to CM elliptic curves. X∗ is also stratified by
C/Γ. Let x ∈ X∗\Y a geometric point of the boundary, it corresponds to a point x ∈ YE .

Using the previous description of X, we can describe the local rings of X∗. Let V ′ ∈ C be
non-zero. Over BV ′ ,MV ′ is an affine Gm-torsor, and we can thus write

MV ′ = SpecBV L,
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where L is a quasi-coherent OBV ′ -algebra endowed with an action of Gm, that can be decomposed,

L =
⊕
k∈Z
L(k).

For all k, L(k) is locally free of rank 1 over BV ′ . Denote by B̂V ′;x the completion of BV ′ along
the fiber over x. We have the following proposition.

Proposition 9.5. The scheme X∗ is stratified by C/Γ and η : X −→ X∗ is compatible with
stratifications. Moreover, for all V ′, X∗V ′ is isomorphic to YV ′ and for all x ∈ X?

V ′ a geometric
point,

ÔX∗,x =
∏
k∈Z

H0(B̂V ′,x,L(k)),

where ÔX∗,x is the completion of the strict henselisation of OX∗ at x.

Proof. This is Serre’s theorem on global sections of the structure sheaf on proper schemes (as η is
proper and X∗ is normal), the theorem of formal functions and the previous description of X. 2

The Hasse invariant haτ descends to the special fiber of X∗, and we can thus define X∗ the
formal completion of X∗ along its special fiber and X∗(v) the normalization of the open subspace
of the blow up of X∗ along (pv,haτ ) where this ideal is generated by haτ .

Proposition 9.6. For all V ′ ∈ C the V ′-strata of X∗(v) is YV ′(v) (and YE if V ′ is non-zero).

Proof. This is known before the blow up, and thus for V ′ non-zero as the boundary is contained
in the µ-ordinary locus. But for V ′ = 0 this is tautologous. 2

9.3 Higher cohomology and projectivity of the space of overconvergent
automorphic forms

We will look at the following diagram.

X1(pn)(v)
η

%%

π4 // X(v)

π
{{

X∗(v)

Proposition 9.7. Let D be the boundary of X1(p2m)(v). Then for all q > 1

Rqη∗OX1(p2m)(v)(−D) = 0.

Proof. It is enough to work locally at x a geometric point of the boundary of X∗(v), and by the
theorem of formal functions,

̂(η∗OX1(p2m)(v)(−D))x = Hq( ̂X1(p2m)(v)
η−1(x)

,O
̂X1(p2m)(v)

η−1(x)(−D)).

We will thus show that the right-hand side is zero. But the completion ̂X1(p2m)(v)
η−1(x)

is

isomorphic to a finite disjoint union of spaces of the form ̂M1(p2m)V ′,σ
y
for y a geometric point

in YE . Denote by Mσ this completed space. As

Mσ = Spf ̂B1(pm)V ′

(⊕̂
k>0

L(k)
)
,
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and thus the morphism,
Mσ −→ ̂B1(pm)V ′ ,

is affine, we have the equality,

Hq(Mσ,O(−D)) =
∏
k>0

Hq( ̂B1(pm)V ′ ,L(k))

(the product is over k > 0 as we take the cohomology in O(−D)). But for k > 0, L(k) is very
ample on the elliptic curve B1(pm)V ′ , and thus Hq( ̂B1(pm)V ′ ,L(k)) = 0 for all q > 0. 2

Theorem 9.8. For m > l two integers, we have the following commutative diagram,

X1(pn)(v)l

ηl
��

i // X1(pn)(v)m

ηm

��
X∗(v)l

i′ // X∗(v)m

and the following base change property is satisfied,

i′∗((ηm)∗w
κ0†
w,m(−D)) = (ηl)∗w

κ0†
w,l (−D).

In particular, η∗w
κ0†
w (−D) is a small Banach sheaf on X∗(v). The same result is true over X∗(v)×

W(w)0 for

(η × 1)∗w
κ0,un†
w (−D).

Proof. We can just restrict to l = m−1, but as inductive limit and direct image commute, and as
the kernel wκ0,un†

w,m −→ wκ0,un†
w,m−1 is isomorphic to wκ0,un†

w,1 which is itself a direct limit of sheaves with
graded pieces isomorphic to OX1(pm)/π (see Corollary C.5) and thus by the previous proposition
we have the announced equality. We can thus use [AIP15, Proposition A.1.3.1] which proves that
(η × 1)∗w

κ0,un†
w is a small formal Banach sheaf (recall that η is proper). 2

Proposition 9.9. Let w > 0. Write W(w)0 = Spf(A). Then

Mκ0,un†,cusp
v,w = H0(X∗(v)×W(w)0, (η × 1)∗ω

κ0,un†
w (−D))

is a projective A[1/p]-Banach module. Moreover the specialization map, for κ ∈ W(w)0,

Mκ0,un†,cusp
v,w −→ H0(X∗(v), η∗ω

κ†
w (−D)),

is surjective.

Proof. This is proved exactly as in [AIP15, Corollary 8.2.3.2]. Let us sketch the ideas. Fix
(Ui)1>i>r a (finite) affine covering of X∗(v), and for i = (i1, . . . , is) ∈ {1, . . . , r}s denote by Ui the
intersection Ui1 ∩ . . .Uis . Then

Mi,∞ = H0(Ui ×W(w)0, (η × 1)∗w
κ0,un†
w (−D)),

is isomorphic to the p-adic completion of a free A-module (i.e. is orthonormalizable). This is
essentially Corollary C.5 and topological Nakayama’s lemma. But then, as X∗(v) is affinoid, the
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Cech complex after inverting p is exact and thus [AIP15, Theorem A.1.2.2] provides a resolution of
Mκ0,un†,cusp
v,w by theMi,∞[1/p], and thusMκ0,un†,cusp

v,w is projective. For the surjectivity assertion, fix
pκ the maximal ideal of A[1/p] corresponding to κ and consider the Koszul resolution of A[1/p]/pκ.
Tensoring this for each i with η∗wκ0,un†(−D)(Ui) gives a resolution of η∗w

κ†
w (−D)(Ui). This gives

a double complex where each column (for a fixed index of the Koszul complex) is exact. But
each line (for a fixed i non-trivial) is also exact by the previous acyclicity, and thus we have the
following bottom right square,

which proves that πκ is surjective. 2

Proposition 9.10. Write Spm(B) =W(w). Then the B-module

H0(X (v)×W(w), ωκ
un†
w (−D))

is projective. Moreover, for every κ ∈ W(w), the specialization map,

H0(X (v)×W(w), ωκ
un†
w (−D)) −→ H0(X (v), ωκ†w (−D)),

is surjective.

Proof. We can identify the B-module,

M ′ = H0(X (v)×W(w), ωκ
un†
w (−D)),

with (Mκ0,un†,cusp
v,w ⊗A[1/p] B(−κun))Bn . But now Bn is a finite group, and B is of characteristic

zero, thusM ′ is a direct factor in a projective B-module, and is thus surjective. Moreover, as Bn is
finite, the (higher) group cohomology vanishes, and the specialization map remains surjective. 2

9.4 Types
Let Kp

f be a compact open subgroup of G(Apf ). Let Kf = Kp
f I where I ⊂ G(Qp) is the Iwahori

subgroup. Fix (J, VJ) a complex continuous irreducible representation of Kf , trivial at p and
outside a level N , it is of finite dimension and finite image, and thus defined over a number field.
Denote by K0 ⊂ Kf its Kernel.

Definition 9.11. The space of Picard modular forms of weight κ, v-overconvergent, w-analytic,
of type (Kf , J) is

HomKf (J,H0(X (v), ωκ†w )).

The space of overconvergent locally analytic Picard modular forms of weight κ and type (Kf , J)
is then

M
†,(Kf ,J)
κ = HomKf

(
J, lim−→
v→0,w→∞

)
H0(X (v), ωκ†w ).
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Remark 9.12. In the beginning of this section we made the assumption that the level Γ, outside
p, is big enough (‘neat’). But using the previous definition we can get rid of this assumption by
taking Kp

f big enough to have the neatness assumption, and take J the trivial representation to
descend our families for any level outside p, as the following proposition shows.

Proposition 9.13. The space

M (K,J),κun†
cusp,v,w := HomKf (J,H0(X (v)×W(w), ωκ

un†
w (−D))),

is a projective OW(w)-module, and the specialization map is surjective.

Proof. Suppose K(N) = K ⊂ K0 = Ker(J) is neat (outside p, up to enlarging it). Then we have
shown that, in level K,

H0(X (v)×W(w), ωκ
un†
w (−D)),

is projective, and that the corresponding specialization map is surjective. We can thus twist the
Kf/K action by V ∗J and take the invariants over J ; as Kf/K is finite, the space is a direct factor
inside H0(X (v)×W(w), ωκ

un†
w (−D))⊗ V ∗J and higher cohomology vanishes. 2

Remark 9.14. The same argument applies when p splits in E, for the spaces of overconvergent
modular forms defined in [Bra16, AIP15]. In particular we can construct families of
Picard modular forms with fixed type when p is unramified.

9.5 Eigenvarieties
Theorem 9.15. Let p be a prime number, unramified in E. Let W be the p-adic weight space
of U(2, 1). When p is inert, it is defined in § 3, and when p splits it is a disjoint union of three-
dimensional balls over Qp. Fix (KJ , J) a type outside p, K ⊂ Ker J a neat level outside p, and
let S be the set of places where K is not compact maximal or p. There exists an equidimensional,
of dimension 3, eigenvariety E and a locally finite map,

w : E −→W,

such that for any κ ∈ W, w−1(κ) is in bijection with eigensystems for TS ⊗Z A(p) acting on the
space of overconvergent, locally analytic, modular forms of weight κ and type-level (KJ , J) (and
Iwahori level at p), finite slope for Up.

Proof. If p is split this is a particular case of the main result of [Bra16] (taking into account the
previous remark and the normalization of the Hecke operators). If p is inert, this is a consequence
of Buzzard and Coleman’s machinery [Buz07] using for all compatible v, w (W(w),M

(K,J),κun†
cusp,v,w ,

Up,HNp ⊗A(p)) and gluing along v, w. 2

9.6 Convention on weights
As in [BC04], we set as convention the Hodge–Tate weight of the cyclotomic character to be −1.
Fix an isomorphism C ' Qp compatible with the inclusions E ⊂ C that extend τ∞ and denote
by τ, στ the p-adic places at p inert corresponding to τ∞, cτ∞. If p is split, we will instead call
v, v the places corresponding to τ∞, cτ∞, but in this section we focus on p inert, even if a similar
result hold with v, v.

Let us recall the different parameters that are associated to an algebraic automorphic
representation π of GU(2, 1) that we will need, following partly [Ski12]. There is λ = ((λ1, λ2,
λ3), λ0), the Harish-Chandra parameter, there is c = ((c1, c2, c3), c0), the highest weight of the
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algebraic representation which has the same infinitesimal character as π∞ in the discrete series
case and (c0, c

′
0) is the parameter at infinity of ωcπ the conjugate of the central character of π.

There is κ = (k1, k2, k3) the classical weight such that πf appears in H0(XK , ω
κ) (if it exists)

and there are the Hodge–Tate weights ((hτ1 , h
τ
2 , h

τ
3), (hστ1 , hστ2 , hστ3 )) of the Galois representation

of GE associated to π by Blasius and Rogawski [BR92] or Skinner [Ski12]. Let us explain how
they are related in the case of discrete series.

First denote by ρn the half-sum of the positive non-compact roots and ρc the half-sum of the
positive compact roots (see [Gol14, § 5.3]). We have then, for i > 1, λi = (c+ρn+ρc)i, and (c0, c

′
0)

is the infinite weight of the dual of the central character. The calculation of Harris and Goldring
gives (−k3, k1, k2) = λ+ ρn − ρc (forgetting the λ0 factor here, it is because we only considered
three parameters in the weight space). The Hodge–Tate weights of the Galois representation
associated to π depends of course on the normalization of the correspondence, but take the one
of Skinner [Ski12, § 4.2, 4.3 and after Theorem 10], we get

((hτ1 , h
τ
2 , h

τ
3), (hστ1 , hστ2 , hστ3 ))

= ((−c0 − c1,−c0 − c2 + 1,−c0 − c3 + 2), (−c′0 + c3,−c′0 + c2 + 1,−c′0 + c1 + 2)).

Remark 9.16. Let f ∈H0(X,ωκ) be a classical form. To f is associated ϕf an automorphic form,
with equivariant Hecke action, cf. Proposition 2.6, and thus an autormorphic representation πf .

Before going further, let us remark that a (algebraic) representation π ofGU(2, 1) is equivalent
to a pair (π0, ψ) of π0 a (algebraic) automorphic representation of U(2, 1) (the restriction of π) and
a (algebraic) Hecke character of GU(1) = ResE/QGm (the central character of π) which extend
the central character of π0 (see § 10.4). To an algebraic (nice) π is associated a (non-necessarily
polarized) Galois representation ρπ, but also a pair π0, ψπ, and to π0 is associated a polarized
Galois representation, which is what we will need. Thus from Skinner’s normalization, removing
the central character of π, we get the following proposition (we could also directly use [CH13]).

Proposition 9.17. Let κ = (k1, k2, k3) ∈ Z3 and f = H0(X,ωκ) which is an eigenvector for the
Hecke operators outside p. Write |k| = k1 + k2 + k3. Let π be the automorphic representation
corresponding to f (i.e. a irreducible factor in the representation generated by Φf of § 2.2).

Suppose π∞ is a (regular) discrete series of Harish-Chandra parameter λ, then

λ = ((k1, k2 − 1, 1− k3), |k|)

(see [Gol14, § 5]) with k1 > k2 > 2 − k3. Denote by ρπ,Ski the p-adic Galois representation
associated to π by Skinner [Ski12]. Then ρπ,Ski satisfies the following essentially self-polarization,

ρcπ,Ski ' ρ∨π,Ski ⊗ ε
−|k|−2
cycl ⊗ ρψ,

where ε is the cyclotomic character, ψ is a finite Hecke character, and if ωπ denotes the central
character of π, ωπω

c
π is of the form N−|k|ψ.

Then, the τ -Hodge–Tate weights of ρπ,Ski are

(k2 + 1, 2 + k1, k3 + k1 + k2),

and the στ -Hodge–Tate weights are

(2, k2 + k3, k1 + k3 + 1).

To π0 = π|U(2,1) is associated a polarized continuous Galois representation ρπ verifying

ρcπ ' ρ∨π ,

of τ -Hodge–Tate weights (1−k3, k2−1, k1) and (thus) στ -Hodge–Tate weights (−k1, 1−k2, k3−1).
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Proof. The calculation of λ in terms of κ is exactly [Gol14, Theorem 5.5.1]. Remark also that
we can calculate in terms of κ which are the discrete series by Harish-Chandra theorem [Kna16,
Theorem 6.6], and we find k1 > k2 > 2− k3. Thus, the calculation of the Hodge–Tate weights of
the Galois representations associated to π are [Ski12, Theorem 10], with the previous calculation
of c in terms of λ. The representation ρπ is given by ρπ,Skiρ

−1
ωπ

(1). 2

Remark 9.18. In terms of the τ -Hodge–Tate weights of ρπ, discrete series correspond to h1 <
h2 < h3. All of this is coherent with the Bernstein–Gelfand–Gelfand (BGG) decomposition, see
for example [Lan12, (2.3)], for c = µ = (a, b, c) a highest weight representation of G,

H2
dR(Y, V ∨µ ) = H2(X,ω(−b,−a,c))⊕H1(X,ω(1−c,−a,b+1))⊕H0(X,ω(1−c,1−b,a+2)).

Denote by Z ⊂ E the set of characters corresponding to regular (i.e. w2(z) 6 w1(z) < −2 −
w3(z) ∈ Z3) classical modular forms (recall that if f is classical of weight (k1, k2, k3), w(f) = (−k2,
−k1,−k3)). For each z ∈ Z, there exists f a classical form, which determines Π an automorphic
representation of GU(2, 1) (generated by Φf defined in § 2.2). Such a Π corresponds to a packet, to
which by the work of Blasius and Rogawski [BR92, Theorem 1.9.1] (see also for generalization
to higher-dimension unitary groups and local global compatibilities the work of many authors,
in particular [Bel06a, CH13, Ski12, BGHT11]) is associated a number field Ez, and compatible
system of Galois representations,

ρz,λ : GE −→ GL3(Ez,λ), ∀λ ∈ Spm(OEz),

satisfying local global compatibilities (see for example [Ski12], where the association is normalized
by the previous proposition (the Hodge–Tate weight of the cyclotomic character being −1) and
the previous proposition for a normalization suitable to our needs). In particular, denote S the
set of prime of E where Ker(J)I is not hyperspecial, and if ` a prime under λ, denote by S`
the set of places of E dividing λ. Then ρz,λ, is unramified outside SS`.

We have the classical proposition, which is one reason why eigenvarieties are so useful (see
for example [BC09] proposition 7.5.4),

Proposition 9.19. Let p be unramified in E. To each z ∈ Z, denote by ρz the (p-adic)
polarized representation associated to z by Proposition 9.17. There exists a unique continuous
pseudocharacter

T : GE,S −→ OE ,

such that for all z ∈ Z, Tz = tr(ρz). Moreover the pseudocharacter T satisfies T⊥ = T , where
T⊥(g) = T ((τgτ)−1) for all g ∈ GE .

Proof. Z is dense in E by density of very regular weights in W and the two classicity results
(8.16 and 8.17). We only need [Che04, Proposition 7.1] to finish, the hypothesis (H) there being
verified by the Frobenius classes in S. The polarization assumption follows from the case of z ∈ Z
by density. 2

10. Application to a conjecture of Bloch and Kato

Let E be a quadratic imaginary field, and fix an algebraic Hecke character,

χ : A×E/E
× −→ C×,
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such that, for all z ∈ C×, χ∞(z) = zazb, for some a, b ∈ Z. Call w = −a − b the motivic weight
of χ. Denote by χp : GE −→ K, where K is a finite extension of Qp, the p-adic realization of χ.

We are interested in the Selmer group H1
f (E,χp), which parameterizes extensions U ,

0 −→ χp −→ U −→ 1 −→ 0,

which have good reduction everywhere ([BK90, FP94], [BC09, ch. 5] and the introduction of this
article).

Associated to χ there is also an L-function L(χ, s), where s is a complex variable, which is a
meromorphic function on C, which satisfies a functional equation,

Λ(χ, s) = ε(χ, s)Λ(χ∗(1),−s),

where χ∗ is the contragredient representation, Λ(V, s) is the completed L-function of V , a product
of L(V, s) by a finite number of Γ-factors.

The conjecture of Bloch and Kato (more precisely a particular case of) in this case is the
following equality,

dimH1
f (E,χp)− dim(χp)

GE = ords=0 L(χ∗(1), s).

The conjecture is more generally for a Galois representation ρ of the Galois group GF of a number
field, but in the previous case we have a special case by the theorem of Rubin on Iwasawa’s main
conjecture for CM elliptic curves,

Conjecture 10.1. Suppose that χ is polarized and of weight −1, i.e.

χ⊥ = χ|.|−1,

where χ⊥(z) = χ−1(czc), and c ∈ GQ induces the complex conjugation in E. Then

ords=0 L(χ, s) 6= 0⇒ dimH1
f (E,χp) > 1.

Remark 10.2. Under the previous polarization assumption, we have L(χ∗(1), s) = L(χ, s). The
previous conjecture is mainly known by the work of Rubin [Rub91] if p 6 | |O×E |.

In the rest of the article, we will prove the following theorem.

Theorem 10.3. Suppose that χ is polarized and of weight −1, i.e.

χ⊥ = χ|.|−1,

where χ⊥(z) = χ−1(czc), and c ∈ GQ induces the complex conjugation in E. Suppose that p is
unramified in E and that p 6 | Cond(χ). If p is inert suppose, moreover, that p 6= 2. Then

ords=0 L(χ, s) 6= 0 and ords=0 L(χ, s) is even ⇒ dimH1
f (E,χp) > 1.

Remark 10.4. The same result but for ords=0 L(χ, s) odd (and strictly speaking for p split) is
proved in [BC04], and using the same method with the eigenvariety for the group U(3).

Definition 10.5. To stick with notations of [BC04], denote by k the positive odd integer such
that χ∞(z) = z(k+1)/2z(1−k)/2 (i.e. k = 2a− 1 = 1− 2b). We suppose k > 1, i.e. a > 1 (which we
can always suppose up to changing χ by χc, which does not change either the L-function nor the
dimension of the Selmer group).
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10.1 Endoscopic transfer, after Rogawski
Let χ0 = χ|.|−1/2 the unitary character as in [BC04]. We will define following Rogawski [Rog92]
an automorphic representation of U(2, 1), by constructing it at each place.

10.1.1 If ` is split in E. Write ` = vv and the choice of say v induces an isomorphism

U(2, 1)(Q`)
iv' GL3(Q`). Let P = MN be the standard parabolic of GL3(Qp) with Levi M =

GL2×GL1. Define

χ̃0,` :

(
A

b

)
∈ GL2×GL1 7−→ χ0,`(detA),

trivially extended to P , and denote by ind−nGP (χ̃0,`) the normalized induction of χ̃0,`. Then set

πn` (χ) = i∗v ind−nGP (χ̃0,`).

If χ` is unramified, then so is πn` (χ). Fix in this case K` a maximal compact subgroup of
U(2, 1)(Q`).

10.1.2 If ` is inert or ramified in E. In this case write T =O×E`×O
1
E`

the torus of U(2, 1)(Q`),
and consider the following character of T ,

χ̃` :

a b

a−1

 7−→ χ`(a),

trivially extended to the Borel subgroup B of U(2, 1)(Q`). Then the normalized induction
ind−nU(2,1)(Q`)

B (χ̃`) has two Jordan–Holder factors, one which is non-tempered that we denote
by πn` (χ) and the other one, which is square integrable, that we denote by π2

` (χ), see [Rog92].
If ` is inert and χ0,` is unramified, πn` (χ) is also unramified (Satake) and we can choose K`

a maximal compact for which πn` (χ) has a non-zero fixed vector.
If ` is ramified and χ0,` is unramified, there are two conjugacy classes of maximal compact

subgroup, but only one of them, denoted K` (called very special), verifies that πn` (χ) has a
non-zero fixed vector under K` whereas π2

` (χ) has none.

10.1.3 Construction at infinity. As in the inert case, let πn∞(χ) be the non-tempered Jordan–
Holder factor of ind−nU(2,1)(R)

B (χ̃∞).
Then we have the following proposition, following Rogawski.

Proposition 10.6 (Rogawski). Suppose a > 1. Recall that ords=0 L(χ, s) is even. Then the
representation,

πn(χ) =
′⊗
`

πn` (χ)⊗ πn∞(χ),

is an automorphic representation of U(2, 1). If moreover L(χ, 0) = 0, it is a cuspidal
representation. Its Galois representation (associated by the work of [LR92] or see also [BC04,
§ 3.2.3 and Proposition 4.1]) ρπn(χ),p : GE −→ GL3(Qp) is

ρπn(χ),p = (1⊕ χp ⊕ χ⊥p ).

Moreover, its τ -Hodge–Tate weights are (−(k + 1)/2,−(k − 1)/2, 0) = (−a, 1− a, 0).
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10.2 Accessible refinement (at p) for πn(χ)
In order to construct a p-adic family of modular forms passing through πn(χ), we need to construct
inside πnp (χ)I a form which is proper for the operator Up previously defined. Strictly speaking,
Up is defined for GU(2, 1), and when p is inert, Up is associated to the operator of the double
Iwahori class IU cpI where

U cp =

p2

p

1

 .

This class is not in U(2, 1)(Qp), but p−1U cp is. Fix T ⊂ B ⊂ U(2, 1)(Qp). As p is unramified,
we have as a representation of T/T 0 (T 0 a maximal compact in T ), for π a representation of
U(2, 1)(Qp) an isomorphism, see [BC04],

πI ' (πN )T
0 ⊗ δ−1

B .

Thus to understand how the double coset operator U cp in the Iwahori–Hecke algebra acts, we
only need to determine the Jacquet functor (πnp (χ))N as a representation of T . If p splits, this is
computed in [BC04] (and [BC09] in greater generality), so suppose that p is inert.

Proposition 10.7. Let χ̃ be the (unramified) character of the torus T of U(2, 1)(Qp) defined
by a e

a−1

 7−→ χp(a).

Denote by w ∈ WU(2,1)(Qp) ' Z/2Z the non-trivial element and χ̃w the corresponding character
of T (χ̃w = χ(w · w)). Then the unique admissible refinement of πnp (χ) is given by χ̃w, i.e.

πnp (χ)N = χ̃wδ
1/2
B .

Proof. Write for the proof G = U(2, 1)(Qp). According to Rogawski we have ind−nGB(χ̃)ss =

{πnp , π2
p} and (ind−nGB(χ̃))ssN = {χ̃δ1/2

B , χ̃wδ
1/2
B } by Bernstein and Zelevinski’s geometric lemma.

Following [BC09], denote for σ ∈ WG S(χ̃σ) the unique subrepresentation of ind−nGB(χ̃σ) (this
induction is non-split by [Key84] for example). It is also the Jordan–Hölder factor that contains
χ̃σδ

1/2
B inside its semi-simplified Jacquet functor. Thus S(χ̃) = π2

p or S(χ̃) = πnp . Also, as changing
χ̃ by χ̃w exchanges the subrepresentation and the quotient in the induced representation, S(χ̃) 6=
S(χ̃w). So the proposition is equivalent to π2

p = S(χ̃). Let us remark that it is announced in
[Rog92], as πnp is said to be the Langlands quotient, but let us give an argument for that fact.
We can use Casselman’s criterion for π2

p [Cas95, Theorem 4.4.6]. For A = T split = Gm ⊂ B,

A−\A(O)Aδ = {Diag(x, 1, x−1) : x ∈ Zp\Z×p = pZp},

and thus
∀x ∈ pZp, |χ̃δ1/2

B (Diag(x, 1, x−1))| = |χ(x)| = |χ0(x)||x|1/2 < 1,

as χ0 is unitary, and thus χ̃δ1/2
B is an exponent of rGB(π2) and π2

p ⊂ ind−nGB(χ̃) i.e.

(πnp )N = χ̃wδ
1/2
B . 2
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When p is split, the calculation is done in [BC04] and we get the following up to identifying
an unramified character of T (Qp) ' (Q×p )3,

ψ :

T (Qp) −→ Cx1

x2

x3

 7−→ ψ1(x1)ψ2(x2)ψ3(x3)

with the triple (ψ1(p), ψ2(p), ψ3(p)).

Proposition 10.8 (Bellaïche–Chenevier [BC04, BC09]). If p = vv, the accessible refinements of
πnp (χ) are given (with identification with GL3(Qp) using v) by:

– σ = 1, (1, χ⊥v (p), χv(p));

– σ = (3, 2), (χ⊥v (p), 1, χv(p));

– σ = (3, 2, 1), (χ⊥v (p), χv(p), 1).

Proof. Indeed, the Langlands class associated to πnp (χ) is (χ⊥v (p), 1, χv(p)) which corresponds,
up to a twist of the central character by (χ⊥v )−1, to the class (1, (χ⊥v (p))−1, |p|) which in turn
is associated by Satake (up to twist by µ−1|.|1/2) to the unramified induction studied in [BC09,
Lemma 8.2.1], n = 1,m = 3 and π = χc0 = χ−1

0 (which satisfies the hypothesis of [BC09] 6.9.1).
Thus L(πp|.|1/2) = (χ⊥(p))−1. The refinements are then given by [BC09, Lemma 8.2.1]. 2

10.3 Coherent cohomology
In order to associate to the automorphic representation πn(χ) a point in the eigenvariety
constructed in § 8, we need also to show that πn(χ) appears in the global sections (over X)
of a coherent automorphic sheaf. The full calculation is made in Appendix D. Here we give an
alternative proof in the case a > 1, which corresponds to a regular weight, as the case a = 1 will
correspond to a singular weight (and for a = 1, π2 is a non-holomorphic limit of discrete series).
Thus suppose a > 1. According to Rogawski [Rog90, Proposition 15.2.1], the (regular) parameter
ϕ = ϕ(a, b, c) = ϕ(a, a− 1, 0) (see [Rog90, p. 176], χ corresponding to χ−ϕ ) we already know that

H i(g,K, πn∞(χ)⊗F∨ϕ ) =

{
C if i = 1, 3,

0 otherwise,

for Fϕ the representation of U(2, 1)(R) of highest weight (a− 1, a− 1, 1), and

H i(g,K, π2
∞(χ)⊗F∨ϕ ) =

{
C if i = 2,

0 otherwise.

In particular the system of Hecke Eigenvalues of πn(χ) appears in the first intersection cohomology
group of a local system associated to F∨ϕ (thus coming from a representation of the group G),
IH1(XBS,F∨ϕ ), where XBS is the Borel–Serre compactification, or also by a theorem of Borel
in H1

dR,c(Y, (Vϕ,∇)) the de Rham cohomology with compact support (where Vϕ = F∨ϕ ⊗ OX
is the associated vector bundle with connection, see [Har90a, 1.4]). If our Picard surface were
compact, then IH1(XBS,F∨ϕ ) = H1

ét(X,F∨ϕ ) is just étale cohomology and as F∨φ comes from a
representation of our group, using the Hodge-decomposition for H1

ét(X,F∨ϕ ) or for the de Rham
cohomology (see [Fal83] or [MM63]), we know that there exists a coherent automorphic sheaf
Vϕ = F∨ϕ ⊗OX such that

H1
ét(X,F∨ϕ ) = H1(X,F∨ϕ ⊗OX)⊕H0(X,F∨ϕ ⊗ Ω1

X).
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More generally, ifX is not compact (which is the case here) we still have a BGG-decomposition
for the de Rham cohomology with compact support, see [Lan12, (2.4)],

H1
dR,c(Y, (Vϕ,∇)) = H1(X,ω(1−a,1−a,1)(−D))⊕H0(X,ω(0,1−a,a)(−D)).

We thus need to show that the system of Hecke eigenvalues appears in the last factor. But, denote
by I the opposite induced representation ind−nU(2,1)(R)

B (χw∞), so that πn∞ is the subrepresentation
of I and π2 its quotient. Writing the long exact sequence of (g,K)-cohomology associated to

0 −→ πn∞ −→ I −→ π2
∞ −→ 0,

we get that H1(g,K, πn∞ ⊗F∨ϕ ) = H1(g,K, I ⊗F∨ϕ ). Using Hodge decomposition for this, we get
that

HomK(p+ ⊗Fϕ, πn∞) = HomK(p+ ⊗Fϕ, I),

and using Frobenius reciprocity we can calculate the last term as

HomT∩K(p+ ⊗Fϕ, (χw∞)T∩K),

and, as we know Fϕ, we can calculate its restriction to T ∩K, we get

(Fϕ)T∩K = taea−1 ⊕ · · · ⊕ t2a−2e,

where

tkel :

t e

t

 ∈ T ∩K = U(1)× U(1) 7−→ tkel.

We can also explicitly calculate that, by conjugacy, T ∩K acts on p+ by 1⊕ te−1 and on p− by
1⊕ t−1e.

Remark 10.9. This is because of our choice of h. If we change h by its conjugate, then the action
on p+, p− would have been exchanged, and πn(χ) would be anti-holomorphic (but we could have
used χc instead of χ in this case, πn(χc) would have been holomorphic).

As χwT∩K = t2a−1, we get that

HomK(p+ ⊗Fϕ, I) = C and HomK(p− ⊗Fϕ, I) = {0}.

Remark 10.10. Changing χ by χc inverts the previous result, as predicted by the Hodge structure,
so we could have argued without explicitly calculating these spaces.

Proposition 10.11. If a > 1, the Hecke eigensystem corresponding to πn(χ) appears in H0(X,
Fs·(ϕ∨) ⊗ OX(−D)) = H0(X,ω(0,1−a,a)(−D)). More generally, for a > 1, the Hecke eigenvalues

of πn(χ) appear in the global section of the coherent sheaf ω(0,1−a,a)(−D).

Proof. When a > 1 we know that the Hecke eigensystem corresponding to πn(χ) appears in
the de Rham cohomology associated to ϕ. If Y were compact, the proposition would just be
Matsushima’s formula and the Hodge decomposition [Yos08, Theorem 4.7] of the first (g,K)-
cohomology group we calculated above. More generally, the previous calculation still shows that
the class corresponding to πn(χ) cannot be represented by classes in H1(X,ω(1−a,1−a,1)) (whose
cohomology is calculated by (p−,K)-cohomology), and thus, by the BGG resolution, it appears
in H0(X,ω(0,1−a,a)(−D)).

For the general case, this is Appendix D (which proves that the Hecke eigensystem appears
in the 0th coherent cohomology group). 2
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10.4 Transfer to GU(2, 1)
From now on, denote by G=GU(2, 1) the algebraic group over Q of unitary similitudes (relatively
to (E3, J)). It is endowed with a morphism ν, and there is an exact sequence,

0 −→ G1 −→ G
ν−→ Gm,

where G1 = U(2, 1) is the unitary group of (E3, J).
Let T = ResE/QGm be the center of G, Nm : T −→ Gm the norm morphism, and T 1 its

Kernel; the center of G1. We have the exact sequence,

1 −→ T 1 −→ T ×G1 −→ G,

where the first map is given by λ 7→ (λ, λ−1).
Let π1 be an automorphic (respectively a smooth admissible local) representation of G1(AQ)

(respectively of G1(Qp) or G1(R)), of central character χ1 of T 1. Let χ be a character of T (local
or global) that extends χ1; we can thus look at the representation,

(z, g) ∈ T ×G1 7−→ χ(z)π1(g),

of T ×G1. We can check that it factors through the action of T 1 and gives a representation of a
subgroup of G.

Proposition 10.12. The automorphic representation πn of U(2, 1) given in Proposition 10.6
has central character ω equal to the restriction of χ to E1. We can extend ω as an algebraic
Hecke character ω̃ of T by the algebraic character ω̃ = N−1χ, where N is the norm of E. Thus,
there exists an automorphic representation π̃n of G such that for ` a prime, unramified for χ0,
(πn` )K` = (π̃n` )K` (where K` ⊂ G(Q`) is the hyperspecial, respectively special if ` ramifies in E –
subgroup) and the Galois representation associated to π̃n by [BR92, Theorem 1.9.1] (or [Ski12])
is (with the normalization of [Ski12])

(1⊕ χ⊕ χ⊥)χ(−2) = (χ⊕ ωcycl ⊕ 1)(−2).

Moreover (πnp )I = (π̃np )I .

Proof. To calculate ω, we only need to look at πnp for every place p, and we can use that πnp =

ind−nGL3(Qp)
P (χ0) for split p, and πnp ⊂ ind−nU(3)(Qp)

B (χ̃w) for p =∞ and inert or ramified p.
The character ω̃ extends ω. Once we have extended the central character of πn, the existence

of a π̃n is unique and assured by [CHT08, Proposition 1.1.4] (as 2+1 = 3 is odd). More precisely,

π̃n(zgQg1) = ω̃(z)πn(g1),

where g = zgQg1 is written following the decomposition G(A) = T (A)G(Q)G1(A).
Denote by Vp the space of πnp (and thus of π̃np ). Also, I ⊂ GU(2, 1)(Qp) the Iwahori subgroup,

and I1 is its intersection with U(2, 1)(Qp). Because if M ∈ I, then M ≡ B(mod p), up to
multiplying by an element of T ∈ T (O), suppose that TM ≡ U (mod p). In this case c(TM) ≡
1 (mod p); thus, as p is unramified in E, there exist T ′ ∈ T (Zp) such that c(T ′TM) = 1 and
hence M = T−1(T ′TM) ∈ T (Zp)I1. Thus, as we can writea e

N(e)a−1

 =

ae−1

1

ea−1

e e

e

 ∈ I1T (Zp).
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We get that
V I
p = {z ∈ V I1

p : ∀λ ∈ T (Qp) ∩ I, ω̃p(λ)z = z},

but as T (Qp) ∩ I = OE×p Id and w̃p is unramified, V I
p = V I1

p . The assertion for K` follows the
same lines and is easier. 2

Remark 10.13. We could have lifted the central character of πn simply by χ, in which case the
resulting representation would have been a twist of the previous one, but as we only used three
variables on the weight space, which means that we do not allow families which are twists by
power of the norm of the central character, only one choice of the lift of the central character gives
a point in our eigenvariety. We can check that the Hecke eigenvalues of π̃n appears in H0(X,ωκ),
with

κ = (0, 1− a, a).

How can we find the power of the norm and the coherent weight? First, as Hodge–Tate
and coherent weights vary continuously on E , and π̃n(χ) appears as a classical form of E
(Proposition D.2), according to Propositions 9.17 and 9.19, the polarized Galois representation
associated to π̃n(χ) is

1⊕ χ⊕ χ⊥,

and thus (k1, k2 − 1, 1− k3) = (−a, 0, 1− a) up to order. This leaves us six possibilities for κ:

(i) (0, 1− a, a);
(ii) (0, 2− a, a+ 1);
(iii) (1− a, 1− a, 1);
(iv) (−a, 1− a, a);
(v) (−a, 2− a, 1 + a);
(vi) (1− a, 1, 1 + a),

but as for classical points (as π̃n(χ)) k1 > k2, and a > 1, this eliminates the three last possibilities
(and the second when a= 1). But then we know that the lowestK∞-type for πn(χ) is of dimension
a by restriction to U(2) and the calculation of Appendix D, Proposition D.2, which makes only the
first coherent weight possible when a > 1. When a = 1, the first and third weights are the same.
Another possibility is also to find the infinitesimal character of πn(χ) (using for example [Kna16,
Proposition 8.22]), and that η = (−k3, k1, k2) is the highest weight character of V ∨λ+ρn−ρc in the
notations of [Gol14] (paying attention to the dual). Finally, if a > 1, then the BGG decomposition
tells us which weight κ has to be. Then to find the corresponding power of the norm, note that
|κ| must be equal to the opposite of the power of the norm of the central character of π̃n(χ) by
the calculation before Proposition 2.6 and conventions on weights (see § 9.6 about (c0, c

′
0)).

10.5 Refinement of representations of GU(2, 1)(Qp)
Let G = GU(2, 1)(Qp). Consider in Cc(I\G/I,Z[1/p]) the double classes,

U cp =

p2

p

1

 and Scp =

p p

p

 .

The characteristic functions of Scp and U cp are invertible in Cc(I\G/I,Z[1/p]) and denote by A(p)
the sub-algebra generated by the characteristic functions of U cp , Scp and their inverses.
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Proposition 10.14. For π a smooth complex representation of G, we have a natural C[A(p)]-
isomorphism,

πI −→ (πN )T
0 ⊗ δ−1

B .

Let π be a smooth admissible representation of G, such that π is a subquotient of the
(normalized) induction of an unramified character ψ of the torus T of G. For example, this
is the case if π is unramified, or if πI 6= {0} (by the previous equality and adjunction between
Jacquet functor and induction for example).

Definition 10.15. Following [BC09], an accessible refinement of π is a σ ∈W such that ψσδ1/2
B

is a subrepresentation of πT 0

N (equivalently if ψσδ−1/2
B appears in πI).

Another way to see it is that a refinement is an ordering of the eigenvalues of the Frobenius
class of LL(π), the Weil representation associated by local Langlands to π, and it is accessible if
it appears in the previous sense in πI (or πT 0

N ).
For GU(2, 1) when p is split, GU(2, 1)(Qp) ' GL3(Qp)×Q×p and ψ is an unramified character

of Q4
p. The local Langlands representation associated to π = π1 ⊗ ψ4 in this case is LL(π1)⊗ ψ4

which has eigenvalues (ψ1(p)ψ4(p), ψ2(p)ψ4(p), ψ3(p)ψ4(p)) and an ordering of these eigenvalues
is given by an element of S3 = WGL3 = WGL3×GL1 . Of course, a priori, not all refinements are
accessible (πnp will be an example).

When p is inert, WG ' Z/2Z, and a character of T = (ResQp2/Qp Gm)2 is given by two
characters (χ1, χ2), by a e

N(e)a−1

 , a, e ∈ Q×
p2 7−→ χ1(a)χ2(e).

The non-trivial element w ∈ WG acts on the character by w · (χ1, χ2) = (χ⊥1 , χ2(χ1 ◦N)). Thus
a refinement in this case is simply given by 1 or w.

Remark 10.16. In terms of Galois representation, the base change morphism from GU(2, 1) to
GL3×GL1 sends the (unramified) Satake parameter χ1, χ2 (if χ2 is unramified, it is trivial
on E1) to the parameter ((χ1, 1, χ

−1
1 ), χ1χ2) (see [BR92, Theorem 1.9.1] or [Ski12, § 2]), whose

semi-simple class in GL3 associated by local Langlands has Frobenius class given byχ2(p)

χ1(p)χ2(p)

χ2(p)χ2
1(p)

 .

In the inert case, say σ ∈ WG is a refinement, then the action of Up on the σ-part of πT 0

N

is given by χσ1 (p)2χσ2 (p), and the action of s is given by χσ1 (p)χσ2 (p). In particular, the action of
A(p) (through T/T 0), and actually of Up or u1 = UpS

−1
p , on πI determines the refinement.

This is also true (and easier) if p splits.
As we normalized our Galois representation ρπ so that they are polarized, i.e. forgetting the

central character, the previous class does not directly relate to the Frobenius eigenvalues of ρπ
but rather of the one of ρπ,Ski. But as the link between both only differ through the central
character of π, it is straightforward that the Frobenius eigenvalues of (a crystalline) ρπ are given
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by (ψ1, 1, ψ
⊥
1 ), when p is inert, and ψ1 is given (if unramified) by the action of the Iwahori–Hecke

double class p 1

p−1


which corresponds to UpS−1

p (see next subsection). In the split case, an unramified character of
the torus of GL3×GL1 gives Frobenius eigenvalues (pψ1(p)ψ4(p), pψ2(p)ψ4(p), pψ3(p)ψ4(p)) for
(crystalline) ρπ,Ski and (ψ1(p), ψ2(p), ψ3(p)) for ρπ, which relates to operators Ui−1/U3 (see next
subsection).

Thus, using the previous definition of refinement, local global compatibility at p, we can
associate to Π = π∞⊗

⊗
` π` an algebraic regular cuspidal automorphic representation of GU(2, 1)

of level KNpI a representation ρπ,p together with an (accessible) ordering of its crystalline-
Frobenius eigenvalues for each choice of a character in πIp under A(p), such that the following
proposition holds.

Proposition 10.17. The automorphic representation π̃n(χ) of GU(2, 1) constructed by
Proposition 10.12 has only one accessible refinement at p if p is inert, it is given by

ω 6= 1 ∈WG,

which correspond to the ordering ((χ⊥(p), 1, χ(p)), χ(p)) or (1, χ(p), |p|). If p = vv is split, there
are three accessible refinements, given by:

– σ = 1, ((1, χ⊥v (p), χv(p)), χv(p)) which corresponds to (χv(p), 1, |p|);
– σ = (3, 2), ((χ⊥v (p), 1, χv(p)), χv(p)) which corresponds to (1, χv(p), |p|);
– σ = (3, 2, 1), ((χ⊥v (p), χv(p), 1), χv(p)) which corresponds to (1, |p|, χv(p)).

We denote by σ the unique refinement in the inert case, and the refinement denoted by (3, 2)
in the split case.

Proof. The action of u1 on πn(χ)p as been calculated in a previous section. 2

10.6 Modular and classical Hecke operators
In order to understand how the refinements vary on the eigenvariety, we need to make explicit the
link between Hecke operators (at p) constructed in § 8 and classical Hecke acting on automorphic
forms, as above. Here we work at Iwahori level at p and identify matrices with the corresponding
Iwahori double classes. If p is inert in E, the Atkin–Lehner algebra we consider at p is generated
by the two (so-called classical) operators U cp and Scp described above. If p is split in E, we consider
the Atkin–Lehner algebra A(p) of GL3(Qp)×Q×p (see [BC09, § 6.4.1]); it is generated by the Hecke

operators, up to identification of E ⊗Qp
iv×iv' Qp ×Qp,

(pI3, I3),

p p

1

 ,

p 1

1

 ,

p 1

1

 ,

p p

1

 , (I3, pI3),

that we denote respectively U c0 , U c1 , U c2 and U c3 (c stands for classical in the sense ‘not normalized’).
If we use iv to identify GU(2, 1)(Qp) with GL3×GL1(Qp), then these operators are identified
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respectively with

(pI3, p),

p p

1

 , p

 ,

p 1

1

 , p

 , (I3, p).

In § 8 we defined Hecke operators modularly, Up and Sp in the inert case, and both
Brasca [Bra16] and Bijakowski [Bij16] definedU0, U1, U2, U3 in the split case (see remark in § 8.3).
These Hecke operators have been normalized and correspond to the above Iwahori double classes,
so that we have the following result.

Let Π = π∞⊗
⊗

` π` be an algebraic, regular, cuspidal automorphic representation of GU(2, 1)
of level KNpI whose Hecke eigenvalues appear in the global sections of a coherent automorphic
sheaf (of weight κ) and f ∈ Π∩H0(XI , ω

κ) an eigenform for H = HNp ⊗A(p), such that, if p is
inert,

Upf = p−k2U cpf and Spf = p−k1−k2−k3Scpf,

and if p splits,

U0f = p−k3U c0f, U1f = U c1f, U2f = p−k2U c2f, U3f = p−k1−k2U c3f,

where the action of the double classes U cp , Scp and U ci is given by convolution on πp.

Proposition 10.18. Suppose p is inert, f is a classical automorphic form of classical weight
κ = (k1, k2, k3) of Iwahori level at p (i.e. f ∈ H0(XIw, ω

κ)), which is an eigenform for the action
of H⊗A(p), and denote by λ, µ the eigenvalues of f for Up, Sp respectively.

Let Π be a irreducible factor of the associated automorphic representation (generated by
Φf ). Then ΠI

p 6= {0} and thus the algebra A(p) acts on ΠI
p with U cp of eigenvalue pk2λ and Scp of

eigenvalue p|k|µ.

Proof. To prove the statement, we remark that the association f 7→ Φf is Hecke equivariant
for the classical Hecke operators U cp , Scp acting on f . But we defined the Hecke operators Up, Sp
geometrically by Up = p−k2U cp and Sp = p−|k|Scp to make them vary p-adically. Thus we get the
result. 2

Using the previous refinements for representations of GU(2, 1), we can prove the following
result on density of crystalline points on the eigenvariety E of Theorem 9.15,

Proposition 10.19. Suppose p is inert. Let x ∈ E(F ). There exists a neighborhood V of x and
a constant C > 0 such, that for all classical points y ∈ V , if |w2(y) + w3(y)| > C, then ρy is
crystalline and of Hodge–Tate weights (1 + w3(y),−1− w1(y),−w2(y)).

In particular crystalline points are dense in E by classicity Proposition 8.16 (as we can also
assume w1(y)−w2(y) > C) and Theorem 8.17 (as we can moreover assume −w1(y)−w3(y) > C).

Proof. Denote by F1, F2 the two invertible functions of E given by the eigenvalues under

Up =

p2

p

1

 and Sp =

p p

p

 .

The valuations of F1, F2 are locally constant on E , and thus there exists V a neighborhood
of x where these valuations are constant. As y corresponds to f a classical form of (p-adic)
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weight w(y) and level K proper under H ⊗ A(p), we can look at Π an irreducible component
of the representation generated by Φf , which is thus algebraic, regular, and its associated
representation ρy does not depend on Π as it only depends on the eigenvalues of H on f . As Πp,
the pth component of Π, is generated by its I-invariants, Πp is a subquotient of the induction
ind−nGB(Qp)(ψ) for some unramified character ψ ([BC09, Proposition 6.4.3] and the adjunction
property of induction). We need to show that Πp is unramified, but as Πp appears as a subquotient
of indB(ψ), which has a unique unramified subquotient, it suffices to prove that indB(ψ) is
irreducible, which happens in particular when |ψ1(p)| 6= p±1 when p is inert (cf. the key result of
Keys, see [Rog90, 12.2]).

In the inert case, we have that if w = (−k2,−k1,−k3) i.e. f is of automorphic classical weight
(k1, k2, k3), then by Proposition 10.18

ψσ1 (p) = p−k1−k3F1(y)/F2(y),

for a certain choice σ ∈WGU (see § 10.5 for example), but as the valuations of F1, F2 are constant
on V , there is a constant C such that if |k1 + k3| > C, Πp is unramified. Thus, by local–global
compatibility at p for Π (cf. [Ski12, Theorem B]), ρy is crystalline. 2

Remark 10.20. In the split case, the same proposition is true under the assumption δ(w(y)) :=
mini(|wi(y)−wi+1(y)|)> C as the same proof of proposition 8.2 of [BC04], together with classicity
results of [BPS16], and [Bra16, Proposition 6.6, Theorem 6.7] applies.

10.7 Types at ramified primes for χ
In order to control the ramification at `|Cond(χ), Bellaïche and Chenevier introduced a particular
type (K0, J0), which we can slightly modify to suit our situation.

Proposition 10.21. Let `|Cond(χ) a prime. There exists a compact subgroup K` of GU
(2, 1)(Q`) and a representation J` of K` such that the following hold:

(i) HomK`(J`, π̃
n
` (χ)⊗ (χ0,` ◦ det)) 6= 0;

(ii) For all smooth admissible representation π of GU(2, 1)(Q`) such that HomK`(J`, π) 6= 0 and
for all place v|`, there exist four unramified characters φ1, φ2, φ3, φ4 : E×v −→ C× such that
the Langlands semi-simple class in GL3×GL1 corresponds to

L(πEv) = (φ1 ⊕ φ2 ⊕ φ3χ
−1
0 , φ4χ

−1
0 )

or to the (unpolarized) Langlands class in GL3,

L(πEv) = φ1φ4χ0 ⊕ φ1φ4χ0 ⊕ φ3φ4.

Proof. Let (K0
` , J

0
` ) be the type defined by Bellaïche and Chenevier in [BC04]. If ` = v1v2 is split,

let K` be the subgroup of matrices congruent to? ? ?

? ? ?

0 0 y

 , e

modulo `m, the `-adic valuation of Cond(χ). Let J` be the representation that sends the matrices
in K` to χ−1

0,v1
(y)χ0,v1(e). As every matrix in GU(2, 1)(Q`) = GL3×GL1(Q`) can be written as
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M = λU where U ∈ U(2, 1)(Q`) = GL3(Q`) and λ = (1, λ) is in the center, we can check that
HomK`(J`, π̃

n
` ⊗ χ0,v1 ◦ det−1) 6= 0.

Now, if HomK`(J`, π) 6= 0, then HomK0
`
(J0
` , π|U(2,1)) 6= 0 when restricted to U(2, 1) = GL3,

and thus by [BC04] we have the conclusion up to a character. But, as K ′ = (Id×GL1)∩K0
` ' Z×` ,

π|K′ = χ−1
0,v1
⊗ ψ where ψ is an unramified character, and thus

L(πE,v) = φ1ψχ0 ⊕ φ2ψχ0 ⊕ φ3ψ.

If ` is prime, write K` = O×E`K
0
` and define J` by

J`(λM
0) = χ`(λ)−2J0

` (M0).

As O×E`∩K
0 ⊂ O1

E`
, this is well-defined because the central character of J0

` is up to an unramified
character equal to χ−2

` . Moreover, HomK`(J`, π̃
n
` )(χ)⊗(χ0,` ◦ det) 6= 0 as it is the case for (K0

` , J
0
` )

by [BC04] which refers back to Blasco [Bla02], and the central character of π̃n`(χ) is equal to χ`
(up to a unramified character).

Conversely, if π is a representation of GU(3)(Q`) such that HomK`(J`, π) 6= 0, then
HomK0

`
(J0
` , π|U(3)(Q`)) 6= 0 and thus L(π|U(3)) = φ1 ⊕ φ2 ⊕ φ3χ

−1
0 by [BC04], and its central

character corresponds to χ` up to an unramified character, and we thus get the result on the
Langlands Base change of π. 2

11. Deformation of π̃n

By Proposition 10.21, we can find for every `|Cond(χ) K` a subgroup of GU(2, 1)(Q`) and an
irreducible representation J` such that

HomK`(J`, π̃
n
` (χ)⊗ (χ0,` ◦ det)) 6= 0,

and for all π̃` of type (K`, J`) its base change to GL3(Ev), for all v|`, gives the representation
(normalized as in Proposition 9.17, Theorem 9.19)

L(π`,Ev) = φ1χ
−1
0 ⊕ φ2 ⊕ φ3,

where φj : E×v −→ C× are unramified characters.

11.1 Choosing the level
Up to choosing compatibly places at∞ and embeddings of Qp2 , we can make χ : GE −→ Qp, the
p-adic realization of χ at p, have τ -Hodge–Tate weight −a=−(k + 1)/2 and thus χ τ -Hodge–Tate
weight a− 1 = (k − 1)/2.

LetN = Cond(χ); suppose p 6= 2 if p is inert, p |N , and is unramified in E. DefineKf =
∏
`K`

by the following.

(i) If ` is prime to pN , K` is the maximal compact subgroup defined previously such that π̃n

as invariants by K` (hyperspecial at unramified `, very special otherwise).
(ii) If ` = p, Kp is the Iwahori subgroup of GU(2, 1)(Qp).

(iii) If `|N , K` is the type as defined before.

We then set
J =

⊗
`|N

J` ⊗ (χ0,` ◦ det),

as representation of Kf .
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By construction of Kf , there is φ ∈ π̃n(χ)Kf , an automorphic eigenform for HNp
and of character under A(p) corresponding to the refinement σ of Proposition 10.17 and
which is associated a classical Picard modular form f ∈ H0(XI , ω

κ) (by Proposition D.2
or Proposition 10.11 if a > 1) which is an eigenform for A(p), whose eigenvalues for A(p)
corresponds to the refinement σ too (with the normalization explained in Proposition 10.18),
and κ = (0, 1− a, a).

Thus, setting w0 = (a − 1, 0,−a) (corresponding to automorphic weight (0, 1 − a, a)), to f
is associated a point x0 ∈ E such that w(x0) = w0 and ρssx,Ski = χε−2(1 ⊕ χ ⊕ χ⊥), and, with
normalization of Proposition 9.17,

ρssx = 1⊕ χ⊕ χ⊥,

which is of (ordered) Hodge–Tate weights (1− a,−a, 0).

11.2 A family passing through f
As we have normalized the pseudocharacter T of Proposition 9.19 in order to have the ‘right’
representation at x0 (corresponding to 1 ⊕ χ ⊕ χ⊥), the map w from the eigenvariety gives the
p-adic (automorphic) weight, and neither the classical automorphic weight nor the Hodge–Tate
weights of T ; thus we will normalize this map accordingly.

The τ -Hodge–Tate weights of 1 ⊕ χ ⊕ χ⊥ are given by (1 − a,−a, 0) =: h0. Let F/Qp be a
finite extension such that f is defined over F .

Proposition 11.1. If p is inert, there exist:

(i) a dimension-1 regular integral affinoid Y over F , and y0 ∈ Y (F );

(ii) a semi-simple continuous representation,

ρK(Y ) : Gal(E/E)Np −→ GL3(K(Y )),

satisfying ρ⊥K(Y ) ' ρK(Y ), the property (ABS) of [BC04], and tr(ρK(Y ))(Gal(E/E)) ⊂ OY ;

(iii) an F -morphism, h = (h1, h2, h3) : Y −→ A3 such that h3 = 0, h(y0) = h0;

(iv) a subset Z ⊂ Y (F ) such that h(Z) ⊂ h0 + (p−1)(p+ 1)2Z3
dom (i.e. the weights are regular);

(v) a function F1 in O(Y )× of constant valuation

such that we have the following.

(1) For every affinoid Ω containing y0, Ω ∩ Z is Zariski dense in Ω.

(2) For all z ∈ Z ∪ {y0} ρssz is the Galois representation associated to a cuspidal (algebraic)
automorphic representation Π of GU(2, 1) such that

HomKf (J,Π) 6= 0.

(3) ρssy0
' 1⊕ χ⊕ χ⊥.

(4) For z ∈ Z, (ρssz )GK is crystalline of τ -Hodge–Tate weights h1(z) < h2(z) < h3(z), and its
τ -refinement given by F1 is

(ph1−h3(z)F1(z), 1, ph3−h1(z)F−1
1 (z)).

In particular,

Dcrys(ρ
ss
z )ϕ

2=ph1−h3F1(z)
τ 6= 0.

(5) At y0, the refinement is (χ⊥p (p), 1, χp(p)).
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Proof. Recall that p is inert here. The modular form f corresponds to a point x0 ∈ E , the
eigenvariety defined in Theorem 9.15, associated to the type (Kf , J). Let B ⊂ B(w0, r) ⊂ W be
the closed subset defined in the same fashion as in [BC04] by,{

w2 = 0,

2w1 + w3 = a− 2.
(1)

Thus w0 ∈ B. Define X to be an irreducible component of E ⊗W B containing xf . We get
wB : X −→ B which is finite (if r small enough) surjective. We can thus look at the universal
pseudo-character T on E and compose it with OE −→ O(X). Applying [BC04, Lemma 7.2], we
get an affinoid Y , regular of dimension 1, y0 ∈ Y and a finite surjective morphism m : Y −→ X

such that m(y0) = xf and there exist a representation ρ : GE −→ GL3(K(Y )) of trace GE
T−→

OX −→ OY satisfying (ABS). At y0, the representation ρssy0
is given by 1 ⊕ χ ⊕ χ⊥. The map

h is given as follow. First, write ν = (ν1, ν2, ν3) = (1 + w3,−1 − w1,−w2). Then h is given by
composition of m with the map ν (the shift of w) of E ; it is still finite and surjective on B,5 and
for every y ∈ Y such that m(y) = xf , then h(y) = h0. In terms of automorphic weight (k1, k2, k3)
the previous map is given by (1−k3, k2−1, k1), and thus gives the Hodge–Tate weights for regular
discrete series. In terms of Hodge–Tate weights, the equations (1) giving rise to B become{

h3 = 0,

h1 − 2h2 = 1 + a.
(2)

Write

Z = {h ∈ B ∩ h0 + (p− 1)(p+ 1)2Z3,dom : −h2 > C, h2 − h1 > C ′, |h1 − h3| > C ′′},

where C ′′ > 0 is bigger than the bound given (up to reducing r and thus B) in Proposition 10.19
for crystallinity, C ′ is the bound given by classicity Theorem 8.17, and C is the bound given
in classicity at the level of sheaves, Proposition 8.16 (we remark that h3 is constant). Then Z
is strongly Zariski dense in B. Then Z := κ−1(Z) ⊂ Y (F ) contains only classical (and regular)
points by Proposition 8.16 and the classicity result of Bijakowski (Theorem 8.17). Moreover they
are all crystalline by Proposition 10.19. It is strongly Zariski dense by flatness (thus openness)
of κ. Let us define F1. The action on a point xf associated to modular form f – of (classical
automorphic) weight (k1, k2, k3) associated to π that is a quotient of ind

GU(3)
b (ψ) – of the operator

UpS
−1
p ,

which corresponds up to a normalization by 1/ph1−h3−1 = pk1+k3 to the classical Iwahori double
coset

p−1

p2

p

1

 =

p 1

p−1

 ,

and corresponds to
pk1+k3ψσ1 (p),

where ψ = (ψ1, ψ2) is a character of (O×)2 and σ the refinement of f associated to the action
of A(p). Indeed, the eigenvalue of Up coincide with p−k2ψσ1 (p)2ψσ2 and the one of Sp with
p−k1−k2−k3ψσ1 (p)ψσ2 (p). Thus, UpS−1

p has eigenvalue pk1+k3ψσ1 (p) = ph3−h1pψσ1 (p). Thus, we set

5 We did a slight abuse of notation, it should be B′ ' B, centered in h0, and whose equations are given below.
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F1 the function on E given by p−1UpS
−1
p . We have that ph1−h3F1 = ψσ1 (p). Property (2) comes

from the construction of the eigenvariety E . Part (3) is the calculation of the Galois representation
associated to πn(χ). Part (4) is local–global compatibility at ` = p ([Ski12] as recalled in
§ 9.6) and Proposition 10.19 as the eigenvalues of the crystalline Frobenius class ϕ2 coincide
with ψσi (p).

The last assertion is the calculation made in Proposition 10.17. 2

Proposition 11.2. If p = vv is split, there exist:

(i) a dimension-1 regular integral affinoid Y over F , and y0 ∈ Y (F );

(ii) a semi-simple continuous representation,

ρK(Y ) : Gal(E/E)Np −→ GL3(K(Y )),

satisfying ρ⊥K(Y ) ' ρK(Y ), the property (ABS) of [BC04], and tr(ρK(Y ))(Gal(E/E)) ⊂ OY ;

(iii) an F -morphism, h = (h1, h2, h3) : Y −→ A3 such that h3 = 0, h(y0) = h0;

(iv) a subset Z ⊂ Y (F ) such that h(Z) ⊂ h0 + (p− 1)Z3
dom;

(v) three functions F1, F2, F3 in O(Y ) of constant valuation

such that we have the following.

(1) For every affinoid Ω containing y0, Ω ∩ Z is Zariski dense in Ω.

(2) For all z ∈ Z ∪ {y0} ρssz is the Galois representation associated to a cuspidal (algebraic)
automorphic representation Π of GU(2, 1) such that

HomKf (J,Π) 6= 0.

(3) ρssy0
' 1⊕ χ⊕ χ⊥.

(4) For z ∈ Z, (ρssz )Gv is crystalline of Hodge–Tate weights h1(z) < h2(z) < h3(z), and

(ph1(z)F1(z), ph2(z)F2(z), ph3(z)F3(z))

is an accessible refinement of ρssz .

(5) At y0, this refinement is (χ⊥v (p), 1, χv(p)).

Proof. As the proof is almost the same as [BC04] and we chose to detail the inert case, we
will just sketch it. Choose xf the point in E associated to πn(χ) and the accessible refinement
(χ⊥v (p), 1, χv(p)). Denote by B ⊂ W the closed subset defined as in the inert case by{

k1 = 0,

2k2 + k3 = 2− a, (3)

and choose X an irreducible component of E×WB containing xf . Apply [BC04, Lemma 7.2], and
get Y regular and y0 and a representation,

ρ : GE,Np −→ GL3(OY ),

such that ρ⊥ = ρ. Denote h as in the inert case (ν = (1 − k3, k2 − 1, k1)), and idem for Z
(classicity at the level of sheaves is given by [Bra16, 6.2], and classicity by Pilloni and Stroh
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[PS12] or (in greater generality) [BPS16].). The four Hecke operators living on E , Ui, i = 0, . . . , 3
are normalized as in 8.3, then set, for i = 1, 2, 3,

Fi = Ui−1U
−1
3 .

By § 10.6, and local–global compatibility at v (with the fact that v coincide with τ∞), hi are the
Hodge–Tate weights of (ρz)|Gv , and the normalization of the Hecke Operators recalled in 10.6
assure that (phiFi)i is a refinement at v for all classical forms. 2

11.3 Constructing the extension
Proposition 11.3. We are in one of the following two cases:

(i) ρK(Y ) is absolutely irreducible;

(ii) there exists a two-dimensional representation r ⊂ ρ such that rK(Y ) is absolutely irreducible
and

rssy0
=

(
χ

χ⊥

)
.

Remark 11.4. As showed by the proof, the second case never happens if a > 2 and p is split.

Proof. The proof uses similar ideas as in [BC04, Proposition 9.1], but unfortunately in our case
the refinement authorizes a two-dimensional subrepresentation and a one-dimensional quotient.
Let us first suppose p splits, and suppose ρK(Y ) is reducible. As ρ⊥ ' ρ, we can suppose that
there exists a character ψ ⊂ ρ and a two-dimensional representation r such that

0 −→ ψ −→ ρ −→ r −→ 0.

Thus there exists i such that the (generalized) Hodge–Tate weight of ψ at v is hi. Moreover, for all
z ∈ Z, by weak admissibility of ψ, we must have that there exists a j such that v(phjFj(z)) = hi(z).
As the valuation of Fj is constant on Y , we can calculate it at y0 and

α = (v(F1), v(F2), v(F3)) = (0, a,−a).

In particular, at z ∈ Z such that |hi(z)− hj(z)| > a for all i 6= j, we find αj = 0 and i = j = 1.
Thus, by density ψ is of Hodge–Tate weight h1. In particular, at y0, ψ is of Hodge–Tate weight
h1(y0) = 1 − a. Now, if a 6= 1, ψy0 = χ, and if r were reducible, then by weak admissibility we
would find i, j 6= 1 such that hi(z) = hj(z) + αj , for a Zariski dense subset of z ∈ Z, which is
absurd. Thus there is a unique subquotient of ρ which is of rank 1, it is ψ. As ρ⊥ = ρ, this means
that ψ⊥ = ψ, which is impossible as ψy0 = χ. If a = 1 then ψy0 has v-Hodge–Tate weight 0, and
if ψy0 = χ the same as previously happens; thus suppose that ψy0 = 1. In this case, r is still
irreducible but rssy0

= χ⊕ χ⊥.
Now, we focus on p inert, which is similar. Suppose we are not in the case where ρK(Y ) is

irreducible. We can thus find a two-dimensional subrepresentation r ⊂ ρ (if r is one-dimensional,
take the quotient and apply (.)⊥, as ρ⊥ = ρ). Suppose that r is reducible. Take z ∈ Z; as the
valuation α1 of F1 is constant, we can calculate it at y0, and we get, from ph1−h3F1(y0) = χ⊥p (p),

α1 = a.

But if rssz is not irreducible, this means, following Rogawski’s classification recalled in [BC04,
§ 3.2.3], and the fact that the representations associated by Blasius and Rogawski [BR92] are
irreducible (but not necessarily three-dimensional), that z is either endoscopic-tempered of type
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(1, 1, 1), endoscopic non-tempered or stable non-tempered. In the case endoscopic non-tempered,
looking at the Arthur parameter at infinity, the Hodge–Tate weights verifies h1 = h2 or h2 = h3,
which is not possible by choice of Y and Z. In the stable non-tempered case, the Hodge–Tate
weights are (k, k, k), which is not allowed in Z. So we need to check that z is not endoscopic of
type (1, 1, 1). But in this case, this would mean by weak admissibility for ρssz (which would thus
be a totally split sum of three characters) that

{h1 − h3 + α1, 0, h3 − h1 − α1} = {h1 − h3, 0, h3 − h1},

but the previous equality is impossible for −h1 < −a (which is the generic situation). Thus
z ∈ Z is endoscopic, tempered, of type (2, 1), and r is irreducible. By weak admissibility, and the
previous calculations (or because ρ⊥ = ρ), rssy0

has to be χ⊥ ⊕ χ. 2

11.4 Good reduction outside p
Proposition 11.5. In the previous case (i) of Proposition 11.3, write ρ′ = ρK(Y ) ⊗ (χ⊥p )−1. Let
v|` 6= p be a place of E. Then we have the following.

(i) If v 6 | Cond(χ), then ρK(Y ) and ρ′ are unramified at v.

(ii) If v|Cond(χ), then dimK(Y )(ρ
′
K(Y ))

Iv = 2.

In case (ii) of Proposition 11.3, write r′ = rK(Y )⊗ (χ⊥p )−1. Let v|` 6= p be a place of E. Then we
have the following.

(i) If v 6 | Cond(χ), then rK(Y ) and r′ are unramified at v.

(ii) If v|Cond(χ), then dimK(Y )(r
′)Iv = 1.

Proof. After all the constructions, this can be deduced as in [BC04]. First there exists g ∈ OY
such that g(y0) 6= 0 and ρK(Y ) has a OY,(g) stable lattice. Denote by ρ the representation valued in
OY,(g), and for all y ∈ Spm(OY,(g)) = Y (g−1), ρy the reduction at y. In case (i) of Proposition 11.3,
as ρK(Y ) is semi-simple, ρz is semi-simple for z ∈ Z ′, a cofinite subset of Z∩Y (g−1). But now, for
z ∈ Z ′, ρz = ρssz is the Galois representation associated to a regular automorphic representation
Πz of GU(2, 1). In case (ii) of Proposition 11.3, rK(Y ) is semi-simple, thus for all z ∈ Z ′, still
cofinite in Z, rssz = rz ⊂ ρssz , and

dimK(Y ) r
′Iv > dimK(Y )(ρ

′ss)Iv − 1,

and dimK(Y )(ρ
′)Iv is related to the ramification of a (tempered endoscopic of type (2, 1))

automorphic representation of GU(2, 1). Thus, to show the result, we only need to control
ramification at v of (the base change of) Πz.

If v 6 | Cond(χ), by construction of the eigenvariety and choice of the maximal compact, (Πz)v
has a vector fixed by K`. We can thus finish because if ` is unramified, then K` is hyperspecial,
and if ` ramifies, then K` is chosen very special, and [BC04, Proposition 3.1] gives the result for
the base change. Now by local–global compatibility (for example [Ski12]), ρssz (and thus rz in
case (ii) of Proposition 11.3) is unramified at v.

If v|Cond(χ), by construction Πz has type (K`, J`⊗χ−1
0,` ◦det), and thus by Proposition 10.21

the local Langlands representation associated to (Πz)v is φ1 ⊕ φ2 ⊕ φ3χ0,` for three unramified
characters φi. Thus, by local–global compatibility again, there exists I ′v a finite index subgroup
of Iv such that ρ′z(I ′v) = 1. Thus, (ρ′)(I ′v) = 1. But up to extending scalars, ρ′|Iv is a finite
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representation θ of Iv/I ′v, defined on F ′ a finite extension of F . Thus, ρ′Iv ⊗F F
′ is well-defined

and semi-simple, and, evaluating the trace, we get

1⊕ 1⊕ (((χp)
⊥)−1)Iv = (ρ′|Iv ⊗ F

′)ssy0
' θ.

We thus get the result. 2

11.5 Elimination of case (ii) of Proposition 11.3
We want to prove that ρK(Y ) is always irreducible, and thus prove that case (ii) of Proposition 11.3
can never happen. Thus suppose we are in case (ii).

Proposition 11.6. There exists a continuous representation r : GE −→ GL3(F ) such that r is
a non-split extension of χ⊥ by χ,

r =

(
χ ?

χ⊥

)
such that r = r⊥ and verifying:

(i) dimF (r ⊗ χ)Iv = 2 if v 6 | Cond(χ);

(ii) dimF (r ⊗ χ)Iv > 1 if v|Cond(χ);

(iii) if p splits, Dcris,v(r)
φ=χ⊥v (p) 6= 0 and Dcris,v(r)

φ=χ⊥v (p) 6= 0;

(iv) if p is inert, Dcris,τ (r)φ
2=χ⊥(p) 6= 0.

Proof. We first sketch the proof in case p inert we will detail a bit the argument in Proposition
11.8. First, by Ribet’s Lemma (see [Bel03, Corollaire 1] or [Che03, Appendice, Lemma 3.1] and
[BC04, Lemme 7.3]) there exists a g 6= 0 ∈ OY and a OY,(g)-lattice Λ stable by rK(Y ) such that

r := rΛ =
(
χ ?

χ⊥

)
is a non-split extension. We can moreover easily assure that this lattice is a

direct factor of a lattice stable by ρK(Y ). Then, conditions (i) and (ii) follow from the Proposition
11.5. For condition (iii), we can use the analog of Kisin’s argument as extended by Liu, see [Liu15],
as in the proof of the next proposition, as for all z ∈ Z,

Dcris,τ (rz)
φ2=ph1F1 = Dcris,τ (ρz)

φ2=ph1F1 6= 0

as shown by Proposition 11.3. The split case is similar to [BC04, Proposition 9.3 and Lemme 9.1]
(see also Remarque 6.3.8 or apply the results to rv). 2

Write r′ = r ⊗ (χ⊥p )−1 = r ⊗ χp, which is an extension of 1 by χpχp = ωp (the cyclotomic
character).

Lemma 11.7. The representation r′ is crystalline at p.

Proof. As χ⊥ is crystalline (at v and v if p splits, at p if p is inert), it is enough to prove that r
is crystalline. Suppose first p is inert. As Dcrys,τ is left-exact, because r is extension of χ⊥p by χp
we have

Dcrys,τ (χp) ⊂ Dcrys,τ (r),

but on Dcrys,τ (χp) ϕ
2 acts as χp(p) = χ⊥p (p)p−2, thus this line is distinct from Dcrys,τ (r)ϕ

2=χ⊥(p),
and thus Dcrys,τ (r) is of dimension 2. But because of the action of ϕ, Dcrys(r) is aK⊗ZpF -module
of dimension 2, i.e. r is crystalline. If p splits, as r⊥ ' r, it suffices to prove that r is crystalline
at v. But we use Dcris,v(r)

φ=χ⊥v (p) as in the inert case to get the result. 2

Thus r′ gives a non-zero element in H1
f (E,ωp), but by [BC04, Lemme 9.3], which is a well-

known result, H1
f (E,ωp) = {0}, and thus r′ must be trivial, which gives a contradiction. We are

thus in the case where ρK(Y ) is irreducible.
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11.6 Good reduction at p
Suppose p is inert. The result for p split is analogous to [BC04, Proposition 9.3]. Write u = χ⊥p (p).

Proposition 11.8. There exists a continuous representation ρ : GE −→ GL3(F ) such that we
have the following.

(i) For every place v of E not dividing p, we have:

(a) dimF (ρ⊗ (χ⊥p )−1)Iv > 2 if v|Cond(χ);

(b) dimF (ρ⊗ (χ⊥p )−1)Iv = 3 if v 6 | Cond(χ).

(ii) Dcris,τ (ρ)ϕ
2=u is non-zero.

(iii) ρss ' χp ⊕ χ⊥p ⊕ 1 and one of the two following assertions is true.

(a) Either ρ has a subquotient r of dimension 2, such that r⊥ ' r and r is a non-trivial
extension of χ⊥p by χp.

(b) Either ρ ' ρ⊥; ρ has a unique subrepresentation r1 of dimension 2 and a unique
subquotient r2 of dimension 2, with r1 a non-trivial extension of 1 by χp and r2 a
non-trivial extension of χ⊥p by 1, and r⊥1 ' r2.

Proof. Denote by O the rigid local ring of Y at y0, a discrete valuation ring of residual field
F , denote by L its fraction field, and ρL the representation which is the scalar extension of ρ
to L. As ρLss = 1 ⊕ χp ⊕ χ⊥p which are pairwise distinct characters, we can also use [BC04,
Proposition 7.1], the analog to Ribet’s theorem, to find Λ ⊂ L3 a lattice stable by ρL such that
the reduced representation ρ = ρΛ satisfies condition (iii)(a) or (iii)(b). Condition (i) is true by
Proposition 11.5. We can argue as in [BC04] to get condition (ii), but we will need a generalization
to GK if p is inert. Fortunately what we need is in [Liu15]. As in [BC04, Lemma 7.3] there is an
affinoid Y ⊃ Ω 3 y0 such that ρL as a OΩ-stable lattice ΛΩ such that ρΛΩ,y0

= ρ. Write ρ = ρΛΩ
.

Let thus Z ′ ⊂ Ω the points that are in Z ⊂ Y , in Ω, and such that ρz is semi-simple (it is a
cofinite subset of Z ∩ Ω as ρK(Ω) is semi-simple (irreducible)). By choice of Z, we have that for
all z ∈ Z ′

Dcrys,τ (ρz)
φ2=ph1(z)−h3(z)F1(z) 6= 0.

As ρ is polarized, its στ -Hodge–Tate weights are hσ(z) = (−h3,−h2,−h1). Set hKi = (hi, h4−i) ∈
Fτ×Fστ = K⊗QpF . Thus (Ω, ρ, (hKi )i, F1, Z) is a weakly refined (polarized) p-adic representation
of GK of dimension 3 in the sense of [Liu15, Definition 0.3.1]. To verify property (f) of [Liu15,
Definition 0.3.1], recall that over the weight space W we had a universal character χ = χ1 × χ2 :
O× × O1 −→ O(W)×, and, as W is regarded over K, we can split O(W) ⊗Qp K = O(W )τ ×
O(W )στ . Under this isomorphism, the derivative at 1 of χ1, denoted (wtτ (χ1), wtστ (χ1)), is at
every κ ∈ Z3 ⊂ W given by

(k1, k3) = (h3, 1− h1).

Thus set ψ = τ−1(χ1 ◦ c). Its derivative at 1 is given by (k3−1, k1) = (−h1, h3) at classical points
κ ∈ Z3. Thus, the character,

O× ψ−→ O(W)× −→ O(B)× −→ O(Ω)×,

has the desired property (f).
Write ρ′ = ρ⊗ψ (where ψ is precomposed by product of the two Lubin–Tate characters of K,

GK −→ O×). Thus ρ′ has κK′1 = (0, 0) as smallest Hodge–Tate weight. In particular, by [Liu15,
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Theorem 0.3.2], Ωfs = Ω. But then by Theorem 0.1.2 applied to S = Ω, k, n big enough, and ρ′,
we have that

D+
crys(ρ

′
y0

)ϕ
2=F1 ' D+

Sen(ρ′y0
)Γ,

(see [Liu15, Remark 3.3.5 and Corollary 1.5.4]; as 0 is the only non-positive Hodge–Tate weight6

of ρ′, [Liu15, Corollary 1.5.4] applies), and D+
Sen(ρ′y0

)Γ 6= 0.
Thus Dcrys,τ (ρ′y0

)ϕ
2=F1 6= 0, which means

Dcrys,τ (ρy0)ϕ
2=ph1(y0)−h3(y0)F1 = Dcrys,τ (ρy0)ϕ

2=u 6= 0. 2

11.7 Elimination of case (iii)(a) of Proposition 11.8
We can do as in [BC04], and as we eliminated case (ii) of Proposition 11.3, to eliminate case
(iii)(a) of Proposition 11.8. Suppose we are in case (iii)(a); there is thus a subquotient r of ρ
such that r⊥ ' r and r is an extension of χ⊥p by χp. Write r′ = r⊗ (χ⊥p )−1 = r⊗χp, which is an
extension of 1 by χpχp = ωp (the cyclotomic character).

Lemma 11.9. The representation r′ is crystalline at p (at v1, v2|p is p is split).

Proof. The split case is identical to [BC04, Lemma 9.1] and Lemma 11.7. Suppose p is inert. As
χ⊥p is crystalline, it is enough to prove that r is crystalline. But V 7→ Dcrys,τ (V )ϕ

2=u is left-exact,
thus, if we write u = χ⊥(p),

dimF Dcrys,τ (ρ)ϕ
2=u 6 dimF Dcrys,τ (r)ϕ

2=u +Dcrys,τ (1)ϕ
2=u.

But Dcrys,τ (1)ϕ
2=u = 0, and thus Dcrys,τ (r)ϕ

2=u 6= 0. The end of the proof is identical to
Lemma 11.7. 2

Lemma 11.10. The representation r′ is unramified at every place w 6 | p.

Proof. This is exactly identical to [BC04, Lemme 9.2]. 2

Thus by [BC04, Lemme 9.3], r must be trivial, which contradicts Proposition 11.8(iii)(a).

11.8 Conclusion
We are thus in case (iii)(b) of Proposition 11.8, with r1 a non-trivial extension of 1 by χp.

Lemma 11.11. The representation r1 is crystalline at p if p is inert, and at v1, v2|p if p splits.

Proof. Suppose p inert. As r1 ' r⊥2 , we only need to prove that r2 is crystalline. Because
Dcrys,τ (·)ϕ2=u is left-exact, we again have

dimF Dcrys,τ (ρ)ϕ
2=u 6 dimF Dcrys,τ (r2)ϕ

2=u + dimF Dcrys,τ (χp)
ϕ2=u.

As Dcrys,τ (χp)
ϕ2=u = {0} and dimF Dcrys,τ (ρ)ϕ

2=u 6= 0, we have dimF Dcrys,τ (r2)ϕ
2=u 6= {0}.

Moreover,
Dcrys,τ (1) ⊂ Dcrys,τ (r2),

6 In [Liu15] the convention of the Hodge–Tate weights is opposite to ours: there the Hodge–Tate weight of the
cyclotomic character is 1.
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by left-exactness of Dcrys,τ , which gives a line where ϕ2 acts as 1 6= u. Thus there are at least
two different lines in Dcrys,τ (r2) which means this is two-dimensional and, by existence of ϕ, r2

(thus r1) is crystalline.
Now suppose p splits. Then the proof is identical to [BC04, Lemme 9.4], as 1 6= χv(p) 6=

χ⊥v (p) 6= 1 (recall |χv(p)|C = |χv(p)|C = p−1/2). 2

Theorem 11.12. The representation r1 gives a non-zero element of H1
f (E,χp).

Proof. We only need to prove that r1 has good reduction outside p. But then as ρ is unramified
outside pCond(χ), by Proposition 11.8, we only need to check for v|Cond(χ). We have shown in
the proof of Proposition 11.5 that there exists an open subgroup I ′w ⊂ Iw such that ρ′|Iw factors
through Iw/I ′w and ρ′|Iw = 1⊕ 1⊕ (χ⊥p )−1

|Iw . Thus r
Iw
1 is then of dimension 1. 2
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Appendix A. Calculations on the weight space

In this appendix we explain a bit more the structure of the weight space W defined in § 3. W is
represented by a disjoint union of ((p+ 1)(p2 − 1)) three-dimensional open balls over O. Indeed
(if p 6= 2)

O× ' (Fp2)× × (1 + pO),

which induced, up to the choice of a basis of O over Zp, an isomorphism,

Homcont(O×,Gm) ' ̂(Z/(p2 − 1)Z)×B2(1, 1−),

where B2(1, 1−) is the open two-dimensional ball centered in 1, of radius 1. Also, as a Zp-module,

O1 ' S × Zp,

where S is a finite group of cardinal p+ 1.

Proof. We have the exact sequence,

0 −→ O1 −→ O× Nm−→ Z×p −→ 0,
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(surjectivity is given by local class field theory for example). Reducing modulo p, we have the

surjectivity of Fp2
Nm−→ Fp. We thus have the following diagram.

The application Nm1 = 1 +pO −→ 1 +pZp is surjective; indeed, for all z inside 1 +pZp, because
Nm is surjective, there exists u ∈ O× such that uuσ = 1 + pz (denote by σ the conjugation, and
• reduction modulo p). We deduce that u ∈ {x ∈ Fp2 : xp+1 = 1}. We then set u′ = u/[u], where
[.] denotes the Teichmuller lift. Then u′ ∈ 1 +pO and (u′)(u′)σ = uuσ/([u][u]σ) = uuσ/([up+1]) =
1 + pz. The second equality is because [.] commutes with Frobenius morphisms. (We could also
prove the surjectivity by a method of successive approximations.) The map O1 −→ {x ∈ Fp2 :
xp+1 = 1} is also surjective: for all x ∈ {x ∈ Fp2 : xp+1 = 1}, [x][x]σ = [xp+1] = [1] = 1. Thus, up
to choosing a base of O over Zp, we can with the logarithm identify 1 + pO to Z2

p; this assures
that {x ∈ O1 : x ≡ 1(mod p)} ' Zp (because logarithm exchanges trace and Nm). 2

In particular,
Homcont(O1,Gm) '

∐
Ŝ

B1(1, 1−).

Thus, W is isomorphic to a union of (p + 1)(p2 − 1) open balls of dimension 3. There is also a
universal character,

κun : T 1(Zp) −→ Zp[[T 1(Zp)]].

The following lemma is essential.

Lemma A.1. Every weight κ ∈ W(K) is automatically locally (Qp-) analytic.

Actually we can be more precise.

Lemma A.2. Let U ⊂ W a quasi-compact open; then there exists wU such that κun
|U is wU -

analytic.

Proof. It is [Urb11, Lemma 3.4.6]. 2
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We will construct W(w), an open subset of W containing the w-analytic κ (it is an affinoid).
Set w ∈ ]n − 1, n ]∩ v(Qp). We define it this way, following [AIP15]. First set W(w)0 to be
Spf OK〈〈S1, S2, S3〉〉 where K is a finite extension of Qp containing an element pw of valuation
w. Define Tw the subtorus of T the formal torus associated to T 0, given by

Tw(R) = Ker(T(R)) −→ T(R/pwR),

for any flat, p-adically complete OK-algebra R. Denote by X ′i the coordinates on Tw, so that
1 + pwX ′i = 1 +Xi on T, and define the universal character,

κ0,un :

Tw ×W(w)0 −→ Ĝm

(1 + pwX ′1, 1 + pwX ′2, 1 + pwX ′3, S1, S2, S3) 7−→
3∏
i=1

(1 + pwXi)
Sip
−w+2/p−1

.

Then define W(w)0 to be the rigid fiber of W(w)0 and finally, W (w) to be the fiber product,

W ×Homcont((1+pO)×(1+pO)1,C×p )W(w)0,

where the map W(w)0 −→ Homcont(1 + pO)× (1 + pO)1, (C×p ) is given by

(s1, s2, s3) 7−→ (1 + pnx1, 1 + pnx2, 1 + pnx3) 7→
3∏
i=1

(1 + pnxi)
sip
−w+2/p−1

.

Then we can write W =
⋃
w>0W(w) as an increasing union of affinoids.

Appendix B. Kernel of Frobenius

Proposition B.1. On the stack BT O(2,1),pol and X, the Cartier divisor haτ is reduced.

Proof. This is [dSG16, Theorem 2.8], which can be proved by considering the deformation space
at a point. Unfortunately we cannot use the result of [Her18] because of the polarization (but a
similar proof works). 2

Proposition B.2. Let G/ Spec(OC) be a p-divisible O-module. Suppose haτ (G) < 1/2p2, and
let K1 the first Frobenius-subgroup of G (see Theorem 5.8). Then

K1 ×Spec(OC) Spec(OC/p1/2p2
) = KerF 2 ×Spec(OC/p) Spec(OC/p1/2p2

).

Denote, for K/Qp2 , by X/ Spf(OK) a (smooth) presentation of BT Or,(2,1),pol/Spf(OK) (which
is smooth, see for example [Wed01]), and, for v ∈ v(K), X(v) is the open subset of the blow-up
along Iv = (pv,haτ ) where Iv is generated by haτ . As X is smooth and haτ is reduced, X(v) is
normal and its special fiber (modulo πK) is reduced.

Take v = 1/2p2 and K a totally ramified extension of Qp of degree 1/2p2 (so that v(πK) =
1/2p2).

Then over X(v), the rigid fiber over K of X(v), we have a subgroup K1 ⊂ G[p2], and by the
Proposition 5.11 this subgroup extend to a subgroup over X(v). Now, over X(v) ⊗ OK/πK =
X(v) ⊗ κK the rigid fiber of X(v), we have two subgroups, K1 and KerF 2, which coincide on
every point (by [Her19, § 9] or the very proof of the Proposition 5.11) but as X(v) ⊗ OK/πK is
reduced, K1 = KerF 2 over X(v)⊗OK/πK . As every OC-point of BT O(2,1),pol gives a point of X,
we have the result using G[pr] for r big enough (bigger than 3 is enough).
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Corollary B.3. Let G as in the previous proposition, but suppose haτ (G) < 1/2p4. Then
haτ (G/K1) = p2 haτ (G).

Proof. Recall that haτ = haστ and haτ is given by det(V 2) without any division. By the previous

proposition, the map G[p2] −→ G[p2]/K1 coincide modulo πK with the map G[p2]
F 2

−→ G[p2](p
2).

Thus, there is an isomorphism modulo πK : det(ω(G/K1)D,στ ) ' det(ω⊗p
2

GD,στ
) which identifies

(modulo πK) h̃aστ (G/K1) with h̃aστ (G)⊗p
2 . Thus we get

inf

{
p2 haτ (G),

1

2p2

}
= inf

{
haτ (G/K1),

1

2p2

}
.

As p2 haτ (G) < 1/2p2, we get the result. 2

Appendix C. Dévissage of the formal coherent locally analytic sheaves

Let κ ∈ W(w) a character and κ0 its restriction to W(w)0, and w < m − (p2m− 1)/(p2 − 1).
Denote on X1(p2m)(v) the sheaf wκ0†

w defined as

ζ∗OIW+
w

[κ0], where ζ : IW+
w −→ X1(p2m)(v).

If we set π : X1(p2m)(v) −→ X(v), then the sheaf wκ†
w of overconvergent forms is given by

(π∗w
κ0†
w )(−κ)B(Zp)Bw ,

where (−)(−κ′) denotes a twist of the action of B(Zp)Bw and (−)B(Zp)Bw means taking
invariants. Remark that after the twist, the action of B(Zp)Bw factors through Bn.

Consider the projection ‘in family’

ζ × 1 : IW+
w ×W(w)0 −→ X1(p2m)(v)×W(w)0,

and denote by
wκ0,un†
w = (ζ × 1)∗OIW+

w×W(w)0 [κ0,un]

the family of sheaves over X1(p2m)(v)×W(w)0.
Let Spf(R) a small enough open in X1(p2m)(v). Recall that we denote by ψ the universal

polarized trivialization of KD
m , denote by e1, e2 a basis of O/pmO⊕O/p2mO, eστ1 = HTστ,w(e1),

eστ2 = HTστ,w(e2), eτ = HTτ,w(e2) the images of this basis in Fστ/pw,Fτ/pw. Denote by fστ1 , fστ2 ,
f τ a lift of this basis in Fστ ,Fτ .

With these choices we can identify IW+
w| Spf(R) with matrices, 1

pwB(0, 1) 1

1

×
1 + pwB(0, 1)

1 + pwB(0, 1)

1 + pwB(0, 1)

×Spf(OK) Spf(R).

Denote by X0 the coordinate in the 3 × 3 matrix and by X1, X2, X3 the coordinates of the
balls inside the column. Thus, we can identify a function f on IW+

w| Spf(R) to a formal series in
R〈〈X0, X1, X2, X3〉〉.

Now, let κ0 ∈W(w)0; then f ∈ wκ0†
w if it verifies

f(X0, λX1, λX2, λX3) = (κ0)′(λ)f(X0, X1, X2, X3), ∀λ ∈ Tw(R).
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In particular, we deduce that there exists a unique g ∈ R〈〈X0〉〉 such that

f(X0, X1, X2, X3) = g(X0)κ0(X1, X2, X3),

and thus there is a bijection wκ0†
w ' R〈〈X0〉〉. The same holds in family.

Lemma C.1. For all f ∈ wκ0,un†
w (R ⊗̂OK〈〈S1, S2, S3〉〉), there exists a unique g ∈ R〈〈S1, S2, S3,

X0〉〉 such that

f(X0, X1, X2, X3) = g(X0)(κ0,un)′(1 + pwX1, 1 + pwX2, 1 + pwX3).

This decomposition induces a bijection

wκ0,un†
w (R ⊗̂OK〈〈S1, S2, S3〉〉) ' R〈〈S1, S2, S3, X0〉〉.

Lemma C.2. Let π be a uniformizer of OK . Then

κ0,un((1 + pwXi)) ∈ 1 + πOK〈〈S1, S2, S3, X1, X2, X3〉〉.

Proof. The calculation is made in [AIP15, Lemma 8.1.5.3]. 2

Corollary C.3. Denote by wκ0,un†
w,1 the reduction modulo π of wκ0,un†

w . Then the sheaf wκ0,un†
w,1

is constant on (X1(p2n)×W(w)0)× Spec(OK/π): it is the inverse image of a sheaf on X1(p2n)×
Spf(OK/π).

Let fστ ′1 , fστ
′

2 , f τ
′ be another lift of the basis image of HT?,w. Let

P =

1 + pwa1 pwa2

pwa3 1 + pwa4

1 + pwa5


be the base change matrix from f to f ′ and X ′ the coordinates on IW+

w| Spf(R) relatively to f ′.

Lemma C.4. We have the following congruences:

X0 ≡ X ′0 + a3 (mod pw);

X1 ≡ X ′1 + a1 (mod pw);

X2 ≡ X ′2 + a4 (mod pw);

X3 ≡ X ′3 + a5 (mod pw).

Proof. Indeed, as seen inside T ×a n/Uan, we have that the two systems of coordinates verifies

P (I3 + pwX)U = I3 + pwX ′,

where U ∈ GL2×GL1 is a unipotent matrix of the form I3 +pwN , N upper triangular nilpotent,
and

X =

X1

X0 X2

X3

 .

Thus, write P = I3 + pwP0; then I3 + pw(P0 +X +N) ≡ I3 + pwX ′ (mod p2w). 2
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We can thus deduce the following corollary for the family of sheaves,

Corollary C.5. Let κ0 ∈ W(w)(K). The quasi-coherent sheaf wκ0,un†
w on X1(p2m)×W(w)0 is

a small Banach sheaf.

Proof. We just have to check that on X1(p2m) ×W(w)0 × Spec(OK/π) the sheaf wκ0,un†
w,1 is an

inductive limit of coherent sheaves which are extensions of the trivial sheaf. Write wκ0,un†,>r
w,1 the

subsheaf of sections that are locally polynomials in X0 of total degree smaller than r. This makes
sense globally by Lemma C.4, and moreover, wκ0,un†

w,1 is the inductive limit over r of these sheaves.

But then wκ0,un†,>r
w,1 (mod)wκ0,un†,>r−1

w,1 is isomorphic to the trivial sheaf. 2

Appendix D. Non-tempered representations and (q,K)-cohomology

We are interested in calculating the (q,K)-cohomology of the representation πn(χ) defined in
Proposition 10.12 to show it appears in the global sections of a coherent automorphic sheaf on
the Picard modular surface.

We have the following theorem of Harris ([Har90b, Lemma 5.2.3 and Proposition 5.4.2],
[Gol14, Theorem 2.6.1])

Theorem D.1. Let π = π∞⊗πf be an automorphic representation of U(2, 1) of Harish-Chandra
parameter λ, and such that H0(q,K, π∞ ⊗ V ∨σ ) 6= 0; then there is a U(2, 1)(Af ) equivariant
embedding,

πf ↪→ H0(X,V∨σ ),

where V∨σ is the automorphic vector bundle associated to the representation V ∨σ of K = K∞.

Thus we only need to calculate the (q,K)-cohomology of πn(χ)∞, and even the one of the
restriction of the representation to SU(2, 1). Fortunately we can explicitly do so, rewriting
the induction ind−nSU(2,1)

B (R)(χ∞), as a space of functions, and determining the quotient
corresponding to πn(χ). In [Wal76], Wallach calculated all the representations of SU(2, 1)(R)
using this description of the induction. As explained in [Wal76, p. 181], the induction space
ind−nSU(2,1)(R)

B (χ) corresponds to XΛ with Λ = (a − 1)Λ1 + (−a)Λ2 (which is thus reducible).
The shift by −Λ1 − Λ2 is due to the normalization by the modulus character in the induction.
Its discrete series subobject corresponds to one of the discrete series D−

Λ̃
described in [Wal76,

p. 183], and its quotient corresponds to the non-tempered representation (T−a−2, Z
−
a−2) (defined

in [Wal76, p. 184], and the fact that it appears in the said induction is [Wal76, Lemma 7.12]). As
the name does not suggest, T−a−2, which coincides with the restriction of πn(χ)∞ to SU(2, 1)(R),
will be holomorphic (but we can exchange holomorphic and anti-holomorphic by changing the
complex structure of the Picard surface).

Proposition D.2. Let (σ, Vσ) = Syma−1⊗det−a : M 7→ Syma−1(M) ⊗ det(M)−a the
representation of U(2) = SK∞ ⊂ SU(2, 1)(R). Then

H0(q,K∞, T
−
a−2 ⊗ V

∨
σ ) 6= 0.

To show the previous proposition, denote by

J0 =

1

1

−1
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the hermitian form of signature (2, 1) used in [Wal76]. Denote by

P =


1√
2

1√
2

1
1√
2

− 1√
2


the base change matrix (so that PJ0P = J , P = P−1 = P ). In this new presentation, the complex
structure is given by h′ = PhP , i.e.,

h′ : z ∈ C 7→

z z

z

 ∈ UJ0(R).

In this form, the Lie algebra of UJ0(R) is given by

g =


ia0 b c

−b ie0 f

c f il0

 , a0, e0, l0 ∈ R

 .

Using the action of h′(i) we can decompose g = k + p with

p =


0 0 c

0 f

c f 0

 , c0, a0 ∈ R

 .

Extending scalars to C, we can further decompose, pC = p+ ⊕ p−, where conjugacy by h′(z) on
p+ and p− is given by z/z and z/z respectively. Explicitly, p− is generated by

X− = N+ ⊗ i−N− ⊗ 1 and Y − = M+ ⊗ i−M− ⊗ 1,

N− =

 0 i

0

−i 0

 , N+ =

0 1

0

1 0

 ,

M− =

0 0

0 i

0 −i 0

 , M+ =

0 0

0 1

0 1 0

 ,

and p+ is generated

X+ = N+ ⊗ i+N− ⊗ 1 and Y + = M+ ⊗ i+M− ⊗ 1.

To calculate the action of p− on our representation, we use the following formula for a matrix
X and f ∈ g:

X · f =

(
d

dt
exp(tX) • f

)
t=0

.

As Z−a−2 is a space of holomorphic functions, we get the following exponentials for the matrices
M±, N±:

exp(tM−) =

1 0

ch t i sh t

−i sh t ch t

 , exp(tM+) =

1 0

ch t sh t

sh t ch t

 ,
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exp(tN−) =

 ch t i sh t

1 0

−i sh t ch t

 , exp(tN+) =

ch t sh t

1 0

sh t ch t

 ,

and the actions of the matrices M±, N± is given by

N+f = −(a− 2)z1f + (z1
2 − 1)

df

dz1
+ z1z2

df

dz2
,

N−f = −i(a− 2)z1f + i(z1
2 + 1)

df

dz1
+ iz1z2

df

dz2
,

M+f = −(a− 2)z2f + z1z2
df

dz1
+ (z1

2 − 1)
df

dz2
,

M−f = −i(a− 2)z2f + iz1z2
df

dz1
+ i(z1

2 + 1)
df

dz2
.

We deduce that the action of p− is given by

Y −f

(
z1

z2

)
= −2i

df

dz2
,

and

X−f

(
z1

z2

)
= −2i

df

dz1

and the action of p+ by

Y +f

(
z1

z2

)
= −2i(a− 1)z2f + 2iz1z2

df

dz1
+ 2iz2

2 df

dz2
,

and

X+f

(
z1

z2

)
= −2i(a− 1)z1f + 2iz1z2

df

dz2
+ 2iz1

2 df

dz1
.

As Z−a−2 is defined as a completion of the quotient of holomorphic polynomials in variables z1, z2

by the subspace of polynomials of degrees less or equal to (a− 2), H0(p−, Z−a−2) = (Z+
a−2)p

−=0 is
identified with homogeneous polynomials in z1, z2 of degree a− 1.

As for a representation τ of K∞ we have

Hq(q,K, V ⊗ Vτ ) = (Hq(p−, V )⊗ Vτ )K

(cf. [Har90b, 4.14]), we have that H0(q,K, Z+
a−1 ⊗ V ∨σ ) 6= 0.

Remark D.3. Using a slightly more precise calculation for U(2, 1) instead of SU(2, 1), we could
show for U(2, 1) that

H0(q,K∞, π
n(χ)⊗ V(0,1−a,a)) 6= 0;

in particular, the Hecke eigenvalues of πn(χ) appear in the global sections over X, the Picard
modular variety, of the automorphic sheaf ω(0,1−a,a).
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395–419.

Rub91 K. Rubin, The ‘main conjectures’ of Iwasawa theory for imaginary quadratic fields, Invent.
Math. 103 (1991), 25–68.

Shi78 G. Shimura, The arithmetic of automorphic forms with respect to a unitary group, Ann. of
Math. (2) 107 (1978), 569–605.

Ski12 C. Skinner, Galois representations associated with unitary groups over Q, Algebra Number
Theory 6 (2012), 1697–1717.
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