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Abstract When can two fibrewise maps be deformed in a fibrewise fashion until they are coincidence
free? In order to get a thorough understanding of this problem (and, more generally, of minimum numbers
that are closely related to it) we study the strength of natural geometric obstructions, such as ω-invariants
and Nielsen numbers, as well as the related Nielsen theory.

In the setting of sphere bundles, a certain degree map degB turns out to play a decisive role. In many
explicit cases it also yields good descriptions of the set F of fibrewise homotopy classes of fibrewise maps.
We introduce an addition on F , which is not always single valued but still very helpful. Furthermore,
normal bordism Gysin sequences and (iterated) Freudenthal suspensions play a crucial role.

Keywords: fibrewise map and homotopy; coincidence; Nielsen number; sphere bundle; normal bordism;
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1. Introduction and outline of results

Let AM : FM → FM and AN : FN → FN be self-diffeomorphisms of smooth, closed,
connected manifolds FM and FN of dimensions m − 1 and n − 1, respectively.

Consider the fibrewise maps as in Figure 1; they commute with the obvious fibre
projections pM and pN onto the unit circle S1 (see [3, § 1.1]). Note that the dimensions
of the total spaces M and N are m and n, respectively.
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f, f1, f2,... : M := (I × FM)/((1, x) ~ (0, AM(x))) N := (I × FN)/((1, y) ~ (0, AN(y)))

S1 = I/(1~0)

pNpM

Figure 1. Diagram 1.

We are mainly interested in the following three questions.

Question 1.1. Can the coincidence locus

C(f1, f2) = {x ∈ M | f1(x) = f2(x)} (1.1)

be made empty by suitable fibrewise homotopies of f1 and f2?

If this can be done, i.e. if the maps f1 and f2 can be ‘deformed away from one another’
in a fibrewise fashion, we say that the pair (f1, f2) is loose over S1 (see [3]).

This generalizes a problem that arises very naturally in fixed-point theory (where
M = N and f2 is the identity map id).

In a very general setting the looseness obstruction

ωB(f1, f2) ∈ Ωm−n+1(M ; ϕ) (1.2)

was introduced in [3]. This normal bordism class depends only on the fibrewise homotopy
classes of f1 and f2 and vanishes for loose pairs. It reflects important geometric aspects
of a generic coincidence submanifold C(f1, f2) of M , in particular, its location in M and
its stable normal bundle.

If Question 1.1 allows no affirmative answer, we want to measure somehow to what
extent the pair (f1, f2) fails to be loose over S1. This can be done, for example, via the
minimum number of path components

MCCB(f1, f2) := min{#π0(C(f ′
1, f

′
2)) | f ′

i∼Bfi, i = 1, 2} (1.3)

of coincidence subspaces in M , achieved by fibrewise deformations of f1 and f2 (see [3,
(1.2)]). Clearly, MCCB(f1, f2) = 0 if and only if (f1, f2) is loose.

The minimum number MCCB(f1, f2) is bounded from below by the Nielsen number
NB(f1, f2) introduced in [13,14] (see also the beginning of § 4). It is a (possibly weaker)
version of both types of Nielsen numbers discussed in [3, § 4], but agrees with them and
the classical Nielsen number in the setting of classical fixed-point theory. The definition
of NB(f1, f2) involves (in a weaker form) the refined looseness obstruction ω̃B(f1, f2),
which takes into account a very inconspicuous but important additional coincidence
datum, namely, the constant path in N at f1(x) = f2(x), whenever x ∈ C(f1, f1) (see [3,
(1.6)–(1.8)]).

Question 1.2. Given fibre bundles M and N as in Figure 1, is the minimum
number MCCB(f1, f2) equal to the Nielsen number NB(f1, f2) for all fibrewise maps
f1, f2 : M → N?
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The analogous question in classical fixed-point theory was open for nearly six decades
until Boju Jiang proved the answer to be negative precisely if M = N is a surface with
a strictly negative Euler characteristic (see [7] or [1, I(a)]).

In other settings (e.g. classical self-coincidence theory of maps from spheres to real
projective spaces) answers to Questions 1.1 and 1.2 even involve the Kervaire invariant
one problem or divisibility questions for Hopf invariants (cf. [4,13,14]).

Question 1.3. Can we classify the fibrewise homotopy classes of fibrewise maps or,
at least, get some computable estimates or bounds for their number?

In the case when the fibres FM and FN are tori of arbitrary, possibly different, dimen-
sions greater than or equal to 1, and the gluing maps AM and AN are Lie group automor-
phisms, Questions 1.1–1.3 and the whole related Nielsen coincidence theory have been
recently reduced to simple, purely algebraic problems (which, nevertheless, can be highly
non-trivial) (see [11, 12]). In the proofs the ω̃B-invariant turned out to be absolutely
crucial.

In this paper we study another case.

From now on we assume that the fibres FM and FN are spheres of strictly positive
dimensions and that the gluing maps AM and AN are orthogonal.

Question 1.1 can then be answered right away: a pair (f1, f2) is loose over S1 precisely
if f2 is fibrewise homotopic to a◦f1 (here and throughout the paper a denotes the fibrewise
antipodal map in a sphere bundle). Indeed, if for each x ∈ M the two image points f1(x)
and f2(x) in the fibre Nb

∼= Sn−1 of pN over b = pM (x) ∈ S1 are distinct, we may use the
stereographic homeomorphism from Nb − {f1(x)} onto the tangent space Ta(f1(x))(Nb),
in order to deform f2(x) ‘linearly’ to the antipodal point a(f1(x)).

This simple observation will help us to study Questions 1.2 and 1.3.
After suitable smooth isomorphisms of fibre bundles we may (and will) assume that

AM (see Figure 1) has the form

AM (x1, . . . , xm−1, xm) = (x1, . . . , xm−1,±xm) (1.4)

for all x = (x1, . . . , xm) ∈ R
m, and, similarly, AN : R

n → R
n. Both gluing maps then

leave the point
∗ := e1 = (1, 0, . . . , 0) (1.5)

in the fibre fixed. Thus, we get well-defined ‘zero sections’ soM (and soN ) in M (and N ,
respectively), described by [t] ∈ S1 = I/∼ → [t, ∗] (see Figure 1), as well as the fibrewise
maps

f0 = soN ◦ pM : M → N (and a ◦ f0 : M → N, respectively), (1.6)

which map each fibre in M fully to the zero point ∗ of the corresponding fibre in N (or
to its antipodal point a(∗), respectively).

We are interested in the size and structure of

F := {f : M → N fibrewise map}/fibrewise homotopy (1.7)
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and, at the same time, in testing the strength of the ωB-invariant also in this context,
i.e. for sphere bundles.

By construction, the normal bordism class ωB(f1, f2) must necessarily vanish whenever
(f1, f2) is a loose pair of fibrewise maps (see Question 1.1). But is this sufficient? This is
also closely related to Questions 1.2 and 1.3. In §§ 3 and 4 we prove the following.

Theorem 1.4. Given the sphere bundles M and N over S1, the following three con-
ditions are equivalent.

(i) Full obstruction condition: for all [f1], [f2] ∈ F we have that ωB(f1, f2) = 0 if and
only if the pair (f1, f2) is loose over S1.

(ii) Wecken property (see [1]): MCCB(f1, f2) = NB(f1, f2) for all [f1], [f2] ∈ F .

(iii) Injectivity condition: the map

degB : F → Ωm−n+1(M ; ϕ),

which sends [f ] to ωB(f, a ◦ f0) (see (1.6)), is injective.

Thus, it makes sense to take a closer look at degB . Injectivity results will help us not
only to understand under what conditions ωB(f1, f2) is the full looseness obstruction for
a pair (f1, f2) of fibrewise maps, but also to get valuable clues concerning Question 1.3.
In this context the image of degB is equally interesting; it also turns out to coincide with
the set of all possible values ωB(f1, f2), [f1], [f2] ∈ F .

Define the integers

dM := detAM , dN := detAN , d = dMdN (1.8)

(all lying in {±1}), as well as the automorphism δi : πi(Sn−1, ∗) (of the ith homotopy
group of Sn−1, i ∈ Z) by

δi([u]) := dMAN∗([u]), [u] ∈ πi(Sn−1). (1.9)

Example 1.5 (n = 2). Here N is the torus T = S1 ×S1 or the Klein bottle K, both
fibred in the standard fashion over the base S1. The Lie group structure on the fibres
makes F into an abelian group.

Theorem 1.6. If n = 2, then the composed map

µ ◦ degB = (r, q) : F → Hm−1(M ; Z̃ϕ) = Z/(dN − 1)Z ⊕
{

Z if m = 2 and M � N,

0 otherwise

is a group isomorphism. Given [f ] ∈ F , r([f ]) classifies the section f ◦ soM of pN up to
homotopy (not necessarily through sections); q([f ]) measures the ‘mapping degree’

[f |] ∈ [FM , FN ] ∼= πm−1(S1)
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of the restriction of f to the fibre FM . The Hurewicz homomorphism

µ : Ωm−1(M ; ϕ) → Hm−1(M ; Z̃ϕ)

maps, for example, ωB(f1, f2) to the image of the fundamental class [C(f1, f2)] (with
integer coefficients, twisted like ϕ) under the inclusion [f1], [f2] ∈ F .

In particular, degB is injective for n = 2, and the three conditions in Theorem 1.4 are
satisfied.

The proof will be given in §§ 2, 3 and 4. Since N is also a torus bundle we can use
the techniques of [12] together with Toda’s tables of stable homotopy groups of spheres
(see [16]). The case m = n = 2 was already discussed in detail in [3].

Remark 1.7. If n = 2, the apparently weaker invariant µ(ωB(f1, f2)) is still a complete
looseness obstruction, and ωB(f1, f2) itself may contain unnecessary, redundant informa-
tion (see Table 1). This very exceptional phenomenon is related to the fact that the fibre
FN

∼= S1 is a K(Z, 1)-space. In general (e.g. for FN = Sn−1, n � 3), µ(ωB(f1, f2)) can be
much weaker than the ωB-invariant itself, which is able to capture very subtle and impor-
tant coincidence aspects that get completely lost in homology (see, for example, [9]).

Our main tool when studying F (see (1.7)) and degB (see Theorem 1.4) in the remain-
ing case, n � 3, will be the following diagram:

coker((δm − id) : πm(Sn−1) )

E∞
2

��

act ������ F

degB

��

q �� �� ker((δm−1 − id) : πm−1(Sn−1) )

E∞
1

��
0 �� coker((d − 1)· : πS

m−n+1 )
incl∗ �� Ωm−n+1(M, ψ) � �� ker((d − 1)· : πS

m−n ) �� 0
(1.10)

Here the lower horizontal sequence is exact and derived from Gysin and Pontryagin–
Thom isomorphisms; E∞

1 and E∞
2 denote stable suspension homomorphisms. The right-

hand square commutes where q stands for the restriction to the fibre FM = Sm−1 over
∗ = [1] = [0] ∈ S1; this yields a map f | : Sm−1 → Sn−1 such that AN ◦ f | ∼ f | ◦ AM

(otherwise f | is not compatible with the gluing maps and cannot be extended to all
of M).

Given [u] ∈ πm(Sn−1) and [f ] ∈ F , the restriction of f to some (suitably oriented)
compact m-ball D in M − FM = (0, 1) × Sm−1 takes the product form

f |D = fh × fv : D → (0, 1) × Sn−1 = N − FN .

After a suitable homotopy, we may assume that the second (‘vertical’, Sn−1-valued)
component map fv takes the constant value ∗ ∈ Sn−1 over all of D. Replace it by u,
interpreted as a map (D, ∂D) → (Sn−1, ∗). This procedure induces a well-defined action
([u], [f ]) → [u] ∗ [f ] on F , which we indicate by the dotted arrow in (1.10). It is easy to
check that

degB([u ∗ f ]) = degB([f ]) + incl∗ ◦ E∞
2 ([u]). (1.11)

Now assume that n � 3. Then, the orbits of this action are precisely the inverse images
q−1({w}), w ∈ ker(δ − id). Moreover, all sections of pN are homotopic through sections;
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718 D. L. Gonçalves, U. Koschorke, A. K. M. Libardi and O. M. Neto

hence, each class [f ] ∈ F has a representative f ′ such that f ′ ◦ soM = soN . This can
be used to add fibrewise maps by a kind of concatenation (as in homotopy groups, but
different from the Lie group procedure employed in the case n = 2 (see Example 1.5)).
The maps degB and q in (1.10) are compatible with all such additions.

These additions, even when multi-valued, have important consequences for ωB . In §§ 3
and 4 they help us to prove Theorem 1.4 and also the following.

Proposition 1.8. If n � 3, then, for all [f1], [f2] ∈ F ,

ωB(f1, f2) = degB([f1]) − degB([a ◦ f2])

(again, a denotes the fibrewise antipodal map).

Example 1.9 (m = n = 3, dM = dN = 1). Here, δ3 = δ2 = id, d = 1, E∞
1 is an

isomorphism and E∞
2 : π3(S2) ∼= Z → πS

1
∼= Z2 and degB are onto. However, F cannot

possibly have a well-defined group structure such that q is a group homomorphism. In
fact, for all integers k �= 0 the inverse image of k[ι2] ∈ π2(S2) under q has the cardinality
2|k|, whereas q−1({0}) is infinite.

In § 2 we see that this is the only exceptional case. Indeed, we prove the following.

Theorem 1.10. If n � 3 and (m, n, dM , dN ) �= (3, 3, 1, 1), then F obtains a well-
defined group structure such that the top horizontal line in the commuting diagram (1.10)
is a short exact sequence of group homomorphisms; here, the monomorphism act is
defined by

act([u]) := [u] ∗ [f0], [u] ∈ coker(δm − id).

This allows us to use the tools of standard homotopy theory.

Theorem 1.11. Assume that n � 3. If the two stable suspension homomorphisms
E∞

1 and E∞
2 in (1.10) are both injective (or both surjective, respectively), then

degB : F → Ωm−n+1(M ; ϕ)

(see Theorem 1.4) is also injective (or surjective, respectively).

Corollary 1.12. The ‘degree map’ degB is an isomorphism in the stable dimension
range m � 2n − 4.

Recall that in [3, Theorem 1.2] the stronger assumption m < 2n − 4 was required for
a similar conclusion.

Next consider the first non-stable dimension setting.

Theorem 1.13. Assume that m = 2n − 3 � 2.

(i) If n is odd, then degB : F → Ωm−2(M ; ϕ) is injective (or, equivalently, an isomor-
phism) precisely for the dimension and orientability conditions

(m, n, dM , dN ) = (3, 3,−1,±1) or (7, 5,−1,−1) or (15, 9,−1,−1).

(Note that these are precisely the dimensions where πm(Sn−1) contains an element
with Hopf invariant 1.)
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(ii) If n � 20 is even, then degB is injective precisely when n = 4 or 8 or (n, d) =
(16,−1).

This and related results will be established in § 5.
We can now describe F and degB (cf. (1.7) and Theorem 1.4) easily in the first few

cases where the codimension m − n is low.

Proposition 1.14. Assume that n � 3.

(i) If m < n − 1, then F and degB vanish.

(ii) If m = n − 1, then

degB : F �−→ Z/(d − 1)Z =

{
Z if dM = dN ,

Z2 if dM �= dN .

(iii) If m = n, then the surjective map

degB : F � Ω1(M ; ϕ) ∼= Z2 ⊕
{

Z if d = +1, i.e. M � N,

0 if d = −1, i.e. M �� N,

is a group isomorphism except when m = n = 3 and dM = 1. In this exceptional
case the infinite set F admits no group structure compatible with degB (when
dN = +1) or else the group homomorphism

degB : F ∼= Z � Ω1(M ; ϕ) ∼= Z2

is only surjective (when dN = −1).

(iv) If m = n + 1 � 5, then F has four elements and degB is a group isomorphism.

(iv′) If (m, n) = (4, 3), then the target group Ω2(M ; ϕ) of degB still has four elements,
but the homomorphism degB is only surjective on F ∼= Z2 ⊕ Z (when dM = +1) or
else only injective on F ∼= Z2 (when dM = −1).

This follows from our discussion of (1.10) and from a basic knowledge of low-dimen-
sional homotopy groups of spheres (see [16]).

Remark 1.15. The remaining group extension problem in Proposition 1.14 (iv) can
be solved by a simple surgery argument; Ω2(M ; ϕ) turns out to be isomorphic to Z2 ⊕Z2

(and not to Z4).

2. Towards the homotopy classification of fibrewise maps

In this section we study the structure of the set F (see (1.7)) with the help of the sequence

πm(Sn−1) ∗ �� F
(q,r) �� ker((δm−1 − id) : πm−1(Sn−1) ) ⊕ S �� 0. (2.1)
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Here, m, n � 2, the dotted arrow indicates the group action described in the discussion
of (1.10), S denotes the set of homotopy classes of sections of pN (see Figure 1). Given
a homotopy class [f ] ∈ F of fibrewise maps from M to N , we restrict it to the fibre
FM = {1} × Sm−1 and to the zero section soM of M(see Figure 1 and (1.6)) and define

q([f ]) := [f |FM ] ∈ [Sm−1, Sn−1] = πm−1(Sn−1) (2.2)

and
r([f ]) := [f ◦ soM ] ∈ S . (2.3)

Proposition 2.1. The sequence (2.1) is exact in the sense that

(i) the map (q, r) is onto and

(ii) each inverse image under (q, r) is a full orbit of the πm(Sn−1)-action.

Proof. (i) In Figure 1, f corresponds to a fibrewise map

id×fv : I × Sm−1 → I × Sn−1, (2.4)

i.e. to a homotopy from AN ◦ f | ◦ A−1
M to f | := f |({1} × Sm−1).

Such a homotopy exists precisely if δm−1([f |]) = [f |] (see (1.9)).
Sections of pN correspond to paths in Sn−1 (which we may deform into loops). Thus,

S = {soN}, except possibly when n = 2. But in this case we can use the group structure
on the fibres of pN to show that (q, r) is onto.

(ii) Choose a quotient map

cm−1 : (Dm−1, ∂Dm−1) → (Sm−1, ∗),

which collapses the boundary sphere of the (m − 1)-dimensional unit ball Dm−1 to the
base point ∗ of Sm−1 and restricts to a diffeomorphism Dm−1 − ∂Dm−1 ≈ Sm−1 − {∗}.
Also define a characteristic map for the top cell M − FM ∨ soM (S1) in M by

cM : I × Dm−1 → I × Sn−1

(t, x) → [t, cm−1(x)] (2.5)

(see Figure 1).
Given [f1], [f2] ∈ F with equal image under (q, r), we may assume that f1 and f2

agree on FM and soM (S1). Then, the Sn−1-valued maps fv
1 ◦ cM and fv

2 ◦ cM (see (2.4))
coincide on the boundary ∂ of I × Dm−1 and, hence, induce the map

u = fv
1 ◦ cM

∐
∂
fv
2 ◦ cM : Sm = I × Dm−1

∐
∂
I × Dm−1 → Sn−1.

It is not hard to see that f1 = (±u) ∗ f2. �

Example 2.2 (n = 2). Here, N is a torus bundle as in [12], with a well-defined
group structure (via complex multiplication) on each one-dimensional fibre. Indeed, the
gluing map AN (see (1.3)) is the identity map id or complex conjugation, respectively.
Thus, N is the torus T or the Klein bottle K, respectively.
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Fibrewise complex multiplication makes F and S into abelian groups. Moreover, given
k ∈ Z, define a section

sk : S1 = I/(1 ∼ 0) → N

by
sk([t]) = [t, e2πikt], t ∈ I.

According to [12, Proposition 4.2], we obtain an isomorphism

s : Z/(dN − 1)Z �−→ S ,

which maps the residue class of k to the homotopy class of sk. Since πm(S1) = 0, the
resulting homomorphism

(s−1 ◦ r, q) : F �−→ Z/(d − 1)Z ⊕
{

Z if m = 2 and M � N,

0 otherwise
(2.6)

is also bijective (see Proposition 2.1).
For the remainder of § 2 we assume that n � 3. All sections of pN are then homotopic

to soM , and S = 0.
In particular, we obtain the surjective forgetful maps

forg := forg′ ◦ forg′′ : F ′′ forg′′

−−−→ F ′ forg′

−−−→ F , (2.7)

where F ′ (and F ′′, respectively) denotes the set of homotopy classes of fibrewise maps
f : M → N such that f ◦ soM ≡ soN (f ◦ (−soM ) ≡ soN , respectively); the (fibrewise)
homotopies are required to satisfy the same conditions at every stage of the deformation.

Analogues of F ′ are interesting in their own right and have been studied in the litera-
ture (see, for example, [6] for section-preserving fibrewise maps over Sb, b > 1).

The set F ′′ is useful since it has a natural group addition: given two maps f1, f2 that
take both the section soM and its antipodal −soM to soN , just stack them ‘on top of
one another’ with respect to the x1-coordinate (cf. (1.4) and (1.5)), i.e. just pinch the
equator at x1 = 0 in every fibre Sm−1 of M (see Figure 1), to obtain Sm−1

1 ∨ Sm−1
2 and

apply fi to Sm−1
i , i = 1, 2. This well-defined addition makes F ′′ into a group.

This extra structure also induces ‘additions’ on F and F ′, which are compatible, via
q (see (2.2)), with the addition in πm−1(Sn−1), e.g. define

[f1] + [f2] := forg(forg−1({[f1]}) + forg−1({[f2]})) ⊂ F . (2.8)

However, if the forgetful map forg is not bijective, this addition may only be multi-valued
and F need not be a group (see, for example, Example 2.7).

There are also well-defined group actions of πm(Sn−1) on F ′ and F ′′ (as introduced
in the comments for (1.10)).

Proposition 2.3. Given [f ] ∈ F ′ and [u0], [u1] ∈ πm(Sn−1), the two elements [u0]∗ [f ]
and [u1]∗[f ] of F ′ are equal if and only if [u0] = [u1]+(δm−id)[v] for some [v] ∈ πm(Sn−1).
Thus, the action of πm(Sn−1) induces a well-defined group action of coker(δm − id) on F ′

and yields bijections from coker(δm − id) onto the inverse image (q ◦ forg)−1({[f |]}) ⊂ F ′

for each element [f |] ∈ ker(δm−1 − id) (cf. (2.2) and (2.7)).
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Proof. Given a section-preserving fibrewise homotopy h from u0 ∗ f to u1 ∗ f , its
restriction h| : FM × I → FN differs from the ‘constant’ homotopy (x, τ) → f(x) by
the local action of some [v] ∈ πm(Sn−1); compare this with the explanations follow-
ing (1.10) (and any element of πm(Sn−1) may arise this way). In view of the gluing maps
(see Figure 1 and (1.8)), this amounts to the action of [v] (and δm([v]), respectively) at
{1} × Sm−1 × I (at {0} × Sm−1 × I, respectively) in the homotopy (of ‘vertical parts’)

hv : (I × Sm−1 × I, I × {∗} × I) → (Sn−1, {∗}),

formed as in (2.4). This yields a boundary-preserving homotopy from (u0−(δm−id)v)+f

to u1 ∗ f and Proposition 2.3 follows. �

Proposition 2.4. If n � 4, then the forgetful maps forg and forg′′ (see (2.7)) are
bijective and make F , F ′ and F ′′ into (isomorphic) groups (via (2.8)); moreover,

0 �� coker(δm − id) act �� F
q �� ker(δm−1 − id) �� 0

is an exact sequence of group homomorphisms. Here, we define (see (1.5))

act([[u]]) = [u] ∗ [f0], [u] ∈ πm(Sn−1).

Proof. By transversality in N each homotopy from the zero section soN to itself can
be deformed into the constant homotopy. This implies our first claim.

Clearly, act is a group homomorphism. Propositions 2.1 and 2.3 imply exactness. �

Next, consider the case n = 3. Here, forg fails, in general, to be injective and may
induce only a multi-valued addition (see (2.8)), which is, nevertheless, compatible with q.

Theorem 2.5. Assume that n = 3. Given [f ] ∈ F and u0, u1 ∈ πm(S2), we have that
the two fibrewise homotopy classes u0 ∗ [f ], u1 ∗ [f ] ∈ F are equal if and only if

u0 − u1 = δm(v) − v + k[ι2, q[f ]]

for some v ∈ πm(S2) and k ∈ Z, and the last term is the Whitehead product of the
generator ι2 ∈ π2(S2) with q([f ]) = [f |FM ] ∈ πm−1(S2).

Thus, the group action induces a bijection from πm(S2)/((δm−id)(πm(S2))+Z[ι2, [f |]])
onto the inverse image q−1({[f |]}).

Proof. We may assume that f ◦ soM ≡ soN . If there is a fibrewise homotopy h = fτ ,
τ ∈ [0, 1], from u0 ∗ f to u1 ∗ f , we may also assume that it preserves the zero section
for 0 � τ � 1

2 and leaves the restriction to the fibre FM = {1} × Sm−1 unchanged for
1
2 � τ � 1. Then, (in view of Proposition 2.3) h first deforms u0 ∗ f to f1/2 = u1/2 ∗ f ,
where u1/2 has the form u1/2 = u0 + δv − v for some v ∈ πm(S2).

Thus, it remains to study the effect of the restricted homotopy

h|(soM (S1) × [ 12 , 1]), (2.9)
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which sends all points outside of the rectangle

R = soM (S1) − {[1, ∗]} × ( 1
2 , 1)

to the zero section of N . After a suitable deformation we may assume that the ‘principal
part’ hv| : R → S2 (see (2.4)) maps finitely many disjoint open discs in R diffeomorphi-
cally onto S2 − {∗} and their complement to the base point ∗ of S2 (see (1.4)).

For the remainder of the proof it is convenient to use the relative homeomorphism

cM : (I × Dm−1, I × ∂Dm−1 ∪ {0, 1} × Dm−1) → (M, soM (S1) ∨ FM )

(see (2.5)). We may assume that f1/2|T ≡ f |T ≡ soM ◦ pM |T on the tubular neighbour-
hood

T = cM (I × {x ∈ Dm−1 | 1
2 � ‖x‖ � 1})

of soM (S1) in M . Modify f1/2 by replacing f1/2|T with the map that sends [t, cm−1(x)]
to h|(soM (T ), ‖x‖). The resulting fibrewise map f̄1/2 : M → N is homotopic to u1 ∗ f via
a homotopy that leaves soM (S1) ∨ FM unchanged.

It remains to describe f̄1/2 by the action of πm(S2) on f1/2. Any differences between
these maps occur only in the top cell M − soM (S1) ∪ FM

∼= (0, 1) × D̊m−1 of M and are
entirely captured by the ‘principal parts’

fv
1/2 ◦ cM , f̄v

1/2 ◦ cM : (0, 1) × Dm−1 → S2

(see (2.4), (2.5)), or, equivalently (via the Pontryagin–Thom construction), by the cor-
responding inverse images of the antipodal point −∗ of the basepoint ∗ of S2.

Locally, fv
1/2 ◦ cM can be deformed into the composite of

(i) the projection to D̊m−1,

(ii) a pinching map pinch that takes a ball Dε ⊂ D̊m−1 (of radius ε, 0 < ε � 1)
diffeomorphically to Sm−1 − {∗} and collapses its complement to ∗ ∈ Sm−1 and

(iii) f | : Sm−1 → S2.

Our modification (which yields f̄v
1/2 ◦ cM ) just corresponds to adding finitely many

meridian spheres ∂Dm−1
3ε , framed by the outwards pointing vector field in Bm−1 and

‘horizontal’ vectors along the t-directions of the base S1 of pM .
We complete the proof by exhibiting the necessary framed bordism.
In the (t, x1)-plane, consider the union of the t-axis L and the circle K with radius

3ε and centre (0, 6ε). By embedded surgery (using the ‘rectangle’ Q joining small neigh-
bourhoods of (0, 0) in L and of (0, 3ε) in K) we get a framed bordism from L � K to a
curve L′, which is isotopic to L (see Figure 2).

Now, embed this into the space R × R
m−1 with coordinates (t, x1, . . . , xm−1) and add

an (m − 2)-dimensional meridian sphere S near the point (0, 9ε, 0, . . . , 0). Throughout
the resulting embedded bordism in (0, 1) × Dm−1 × [ 12 , 1] map each normal ε-ball of L,
K, L′, etc. to S2 via f |◦ � (cf. (ii), (iii) above); similarly, map each normal disc of S
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Q

L
K

t

S L'
L'

S
L'

S

Figure 2. Framed bordism.

to S2 via the collapsing maps Dε → Dε/∂Dε
∼= S2. The contribution of K � S then

corresponds (via Pontryagin–Thom) to the action of the Whitehead product ±[ι2, [f |]].
We obtain a homotopy that stands at f̄1/2 and replaces each meridian sphere by a copy

of K � S. If the geometric description of the modification from f1/2 to f̄1/2 involves k

meridian spheres (counted with ± signs according to their co-orientations), we conclude
that f̄1/2 = [±kι2, q[f ]] ∗ f1/2 and

ū1/2 = u1/2 ± k[ι2, q[f ]].

Now, k is the mapping degree (mod boundary) of the principal part

hv| : soM (S1) × [ 12 , 1] → S2

of the restricted homotopy of Theorem 2.5. Since any integer can be realized in this way,
the theorem follows (see also Proposition 2.1 (ii)). �

Explicit calculations are helped by the following.

Lemma 2.6. The automorphism δi of πi(S2) (see (1.8)) can be described as

δi =

{
d id if i = 2,

dM id if i � 3.

Proof. We need consider only the case where dN = −1 and the gluing map AN : S2 →
S2 reverses orientations. Then, AN ∗ = − id on π2(S2), as shown by the mapping degree.
If i � 3, then AN ∗ = id since πi(S2) = Hopf∗(πi(S3)) and the Hopf map Hopf : S3 → S2

is homotopic to AN ◦ Hopf, as seen with the help of the Hopf invariant. �

Example 2.7 (m = n = 3, dM = dN = 1 (i.e. M ∼= N ∼= S1 × S2)).
We identify π3(S2) and π2(S2) with Z via the Hopf invariant and degree isomorphisms.
Then (2.1) takes the form

Z = π3(S2) act �� F
q �� π2(S2) = Z.

The group operation (u, [f ]) → u ∗ [f ] (see the discussion of (1.10)) provides a nice
geometric description for certain pairs (u, [f ]) ∈ Z × F . Indeed, given j ∈ Z, let rotj
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denote the fibrewise self-map of S1 × S2 that rotates S2 j times around the x1-axis as
we go once around the base S1. It can be shown (cf. [13,14]) that

[rotj ◦f ] = (jq(f)) ∗ [f ] and [f ◦ rotj ] = (j(q(f))2) ∗ [f ]

for all j ∈ Z and [f ] ∈ F .
According to Theorem 2.5 the inverse image q−1({kι2}) has cardinality 2k for any

integer k �= 0 and is infinite for k = 0. Thus, F cannot have a group structure such that
q is a homomorphism.

In contrast, if m = n = 3 and (dM , dN ) �= (1, 1), then all inverse images of q have the
same cardinality. (For a complete description of F in this case see Example 2.10.)

Corollary 2.8. If m � 2 and n = 3, then the following conditions are equivalent.

(i) The composed homomorphism

ι : ker(δm−1 − id) ⊂ πm−1(S2)
[ι2,−] �� πm(S2) �� coker(δm − id)

is trivial.

(ii) All inverse images q−1({[f |]}), [f |] ∈ ker(δm − id), have the same cardinality.

(iii) The forgetful map forg′ : F ′ → F is bijective.

(iv) F allows a group structure such that forg : F ′′ → F is a group homomorphism.

(v) F allows a group structure such that q : F → πm−1(Sn−1) is a group homomor-
phism.

If these conditions hold, then F , equipped with the unique group structure determined
by (iv), still fits into the exact sequence of group homomorphisms exhibited in Proposi-
tion 2.4.

Proof. The equivalence of parts (i)–(iii) of Corollary 2.8 follows from Proposition 2.3,
Theorem 2.5 and the fact that coker(δm − id) is either finite or isomorphic to Z. Also,
(iv) implies (v), since forg is onto and q ◦ forg is a homomorphism. In turn, (ii) clearly
follows from (v).

It remains to derive (iv) from (iii). Given the homotopy classes [f1], [f2] ∈ F , we may
choose representatives such that

f1 ◦ (−soM ) ≡ f2 ◦ soM
∼= soN (2.10)

and stack f1 on top of f2 with respect to the x1-coordinate (cf. (1.3) and (1.4)) as in
the construction of the group structure in F ′′ (see (2.8)). If Corollary 2.8 (iii) holds,
the resulting homotopy class [f1 + f2] ∈ F is independent of our choices; indeed, any
fibrewise homotopy between maps satisfying (2.10) can be replaced by one that satisfies
this condition at every stage (note that f1, when composed with a suitable reflection in
M , as well as f2, yields elements in F ′). Thus, the addition in F , induced from F ′′ via the
surjective forgetful map forg (see (2.8)) is single-valued and makes F into a group. �
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Example 2.9 (m = 2, n = 3). The target group of ι is trivial here and parts (i)–(v)
of Corollary 2.8 are satisfied. In particular, F and F ′ have canonical group structures
induced from F ′′, and the maps forg′ (see (2.7)) and act (see Proposition 2.4) yield
isomorphisms

F ′ ∼= F ∼= Z/(d − 1)Z

(see also Lemma 2.6).

In contrast, it is a nice exercise to show that

F ′′ ∼=
{

(Z/(d − 1)Z) ⊕ (Z/(d − 1)Z) if dM = 1,

Z if dM = −1,

and that the epimorphism forg : F ′′ → F is bijective if and only if dM = dN = −1.

Hint. Let S ⊂ M denote the union of the two circles soM (S1) and (−soM (S1)). Then,
M − (S ∪ FM ) consists of two ‘rectangular’ 2-cells, R+ and R−, characterized by the
inequalities ±x2 > 0 and oriented via the projection to the (t, x1)-plane (see (1.3)).
Using the discs D± ⊂ R± as in the discussion of (1.10), we obtain a group action
of π2(S2) ⊕ π2(S2) ∼= Z

2 on F ′′, which we apply to f0 = soN ◦ pN to get the group
epimorphism

act′′ : Z ⊕ Z → F ′′.

Note that M−S consists of one or two annuli according to whether dM = −1 or dM = +1,
respectively. If we slide D± across the fibre FM (or the circle (−soN )(S1), respectively)
and take the gluing maps (with AM , AN our orientable convention, respectively) into
account, we see that

act(u+, u−) =

{
(dNu+, dNu−) if dM = 1,

(dNu−, dNu+) if dM = −1

and
forg(act(u+, u−)) = − forg(act(u−, u+))

for all (u+, u−) ∈ Z ⊕ Z.

Example 2.10 (m = n = 3). Except in the case dM = dN = 1, discussed in
Example 2.7, Lemma 2.6 implies that ι ∼= 0. Then, F has a canonical group structure
(see Corollary 2.8) and we get that

F =

⎧⎪⎨
⎪⎩

Z if (dM , dN ) = (1,−1),

Z2 if (dM , dN ) = (−1, 1),

Z ⊕ Z2 if (dM , dN ) = (−1,−1).

Example 2.11 (m > n = 3). In this case ι ≡ 0 since the [ι2, η] = 0 for η ∈ πm−1(S2)
(see [5, Theorem 2.4]). Therefore, by Corollary 2.8 we have the short exact sequence of
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groups

0 �� πm(S2)/(dm − 1)πm(S2) ��
��

ι

� � � � � � � � 	 
 � � 
F �� ker((dm − 1)· : πm−1(S2) ) �� 0.

3. The invariants ωB and degB

In this section we briefly recall those geometric phenomena that are captured by the
looseness obstruction ωB and the ‘degree’ map degB . For a better understanding of
the target group of these invariants we study the normal bordism Gysin sequence and
relate it to the sequences in (2.1), Proposition 2.4 and Example 2.11. In particular, we
establish (1.10).

Given the homotopy classes [f1], [f2] ∈ F , we may choose representatives such that the
resulting map

(f1, f2) : M → N ×B N

into the indicated fibrewise product is smooth and transverse to the fibrewise diagonal
� ⊂ N ×B N . The coincidence locus

C = (f1, f2)−1(�) = {x ∈ M | f1(x) = f2(x)} (3.1)

is then an (m − n + 1)-manifold in M , equipped with a description of its stable normal
bundle in terms of the vector bundle

ϕ = p∗
M (⊗(1−d)/2λ). (3.2)

(This reflects the tangent bundles of M and N and their twisting due to the gluing maps,
cf. (1.4) and (1.8); λ denotes the non-trivial line bundle over the basis S1. Thus, ϕ is
trivial if d = 1 and ϕ = p∗

M (λ) if d = −1.) These data represent the normal bordism
class

ωB(f1, f2) ∈ Ωm−n+1(M ; ϕ),

which depends only on [f1], [f2] ∈ F (for more details see [3]). For m, n � 2 the group
Ωm−n+1(M ; ϕ) fits into a long exact Gysin sequence

· · · → πS
i ⊕ πS

i−m+1
(d−1)⊕(dN −1)−−−−−−−−−−→ πS

i ⊕ πS
i−m+1

incl∗−−−→ Ωi(M ; ϕ) �−→ πS
i−1 ⊕ πS

i−m → · · ·
(3.3)

(see [12, Theorem 5.4]). It is obtained from the normal bordism sequence of the pair
(M, M − FM ) of spaces, using identifications via the Thom–Gysin isomorphisms

Ω∗+1(M, M − FM ; ϕ) �rel−−→∼=
Ωfr

∗ (FM = Sm−1)
∼=−→ Ωfr

∗ ⊕ Ωfr
∗−m+1, (3.4)

and the Thom–Pontryagin isomorphism between the framed bordism groups Ωfr
∗ of a

point and the stable homotopy groups πS
∗ of spheres.
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The homomorphism incl∗ is induced by the (shifted) inclusion

FM = {1} × Sm−1 ≈ { 1
2} × Sm−1 ⊂ M − FM ⊂ M

(see Figure 1).
Furthermore, given an element of Ω∗(M ; ϕ), we may represent it by a singular manifold

c : C → M (equipped with a vector bundle isomorphism c̄ relating the stable normal
bundle of C to c∗(ϕ), and assume that C is smooth and transverse to the fibre FM ⊂ M .
Then, the ‘intersection manifold’ c| : c−1(FM ) → FM , together with the stable framing
c̄ induced from c|, represents � ([C, c, c̄]). In particular, for all [f1], [f2] ∈ F , ωB(f1, f2)
gets mapped to the ω-invariant (see [10]) of the restricted maps f1|, f2| : FM → FN , i.e.

� (ωB(f1, f2)) = ω(f1|, f2|). (3.5)

The inverse of �rel (see (3.4)) takes a framed singular manifold g : Q → FM = {1}×Sm−1

to the composite

[ 12 , 1 + 1
2 ] × Q

id ×g �� [ 12 , 1 + 1
2 ] × Sm−1 �� M

(see Figure 1). In view of the gluing maps (see (1.4) and (1.8)) the resulting relative
bordism class gets mapped, by the boundary homomorphism, to the difference

(−1)d[Q, AM ◦ g] − [Q, g] ∈ Ωfr
∗ (FM )

of the two contributions from the top end (at the level 1+ 1
2 ) and the bottom end (at 1

2 ),
respectively.

Example 3.1 (n = 2). Here (3.3) gives rise to the top line in the commuting diagram
of short exact sequences

0 �� (πS
m−1/(d − 1) · πS

m−1) ⊕ (Z/(dN − 1)Z)

µFM

��

��
��

�′

�
� � � � �

�
Ωm−1(M ; ψ)

µM

��

�� ker((d − 1)· : πS
m−2 )

µFM

��

�� 0

0 �� Hm−1(FM ; Z)/(dN − 1)Hm−1(FM ; Z) ��
��

�′
H

�
� � � � �

�
Hm−1(M ; Z̃d) �H

�� ker((d − 1)· : Hm−2(FM ; Z) ) �� 0

(3.6)

(see [12, Proposition 5.4]). Similarly, the bottom line is derived from the homology Gysin
sequence, which is based on the pair (M, M −FM ) and on the local system Z̃d of integer
coefficients (twisted like the orientation bundle p∗

M (⊗dλ) of ϕ (see (3.2))). The vertical
arrows are (induced by) the Hurewicz homomorphism of M and FM , respectively.

Transverse intersection with the zero section soM (S1) ≈ S1 in M yields the partial
splitting

�′ : Ωm−1(M ; ϕ) → Ω0(S1; ⊗dN λ) ∼= Z/(dN − 1)Z

in the top line of (3.6) (for calculation of low-dimensional normal bordism groups see,
for example, [8, Theorem 9.3]). This commutes with the Hurewicz homomorphisms and
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Table 1. The cardinality of ker µM , which measures the relative size of degB(F) in Ωm−1(M ; ϕ),
e.g. if d = −1 and m � 3, then |ker µM | = |Ωm−1(M ; ϕ)|/|F| is the quotient of the indicated
cardinalities.

m 2 3 4 5 6 7 8 9 10
d = 1 2 4 48 24 1 2 480 960 32
d = −1 2 4 4 2 1 2 4 8 32

the splitting

�′
H : Hm−1(M ; Z̃d) → H0(S1; Z̃dN

) ∼= Z/(dN − 1)Z
∼= Hm−1(FM ; Z)/(dN − 1)Hm−1(FM ; Z)

of the bottom line in (3.6). Note that �′
H can also be expressed via cap products with

the Thom class

Uξ ∈ Hm−1(ξ, ξ − zero section; Z̃dM
) ∼= Hm−1(M, M − S1; Z̃dM

)

of the tangent bundle ξ ∼= (⊗dM λ) ⊕ R
m−2 of M along the fibres of pM (see [15, § 5,

Exercise J6]).
We obtain the isomorphism

(�′
H ,�H) : Hm−1(M ; Z̃d)

∼=−→ Z/(dN − 1)Z ⊕
{

Z if m = 2 and d = 1,

0 otherwise.

Furthermore, the composite map (see (1.7) and (3.6))

F
degB �� Ωm−1(M ; ϕ)

µM �� Hm−1(M ; Z̃d), (3.7)

when followed by (�′
H ,�H), equals the classifying isomorphism (s−1 ◦ r, q) in (2.6).

We conclude that µM ◦ degB itself is an isomorphism. Hence, degB is injective but
in general not onto. The kernel of µM (which is finite whenever m � 2 = n) measures
how many aspects of the degB-values in Ωm−1(M ; ϕ) are redundant. For example, if
m = 2, then kerµM

∼= πS
1

∼= Z2 and degB assumes only ‘every other’ possible value in
Ωm−1(M ; ϕ). For further low dimensions of M the cardinalities

|ker µM | = |πS
m−1/(d − 1)πS

m−1|| ker((d − 1) : πS
m−2 )|

(see (3.6)) may depend on the sign of d = ±1 and are listed in Table 1 (based on Toda’s
tables in [16, Chapter XIV]).

Finally, observe that not only is the injectivity condition (ii) satisfied whenever m �
n = 2, so is Theorem 1.4 (i). Indeed, using the group structure in F we see that

ωB(f1, f2) = degB(f1 − f2 + a ◦ f0) (3.8)

for all [f1], [f2] ∈ F (see [12, Theorem 3.1 (i)]). In particular, if ωB(f1, f2) = 0, then
[f2] = [f1 + a ◦ f0] = [a ◦ f1] and the pair (f1, f2) is loose.
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For the remainder of this paper we assume that n � 3. All sections of pN (see Figure 1)
are then fibrewise homotopic and [f0] = [a ◦ f0] in F (see (1.5)).

Therefore, given [f ], [fi], [f̄i] ∈ F , i = 1, 2, we conclude that

degB([f ]) = ωB(f, f0) (3.9)

(see (1.7)). Moreover,

ωB(f1 + f̄1, f2 + f̄2) = ωB(f1, f2) + ωB(f̄1, f̄2); (3.10)

this is independent of how we represent [fi] = forg([f ′′
i ]) and [f̄i] = forg([f̄ ′′

i ]) by elements
[f ′′

i ], [f̄ ′′
i ] ∈ F ′′, i = 1, 2, in order to perform the addition in F (see (2.8)). Indeed, use a

small deformation of the zero section soN in N to a nearby disjoint section s and deform
f̄ ′′

i accordingly until f̄ ′′
i ◦ soM = f̄ ′′

i ◦ (a ◦ soM ) = s, i = 1, 2. The coincidences of the
resulting (slightly modified) sum with the map f1 +f2 lie disjointly in the two open half-
spheres of M described by εx1 > 0 (and diffeomorphic to the locus εx1 > −1), ε = ±1
(cf. (1.3), (1.4)). Each of these half-spheres contributes one of the summands in (3.10).

In particular, we see that

degB([f1] + [f2]) = degB([f1]) + degB([f2])

= ωB(f1 + f2, f0 + f0); (3.11)

this does not depend on the choices involved in forming the sums in F (see (2.8)).
Furthermore, since a pair (f1, f2) is loose if and only if [f2] = [a◦f1] (see the discussion

preceding (1.3)), it follows that

ωB(a ◦ f, f0) + ωB(f0, f) = ωB(a ◦ f, f) = 0.

Therefore,
ωB(f0, f) = − degB([a ◦ f ]), [f ] ∈ F . (3.12)

Moreover,
ωB(f1, f2) = degB([f1]) − degB([a ◦ f2]) (3.13)

for all [f1], [f2] ∈ F whenever n � 3; just note that both sides of the last equation agree
with

ωB(f1 + f0, f0 + f2) = ωB(f1, f0) + ωB(f0, f2).

Equation (3.13) now yields a proof of Theorem 1.4 for the case n �= 2. Indeed, if degB is
injective and ωB(f1, f2) = 0, then [f1] = [a◦f2] and the pair (f1, f2) is loose. Conversely,
if the vanishing of ωB(·, ·) always implies looseness and if the degB([f1]) = degB([f2]),
then ωB(f1, a ◦ f2) = 0 and [f1] = [f2].

Many of our results are summarized in the discussion of (1.10). The horizontal
sequences in this diagram have been established in (2.1) and (3.3) (S , r and πS

2−n

being trivial for n � 3), Propositions 2.1, 2.4 and Theorem 2.5.
The right-hand square in (1.10) commutes (at least up to a ± sign), since

� (degB([f ])) = ω(f |FM , a ◦ f0|FM )
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is the (stabilized) framed bordism class of the inverse image of the point a(e1) ∈ FN =
Sn−1; this corresponds to ±E1

∞(q[f ]) via the Pontryagin–Thom isomorphism.
Given [f ] ∈ F and [u] ∈ πm(Sn−1), a generic coincidence manifold of the pair (u ∗ f,

a ◦ f0) consists of the framed manifold u−1({a(∗)}), mapped into a small ball B̊ ⊂ M ,
and the coincidence manifold of (f, a ◦ f0). This implies (1.11).

4. Nielsen theory

In this section we complete the proof of Theorem 1.4 by showing that its conditions (i)
and (ii) are equivalent.

First, we recall the definition of the Nielsen number NB(f1, f2) according to the (new)
convention adopted in [13,14]. Given a generic pair (f1, f2) of fibrewise maps from M

to N , the Nielsen equivalence relation among coincidence points (see [3, Definition 4.1])
yields a decomposition of the coincidence manifold C(f1, f2) (see (1.1)) and results in a
decomposition

ωB(f1, f2) =
∑
A

ωB(f1, f2)A ∈ Ωm−n+1(M, ϕ̃)

of the ωB-invariant as a sum where the summands are labelled by the elements A of
a certain ‘geometric Reidemeister set’ π0(EB(f1, f2)) (see [3, § 3]). In this paper we
follow [13,14] and define NB(f1, f2) to be the number of non-trivial summands in this
sum decomposition (and not, as in [3], in the analogous decomposition for ω̃B(f1, f2)).

Consider the case n = 2 (see Examples 2.2 and 3.1). Given any homotopy classes
[f1], [f2] ∈ F , we claim that MCCB(f1, f2) = NB(f1, f2). If m = n = 2, this follows
from [12, Theorem 1.1], since M and N are torus bundles; the precise values of MCCB =
NB have been calculated in [3] and [12]. If m > n = 2, we can still add and subtract
f1, f2 in a fibrewise fashion. Then, the minimum numbers of the pairs (f1, f2) and
(f1 − f2 + a ◦ f0, f2 − f2 + a ◦ f0) (∼B(sk ◦ pM , a ◦ f0) for some k ∈ Z, where k ∈
{0, 1} if dN = −1 (see Example 2.2, (2.6))) agree, and so do the Nielsen numbers.
But the coincidence manifold C(sk ◦ pM , a ◦ f0) is empty (if k = 0) or else consists of
the (connected) fibres {(2j − 1)/2k} × Sm−1, j = 1, . . . , k, which are pairwise Nielsen
inequivalent (see [3, Definition 4.1] and [12]). Thus,

MCCB(sk ◦ pM , a ◦ f0) = NB(sk ◦ pM , a ◦ f0) = |k|.

(For the case of fixed points in S1-fibrations over an arbitrary base, see [2, Theorems 3.6
and 3.7].)

In the remaining case, n � 3, the fibre FN is simply connected. Then, by definition,
NB(f1, f2) equals 0 or 1 according to whether ωB(f1, f2) vanishes or not (see [3, (4.2)]).
Therefore, the following result completes the proof of Theorem 1.4.

Proposition 4.1. If n � 3, then MCCB(f1, f2) � 1 for all [f1], [f2] ∈ F .

Proof. Choose classes [f ′′
1 ], [f ′′

2 ] ∈ F ′′ such that

forg([f ′′
1 ]) = [a ◦ f1], forg([f ′′

2 ]) = [f2] ∈ F ,
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and consider the pair

(a ◦ (f ′′
2 + (−f ′′

2 ) + f ′′
1 ), f ′′

2 + f0 + f0),

which represents ([f1], [f2]) (see (1.5) and the discussion following (2.7)). Clearly, the first
summands a ◦ f ′′

2 , f ′′
2 do not contribute to the coincidence set. We construct a fibrewise

homotopy of the second summand f := a ◦ ((−f ′′
2 ) + f ′′

1 ), which keeps f unchanged at
soM (S1) (where it is attached to a ◦ f ′′

2 ).
In the end, the coincidence set

C(f, f0) = C(a ◦ (f ′′
2 + (−f ′′

2 ) + f ′′
1 ), f ′′

2 + f0 + f0)

will be made path connected.
After a small deformation, f is generic and the ‘zero point’ ∗ ∈ FN (see (1.4)) is a

regular value of f |FM : Sm−1 → Sn−1.
Then,

C := C(f, f0) = f−1(soN (S1))

is a closed, (n − 1)-codimensional submanifold of M , equipped with a twisted framing,
i.e. with a description of its normal bundle via the vector bundle isomorphism

ν(C, M) ∼= (f ∗ (TF (pN )))|C ∼= pM ∗ ((⊗dλ) ⊕ R
n−2)|C

induced by the tangent map of f (see Figure 1 and (3.2); TF (pN ) and R
n−2 denote the

tangent bundle along the fibres of pN and the trivial bundle, respectively).
Locally, over each subinterval J of S1, we can identify p−1

M (J) with J × Sm−1 and
p−1

N (J) with J × Sn−1 via diffeomorphisms (see Figure 1). We may assume that f takes
the product form

id×(fv|FM ) : J × Sm−1 → J × Sn−1

over a small neighbourhood J of [1] = [0] ∈ S1 = I/(1 ∼ 0) (see Figure 1). Now,
C∩FM = (fv|FM )−1({∗}) ⊂ FM −{∗} is a framed submanifold of codimension n−1 � 2.
We can make it path connected via an embedded framed surgery (very much similar to,
but somewhat simpler than, the procedure pictured in Figure 2). This corresponds, via
the Pontryagin–Thom construction, to a deformation of fv|FM , which we use to modify
f near the fibre FM over [1] = [0] ∈ S1 = I/(0 ∼ 1).

Similarly, over J = (0, 1) ⊂ S1, f takes the form

(pM , fv) : J × Sm−1 → J × Sn−1.

Again, we can make the framed submanifold

C ∩ p−1
M (J) = (fv)−1({∗}) ⊂ M − soM (S1)

path connected by an embedded surgery. This yields the required fibrewise homotopy
of f . �
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Table 2. A few non-stable dimension combinations (m, n),
where degB cannot be injective when dN = 1.

m − n + 1 = 1 3 5 7 8 4,5,10,13
if dM = +1: n = 3 5 4 or 5 9 3,7,8,9,10 all
if dM = −1: n = — 5 5 9 8,9,10 all

5. Conclusions and applications

In this section we discuss a few examples where the full obstruction condition, the Wecken
property and the injectivity condition in Theorem 1.4 can be expressed entirely in terms
of iterated Freudenthal suspensions.

If dN = 1 (i.e. N ∼= S1×Sn−1 (see (1.8), (1.9) and (1.4))), then δm−1−id = (dM −1) id.
Thus, in view of (1.10) an obvious necessary condition for degB to be injective is that
the suspension homomorphism

E∞
2 = E∞ : πm(Sn−1) → πS

m−n+1 (5.1)

(E∞
2 ≈ E∞ ⊗ id : πm(Sn−1) ⊗ Z2 → πS

m−n+1 ⊗ Z2, respectively) is injective when dM =
dN = 1 (when (dM , dN ) = (−1, 1), respectively). Often this possibility can be excluded
by comparing the sizes of these homotopy groups if dM = 1 (or by just counting their
cyclic direct summands of even or infinite order if dN = −1, respectively). An inspection
of Toda’s tables (see [16, Chapter XIV]) already yields strong injectivity restrictions. For
a few examples in the non-stable dimension range m � 2n − 3, see Table 2.

If dN = −1 (i.e. N is not orientable), then [17, Theorem XI, 8.5] (together with the
obvious identity ((−ιn−1) + ιn−1) ◦ α = 0) implies that

dMδ(α) = (−ιn−1) ◦ α = −α −
∞∑

j=0

ωj+3(ιn−1, ιn−1) ◦ hj(α) (5.2)

for all α ∈ πm(Sn−1). Here the connection term to the right-hand side involves (iterated)
basic Whitehead products of the generator ιn−1 = [id] ∈ πn−1(Sn−1) as well as the
Hopf–Hilton invariants of α.

This can make computations rather complicated. Note, however, that

dMδm([ιn−1, ιn−1]) = [dN ιn−1, dN ιn−1] = [ιn−1, ιn−1], (5.3)

where dN is equal to +1 or −1.
The full claim of Theorem 1.10 is proved by standard diagram chasing in (1.10). When

E∞
2 is onto, we even have a (partial) inverse: degB is injective if and only if E∞

1 and E∞
2

are injective.
In the stable dimension range 2 � m � 2n − 4, both E∞

1 and E∞
2 are bijective and

degB is an isomorphism of groups.
So consider the first non-stable dimension setting m = 2n − 3 � 2. Here, E∞

1 is an
isomorphism and E∞

2 is onto. Therefore (and since π∞
n−2 is finite), the following conditions
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are equivalent:

(i) degB is injective,

(ii) degB is a group isomorphism,

(iii) E∞
2 is injective,

(iv) the cokernels of (δ2n−3 − id) : π2n−3(Sn−1) and of (d − 1)· : πn−2(S) have the
same (finite) cardinality.

Proof of Theorem 1.13. We assume first that n � 3 is odd. Then,

π2n−3(Sn−1) = Z ⊕ torsion. (5.4)

If n �= 3, 5 or 9, the Z-summand is generated by the Whitehead product [ιn−1, ιn−1],
which is killed by suspensions (see, for example, [17, X, 8.20]). On the other hand,
[ιn−1, ιn−1] = ±δ([ιn−1, ιn−1]) (see (5.3)) cannot lie in

(δ2n−3 − id)(π2n−3(Sn−1)) ⊂ 2Z ⊕ torsion

and, hence, gives rise to a non-trivial element in the kernel of E∞
2 .

We consider the remaining case where n = 3, 5 or 9. An element H with Hopf invariant 1
generates the direct summand Z in (5.3). Since the Hopf invariant takes the value 2 on
[ιn−1, ιn−1], we conclude from (5.3) that δ(H) − dMH is a torsion element. Therefore,
we may assume that dM = −1 because otherwise coker(δ − id) fails to be finite and E∞

2
cannot be injective.

If n = 3, then the cokernels of δ3 − id = −2 id: (π3(S2) ∼= Z) and of (d − 1)· ≡
0: (πS

1
∼= Z2) each have two elements, and E∞

2 is injective whether dN equals +1
or −1.

If n = 5 or 9, then π2n−3(Sn−1) is the direct sum of Z (generated by H) and Zq (with
some generator v), where q = 12 (or 120, respectively) when n = 5 (or 9, respectively).
According to Table 2, degB can be injective only if dM = dN = −1. In this case, it follows
from [4, Propositions 4.3 and 4.7] that, for all r, s ∈ Z,

(δ − id)(rH + sv) = −2rH + rv.

This implies that the cardinalities of coker(δ − id) and of πS
n−2 are both equal to 2q. It

remains only to prove the claim in Theorem 1.13 (ii). Thus, assume that n > 2 is even.
If dN = −1, then, for all α ∈ π2n−3(Sn−1),

δ2n−3(α) = d(α + [ιn−1, ιn−1] ◦ h0(α)) = dα

(see (5.2)); indeed, according to [17, Theorem XI, 8.6],

2h0 : π2n−3(Sn−1) → π2n−3(S2n−3) ∼= Z

vanishes, and, hence, so does h0. Therefore, whether dN equals +1 or −1, we see that
δ2n−3 − id = (d − 1) id. It is now easy to check criterion (iv) above by again inspecting
Toda’s tables (see also (5.1)). This completes the proof of Theorem 1.13. �
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