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A computer aided classification of
certain groups of prime power order

Judith A. Ascione, George Havas,
and C.R. Leedham-Green

A classification of two-generator 3-groups of second maximal

class and low order is presented. All such groups with orders up

to 3 are described, and. in some cases with orders up to 3

The classification is based on computer aided computations. A

description of the computations and their results are presented,

together with an indication of their significance.

1. Introduction

The groups considered are two-generator groups P_ of order 3 and

class n - 2 . If j7Pr ?* C, x C we consider 6 5 n 5 10 , and if
— — J5 o

_P/Pr = C_ x C_ we consider 5 < n 5 8 .

A considerable amount of work, most of it still unpublished, is being

done on p-groups of large class, that is groups of order p and class

n - r , for fixed r and varying n . In particular, the suggestion that

such groups should have solubility length bounded in terms of p and r

alone is being investigated. For r = 1 , the groups in question are well

understood and the suggestion is a theorem, originally due to Alperin [J]

and more explicitly due to Shepherd [9]. When r = 2 and p = 2 , this is

also true and the groups in question have been classified by James [4].

One result of the computation discussed here is a proof, in [5], that the

groups occurring when r = 2 , p = 3 have derived length at most k .

Received 6 May 1977• We thank W.A. Alford and J.B. Ascione for
writing parts of the computer program and especially thank M.F. Newman for
many very helpful discussions.
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258 J u d i t h A. Asc ione, George Havas, and C.R. Leedham-Green

The analysis of two-generator 3-groups of second maximal class goes

along the following lines*. Let ]? be such a group of order 3 . Put

M. = CP(Y-/Y-+2) > where Y- = Y .(P) , the jth term of the lower central

series of £ , for a l l i such that Py. : Y- o] = 9 • Then M. is a

maximal subgroup of ]? , and the crucial resul t that U M. # P̂ (that i s ,
i

that {M.} consists of at most, 3 of the k maximal subgroups of JP ) is

proved. Consider a $ U M. and let £ = <a, yA?)) . There are two

possibilities.

(i) For all such a , a d ?-i(£) • !n this case £ is said to be

of maximal type. Then Y-(Z) = Y_- •, (£) > and y.(P) = Y-.Jl) , for

i i 1 (ii 3 if P̂ is a CF group, as defined in §4) .

(ii) There is such an a with a $ Yo^£) • I n t h i s c a s e £ is a

CF group of second maximal class and positive degree of coimnutativity,

[£:,£] = 3 , and _P is said to be of non-maximal type . Again

y.(P) = Y- (.§) for i > k (i ; 3 if P is a CF group), but

Y-Cjl) = Y-+r(£.) with the possible exception of a few small values of i .

It is possible to determine quite accurately the structure of CF

groups of second maximal class and positive" degree of commutativity. Thus

the structure of 3—groups of second maximal class is quite well understood.

The proof of the above results was much facilitated by the computer

calculations presented here, which show that various cases which would

otherwise need to be considered do not in fact arise.

The algorithm used is very similar to that described by Newman in [S].

Many ideas used in adapting the algorithm to this special problem were

taken from Maung (a student of Leedham-Green) who computed 5-groups of

maximal class, up to order 5

In this paper no proofs are given, and many of the observations made

are based on work the publication of which is still in preparation. A

[Added 25 August 1977]. See, however, the Corrigendum, pp. 317-319-
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Groups of prime power order 259

complete list of groups under consideration is given. In addition precise

descriptions of all the groups are included in a microfiche supplement,

which is attached to page 320.

2. The algorithm

If £ i s a f in i te p-group, and l + R + F^ + P-)-! i s a presentation

of the group JP in which the rank of J? i s minimal, then £ / [£ , F j j f and

R/[R, £]£ are independent of the choice of presentation. We call them

the p-covering group and p-multiplieator of P , respectively. The heart

of the computation is a nilpotent quotient algorithm, which given a

'suitable' presentation of J? produces a 'suitable' presentation of the

p-covering group of JP . Here 'suitable' means 'in terms of a composition

series defined by a , a , . . . ' . Details of the nilpotent quotient

algorithm appear elsewhere [7]. Let us define an extension algorithm as

one that solves the following problem.

One is given a group _P of order p and class a , with soluble

automorphism group and y (P) of order p , together with the action of
Q

aut _P on JP in a suitable form. (For each composition factor of out JP ,

the automorphism class group, an element 3 of aut JP , corresponding to a

generator of this composition factor, and the action of 3 on a minimal

generating set of _P are given.) The problem is to obtain one

representative Q of each isomorphism class of groups, with y -i^Q) °?

order p and Q/y (j3) — JP > and also the action of aut ̂ on _§ in the

above form. (For each such extension, aut Q will be soluble.)

The given groups _P are on two generators a , a and have

Y (P) =<a > . Lifting these to elements b , ..., b in a p-covering

group F* of P , y .•,(£*) i s a n elementary abelian group, spanned by

\\b , b ] , \b , bS]} . The rank of y ., (P*) is of some importance in the

program.

The extension algorithm is based on the following simple principle.

The isomorphism classes mentioned above correspond to the orbits under

out _P of those maximal subgroups ^ of the p-multiplicator of _P , which
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do not contain y ., (P*) • Here the group ^ = _P*/V corresponds to the

orbit containing v̂  . The group of outer automorphisms of _Q is an

extension of a central outer automorphism, of order p , by the stabilizer

of V̂  in out £ . This central outer automorphism acts trivially on the

p-multiplicator of Q , and only has an effect when the algorithm is

applied yet again. This is taken into account in the algorithm.

It follows that the rank of y (P*) is zero if and only if the set

of groups £ is empty.

3. An example

Let

P = (a a a a a a3 = e a3 = a2 a3 = a2 a3 = a3 = a3 = e

ial^all other simple commutators are trivial

£ is a presentation for the group 0 order 3 , class k , which

appears in the tables. A composition series for aut P_ modulo inner and

central automorphisms is induced by the automorphisms

61 : ai - ai% ' e2 : ai " ai ' e3 = ai * V s ' Bh : ai - \

•* a a •* a2

These were obtained from the previous stage of the algorithm.

The nilpotent quotient algorithm yields the p-covering group P_* :

= b\,

[fcg, i> ] = b , [ig, Z>2] = bg , a l l other simple commutators are t r i v i a l ^ ,

and hence the p-multiplicator of P̂  i s

> & 8 ' h r fc10; &7 = bl = b9 = fc10 = e ' a b e l i a n ) •
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Groups of prime power order 26 1

The maximal subgroups of the p-multiplicator are given by

«' 6 ' Y € { 0 ' x- 2 } •

There are ^0 of these. Eliminate those which contain Yc;(_P*) = ( b7, br) ,

namely, fa, fcg, b^ , fa, Z>g, &<,) , <2>r ig, b^), fa, bQ, b^) .

The remaining maximal subgroups of the p-multiplicator are as follows:

si <V br bJ • 5i9 (Vio- V i c b
9) '

52 (J7, i9, bj , S2Q {b/lQ, b/1Q, b9) ,
53 < V 8 ' *9' *10> ' 521 ^VlO ' fc8' VlO> '
SU ( V 8 ' fc9' &io) ' 522 ( V l O ' fc8' V i o ) '

s5 (bfo, b8, bj , s23 fa, igbl0, b9b1Q) ,
S6 i/ &8' \o) '

61(J> ,

, b1Q) , s26 fa,

5 1 0

S 1 3

lO' VlO

9' V) 5 (V? V

b
9) ' S35 ( V l O '

l20' V l O ' V i o ) '

(bV fc8fclO' V

9) ' S35 ( V l O ' VlO*
5i8 ibr Vio ' b

9)'

The automorphisms 6.., . . . , 6i a r e ex t ended t o automorphisms 6 ' , . . . , 8^

of P* , t h e d e f i n i t i o n of 6 '• b e i n g o b t a i n e d from t h e d e f i n i t i o n o f 8 •
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by replacing a. by b . throughout. The action of these automorphisms on
3 3

the p-multiplicator is as follows:

K : bl^bV B2 : bi*~*bT 63 : bl^bV 6ll : b7^bT
bQ •—• ba9 bo •—*• Z?n , bQ »—> Z? bQ »—• & Q

oo oo oo oo

b
9

H ~ > ' f c 9 ' fc9t~"fc9' Z )9H~1"f o8&9' fc9 ^ fc9

These automorphisms correspond to the following permutations of the maximal

subgroups:

Under these permutations the maximal subgroups form the following

equivalence classes:

' 5 U ' 5 8 ' 5 9 ' 5 11' 5 12' 5l6' 5 l 7' 5'l9' 5 20' 52lt' S25' 5 2 7'

S28' 5 3 2' S 33' S35'

Slk '

S21' 529 ;

S 22' S30 *

Thus given P̂  and its automorphisms the extension algorithm yields a

batch of eight new groups,
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These groups are denoted by 0#1, 0#2, 0#3, 0#U, 0#5, 0#6, 0#7, 0#8 in the

microfiche supplement.

All these groups have order 3 and class 5 . g' g' 3', g? all

stabilize S and so induce automorphisms of _P*/S. . The automorphisms

a, -*• a-.a,' a. -*• a.

o . l I D R . 1 1

p a2 •+ «2 o a2 a2a6

are central and g_ is an inner automorphism of jP , so g', g', g', g/,

gg correspond to generators of a composition series for aut(p*/5 )

modulo inner and central automorphisms.

The remaining seven groups are dealt with similarly. Thus, for

example, g' gi correspond to generators for aut[g*/5_) modulo inner

and central automorphisms.

4. Organisation of results

By applying the extension algorithm to a group _P we obtain a set of

"immediate descendants" ji which we call a batch. We also say that the

groups ^ arise from .P , and P_ gives vise to the groups ^ .

After repeated applications of the extension algorithm the information

obtained is conveniently displayed as a labelled tree. Each node in the

tree represents a batch of groups. For example

indicates that we are starting with a batch of eight groups. Of these

eight, five give rise to no groups at all but the remaining three each

give rise to a batch of three groups. The order of the groups at each

level appears on the left-hand side of the page. Above each tree appearing

in the tables is a letter. This indicates a specific group which gives

rise to the first node of the tree. The computer produces the groups in

each batch in a specific order. While this order is of no theoretical
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significance we keep the groups in the tables in the same order to

fac i l i t a te correlations being made between the computer output and the

tables .

A p-group _P is said to be a CF group if Y-(PJ/Y • . , (£) i s o f

order at most p for i greater than or equal to two. If j? is any

p-group with J7y , (_P_) of maximal c lass , then _P is of maximal class— p+l — —

[2, Theorem 3.9] . Thus a two-generator 3-group P of second maximal

class is either a CF group or satisfies P/yAP) = YO^Z'/Y) (Z) - C"_, x C_, ,
d — 3 — ^ — 3 3

Y 2 ( P ) / Y 3 ( £ ) = Y I / P J / Y J C P ) = Y 5 ( £ ) / Y 6 ( P ) S . . . s Y n _ 2 ( p ) / Y n _ 1 ( £ ) = c 3 ,

where P̂ is of order 3 , provided n is greater than or equal to six.

The non CF groups are investigated first. There are twenty four of

these groups of order 3 and class h . They are denoted A, B, ..., X ,

and were obtained, together with their automorphism groups, by hand. The

calculations were checked by machine, and against other calculations. They

and the groups to which they give rise, up to order 3 , are dealt with

in Tables 1 to 5.

The eight CF groups P_ of order 3 and class 3 , with

JVP' = C, x f were also obtained, together with their automorphisms, both

by machine and by hand. They are denoted A, B, ..., H , and they and the
o

groups to which they give r ise, up to order 3 , are dealt with in Tables

6 and 7.

5. R e l i a b i l i t y of r e s u l t s

The nilpotent quotient algorithm has been very thoroughly tested on

much larger groups than those considered here. The algorithm was highly

automated to reduce the risk of human error, the results of one computation

being read automatically into the next. Programming errors should show up

very readily; in particular by yielding non-soluble automorphism groups,

which cause the program to signal an error. Finally, all central

extensions of 3-groups of maximal class have been obtained by Con Ion in

[3], and his calculations agree with ours. It is to be hoped that further
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work, will verify other parts of these calculat ions.

6. Non CF groups

TABLE 1

Order

,6

37

A B C D E F G H I J K L M N O P Q E S T U V W X

6* 16* 5 3 0 0 0 6* 6 0 k* 1 1 k* 8* 1 8* 1 6 1 8* 1 1* 1

0 27 0 0 U5 51* 0 0 0 0 9 0 1 5 0 6 0 15 o o o .

Table 1 gives, under each group A, B, ..., X , the number of groups of

order 3 that arise from this group by one application of the extension
Q

algorithm, and the number of groups of order 3 that arise by applying

the extension algorithm once to the groups of order 3
7

A star in the 3 row indicates that for the corresponding group P

of order 3 , Yq(Z*) n a s rar>k 2 . The reasons for placing the star on

this row rather than on the row above are firstly to be consistent with

Table h, where the more natural convention would be impracticable, and

secondly because the rank of Yt-(Z*) i-s no^ known, until calculating the

groups of order 3 . There are five groups, order 3 , class 3 , which

give rise to the groups A, B, ..., X . These five groups fall into one

isoclinism class. Each of them may be generated by elements a., ... , a_ ,

subject to the relations \a2, a ] = a , [a , a j = a^ , [a , a^\ = a ,

class 3 , a~Z = a, - a^ = e , a = u , a ? = v , where u and v are

given as follows:

A to J K to N 0 to S

2 2
u = v = e , u = e, v = a , u = e, v = a^ ,

T, U, V W, X

2 2 2
u = a , v = a^ , u = a , v = a^ .
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Order

12 3 ' 3

12

1 1 1 1 1 1

-,10

In Table 2 a circle around a node indicates that some of the groups in that

batch have centre of order 9 •

As can be seen from Table 1, only seve'n of the groups of order 3

o

give rise to groups of order 3 . In Table 2 groups arising from five of

these, namely B, 0, Q, S , and U are given while H and I are dealt

with in Table k and Table 5. 0 and 5 give rise to no groups of order
o
3 ; the trees for B, Q , and U continue indefinitely.

Groups arising from B, 0, Q, S , and U (not necessarily of order

less than or equal to 3- ) are distinguished by the fact that

3 ±1
a^ = ao mod Y 7 • From this it follows that y, is of class at most two.

Moreover, it can be shown that each of these groups has a subgroup of

maximal class and index 9 • These groups are of maximal type. It can be

shown that the centralizers of the quotients
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Yl/Y6' ^ 5 ^ 7 ' ""' ^-3^*1-1 = Yn-3 f o r a g r o u P o f m a x imal type and order

i are all equal, and that the rank of y ,-,(.£*) is always one. The

structure of the upper central series of the groups can be read off from

Tables 2 and 3. In a non CF group of order 3 and class n - 2 , either

C ./C . , = C x C for one value of i , n-1 > i > k , or C, =? C n .
n~t n-t-i i J 1 9

In the former case, say that the group is of type E. , in the latter that

it is of type C (these groups are cyclic-by-maximal class).

For £ = n - 1 , so that £ = C. x (7 and the group is centre-by-

maximal class, every group of order 3 arising from this is either of
" » ?2+l

type C or ff or E . For % < n-1 , every group of order 3
>2—-L W

arising from a group of type E. is of type E. . The groups of type C do

not give rise to new groups. Thus the upper central structure is

determined once the groups of type C and those of order 3 and type

E n have been located.
n-1

For n = 7 , the results are given in Table 3. The types of the

groups are listed in the order in which they are constructed.

The circled nodes in the graphs B, 0, Q , and U in Table 2

correspond to sets of groups of order 3 , say, some of which are of type

E or C • Each circled node corresponding to groups of order 3 ,
n-1

n > 7 , contains exactly one group of type C . For graphs Q ' and U ,

every other group in a circled node is of type E . For graph B , of

the groups in a circled node corresponding to groups of order 3 , ten are

of type E o and four of type E for n = 8 or 10 ; seven are of

type E „ and six are of type E for n = 7 or 9 . In graph B ,

group in a circled node giving rise to groups in an uncircled node is of

type E ; a group in a c
n-d

(necessarily) of type E

type E ; a group in a circled node giving rise to a circled node is
n-2

The groups of maximal type and order less than or equal to 3 are
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TABLE 3

7
Cent ra l s t r u c t u r e of groups of order 3

A s i x groups, type E.

5 A5> £ g , C, C, £ 5 , C, Ag, By t^, by &6, by Ag, A5, £"g, ^ 5

C f ive groups, type Ev

D Ey Ey C

H six groups, type E>

I six groups, type E^

K four groups, type E^

L one group, type Ei

M one group, type E<

N four groups, type E,

P one group, type i?_

R one group, type C

S six groups, type E

T one group, type C

V one group, type C

W one group, type E^

X one group, type E^ .

all centre-by-metabelian. Thus being metabelian is a necessary, but not

sufficient, condition for a group to give rise to new groups. However

since the nodes of order 3 that give rise to new groups are the left

hand node in graph B and the three left most nodes in graphs Q and U ,

if no group at a node gives rise to new groups then no group at that node

is metabelian.

In Tables h and 5 a circle round a node indicates that for the group
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UJ

CO

CO
O
H

on
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P_ which gave r ise to the batch, y (p*) has rank 2 .

a sequence of b batches with a groups in each.

indicates

The groups in Tables h and 5 have the property that y. c_ y c f°r

i, > h , and can certainly not have a subgroup of maximal class and 'small'

index; however they can be shown to contain a CF subgroup of index 3

with abelianization C-, x C q . These groups are of non-maximal type. It

is known that such groups are 'wilder' and 'more numerous' than groups of

maximal type, so the large number of groups in graphs H and I is to be

expected.

The groups of non-maximal type and order greater than 3 have y

as their second derived group, in contradistinction to the groups of

maximal type, which are centre-by-metabelian.

The following information has been found important in examining the

structure of the groups of non-maximal type. They can be generated by

elements s and t such that

[t, s, s, s] i Y 5 , [t, s, t, t] € Y 5 , [t, s, s, t, t] € Yg .

This information is used for analysing the maximal subgroups

M. = C [y./y. _) , h < i 5 w-3 , of the group £ . To calculate the

maximal subgroups it is sufficient to consider the case i = n-3 , smaller

values of i being dealt with by quotients of I? .

Let C. = M . / Y 9 , so that C. = < s> , < t), < st> , or < s2t) (mod y j •

For n = 7 , i = h , C. = < t) by choice of t .

If a batch of groups ^ arise from _P such that the rank of

Y , (P*) is two, then clearly all four possible values of C will

occur in that batch; otherwise only one value of C can occur in the

batch. For groups of order less than or equal to 3 this only occurs

with groups arising from H , and any two groups in the same such batch

which give rise to new groups have the same value for C _ ; in Table 5

we treat such a batch as if every group in the batch had this value of

C , and the corresponding node is circled.
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A cross is placed under a node whenever C # C , for the groups

in that batch. Now C. = <s> or <£> for all groups in the tables and

all values of i , with the above mentioned exceptions, and the exception

of the groups in three batches in Table 5, marked with a double cross,

which have C _ = <st> .
=w-3

7. CF groups

TABLE 6

In Table 6 a circle round a node indicates that all groups at that node

have centre of order 9 • All groups at other nodes have centre of order

3 .

Of the eight CF groups A, B, ..., H of order 3 only four give

rise to groups of order 3 . Here we deal with A, G , and H , while E

is dealt with in Table 7. The graphs A and G continue indefinitely,

whereas H terminates. Groups arising from A, G, H , not necessarily of
Q

order less than or equal to 3 , are distinguished by the fact that

Yo : Yp - 9 > from which it follows that Yo i-s °? class at most two.

These groups are of maximal type. All CF groups of maximal type have

positive degree of commutativity; that is to say, the centralizers of the

quotients Yp/Yj.5 Yo/Yc> ••• a r e a H the same maximal subgroup, M say.

For the groups arising from A , U/yAv) = C , and for groups arising

from G and H , M / Y 2 ( £ ) = C3
 x C3 •

The structure of the upper central series of the groups in Table 6

resembles that of the groups in Table 2. A group is centre-by-maximal
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class if and only if it appears in a circled node. The circled nodes in

graph A corresponding to orders 3 and 3 have two groups with centre

7

C. , and the node corresponding to order 3 has four groups with centre

CQ . The circled nodes in graph G have three groups with centre C .

The groups P_ appearing in this table are all metabelian and have the rank

of Y +1(.£*) eaual to 1 .

TABLE 7

E

Va 13 13 12 12 12

In Table 7 a circle round a node indicates that the groups at that node

arise from a group J? for which y ,-,(£*) has rank two.

Here we deal with the CF groups arising from E . This graph will

continue indefinitely, and the corresponding groups are of non-maximal

type. Typically, for such a group Y- = Y-.g > a"t least for t large

enough. A precise statement, with proof, [6], and examples, will appear

elsewhere. The wreath product C wr C_ has y = Y 1 0 = <e> + y and is

an example of a group of non-maximal type.

M.F. Newman has constructed, in an unpublished note, three infinite

chains of CF groups £ of non-maximal type distinguished by their prime

power structure, with j^/Yo^) - C_. x C_ .

All groups in Table 7, except for some at circled nodes, have positive

degree of commutativity, with a. in every two-step centralizer. The

groups that appear in the table are all centre-by-metabelian; however it

can be shown that CF groups of non-maximal type with arbitrarily large
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second derived groups exist.
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