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Abstract

We study sparse approximation by greedy algorithms. We prove the Lebesgue-type inequalities for
the weak Chebyshev greedy algorithm (WCGA), a generalization of the weak orthogonal matching
pursuit to the case of a Banach space. The main novelty of these results is a Banach space setting
instead of a Hilbert space setting. The results are proved for redundant dictionaries satisfying
certain conditions. Then we apply these general results to the case of bases. In particular, we prove
that the WCGA provides almost optimal sparse approximation for the trigonometric system in L p ,
2 6 p <∞.
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1. Introduction

This paper is devoted to theoretical aspects of sparse approximation. The
main motivation for the study of sparse approximation is that many real
world signals can be well approximated by sparse ones. Sparse approximation
automatically implies a need for nonlinear approximation, and in particular, for
greedy approximation. We give a brief description of a sparse approximation
problem in this section and present a detailed discussion of the results obtained
and their relation to previous work in Section 5. In a general setting, we are
working in a Banach space X with a redundant system of elements D (dictionary
D). There is a solid justification for the importance of a Banach space setting
in numerical analysis in general and in sparse approximation in particular (see,
for instance, [18], Preface, and [14]). An element (function, or signal) f ∈ X is
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said to be K -sparse with respect to D if it has a representation f =
∑K

i=1 xi gi ,
gi ∈ D, i = 1, . . . , K . The set of all K -sparse elements is denoted by ΣK (D).
For a given element f0 we introduce the error of the best m-term approximation

σm( f0,D) := inf
f ∈Σm (D)

‖ f0 − f ‖.

We are interested in the following fundamental problem of sparse approximation.

PROBLEM. How does one design a practical algorithm that builds sparse approxi-
mations comparable to the best m-term approximations?

We demonstrate in this paper that the weak Chebyshev greedy algorithm
(WCGA) which we define shortly is a solution to the above problem. This paper
is devoted to the Banach space setting. Let X be a real Banach space with norm
‖·‖ := ‖·‖X . We say that a set of elements (or functions) D from X is a dictionary
if each g ∈ D has norm one (‖g‖ = 1), and the closure of spanD is X . For a
nonzero element g ∈ X we let Fg denote a norming (peak) functional for g:

‖Fg‖X∗ = 1, Fg(g) = ‖g‖X .

The existence of such a functional is guaranteed by the Hahn–Banach theorem.
Let τ := {tk}

∞

k=1 be a given weakness sequence of nonnegative numbers tk 6 1,
k = 1, . . . . We define the weak Chebyshev greedy algorithm (WCGA) (see [16])
as a generalization for Banach spaces of the weak orthogonal matching pursuit
(WOMP). In a Hilbert space the WCGA coincides with the WOMP. The WOMP
is very popular in signal processing, and in particular, in compressed sensing. We
study the WCGA in detail in this paper.

The weak Chebyshev greedy algorithm (WCGA). Let f0 be given. Then for
each m > 1 we have the following inductive definition.

(1) ϕm := ϕ
c,τ
m ∈ D is any element satisfying

|F fm−1(ϕm)| > tm sup
g∈D
|F fm−1(g)|.

(2) Define
Φm := Φ

τ
m := span{ϕ j }

m
j=1,

and define Gm := Gc,τ
m to be the best approximant to f0 from Φm .

(3) Let
fm := f c,τ

m := f0 − Gm .

In this paper we only consider the case where tk = t ∈ (0, 1], k = 1, 2, . . . .
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The trigonometric system is a classical system that is known to be difficult to
study. In this paper we study among other problems the problem of nonlinear
sparse approximation with respect to it. Let RT denote the real trigonometric
system 1, sin 2πx, cos 2πx, . . . on [0, 1] and let RTp to be its version normalized
in L p([0, 1]). Denote as RT d

p := RTp × · · · ×RTp the d-variate trigonometric
system. We need to consider the real trigonometric system because the algorithm
WCGA is well studied for the real Banach space. In order to illustrate the
performance of the WCGA we discuss in this section the above mentioned
problem for the trigonometric system. There is a natural algorithm, the
thresholding greedy algorithm (TGA), that can be considered for the above
problem. We give a definition of the TGA for a general basis Ψ . Let a Banach
space X , with a normalized basis Ψ = {ψk}

∞

k=1, be given. We consider the
following greedy algorithm. For a given element f ∈ X we consider the
expansion

f =
∞∑

k=1

ck( f )ψk . (1.1)

For an element f ∈ X we say that a permutation ρ of the positive integers is
decreasing if

|ck1( f )| > |ck2( f )| > · · · , (1.2)

where ρ( j) = k j , j = 1, 2, . . . , and write ρ ∈ D( f ). If the inequalities are strict
in (1.2), then D( f ) consists of only one permutation. We define the mth greedy
approximant of f , with regard to the basis Ψ corresponding to a permutation
ρ ∈ D( f ), by the formula

Gm( f, Ψ ) := Gm( f, Ψ, ρ) :=
m∑

j=1

ck j ( f )ψk j .

The following Lebesgue-type inequality was proved in [15].

THEOREM 1.1. For each f ∈ L p([0, 1]d) we have

‖ f − Gm( f,RT d
p)‖p 6 C(d)mh(p)σm( f,RT d

p)p, 1 6 p 6∞,

where h(p) := |1/2− 1/p|.

It was also proved in [15] that the above inequality is sharp.

REMARK 1.1. There is a positive absolute constant C such that for each m and
1 6 p 6∞ there exists a function f 6= 0 with the property

‖Gm( f,RTp)‖p > Cmh(p)
‖ f ‖p. (1.3)
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Remark 1.1 shows that the TGA does not work well for the trigonometric
system in L p, p 6= 2. This leads to a natural attempt to consider some other
algorithms that may have some advantages over the TGA in the case of the
trigonometric system. In this paper we discuss the performance of the weak
Chebyshev greedy algorithm (WCGA) with respect to the trigonometric system.
We prove here the following Lebesgue-type inequality for the WCGA (see
Example 2 in Section 4).

THEOREM 1.2. Let D be the real d-variate trigonometric system normalized in
L p, 2 6 p < ∞. Then for any f0 ∈ L p the WCGA with weakness parameter t
gives

‖ fC(t,p,d)m ln(m+1)‖p 6 Cσm( f0,D)p. (1.4)

The Open Problem 7.1 (p. 91) from [17] asks if (1.4) holds without an extra
ln(m + 1) factor. Theorem 1.2 is the first result on the Lebesgue-type inequalities
for the WCGA with respect to the trigonometric system. It provides progress in
solving the above mentioned open problem, but the problem is still open.

Theorem 1.2 shows that the WCGA is very well designed for the trigonometric
system. We show in Example 1 of Section 4 that an analog of (1.4) holds for
uniformly bounded orthogonal systems. We note that it is known (see [18]) that
the TGA is very well designed for bases L p-equivalent to the Haar basis, 1 < p <
∞. We discuss the performance of the WCGA in more detail in Section 5.

The proof of Theorem 1.2 uses a technique developed for proving the
Lebesgue-type inequalities for redundant dictionaries with special properties.
We present these results in Sections 2 and 3. These results are an extension
of earlier results from [10]. In Section 4 we test the power of general results
from Section 2 on specific dictionaries, namely, on bases. Section 4 provides
a number of examples, including the trigonometric system, were the technique
from Sections 2 and 3 can be successfully applied. In particular, results from
Section 4 demonstrate that the general technique from Sections 2 and 3 provides
almost optimal m-term approximation results for uniformly bounded orthogonal
systems (see Example 1). Example 7 shows that an extra assumption that a
uniformly bounded orthogonal system Ψ is a quasigreedy basis allows us to
improve inequality (1.4):

‖ fC(t,p,Ψ )m ln ln(m+3)‖p 6 Cσm( f0, Ψ )p.

2. Lebesgue-type inequalities; general results

A very important advantage of the WCGA is its convergence and rate of
convergence properties. The WCGA is well defined for all m. Moreover, it is
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known (see [16] and [18]) that the WCGA with τ = {t} converges for all f0 in all
uniformly smooth Banach spaces with respect to any dictionary. That is, when X
is a real Banach space and the modulus of smoothness of X is defined as follows:

ρ(u) :=
1
2

sup
x,y;‖x‖=‖y‖=1

|‖x + uy‖ + ‖x − uy‖ − 2|, (2.1)

then the uniformly smooth Banach space is the one with ρ(u)/u → 0 when
u → 0.

We discuss here the Lebesgue-type inequalities for the WCGA with τ = {t},
t ∈ (0, 1]. For notational convenience we consider here a countable dictionary
D = {gi}

∞

i=1. The following assumptions A1 and A2 were used in [10]. For a
given f0 let the sparse element (or signal)

f := f ε =
∑
i∈T

xi gi

be such that ‖ f0 − f ε‖ 6 ε and |T | = K . For A ⊂ T define

f A := f εA :=
∑
i∈A

xi gi .

A1. We say that f =
∑

i∈T xi gi satisfies the Nikol’skii-type `1 X inequality with
parameter r if ∑

i∈A

|xi | 6 C1|A|r‖ f A‖, A ⊂ T, r > 1/2. (2.2)

We say that a dictionary D has the Nikol’skii-type `1 X property with parameters
K , r if any K -sparse element satisfies the Nikol’skii-type `1 X inequality with
parameter r .

A2. We say that f =
∑

i∈T xi gi has the incoherence property with parameters
D and U if for any A ⊂ T and any Λ such that A ∩ Λ = ∅, |A| + |Λ| 6 D we
have for any {ci}, ∥∥∥∥ f A −

∑
i∈Λ

ci gi

∥∥∥∥ > U−1
‖ f A‖. (2.3)

We say that a dictionary D is (K , D)-unconditional with a constant U if for any
f =

∑
i∈T xi gi with |T | 6 K , inequality (2.3) holds.

The term unconditional in A2 is justified by the following remark. The above
definition of a (K , D)-unconditional dictionary is equivalent to the following
definition. Let D be such that any subsystem of D distinct elements e1, . . . , eD
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from D is linearly independent and for any A ⊂ [1, D] with |A| 6 K and any
coefficients {ci} we have ∥∥∥∥∑

i∈A

ci ei

∥∥∥∥ 6 U
∥∥∥∥ D∑

i=1

ci ei

∥∥∥∥.
It is convenient for us to use the following assumption A3 which is a corollary

of assumptions A1 and A2.
A3. We say that f =

∑
i∈T xi gi has the `1 incoherence property with parameters

D, V , and r if for any A ⊂ T and anyΛ such that A∩Λ = ∅, |A| + |Λ| 6 D we
have for any {ci}, ∑

i∈A

|xi | 6 V |A|r
∥∥∥∥ f A −

∑
i∈Λ

ci gi

∥∥∥∥. (2.4)

A dictionary D has the `1 incoherence property with parameters K , D, V , and r
if for any A ⊂ B, |A| 6 K , |B| 6 D we have for any {ci}i∈B ,∑

i∈A

|ci | 6 V |A|r
∥∥∥∥∑

i∈B

ci gi

∥∥∥∥.
It is clear that A1 and A2 imply A3 with V = C1U . Also, A3 implies A1 with

C1 = V and A2 with U = V K r . Obviously, we can restrict ourselves to r 6 1.
We now proceed to the main results of this paper on the WCGA with respect to

redundant dictionaries. The following theorem, Theorem 2.1, was proved in [10]
for the case q = 2.

THEOREM 2.1. Let X be a Banach space with ρ(u) 6 γ uq , 1 < q 6 2. Suppose
K -sparse f ε satisfies A1, A2 and ‖ f0− f ε‖ 6 ε. Then the WCGA with weakness
parameter t applied to f0 provides

‖ fC(t,γ,C1)Uq′ ln(U+1)K rq′‖ 6 Cε for K + C(t, γ,C1)U q ′ ln(U + 1)K rq ′ 6 D

with an absolute constant C.

It was pointed out in [10] that Theorem 2.1 provides a corollary for Hilbert
spaces that gives sufficient conditions somewhat weaker than the known RIP
conditions on D for the Lebesgue-type inequality to hold. We formulate the
corresponding definitions and results. Let D be the Riesz dictionary with depth
D and parameter δ ∈ (0, 1). This class of dictionaries is a generalization of the
class of classical Riesz bases. We give a definition for in a general Hilbert space
(see [18], p. 306).
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DEFINITION 2.1. A dictionary D is called the Riesz dictionary with depth D and
parameter δ ∈ (0, 1) if, for any D distinct elements e1, . . . , eD of the dictionary
and any coefficients a = (a1, . . . , aD), we have

(1− δ)‖a‖2
2 6

∥∥∥∥ D∑
i=1

ai ei

∥∥∥∥2

6 (1+ δ)‖a‖2
2. (2.5)

We denote the class of Riesz dictionaries with depth D and parameter δ ∈ (0, 1)
by R(D, δ).

The term Riesz dictionary with depth D and parameter δ ∈ (0, 1) is another
name for a dictionary satisfying the restricted isometry property (RIP) with
parameters D and δ. The following simple lemma holds.

LEMMA 2.1. Let D ∈ R(D, δ) and let e j ∈ D, j = 1, . . . , s. For f =
∑s

i=1 ai ei

and A ⊂ {1, . . . , s}, define

SA( f ) :=
∑
i∈A

ai ei .

If s 6 D then
‖SA( f )‖2 6 (1+ δ)(1− δ)−1

‖ f ‖2.

Lemma 2.1 implies that if D ∈ R(D, δ) then it is (D, D)-unconditional with a
constant U = (1+ δ)1/2(1− δ)−1/2.

THEOREM 2.2. Let X be a Hilbert space. Suppose K -sparse f ε satisfies A2 and
‖ f0− f ε‖ 6 ε. Then the WOMP with weakness parameter t applied to f0 provides

‖ fC(t,U )K‖ 6 Cε for K + C(t,U )K 6 D

with an absolute constant C.

Theorem 2.2 implies the following corollaries.

COROLLARY 2.1. Let X be a Hilbert space. Suppose any K -sparse f satisfies
A2. Then the WOMP with weakness parameter t applied to f0 provides

‖ fC(t,U )K‖ 6 CσK ( f0,D) for K + C(t,U )K 6 D

with an absolute constant C.
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COROLLARY 2.2. Let X be a Hilbert space. Suppose D ∈ R(D, δ). Then the
WOMP with weakness parameter t applied to f0 provides

‖ fC(t,δ)K‖ 6 CσK ( f0,D) for K + C(t, δ)K 6 D

with an absolute constant C.

We emphasized in [10] that in Theorem 2.1 we impose our conditions on
an individual function f ε . It may happen that the dictionary does not have the
Nikol’skii `1 X property and (K , D)-unconditionality, but the given f0 can be
approximated by f ε which does satisfy assumptions A1 and A2. Even in the case
of a Hilbert space the above results from [10] add something new to the study
based on the RIP property of a dictionary. First of all, Theorem 2.2 shows that
it is sufficient to impose assumption A2 on f ε to obtain exact recovery and the
Lebesgue-type inequality results. Second, Corollary 2.1 shows that the condition
A2, which is weaker than the RIP condition, is sufficient for exact recovery and
the Lebesgue-type inequality results. Third, Corollary 2.2 shows that even if we
impose our assumptions in terms of RIP, we do not need to assume that δ < δ0. In
fact, the result works for all δ < 1 with parameters depending on δ.

Theorem 2.1 follows from the combination of Theorems 2.3 and 2.4. For the
case q = 2, these theorems were proved in [10].

THEOREM 2.3. Let X be a Banach space with ρ(u) 6 γ uq , 1 < q 6 2. Suppose
for a given f0 we have ‖ f0− f ε‖ 6 ε with K -sparse f := f ε satisfying A3. Then
for any k > 0 we have for K + m 6 D,

‖ fm‖ 6 ‖ fk‖ exp
(
−

c1(m − k)
K rq ′

)
+ 2ε, q ′ :=

q
q − 1

,

where c1 := (tq ′)/(2(16γ )1/(q−1)V q ′).

In all of the theorems that follow, we assume that rq ′ > 1.

THEOREM 2.4. Let X be a Banach space with ρ(u) 6 γ uq , 1 < q 6 2. Suppose
K -sparse f ε satisfies A1, A2 and ‖ f0− f ε‖ 6 ε. Then the WCGA with weakness
parameter t applied to f0 provides

‖ fC ′Uq′ ln(U+1)K rq′‖ 6 CUε for K + C ′U q ′ ln(U + 1)K rq ′ 6 D

with an absolute constant C and C ′ = C2(q)γ (1/q−1)Cq ′

1 t−q ′ .

We formulate an immediate corollary of Theorem 2.4 with ε = 0.
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COROLLARY 2.3. Let X be a Banach space with ρ(u) 6 γ uq . Suppose K -
sparse f satisfies A1, A2. Then the WCGA with weakness parameter t applied
to f recovers it exactly after C ′U q ′ ln(U + 1)K rq ′ iterations under condition
K + C ′U q ′ ln(U + 1)K rq ′ 6 D.

We formulate versions of Theorem 2.4 with assumptions A1, A2 replaced
by a single assumption A3 and replaced by two assumptions A2 and A3. The
corresponding modifications in the proofs go as in the proof of Theorem 2.3.

THEOREM 2.5. Let X be a Banach space with ρ(u) 6 γ uq , 1 < q 6 2. Suppose
K -sparse f ε satisfies A3 and ‖ f0 − f ε‖ 6 ε. Then the WCGA with weakness
parameter t applied to f0 provides

‖ fC(t,γ,q)V q′ ln(V K )K rq′‖ 6 CV K rε for K + C(t, γ, q)V q ′ ln(V K )K rq ′ 6 D

with an absolute constant C and C(t, γ, q) = C2(q)γ 1/(q−1)t−q ′ .

THEOREM 2.6. Let X be a Banach space with ρ(u) 6 γ uq , 1 < q 6 2. Suppose
K -sparse f ε satisfies A2, A3 and ‖ f0− f ε‖ 6 ε. Then the WCGA with weakness
parameter t applied to f0 provides

‖ fC(t,γ,q)V q′ ln(U+1)K rq′‖ 6 CUε for K + C(t, γ, q)V q ′ ln(U + 1)K rq ′ 6 D

with an absolute constant C and C(t, γ, q) = C2(q)γ 1/(q−1)t−q ′ .

Theorems 2.5 and 2.3 imply the following analog of Theorem 2.1.

THEOREM 2.7. Let X be a Banach space with ρ(u) 6 γ uq , 1 < q 6 2. Suppose
K -sparse f ε satisfies A3 and ‖ f0 − f ε‖ 6 ε. Then the WCGA with weakness
parameter t applied to f0 provides

‖ fC(t,γ,q)V q′ ln(V K )K rq′‖ 6 Cε for K + C(t, γ, q)V q ′ ln(V K )K rq ′ 6 D

with an absolute constant C and C(t, γ, q) = C2(q)γ 1/(q−1)t−q ′ .

The following version of Theorems 2.1 and 2.7 is also useful in applications. It
follows from Theorems 2.6 and 2.3.

THEOREM 2.8. Let X be a Banach space with ρ(u) 6 γ uq , 1 < q 6 2. Suppose
K -sparse f ε satisfies A2, A3 and ‖ f0− f ε‖ 6 ε. Then the WCGA with weakness
parameter t applied to f0 provides

‖ fC(t,γ,q)V q′ ln(U+1)K rq′‖ 6 Cε for K + C(t, γ, q)V q ′ ln(U + 1)K rq ′ 6 D

with an absolute constant C and C(t, γ, q) = C2(q)γ 1/(q−1)t−q ′ .
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3. Proofs

We begin with a proof of Theorem 2.3.

Proof. Let
f := f ε =

∑
i∈T

xi gi , |T | = K , gi ∈ D.

Denote by T m the set of indices of g j ∈ D picked by the WCGA after m iterations,
Γ m
:= T \ T m . Denote by A1(D) the closure in X of the convex hull of the

symmetrized dictionary D± := {±g, g ∈ D}. We will bound ‖ fm‖ from above.
Assume that ‖ fm−1‖ > ε. Let m > k. We bound from below:

Sm := sup
φ∈A1(D)

|F fm−1(φ)|.

Define Am := Γ
m−1. Then

Sm > F fm−1( f Am/‖ f Am‖1),

where ‖ f A‖1 :=
∑

i∈A |xi |. Next, by Lemma 6.9, p. 342, from [18] we obtain

F fm−1( f Am ) = F fm−1( f ε) > ‖ fm−1‖ − ε.

Thus
Sm > ‖ f Am‖

−1
1 (‖ fm−1‖ − ε). (3.1)

From the definition of the modulus of smoothness we have for any λ,

‖ fm−1 − λϕm‖ + ‖ fm−1 + λϕm‖ 6 2‖ fm−1‖

(
1+ ρ

(
λ

‖ fm−1‖

))
, (3.2)

and by (1), from the definition of the WCGA and Lemma 6.10 from [18], p. 343,
we get

|F fm−1(ϕm)| > t sup
g∈D
|F fm−1(g)|

= t sup
φ∈A1(D)

|F fm−1(φ)| = t Sm .

Then either F fm−1(ϕm) > t Sm or F fm−1(−ϕm) > t Sm . The two cases are treated in
the same way. We demonstrate the case F fm−1(ϕm) > t Sm . We have for λ > 0,

‖ fm−1 + λϕm‖ > F fm−1( fm−1 + λϕm) > ‖ fm−1‖ + λt Sm .

From here and from (3.2) we obtain

‖ fm‖ 6 ‖ fm−1 − λϕm‖ 6 ‖ fm−1‖ + inf
λ>0
(−λt Sm + 2‖ fm−1‖ρ(λ/‖ fm−1‖)).
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We discuss here the case ρ(u) 6 γ uq . Using (3.1) we get

‖ fm‖ 6 ‖ fm−1‖

(
1−

λt
‖ f Am‖1

+ 2γ
λq

‖ fm−1‖
q

)
+

ελt
‖ f Am‖1

.

Let λ1 be a solution of

λt
2‖ f Am‖1

= 2γ
λq

‖ fm−1‖
q
, λ1 =

(
t‖ fm−1‖

q

4γ ‖ f Am‖1

) 1
q−1

.

Our assumption (2.4) gives

‖ f Am‖1 = ‖( f ε − Gm−1)Am‖1 6 V K r
‖ f ε − Gm−1‖

6 V K r (‖ f0 − Gm−1‖ + ‖ f0 − f ε‖) 6 V K r (‖ fm−1‖ + ε).

Specify

λ =

(
t‖ f Am‖

q−1
1

16γ (V K r )q

) 1
q−1

.

Then, using ‖ fm−1‖ > ε we get(
λ

λ1

)q−1

=
‖ f Am‖

q
1

4‖ fm−1‖
q(V K r )q

6 1

and obtain

‖ fm‖ 6 ‖ fm−1‖

(
1−

tq ′

2(16γ )
1

q−1 (V K r )q
′

)
+

εtq ′

(16γ )
1

q−1 (V K r )q
′

.

Define c1 := (tq ′)/(2(16γ )1/(q−1)V q ′). Then

‖ fm‖ 6 ‖ fk‖ exp
(
−

c1(m − k)
K rq ′

)
+ 2ε.

We proceed to a proof of Theorem 2.4. Modifications of this proof which are in
the style of the above proof of Theorem 2.3 give Theorems 2.5 and 2.6.

Proof. We use the above notation T m and Γ m
:= T \ T m . Let k > 0 be fixed.

Suppose that
2n−1 < |Γ k

| 6 2n.

For j = 1, 2, . . . , n, n+1 consider the following pairs of sets A j , B j : An+1 = Γ
k ,

Bn+1 = ∅; for j 6 n, A j := Γ
k
\ B j with B j ⊂ Γ

k is such that |B j | > |Γ k
|−2 j−1

and for any set J ⊂ Γ k with |J | > |Γ k
| − 2 j−1 we have

‖ fB j‖ 6 ‖ f J‖.
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We note that this implies that if for some Q ⊂ Γ k we have

‖ fQ‖ < ‖ fB j‖ then |Q| < |Γ k
| − 2 j−1. (3.3)

For a given b > 1, to be specified later, denote by L the index such that
(B0 := Γ

k)

‖ fB0‖ < b‖ fB1‖,

‖ fB1‖ < b‖ fB2‖,

. . .

‖ fBL−2‖ < b‖ fBL−1‖,

‖ fBL−1‖ > b‖ fBL‖.

Then
‖ fB j‖ 6 bL−1− j

‖ fBL−1‖, j = 1, 2, . . . , L . (3.4)

We now proceed to a general step. Let m > k and let A, B ⊂ Γ k be such that
A = Γ k

\ B. As above we bound Sm from below. It is clear that Sm > 0. Define
Am := A ∩ Γ m−1. Then

Sm > F fm−1( f Am/‖ f Am‖1).

Next,
F fm−1( f Am ) = F fm−1( f Am + fB − fB).

Then f Am + fB = f ε − fΛ with F fm−1( fΛ) = 0. Moreover, it is easy to see that
F fm−1( f ε) > ‖ fm−1‖ − ε. Therefore,

F fm−1( f Am + fB − fB) > ‖ fm−1‖ − ε − ‖ fB‖.

Thus
Sm > ‖ f Am‖

−1
1 max(0, ‖ fm−1‖ − ε − ‖ fB‖).

By (2.2) we get

‖ f Am‖1 6 C1|Am |
r
‖ f Am‖ 6 C1|A|r‖ f Am‖.

Then
Sm >

‖ fm−1‖ − ‖ fB‖ − ε

C1|A|r‖ f Am‖
. (3.5)

From the definition of the modulus of smoothness we have for any λ,

‖ fm−1 − λϕm‖ + ‖ fm−1 + λϕm‖ 6 2‖ fm−1‖

(
1+ ρ

(
λ

‖ fm−1‖

))
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and by (1) from the definition of the WCGA and Lemma 6.10 from [18], p. 343,
we get

|F fm−1(ϕm)| > t sup
g∈D
|F fm−1(g)|

= t sup
φ∈A1(D)

|F fm−1(φ)|.

From here we obtain

‖ fm‖ 6 ‖ fm−1‖ + inf
λ>0
(−λt Sm + 2‖ fm−1‖ρ(λ/‖ fm−1‖)).

We discuss here the case ρ(u) 6 γ uq . Using (3.5) we get

‖ fm‖ 6 ‖ fm−1‖

(
1−

λt
C1|A|r‖ f Am‖

+ 2γ
λq

‖ fm−1‖
q

)
+
λt (‖ fB‖ + ε)

C1|A|r‖ f Am‖
.

Let λ1 be a solution of

λt
2C1|A|r‖ f Am‖

= 2γ
λq

‖ fm−1‖
q
, λ1 =

(
t‖ fm−1‖

q

4γC1|A|r‖ f Am‖

) 1
q−1

.

Our assumption (2.3) gives

‖ f Am‖ 6 U (‖ fm−1‖ + ε).

Specify

λ =

(
t‖ f Am‖

q−1

16γC1|A|rU q

) 1
q−1

.

Then λ 6 λ1 and we obtain

‖ fm‖ 6 ‖ fm−1‖

(
1−

tq ′

2(16γ )
1

q−1 (C1U |A|r )q ′

)
+

tq ′(‖ fB‖ + ε)

(16γ )
1

q−1 (C1|A|rU )q
′

. (3.6)

Define c1 := (tq ′)/(2(16γ )1/(q−1)(C1U )q
′

). This implies for m2 > m1 > k,

‖ fm2‖ 6 ‖ fm1‖(1− c1/|A|rq ′)m2−m1 +
2c1(m2 − m1)

|A|2r
(‖ fB‖ + ε). (3.7)

Define m0 := k and, inductively,

m j = m j−1 + β|A j |
rq ′, j = 1, . . . , n.

At iterations from m j−1 + 1 to m j we use A = A j and obtain from (3.6),

‖ fm j‖ 6 ‖ fm j−1‖e
−c1β + 2(‖ fB j‖ + ε).
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We continue it up to j = L . Define η := e−c1β . Then

‖ fmL‖ 6 ‖ fk‖η
L
+ 2

L∑
j=1

(‖ fB j‖ + ε)η
L− j .

We bound the ‖ fk‖. It follows from the definition of fk that ‖ fk‖ is the error of
best approximation of f0 by the subspace Φk . Representing f0 = f + f0 − f
we see that ‖ fk‖ is not greater than the error of best approximation of f by the
subspace Φk plus ‖ f0 − f ‖. This implies that ‖ fk‖ 6 ‖ fB0‖ + ε. Therefore we
continue:

6 (‖ fB0‖ + ε)η
L
+ 2

L∑
j=1

(‖ fBL−1‖(ηb)L− j b−1
+ εηL− j)

6 b−1
‖ fBL−1‖

(
(ηb)L

+ 2
L∑

j=1

(ηb)L− j

)
+

2ε
1− η

.

We will specify β later. However, we note that it will be chosen in such a way that
it guarantees η < 1/2. Choose b = 1/2η. Then

‖ fmL‖ 6 ‖ fBL−1‖8e−c1β + 4ε. (3.8)

By (2.3) we get

‖ fΓ mL ‖ 6 U (‖ fmL‖ + ε) 6 U (‖ fBL−1‖8e−c1β + 5ε).

We note that in the proof of Theorem 2.5 we use the above inequality with U =
V K r 6 V K . If ‖ fBL−1‖ 6 10Uε, then by (3.8),

‖ fmL‖ 6 CUε.

If ‖ fBL−1‖ > 10Uε, then making β sufficiently large to satisfy 16Ue−c1β < 1 so
that β = (C3 ln(U + 1))/c1, we get

U (‖ fBL−1‖8e−c1β + 5ε) < ‖ fBL−1‖

and therefore
‖ fΓ mL ‖ < ‖ fBL−1‖.

This implies that
|Γ mL | < |Γ k

| − 2L−2.

We begin with f0 and apply the above argument (with k = 0). As a result we
either get the required inequality or we reduce the cardinality of support of f
from |T | = K to |Γ mL1 | < |T | − 2L1−2, mL1 6 β2aL1 , a := rq ′. We continue the
process and build a sequence mL j such that mL j 6 β2aL j and after mL j iterations
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we reduce the support by at least 2L j−2. We also note that mL j 6 β2a K a . We
continue this process until the following inequality is satisfied for the first time:

mL1 + · · · + mLn > 22aβK a. (3.9)

Then, clearly,
mL1 + · · · + mLn 6 22a+1βK a.

Using the inequality

(a1 + · · · + an)
θ 6 aθ1 + · · · + aθn , a j > 0, θ ∈ (0, 1],

we derive from (3.9),

2L1−2
+ · · · + 2Ln−2 >

(
2a(L1−2)

+ · · · + 2a(Ln−2)) 1
a

> 2−2(2aL1 + · · · + 2aLn
) 1

a

> 2−2((β)−1(mL1 + · · · + mLn )
) 1

a > K .

Thus, after not more than N := 22a+1βK a iterations we recover f exactly and
then ‖ fN‖ 6 ‖ f0 − f ‖ 6 ε.

4. Examples

In this section we discuss applications of theorems from Section 2 for specific
dictionaries D. Mostly, D will be a basis Ψ for X . Because of that we use m
instead of K in the notation of sparse approximation. In some of our examples we
take X = L p, 2 6 p <∞. Then it is known that ρ(u) 6 γ u2 with γ = (p−1)/2.
In some other examples we take X = L p, 1 < p 6 2. Then it is known that
ρ(u) 6 γ u p, with γ = 1/p.

EXAMPLE 1. Let Ψ be a uniformly bounded orthogonal system normalized in
L p(Ω), 2 6 p <∞, where Ω is a bounded domain. Then we have

C1(Ω, p)‖ψ j‖2 6 ‖ψ j‖p 6 C2(Ω, p)‖ψ j‖2, j = 1, 2 . . . .

Next, for f =
∑

i ci( f )ψi ,∑
i∈A

|ci( f )| =
〈

f,
∑
i∈A

(sign ci( f ))ψi‖ψi‖
−2
2

〉
6 ‖ f ‖2‖

∑
i∈A

(sign ci( f ))ψi‖ψi‖
−2
2 ‖2

6 C3(Ω, p)|A|1/2‖ f ‖p.
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Therefore Ψ satisfies A3 with D = ∞, V = C3(Ω, p), r = 1/2. Theorem 2.7
gives

‖ fC(t,p,D)m ln(m+1)‖p 6 Cσm( f0, Ψ )p. (4.1)

EXAMPLE 1q. Let Ψ be a uniformly bounded orthogonal system normalized in
L p(Ω), 1 < p 6 2, where Ω is a bounded domain. Then we have

C1(Ω, p)‖ψ j‖2 6 ‖ψ j‖p 6 C2(Ω, p)‖ψ j‖2, j = 1, 2 . . . .

Next, for f =
∑

i ci( f )ψi ,∑
i∈A

|ci( f )| =
〈

f,
∑
i∈A

(sign ci( f ))ψi‖ψi‖
−2
2

〉
6 ‖ f ‖p‖

∑
i∈A

(sign ci( f ))ψi‖ψi‖
−2
2 ‖p′

6 C4(Ω, p)|A|1−1/p′
‖ f ‖p.

ThereforeΨ satisfies A3 with D =∞, V = C4(Ω, p), r = 1−1/p′. Theorem 2.7
gives

‖ fC(t,p,D)m p′−1 ln(m+1)‖p 6 Cσm( f0, Ψ )p. (4.2)

EXAMPLE 2. Let Ψ be the real d-variate trigonometric system normalized in L p,
2 6 p <∞. Then Example 1 applies and gives for any f0 ∈ L p,

‖ fC(t,p,d)m ln(m+1)‖p 6 Cσm( f0, Ψ )p. (4.3)

We note that (4.3) provides some progress in Open Problem 7.1 (p. 91) from [17].

EXAMPLE 2q. Let Ψ be the real d-variate trigonometric system normalized in
L p, 1 < p 6 2. Then Example 1q applies and gives for any f0 ∈ L p,

‖ fC(t,p,d)m p′−1 ln(m+1)‖p 6 Cσm( f0, Ψ )p. (4.4)

We need the concept of the cotype of a Banach space X . We say that X has
cotype s if for any finite number of elements ui ∈ X we have the inequality(

Average
±

∥∥∥∥∑
i

±ui

∥∥∥∥s)1/s

> Cs

(∑
i

‖ui‖
s

)1/s

.

It is known that the L p spaces with 2 6 p <∞ have cotype s = p and L p spaces
with 1 < p 6 2 have cotype two.
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REMARK 4.1. Suppose D is (K , K )-unconditional with a constant U . Assume
that X is of cotype s with a constant Cs . Then D has the Nikol’skii-type `1 X
property with parameters K , 1− 1/s and C1 = 2UC−1

s .

Proof. Our assumption about (K , K )-unconditionality implies: for any A, |A| 6
K , we have ∥∥∥∥∑

i∈A

±xi gi

∥∥∥∥ 6 2U
∥∥∥∥∑

i∈A

xi gi

∥∥∥∥.
Therefore, by the s-cotype assumption,∥∥∥∥∑

i∈A

xi gi

∥∥∥∥s

> (2U )−sC s
s

∑
i∈A

|xi |
s .

This implies

∑
i∈A

|xi | 6 |A|1−1/s

(∑
i∈A

|xi |
s

)1/s

6 2UC−1
s |A|

1−1/s

∥∥∥∥∑
i∈A

xi gi

∥∥∥∥.
EXAMPLE 3. Let X be a Banach space with ρ(u) 6 γ uq , 1 < q 6 2, and with
cotype s. LetΨ be an unconditional basis for X normalized in X . Then U 6 C(X,
Ψ ) and Ψ satisfies A2 with D = ∞ and any K .

By Remark 4.1 Ψ satisfies A1 with r = 1− 1/s. Theorem 2.4 gives

‖ fC(t,X,Ψ )m(1−1/s)q′‖ 6 Cσm( f0, Ψ ). (4.5)

EXAMPLE 4. Let Ψ be the multivariate Haar basis Hd
p = Hp × · · · × Hp

normalized in L p, 2 6 p < ∞. It is an unconditional basis. Also it is known
that an L p space with 2 6 p < ∞ has cotype s = 1/p. Therefore, Example 3
applies in this case. We give a direct argument here. It is an unconditional basis
and therefore U 6 C(p, d). Next, for any A,∥∥∥∥∑

i∈A

xi Hi,p

∥∥∥∥
p

> C(p, d)
(∑

i∈A

|xi |
p

)1/p

> C(p, d)|A|
1
p−1

∑
i∈A

|xi |.

Therefore, we can take r = 1/p′. Theorem 2.4 gives

‖ fC(t,p,d)m2/p′‖p 6 Cσm( f0,Hd
p)p. (4.6)

Inequality (4.6) provides some progress in Open Problem 7.2 (p. 91) from [17]
for the case 2 < p <∞.

https://doi.org/10.1017/fms.2014.7 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.7


V. N. Temlyakov 18

EXAMPLE 4q. Let Ψ be the univariate Haar basis Hp = {HI,p}I normalized in
L p, 1 < p 6 2, where the HI,p are the Haar functions indexed by dyadic intervals
of support of HI,p (we index function 1 by [0, 1] and the first Haar function by (0,
1]). Then for any finite set A of dyadic intervals we have for f =

∑
I cI ( f )HI,p,∑

I∈A

|cI | = 〈 f, f ∗A〉, f ∗A :=
∑
I∈A

(sign cI ( f ))HI,p‖HI,p‖
−2
2 .

Therefore, ∑
I∈A

|cI | 6 ‖ f ‖p‖ f ∗A‖p′ .

It is easy to check that

‖HI,p‖p′‖HI,p‖
−2
2 = |I |

−1/p
|I |1/p′

|I |−(1−2/p)
= 1.

By Lemma 1.23, p. 28, from [18] we get

‖ f ∗A‖p′ 6 C(p)|A|1/p′ .

Thus ∑
I∈A

|cI | 6 C(p)|A|1/p′
‖ f ‖p.

This means that Hp satisfies A3 with V = C(p) and r = 1/p′. Also it is an
unconditional basis and therefore satisfies A2 with U = C(p). It is known that
an L p space with 1 < p 6 2 has modulus of smoothness ρ(u) 6 γ u p. Therefore,
Theorem 2.8 applies in this case and gives

‖ fC(t,p)m‖p 6 Cσm( f0,Hp)p. (4.7)

Inequality (4.7) solves the Open Problem 7.2 (p. 91) from [17] in the case 1 <
p 6 2.

EXAMPLE 5. Let X be a Banach space with ρ(u) 6 γ u2. Assume that Ψ is a
normalized Schauder basis for X . Then for any f =

∑
i ci( f )ψi ,∑

i∈A

|ci( f )| 6 C(Ψ )|A|‖ f ‖.

This implies that Ψ satisfies A3 with D = ∞, V = C(Ψ ), r = 1 and any K .
Theorem 2.7 gives

‖ fC(t,X,Ψ )m2 ln m‖ 6 Cσm( f0, Ψ ). (4.8)
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We note that the above simple argument still works if we replace the assumption
that Ψ is a Schauder basis by the assumption that a dictionary D is (1, D)-
unconditional with constant U . Then we obtain

‖ fC(t,γ,U )K 2 ln K‖ 6 CσK ( f0, Ψ ), for K + C(t, γ,U )K 2 ln K 6 D.

EXAMPLE 5q. Let X be a Banach space with ρ(u) 6 γ uq , 1 < q 6 2. Assume
that Ψ is a normalized Schauder basis for X . Then for any f =

∑
i ci( f )ψi ,∑

i∈A

|ci( f )| 6 C(Ψ )|A|‖ f ‖.

This implies that Ψ satisfies A3 with D = ∞, V = C(Ψ ), r = 1 and any T .
Theorem 2.7 gives

‖ fC(t,X,Ψ )mq′ ln m‖ 6 Cσm( f0, Ψ ). (4.9)

We note that the above simple argument still works if we replace the assumption
that Ψ is a Schauder basis by the assumption that a dictionary D is (1, D)-
unconditional with constant U . Then we obtain

‖ fC(t,γ,q,U )K q′ ln K‖ 6 CσK ( f0,D), for K + C(t, γ, q,U )K q ′ ln K 6 D.

We now discuss an application of Theorem 2.1 to quasigreedy bases. We begin
with a brief introduction to the theory of quasigreedy bases. Let X be an infinite-
dimensional separable Banach space with a norm ‖ · ‖ := ‖ · ‖X and let Ψ :=
{ψm}

∞

m=1 be a normalized basis for X . The concept of a quasigreedy basis was
introduced in [8].

DEFINITION 4.1. The basis Ψ is called quasigreedy if there exists some constant
C such that

sup
m
‖Gm( f, Ψ )‖ 6 C‖ f ‖.

Subsequently, Wojtaszczyk [23] proved that these are precisely the bases for
which the TGA merely converges, that is,

lim
n→∞

Gn( f ) = f.

The following lemma is from [3] (see also [5]).

LEMMA 4.1. Let Ψ be a quasigreedy basis of X. Then for any finite set of indices
Λ we have for all f ∈ X,

‖SΛ( f, Ψ )‖ 6 C ln(|Λ| + 1)‖ f ‖.
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We now formulate a result concerning quasigreedy bases in L p spaces. The
following theorem is from [19]. We note that for the case p = 2, Theorem 4.1
was proved in [23]. Some notation first. For a given element f ∈ X we consider
the expansion

f =
∞∑

k=1

ck( f )ψk

and the decreasing rearrangement of its coefficients

|ck1( f )| > |ck2( f )| > · · · .

Define
an( f ) := |ckn ( f )|.

THEOREM 4.1. Let Ψ = {ψm}
∞

m=1 be a quasigreedy basis of the L p space, 1 <
p <∞. Then for each f ∈ X we have

C1(p) sup
n

n1/pan( f ) 6 ‖ f ‖p 6 C2(p)
∞∑

n=1

n−1/2an( f ), 2 6 p <∞;

C3(p) sup
n

n1/2an( f ) 6 ‖ f ‖p 6 C4(p)
∞∑

n=1

n1/p−1an( f ), 1 < p 6 2.

EXAMPLE 6. Let Ψ be a normalized quasigreedy basis for L p, 2 6 p < ∞.
Theorem 4.1 implies for any f =

∑
i ci( f )ψi ,∑

i∈A

|ci( f )| 6
|A|∑

n=1

an( f ) 6 C1(p)−1
|A|∑

n=1

n−1/p
‖ f ‖p 6 C(p)|A|1−1/p

‖ f ‖p.

This means that Ψ satisfies A3 with D = ∞, V = C(p), r = 1 − 1/p.
Theorem 2.7 gives

‖ fC(t,p)m2(1−1/p) ln(m+1)‖ 6 Cσm( f0, Ψ ). (4.10)

EXAMPLE 6q. Let Ψ be a normalized quasigreedy basis for L p, 1 < p 6 2.
Theorem 4.1 implies for any f =

∑
i ci( f )ψi ,∑

i∈A

|ci( f )| 6
|A|∑

n=1

an( f ) 6 C3(p)−1
|A|∑

n=1

n−1/2
‖ f ‖p 6 C(p)|A|1/2‖ f ‖p.

This means that Ψ satisfies A3 with D = ∞, V = C(p), r = 1/2. Theorem 2.7
gives

‖ fC(t,p)m p′/2 ln(m+1)‖ 6 Cσm( f0, Ψ ). (4.11)

https://doi.org/10.1017/fms.2014.7 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.7


Sparse approximation and recovery by greedy algorithms in Banach spaces 21

EXAMPLE 7. Let Ψ be a normalized uniformly bounded orthogonal quasigreedy
basis for L p, 2 6 p < ∞. For the existence of such bases see [13]. Then
orthogonality implies that we can take r = 1/2. We obtain from Lemma 4.1 that
Ψ is (K ,∞) unconditional with U 6 C ln(K + 1). Theorem 2.8 gives

‖ fC(t,p,Ψ )m ln ln(m+3)‖p 6 Cσm( f0, Ψ )p. (4.12)

EXAMPLE 7q. Let Ψ be a normalized uniformly bounded orthogonal quasi-
greedy basis for L p, 1 < p 6 2. For the existence of such bases see [13]. Then
orthogonality implies that we can take r = 1/2. We obtain from Lemma 4.1 that
Ψ is (K ,∞) unconditional with U 6 C ln(K + 1). Theorem 2.8 gives

‖ fC(t,p,Ψ )m p′/2 ln ln(m+3)‖p 6 Cσm( f0, Ψ )p. (4.13)

5. Discussion

We study sparse approximation. In a general setting we study an algorithm
(approximation method) A = {Am(·,D)}∞m=1 with respect to a given dictionary
D. The sequence of mappings Am(·,D) defined on X satisfies the following
condition: for any f ∈ X , Am( f,D) ∈ Σm(D). In other words, Am provides an
m-term approximant with respect to D. It is clear that for any f ∈ X and any m
we have

‖ f − Am( f,D)‖ > σm( f,D).

We are interested in such pairs (D,A) for which the algorithm A provides
approximation close to the best m-term approximation. We introduce the
corresponding definitions.

DEFINITION 5.1. We say that D is a greedy dictionary with respect to A if there
exists a constant C0 such that for any f ∈ X we have

‖ f − Am( f,D)‖ 6 C0σm( f,D). (5.1)

If D is a greedy dictionary with respect to A then A provides ideal (up to a
constant C0) m-term approximations for every f ∈ X .

DEFINITION 5.2. We say that D is an almost greedy dictionary with respect to A
if there exist two constants C1 and C2 such that for any f ∈ X we have

‖ f − AC1m( f,D)‖ 6 C2σm( f,D). (5.2)
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If D is an almost greedy dictionary with respect to A then A provides almost
ideal sparse approximation. It provides a C1m-term approximant as good (up to
a constant C2) as the ideal m-term approximant for every f ∈ X . We also need a
more general definition. Let φ(u) be a function such that φ(u) > 1.

DEFINITION 5.3. We say that D is a φ-greedy dictionary with respect to A if
there exists a constant C3 such that for any f ∈ X we have

‖ f − Aφ(m)m( f,D)‖ 6 C3σm( f,D). (5.3)

If D = Ψ is a basis then in the above definitions we replace dictionary by
basis. For the case where A = {Gm(·, Ψ )}

∞

m=1 is the TGA, the theory of greedy
and almost greedy bases is well developed (see [18]). We present two results
on the characterization of these bases. A basis Ψ in a Banach space X is called
democratic if there is a constant C(Ψ ) such that∥∥∥∥∑

k∈A

ψk

∥∥∥∥ 6 C(Ψ )
∥∥∥∥∑

k∈B

ψk

∥∥∥∥ (5.4)

if |A| = |B|. This concept was introduced in [8]. In [4] we defined a democratic
basis as the one satisfying (5.4) if |A|6 |B|. It is known that for quasigreedy bases
the above two definitions are equivalent. It was proved in [8] (see Theorem 1.15,
p. 18, [18]) that a basis is greedy with respect to the TGA if and only if it is
unconditional and democratic. It was proved in [4] (see Theorem 1.37, p. 38, [18])
that a basis is almost greedy with respect to the TGA if and only if it is
quasigreedy and democratic.

Example 4q is the first result concerning almost greedy bases with respect to
the WCGA in Banach spaces. It shows that the univariate Haar basis is an almost
greedy basis with respect to the WCGA in the L p spaces for 1< p 6 2. Example 1
shows that uniformly bounded orthogonal bases are φ-greedy bases with respect
to the WCGA with φ(u) = C(t, p, D) ln(u + 1) in the L p spaces for 2 6 p <
∞. We do not know whether these bases are almost greedy with respect to the
WCGA. They are good candidates for that.

It is known (see [18], p. 17) that the univariate Haar basis is a greedy basis
with respect to the TGA for all L p, 1 < p < ∞. Example 4 only shows that
it is a φ-greedy basis with respect to the WCGA with φ(u) = C(t, p)u1−2/p

in the L p spaces for 2 6 p < ∞. It is much weaker than the corresponding
results for the Hp, 1 < p 6 2, and for the trigonometric system, 2 6 p < ∞
(see Example 2). We do not know whether this result on the Haar basis can be
substantially improved. At the level of our today’s technique we can observe that
the Haar basis is ideal (a greedy basis) for the TGA in L p, 1 < p < ∞, almost
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ideal (an almost greedy basis) for the WCGA in L p, 1 < p 6 2, and that the
trigonometric system is very good for the WCGA in L p, 2 6 p <∞.

Example 2q shows that our results for the trigonometric system in L p, 1 < p <
2, are not as strong as for 2 6 p <∞. We do not know whether this is because of
the lack of an appropriate technique or whether it reflects the nature of the WCGA
with respect to the trigonometric system.

We note that the properties of a given basis with respect to the TGA and WCGA
could be very different. For instance, the class of quasigreedy bases (with respect
to the TGA) is a rather narrow subset of all bases. It is close in a certain sense
to the set of unconditional bases. The situation is completely different for the
WCGA. If X is uniformly smooth, then the WCGA converges for each f ∈ X
with respect to any dictionary in X . Moreover, Example 5q shows that if X is a
Banach space with ρ(u) 6 γ uq , then any basis Ψ is φ-greedy with respect to the
WCGA with φ(u) = C(t, X, Ψ )uq ′−1 ln(u + 1).

It is interesting to compare Theorem 2.3 with the following known result. The
following theorem provides a rate of convergence (see [18], p. 347). As above,
we denote by A1(D) the closure in X of the convex hull of the symmetrized
dictionary D± := {±g : g ∈ D}.

THEOREM 5.1. Let X be a uniformly smooth Banach space with modulus of
smoothness ρ(u) 6 γ uq , 1 < q 6 2. Take a number ε > 0 and two elements
f0, f ε from X such that

‖ f0 − f ε‖ 6 ε, f ε/A(ε) ∈ A1(D),

with some number A(ε) > 0. Then, for the WCGA we have

‖ f c,τ
m ‖ 6 max

(
2ε,C(q, γ )(A(ε)+ ε)

(
1+

m∑
k=1

tq ′

k

)−1/q ′)
.

Both Theorem 5.1 and Theorem 2.3 provide stability of the WCGA with respect
to noise. In order to apply them for noisy data we interpret f0 as a noisy version
of a signal and f ε as a noiseless version of a signal. Then, the assumption
f ε/A(ε) ∈ A1(D) describes our smoothness assumption on the noiseless signal
and the assumption f ε ∈ ΣK (D) describes our structural assumption on the
noiseless signal. In fact, Theorem 5.1 simultaneously takes care of two issues:
noisy data and approximation in an interpolation space. Theorem 5.1 can be
applied for the approximation of f0 under the assumption that f0 belongs to one of
the interpolation spaces between X and the space generated by the A1(D)-norm
(atomic norm).
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We now give some historical remarks on the Lebesgue-type inequalities for
redundant dictionaries. By a Lebesgue-type inequality we mean an inequality that
provides an upper bound for the error of a particular method of approximation of
f by elements of a special form, say, form A, as the best-possible approximation
of f by elements of the form A. In our paper the method of approximation is
the WCGA which provides an m-term approximant after the mth iteration. Thus,
form A is a linear combination of at most m dictionary elements. Therefore,
we compare the error of the WCGA after m iterations with the best m-term
approximation. First Lebesgue-type inequalities for redundant dictionaries were
proved for the orthogonal matching pursuit (OMP), which is the WCGA in a
Hilbert space with the weakness parameter t = 1, under the assumption of
incoherence on the dictionary.

Define
M(D) := sup

g 6=h;g,h∈D
|〈g, h〉|,

the coherence parameter of a dictionary D. The first general Lebesgue-type
inequality for the OMP for the M-coherent dictionary was obtained in [6]. The
authors proved that for the residual f o

m of the OMP after m iterations one has

‖ f o
m‖ 6 8m1/2σm( f ) for m < 1/(32M).

The constants in this inequality were improved in [21]:

‖ f o
m‖ 6 (1+ 6m)1/2σm( f ) for m < 1/(3M).

Further results were obtained in [2]: assume that m 6 0.05M−2/3; then we have

‖ f o
[m log m]‖ 6 24σm( f ).

The following inequality was obtained in [20]. For any δ ∈ (0, 1/4], set L(δ) :=
[1/δ] + 1. Assume that m is such that 20Mm1+δ2L(δ) 6 1. Then we have

‖ f o
m(2L(δ)+1−1)‖ 6

√
3σm( f ).

Recently, the above Lebesgue-type inequality was improved in [9]:

‖ f o
2m‖ 6 3σm( f )

for m 6 (20M)−1.
The assumption of incoherence on a dictionary is stronger than the restricted

isometry property (RIP) assumption. The corresponding Lebesgue-type
inequalities for the OMP under the RIP assumption were not known for a
while. As a result, new greedy-type algorithms were introduced, with the proof
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of exact recovery of sparse signals and the Lebesgue-type inequalities for
these algorithms: the regularized orthogonal matching pursuit (see [12]), the
compressive sampling matching pursuit (CoSaMP; see [11]), and the subspace
pursuit (SP; see [1]). The OMP is simpler than the CoSaMP and the SP;
however, at the time of invention of the CoSaMP and the SP these algorithms
provided exact recovery of sparse signals and the Lebesgue-type inequalities for
dictionaries satisfying the restricted isometry property (RIP) (see [11] and [1]).
The corresponding results for the OMP were not known at that time. Later, a
breakthrough result in this direction was obtained by Zhang [24]. In particular,
he proved that if D ∈ R(31K , δ), δ < 1/3, then the OMP recovers exactly all
K -sparse signals within 30K iterations. In other words, f o

30K = 0. It would be
interesting and difficult to improve the constant 30 to the optimal one. There are
several papers devoted to this problem (see [7], [22], and [10]). In this paper we
developed Zhang’s technique to obtain recovery results and the Lebesgue-type
inequalities in the Banach space setting.

Concluding, we briefly describe the contribution of this paper. First, we present
a study of the Lebesque-type inequalities with respect to the WCGA in Banach
spaces with ρ(u) 6 γ uq , 1 < q 6 2, under conditions A1 and A2. For the case
q = 2 this has been done in [10]. The case 1 < q < 2 uses the same ideas as [10].
Second, we introduce a new condition A3 and study the WCGA with respect to
dictionaries satisfying either A3 or A2 and A3. Condition A3 and a combination
of A2 and A3 turn out to be more powerful in applications than A1 combined with
A2. Third, we apply the general theory developed in Sections 2 and 3 for bases.
Surprisingly, this technique works very well for very different bases. It provides
first results on the Lebesque-type inequalities for the WCGA with respect to bases
in Banach spaces. Some of these results (for the Hp, 1 < p 6 2, and for the
RTp, 2 6 p < ∞) are strong. This demonstrates that the technique used is an
appropriate and powerful method.
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