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Abstract
Alternating direction method of multipliers (ADMM) receives much attention in the field of optimiza-
tion and computer science, etc. The generalized ADMM (G-ADMM) proposed by Eckstein and Bertsekas
incorporates an acceleration factor and is more efficient than the original ADMM. However, G-ADMM
is not applicable in some models where the objective function value (or its gradient) is computationally
costly or even impossible to compute. In this paper, we consider the two-block separable convex opti-
mization problem with linear constraints, where only noisy estimations of the gradient of the objective
function are accessible. Under this setting, we propose a stochastic linearized generalized ADMM (called
SLG-ADMM) where two subproblems are approximated by some linearization strategies. And in theory,
we analyze the expected convergence rates and large deviation properties of SLG-ADMM. In particular,
we show that the worst-case expected convergence rates of SLG-ADMM are O

(
N−1/2

)
and O (lnN ·N−1)

for solving general convex and strongly convex problems, respectively, where N is the iteration number,
similarly hereinafter, and with high probability, SLG-ADMM has O

(
lnN ·N−1/2

)
and O

(
(lnN)

2 ·N−1
)

constraint violation bounds and objective error bounds for general convex and strongly convex problems,
respectively.

Keywords: Alternating direction method of multipliers; stochastic approximation; expected convergence rate; high probabil-
ity bound; convex optimization; machine learning

1. Introduction
We consider the following two-block separable convex optimization problem with linear equality
constraints:

min
{
θ1 (x) + θ2

(
y
) ∣∣Ax+ By= b, x ∈ X , y ∈ Y

}
, (1)

where A ∈R
n×n1 , B ∈R

n×n2 , b ∈R
n,X ⊆R

n1 , and Y ⊆R
n2 are closed convex sets, and θ2 :

R
n2 →R∪ {+∞} is a convex function (not necessarily smooth). θ1 :Rn1 →R is a convex func-

tion and is smooth on an open set containing X , but has its specific structure; in particular, we
assume that there is a stochastic first-order oracle (SFO) for θ1, which returns a stochastic gradient
G (x, ξ) at x, where ξ is a random variable whose distribution is supported on � ⊆R

d, satisfying
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(a) E [G (x, ξ)]= ∇θ1 (x) , and
(b) E

[‖G (x, ξ) − ∇θ1 (x)‖2]≤ σ 2,

where σ > 0 is some constant. In addition, we make the following assumptions throughout
the paper: (i) The solution set of (1) is assumed to be nonempty, (ii) the gradient of θ1 is L-
Lipschitz continuous for some L> 0, i.e.,

∥∥∇θ1 (x) − ∇θ2
(
y
)∥∥ ≤ L

∥∥x− y
∥∥ for any x, y ∈ X , (iii)

y-subproblem has a minimizer at each iteration. As a linearly constrained convex optimization
problem, though the model (1) is special, it is rich enough to characterize many optimization
problems arising from various application fields, such as machine learning, image processing, and
signal processing. In these fields, a typical scenario is that one of the functions represents a data
fidelity term and the other function is a regularization term.

Without considering the specific structure of θ1, i.e., the function value and gradient informa-
tion is readily available, a classical method for solving problem (1) is the alternating direction
method of multipliers (ADMM). ADMM was originally proposed by Glowinski and Marroco
(1975), and Gabay and Mercier (1976), which is a Gauss-Seidel implementation of augmented
Lagrangian method (Glowinski, 2014) or an application of Douglas-Rachford splitting method
on the dual problem of (1) (Eckstein and Bertsekas, 1992). For both convex and non-convex
problems, there are extensive studies on the theoretical properties of ADMM. In particular, for
convex optimization problems, theoretical results on convergence behavior are abundant, whether
global convergence, sublinear convergence rate, or linear convergence rate, see, e.g., Eckstein and
Bertsekas (1992); He and Yuan (2012); Monteiro and Svaiter (2013); He and Yuan (2015); Deng
and Yin (2016); Yang and Han (2016); Han et al. (2016). Recently, ADMM has been studied on
non-convex models satisfying the KL inequality or other similar properties, see, e.g., Li and Pong
(2015); Wang et al. (2019); Jiang et al. (2019); Zhang and Luo (2020). For a thorough understand-
ing on some recent developments of ADMM, one can refer to a survey (Han, 2022). However,
when the objective function value (or its gradient) in (1) is computationally costly or even impos-
sible to compute, we can only access some noisy information and deterministic ADMM does not
work. Such a setting is exactly what the stochastic programming (SP) model considers. In SP, the
objective function is often in the form of expectation. In this case, getting the full function value or
gradient information is impractical. To tackle this problem, Robbins and Monro originally intro-
duced the stochastic approximation (SA) approach in 1951 (Robbins and Monro, 1951). Since
then, SA has gone through many developments; for more detail, readers are referred to a series
of works by Nemirovski, Ghadimi, and Lan, etc, see, e.g., Nemirovski et al. (2009); Ghadimi and
Lan (2012); Lan (2012); Ghadimi and Lan (2013); Ghadimi et al. (2016). As for solving problem
(1), motivated by the SA, some stochastic ADMM type algorithms have been proposed recently,
see, e.g., Ouyang et al. (2013); Suzuki (2013, 2014); Zhao et al. (2015); Gao et al. (2018). Note that
in these works, only the basic iterative scheme of ADMM was considered. It is well-known that
incorporating an acceleration factor into the subproblem and the update on the dual variables
often improves the algorithmic performance, which is the idea of generalized ADMM (Eckstein
and Bertsekas, 1992; Fang et al., 2015). In this paper, we study generalized ADMM in the stochas-
tic setting. In particular, we propose a stochastic linearized generalized ADMM (SLG-ADMM)
for solving two-block separable stochastic optimization problem (1) and analyze corresponding
worst-case convergence rate by means of the framework of variational inequality. Moreover, we
establish the large deviation properties of SLG-ADMM under certain light-tail assumptions.

The rest of this paper is organized as follows. We present the iterative scheme of SLG-ADMM
and summarize some preliminaries which will be used in the theoretical analysis in Section 2.
In Section 3, we analyze the worst-case convergence rate and the high probability guarantees for
objective error and constraint violation for the SLG-ADMM. Finally, we make some conclusions
in Section 4.

Notation 1. For two matrices A and B, the ordering relation A� B (A� B) means A− B is pos-
itive definite (semidefinite). Im denotes the m×m identity matrix. For a vector x, ‖x‖ denotes its
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Euclidean norm; for a matrix X, ‖X‖ denotes its spectral norm. For any symmetric matrix G, define
‖x‖2G := xTGx and ‖x‖G := √

xTGx if G� 0. E [·] denotes the mathematical expectation of a ran-
dom variable. Pr {·} denotes the probability value of an event. ∂ and∇ denote the subdifferential and
gradient operator of a function, respectively. We also sometimes use

(
x, y

)
and

(
x, y, λ

)
to denote the

vectors
(
xT , yT

)T and
(
xT , yT , λT

)T, respectively.

2. Stochastic Linearized Generalized ADMM
In this section, we first present the iterative scheme of SLG-ADMM for solving (1), and then, we
introduce some preliminaries that will be frequently used in the later analysis.

Algorithm 1: Stochastic Linearized Generalized ADMM (SLG-ADMM)
Initialize x0 ∈ X , y0 ∈ Y , λ0, α ∈ (0, 2), and two sequences of symmetric
and positive definite matrices:

{
G1,k

}
and

{
G2,k

}
.

for k= 0, 1, . . .

Call the SFO to obtain G
(
xk, ξ

)
.

xk+1 = arg min
x∈X

{
G
(
xk, ξ

)T (
x− xk

)
− xTATλk + β

2

∥∥∥Ax+ Byk − b
∥∥∥2

+1
2

∥∥∥x− xk
∥∥∥2
G1,k

}

yk+1 = arg min
y∈Y

{
θ2

(
y
)− yTBTλk + β

2

∥∥∥αAxk+1 + (1− α)
(
b− Byk

)

+By− b
∥∥2 + 1

2

∥∥∥y− yk
∥∥∥2
G2,k

}

λk+1 = λk − β
(
αAxk+1 + (1− α)

(
b− Byk

)
+ Byk+1 − b

)
end

We give some remarks on this algorithm. Algorithm 1 is an ADMM type algorithm, which
alternates through one x-subproblem, one y-subproblem, and an update on the dual variables
(multipliers). The algorithm is stochastic since at each iteration SFO is called to obtain a stochas-
tic gradient G

(
xk, ξ

)
which is an unbiased estimation of ∇θ1

(
xk
)
and is bounded relative to

∇θ1
(
xk
)
in expectation. The algorithm is linearized because of the following two aspects: (i) The

termG
(
xk, ξ

)T (
x− xk

)
in the x-subproblem of SLG-ADMM is a stochastic version of lineariza-

tion of θ1
(
xk
)
. (ii) x-subproblem and y-subproblem are added proximal terms 1

2

∥∥∥x− xk
∥∥∥2
G1,k

and

1
2

∥∥∥y− yk
∥∥∥2
G2,k,

respectively, where
{
G1,k

}
and

{
G2,k

}
are two sequences of symmetric and positive

definite matrices that can be changed with iteration; with the choice of G2,k ≡ τ In2 − βBTB, τ >

β
∥∥BTB∥∥, the quadratic term in the y-subproblem is linearized. The same fact applies to the x-

subproblem. Furthermore, SLG-ADMM incorporates an acceleration factor α; generally, the case
with α ∈ (1, 2) could lead to better numerical results than the special case with α = 1.When α = 1,
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G1,k ≡ In1 , and the term 1
2

∥∥∥y− yk
∥∥∥2
G2,k

vanishes, SLG-ADMM reduces to the algorithm appeared

in earlier literatures (Ouyang et al., 2013; Gao et al., 2018).
Let the Lagrangian function of the problem (1) be

L
(
x, y, λ

)= θ1 (x) + θ2
(
y
)− λT

(
Ax+ By− b

)
,

defined on X × Y ×R
n. We call

(
x∗, y∗, λ∗) a saddle point of L (

x, y, λ
) ∈ X × Y ×R

n if the
following inequalities are satisfied:

Lλ∈Rn
(
x∗, y∗, λ

)≤ L
(
x∗, y∗, λ∗)≤ Lx∈X ,y∈Y

(
x, y, λ∗) .

Obviously, a saddle point
(
x∗, y∗, λ∗) can be characterized by the following inequalities⎧⎪⎪⎨

⎪⎪⎩
x∗ ∈ X , L

(
x, y∗, λ∗)− L

(
x∗, y∗, λ∗)≥ 0 ∀x ∈ X ,

y∗ ∈ Y , L
(
x∗, y, λ∗)− L

(
x∗, y∗, λ∗)≥ 0 ∀y ∈ Y ,

λ∗ ∈R
n, L

(
x∗, y∗, λ∗)− L

(
x∗, y∗, λ

)≥ 0 ∀λ ∈R
n.

.

Below we invoke a proposition which characterize the optimality condition of an optimization
model by a variational inequality. The proof can be found in He (2017).

Proposition 2. Let X ⊂R
n be a closed convex set and let θ (x) :Rn →R and f (x) :Rn →R

be convex functions. In addition, f (x) is differentiable. Assuming that the solution set of the
minimization problemmin

{
θ (x) + f (x) |x ∈ X

}
is nonempty, then we have the assertion that

x∗ = arg min
{
θ (x) + f (x) |x ∈ X

}
,

if and only if

x∗ ∈ X , θ (x) − θ
(
x∗)+ (

x− x∗)T∇f
(
x∗)≥ 0 ∀x ∈ X .

Hence with this proposition, solving (1) is equivalent to solving the following variational
inequality problem under the assumption that the solution set of problem (1) is nonempty:
Finding w∗ = (

x∗, y∗, λ∗) ∈ � := X × Y ×R
n such that

θ (u) − θ
(
u∗)+ (

w−w∗)TF (
w∗)≥ 0, ∀w ∈ �,

where

u=
(
x
y

)
,w=

⎛
⎜⎜⎝
x
y
λ

⎞
⎟⎟⎠ , F (w) =

⎛
⎜⎜⎝

−ATλ

−BTλ

Ax+ By− b

⎞
⎟⎟⎠ , and θ (u) = θ1 (x) + θ2

(
y
)
.

The variables with superscript or subscript such as uk,wk, ūk, w̄k are denoted similarly. In addi-
tion, we define two auxiliary sequences for the convergence analysis. More specifically, for the
sequence

{
wk

}
generated by the SLG-ADMM, let

w̃k =

⎛
⎜⎜⎝
x̃k

ỹk

λ̃k

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

xk+1

yk+1

λk − β
(
Axk+1 + Byk − b

)
⎞
⎟⎟⎠ and ũk =

(
x̃k

ỹk

)
. (2)

Based on the above notations and the update scheme of λk in SLG-ADMM, we have

λk+1 − λ̃k = (1− α)
(
λk − λ̃k

)
+ βB

(
yk − ỹk

)
, (3)
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and

λk − λk+1 = α
(
λk − λ̃k

)
+ βB

(
ỹk − yk

)
. (4)

Then, we get

wk −wk+1 =M
(
wk − w̃k

)
, (5)

whereM is defined as ⎛
⎜⎜⎝
In1 0 0
0 In2 0
0 −βB αIn

⎞
⎟⎟⎠ . (6)

For notational simplicity, we define two sequences of matrices that will be used later: for k=
0, 1, . . .

Hk =

⎛
⎜⎜⎝
G1,k 0 0
0 β

α
BTB+G2,k

1−α
α

BT

0 1−α
α

B 1
βα

In

⎞
⎟⎟⎠ ,Qk =

⎛
⎜⎜⎝
G1,k 0 0
0 βBTB+G2,k (1− α) BT

0 −B 1
β
In

⎞
⎟⎟⎠ . (7)

Obviously, for any k, the matricesM,Hk, and Qk satisfy Qk =HkM.
Throughout the paper, we need the following assumptions:

Assumption.

(i) The primal-dual solution set �∗ of problem (1) is nonempty.
(ii) θ1 (x) is differentiable, and its gradient satisfies the L-Lipschitz condition

‖∇θ1 (x1) − ∇θ1 (x2)‖ ≤ L ‖x1 − x2‖
for all x1, x2 ∈ X .

(iii)
a) E [G (x, ξ)]= ∇θ1 (x) and b) E

[‖G (x, ξ) − ∇θ1 (x)‖2]≤ σ 2,
where σ > 0 is some constant.

Under the second assumption, it holds that for all x, y ∈ X ,

θ1 (x) ≤ θ1
(
y
)+ (

x− y
)T∇θ1

(
y
)+ L

2
∥∥x− y

∥∥2.
A direct result of combining this property with convexity is shown in the following lemma.

Lemma 3. Suppose function f is convex and differentiable, and its gradient is L-Lipschitz continu-
ous, then for any x, y, z, we have(

x− y
)T∇f (z) ≤ f (x) − f

(
y
)+ L

2
∥∥y− z

∥∥2.
In addition, if f is μ-strongly convex, then for any x, y, z we have(

x− y
)T∇f (z) ≤ f (x) − f

(
y
)+ L

2
∥∥y− z

∥∥2 − μ

2
‖x− z‖2.

Proof. Since the gradient of f is L-Lipschitz continuous, then for any y, z we have f
(
y
)≤

f (z) + (
y− z

)T∇f (z) + L
2
∥∥y− z

∥∥2. Also, due to the convexity of f , we have for any x, z, f (x) ≥
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f (z) + (x− z)T∇f (z) . Adding the above two inequalities, we get the conclusion. If f isμ-strongly
convex, then for any x, z, f (x) ≥ f (z) + (x− z)T∇f (z) + μ

2 ‖x− z‖2. Then, we combine this
inequality with f

(
y
)≤ f (z) + (

y− z
)T∇f (z) + L

2
∥∥y− z

∥∥2, and the proof is completed.

3. Theoretical Analysis of SLG-ADMM
In this section, we shall establish theoretical properties of SLG-ADMM. More specifically, in
Subsection 3.1, we analyze the expected convergence rates of SLG-ADMM. And, we analyze the
large deviation properties of SLG-ADMM in Subsection 3.2.

3.1 Expected convergence rate
First, this subsection considers that the function θ1 is convex. The next several lemmas are to
obtain an upper bound of θ

(
ũk

)
− θ (u) +

(
w̃k −w

)T
F
(
w̃k

)
. With such a bound, it is possible

to estimate the worst-case convergence rate of SLG-ADMM.

Lemma 4. Let the sequence
{
wk

}
be generated by the SLG-ADMM and the associated

{
w̃k

}
be

defined in (2). Then, we have

θ (u) − θ
(
ũk

)
+

(
w− w̃k

)T
F
(
w̃k

)
≥
(
w− w̃k

)T
Qk

(
wk − w̃k

)
−

(
x− x̃k

)T
δk

− L
2

∥∥∥xk − x̃k
∥∥∥2, ∀w ∈ �,

(8)

where Qk is defined in (7), and δk =G
(
xk, ξ

)
− ∇θ1

(
xk
)
, similarly hereinafter.

Proof. The optimality condition of the x-subproblem in SLG-ADMM is(
x− xk+1

)T (
G
(
xk, ξ

)
−ATλk + βAT

(
Axk+1 + Byk − b

)
+G1,k

(
xk+1 − xk

))
≥ 0, ∀x ∈ X .

(9)

Using x̃k and λ̃k defined in (2) and notation of δk, (9) can be rewritten as(
x− x̃k

)T (
∇θ1

(
xk
)

+ δk −AT λ̃k +G1,k
(
x̃k − xk

))
≥ 0, ∀x ∈ X . (10)

In lemma 1, letting y= x̃k, z = xk, and f = θ1, we get(
x− x̃k

)T∇θ1
(
xk
)

≤ θ1 (x) − θ1
(
x̃k
)

+ L
2

∥∥∥xk − x̃k
∥∥∥2. (11)

Combining (10) and (11), we obtain

θ1 (x) − θ1
(
x̃k
)

+
(
x− x̃k

)T (
−AT λ̃k

)
≥

(
x− x̃k

)T
G1,k

(
xk − x̃k

)
−

(
x− x̃k

)T
δk − L

2

∥∥∥xk − x̃k
∥∥∥2. (12)

Similarly, the optimality condition of y-subproblem is

θ2
(
y
)− θ2

(
ỹk
)

+
(
y− ỹk

)T (
−BTλk+1 +G2,k

(
ỹk − yk

))
≥ 0, ∀y ∈ Y . (13)
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Substituting (3) into (13), we obtain that

θ2
(
y
)− θ2

(
ỹk
)

+
(
y− ỹk

)T (
−BT λ̃k

)
≥ (1− α)

(
y− ỹk

)T
BT

(
λk − λ̃k

)
+

(
y− ỹk

)T (
βBTB+G2,k

) (
yk − ỹk

)
, ∀y ∈ Y .

(14)

At the same time,

λ̃k = λk − β
(
Axk+1 + Byk+1 − b

)
+ βB

(
yk+1 − yk

)
= λk − β

(
Ax̃k + Bỹk − b

)
+ βB

(
ỹk − yk

)
.

That is,(
λ − λ̃k

)T (
Ax̃k + Bỹk − b

)
= 1

β

(
λ − λ̃k

)T (
λk − λ̃k

)
+

(
λ − λ̃k

)T
B
(
ỹk − yk

)
. (15)

Combining (12), (14), and (15), we get

θ (u) − θ
(
ũk

)
+

⎛
⎜⎜⎝
x− x̃k

y− ỹk

λ − λ̃k

⎞
⎟⎟⎠

T ⎛
⎜⎜⎝

−AT λ̃k

−BT λ̃k

Ax̃k + Bỹk − b

⎞
⎟⎟⎠

≥
(
x− x̃k

)T
G1,k

(
xk − x̃k

)
−

(
x− x̃k

)T
δk − L

2

∥∥∥xk − x̃k
∥∥∥2

+ (1− α)
(
y− ỹk

)T
BT

(
λk − λ̃k

)
+

(
y− ỹk

)T (
βBTB+G2,k

) (
yk − ỹk

)
+ 1

β

(
λ − λ̃k

)T (
λk − λ̃k

)
+

(
λ − λ̃k

)T
B
(
ỹk − yk

)
, ∀w ∈ �.

(16)

Finally, by the definition of F and Qk, we come to the conclusion.

Next, we need to further explore the terms on the right-hand side of (8).

Lemma 5. Let the sequence
{
wk

}
be generated by the SLG-ADMM and the associated

{
w̃k

}
be

defined in (2). Then for any w ∈ X × Y ×R
n, we have(

w− w̃k
)T

Qk
(
wk − w̃k

)
=1
2

(∥∥∥w−wk+1
∥∥∥2
Hk

−
∥∥∥w−wk

∥∥∥2
Hk

)
+

∥∥∥xk − x̃k
∥∥∥2
G1,k

+ 1
2

∥∥∥yk − ỹk
∥∥∥2
G2,k

− α − 2
2β

∥∥∥λk − λ̃k
∥∥∥2.

(17)

Proof. Using Qk =HkM and wk −wk+1 =M
(
wk − w̃k

)
in (5), we have(

w− w̃k
)T

Qk
(
wk − w̃k

)
=
(
w− w̃k

)T
HkM

(
wk − w̃k

)
=
(
w− w̃k

)T
Hk

(
wk −wk+1

)
.

(18)

Now applying the identity: for the vectors a, b, c, d and a matrix H with appropriate dimension,(
a− b

)TH (
c− d

)= 1
2

(∥∥a− d
∥∥2
H − ‖a− c‖2H

)
+ 1

2

(∥∥c− b
∥∥2
H − ∥∥d − b

∥∥2
H

)
.

https://doi.org/10.1017/S096012952300004X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300004X


Mathematical Structures in Computer Science 169

In this identity, letting a=w, b= w̃k, c=wk, d = w̃k, and H =Qk, we have(
w− w̃k

)T
Hk

(
wk −wk+1

)
=1
2

(∥∥∥w−wk+1
∥∥∥2
Hk

−
∥∥∥w−wk

∥∥∥2
Hk

)

+ 1
2

(∥∥∥wk − w̃k
∥∥∥2
Hk

−
∥∥∥wk+1 − w̃k

∥∥∥2
Hk

)
.

Next, we simplify the term
∥∥∥wk − w̃k

∥∥∥2
Hk

−
∥∥∥wk+1 − w̃k

∥∥∥2
Hk
.

∥∥∥wk − w̃k
∥∥∥2
Hk

−
∥∥∥wk+1 − w̃k

∥∥∥2
Hk

=
∥∥∥wk − w̃k

∥∥∥2
Hk

−
∥∥∥wk+1 −wk +wk − w̃k

∥∥∥2
Hk

=
∥∥∥wk − w̃k

∥∥∥2
Hk

−
∥∥∥(In1+n2+n −M

) (
wk − w̃k

)∥∥∥2
Hk

=
(
wk − w̃k

)T (
Hk − (

In1+n2+n −M
)THk

(
In1+n2+n −M

)) (
wk − w̃k

)
=

(
wk − w̃k

)T (
HkM +MTHk −MTHkM

) (
wk − w̃k

)
=

(
wk − w̃k

)T ((
2In1+n2+n −MT

)
Qk

) (
wk − w̃k

)
,

where the second equality uses wk −wk+1 =M
(
wk − w̃k

)
in (5), and the last equality holds since

the transpose ofMTHk is HkM, and hence,(
wk − w̃k

)T
HkM

(
wk − w̃k

)
=
(
wk − w̃k

)T
MTHk

(
wk − w̃k

)
=
(
wk − w̃k

)T
Qk

(
wk − w̃k

)
.

The remaining task is to prove(
wk − w̃k

)T ((
2In1+n2+n −MT

)
Qk

) (
wk − w̃k

)
=

∥∥∥xk − x̃k
∥∥∥2
G1,k

+
∥∥∥yk − ỹk

∥∥∥2
G2,k

− α − 2
β

∥∥∥λk − λ̃k
∥∥∥2. (19)

By simple algebraic operation,

(
2In1+n2+n −MT

)
Qk =

⎛
⎜⎜⎝
G1,k 0 0
0 G2,k (2− α) BT

0 (α − 2) B 2−α
β

In

⎞
⎟⎟⎠ .

With this result, (19) holds and the proof is completed.

Now, we are ready to establish the first main theorem for SLG-ADMM. In this theorem, we
take G1,k of the form τkIn1 − βATA, τk > 0, which simplifies the system of linear equation in x-
subproblem, and G2,k ≡G2. Of course, G2 can also take the similar form as G1,k. In particular, if
G2 = ηIn2 − βBTB, η ≥ β

∥∥BTB∥∥, then y-subproblem reduces to the proximal mapping of g.
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Theorem. Let the sequence
{
wk

}
be generated by the SLG-ADMM, the associated

{
w̃k

}
be defined

in (2), and

w̄N = 1
N + 1

N∑
t=0

w̃t ,

for some pre-selected integer N. Choosing τk ≡ √
N +M, where M is a constant satisfying the

ordering relation MIn1 � LIn1 + βATA, then we have

θ (ūN) − θ (u) + (w̄N −w)TF (w)

≤ 1
2 (N + 1)

∥∥w0 −w
∥∥2
H0

+ 1
N + 1

N∑
t=0

(
x− xt

)T
δt + 1

N + 1

N∑
t=0

1
2
√
N
∥∥δt∥∥2. (20)

Proof. Combining lemma 2 and lemma 3, we get

θ
(
ũt
)− θ (u) + (

w̃t −w
)TF (

w̃t)
≤1
2

(∥∥wt −w
∥∥2
Ht

− ∥∥wt+1 −w
∥∥2
Ht

)
− 1

2
∥∥xt − x̃t

∥∥2
G1,t

− 1
2
∥∥yt − ỹt

∥∥2
G2,t

+ α − 2
2β

∥∥∥λt − λ̃t
∥∥∥2 + (

x− x̃t
)T

δt + L
2
∥∥xt − x̃t

∥∥2
=1
2

(∥∥wt −w
∥∥2
Ht

− ∥∥wt+1 −w
∥∥2
Ht

)
+ (

x− xt
)T

δt + (
xt − x̃t

)T
δt

+ 1
2
(
xt − x̃t

)T (
LIn1 −G1,t

) (
xt − x̃t

)− 1
2
∥∥yt − ỹt

∥∥2
G2,t

+ α − 2
2β

∥∥∥λt − λ̃t
∥∥∥2

≤1
2

(∥∥wt −w
∥∥2
Ht

− ∥∥wt+1 −w
∥∥2
Ht

)
+ (

x− xt
)T

δt + 1
2
√
N
∥∥δt∥∥2

+ 1
2
(
xt − x̃t

)T (
LIn1 −MIn1 + βATA

) (
xt − x̃t

)
≤1
2

(∥∥wt −w
∥∥2
Ht

− ∥∥wt+1 −w
∥∥2
Ht

)
+ (

x− xt
)T

δt + 1
2
√
N
∥∥δt∥∥2,

(21)

where the second inequality holds owing to the Young’s inequality and α ∈ (0, 2). Meanwhile,

1
N + 1

N∑
t=0

θ
(
ũt
)− θ (u) + (

w̃t −w
)TF (

w̃t)

= 1
N + 1

N∑
t=0

θ
(
ũt
)− θ (u) + (

w̃t −w
)TF (w)

≥ θ (ūN) − θ (u) + (w̄N −w)TF (w) ,

(22)

where the equality holds since for any w1 and w2,

(w1 −w2)
T (F (w1) − F (w2)) = 0,

and the inequality follows from the convexity of θ . Now summing both sides of (21) from 0 to N
and then taking the average, and using (22), the assertion of this theorem follows directly.
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Corollary 6. Let the sequence
{
wk

}
be generated by the SLG-ADMM, the associated

{
w̃k

}
be

defined in (2), and

w̄N = 1
N + 1

N∑
t=0

w̃t ,

for some pre-selected integer N. Choosing τk ≡ √
N +M, where M is a constant satisfying the

ordering relation MIn1 � LIn1 + βATA, then we have

E
[∥∥Ax̄N + BȳN − b

∥∥]≤ 1
2 (N + 1)

∥∥w0 − (
x∗, y∗, λ∗ + e

)∥∥2
H0

+ σ 2

2
√
N
, (23)

and

E
[
θ (ūN) − θ

(
u∗)]≤ ‖λ∗‖ + 1

2 (N + 1)
∥∥w0 − (

x∗, y∗, λ∗ + e
)∥∥2

H0
+ ‖λ∗‖ + 1

2
√
N

σ 2, (24)

where e is an unit vector satisfying −eT
(
Ax̄k + Bȳk − b

)= ∥∥Ax̄k + Bȳk − b
∥∥.

Proof. In (20), let w= (
x∗, y∗, λ

)
, where λ = λ∗ + e. Obviously, ‖e‖ = 1. Then, the left-hand side

of (20) is

θ (ūN) − θ
(
u∗)− (

λ∗)T (
Ax̄N + BȳN − b

)+ ∥∥Ax̄N + BȳN − b
∥∥ . (25)

Such a result is attributed to
(w̄N −w)TF (w)

=(
x̄N − x∗)T (

−ATλ
)

+ (
ȳN − y∗)T (

−BTλ
)

+ (
λ̄N − λ

)T (
Ax∗ + By∗ − b

)
=λT

(
Ax∗ + By∗ − b

)−
(
λT

(
Ax̄N + BȳN − b

))
= − (

λ∗)T (
Ax̄N + BȳN − b

)+ ∥∥Ax̄N + BȳN − b
∥∥ ,

where the first equality follows from the definition of F, and the second and last equalities hold
due to Ax∗ + By∗ − b= 0 and the choice of λ. On the other hand, substituting w= w̄N into the
variational inequality associated with (1), we get

θ (ūN) − θ
(
u∗)− (

λ∗)T (
Ax̄N + BȳN − b

)≥ 0. (26)
Combining (25) and (26), we obtain that the left-hand side of (20) is no less than∥∥Ax̄N + BȳN − b

∥∥ when letting w= (
x∗, y∗, λ∗ + e

)
. Hence,

E
[∥∥Ax̄N + BȳN − b

∥∥]≤ 1
2 (N + 1)

∥∥w0 − (
x∗, y∗, λ∗ + e

)∥∥2
H0

+ σ 2

2
√
N
, (27)

where in the first inequality we use E
[
δk
]
= 0 and E

[∥∥∥δk∥∥∥2]≤ σ 2. The first part of this corollary

is proved. Next, we prove the second part. Substituting w= w̄N into the variational inequality
associated with (1), we get

θ (ūN) − θ
(
u∗)+ (

w̄N −w∗)TF (
w∗)

=θ (ūN) − θ
(
u∗)− (

λ∗)T (
Ax̄N + BȳN − b

)
≥θ (ūN) − θ

(
u∗)− ∥∥λ∗∥∥ ∥∥Ax̄N + BȳN − b

∥∥ ,
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i.e.,

θ (ūN) − θ
(
u∗)≤ θ (ūN) − θ

(
u∗)+ (

w̄N −w∗)TF (
w∗)+ ∥∥λ∗∥∥ ∥∥Ax̄N + BȳN − b

∥∥ . (28)

Take expectation on both sides of (28), and hence, (24) is proved.

Remark 7. (i) In the above theorem or corollary,N needs to be selected in advance, and hence, τks
are constant. In fact, τk can also vary with the number of iterations. In the case of τk = √

k+M,

if the distance between wk and w∗ is bounded, i.e.,
∥∥∥wk −w∗

∥∥∥2 ≤ R2 for any k, we can also obtain
a worst-case convergence rate. The main difference with that proof idea in the above theorem or
corollary is bounding the term

∑k
t=0

(∥∥xt − x∗∥∥2
G1,t

− ∥∥xt+1 − x∗∥∥2
G1,t

)
, which is now bounded as

follows.
k∑

t=0

(∥∥xt − x∗∥∥2
G1,t

− ∥∥xt+1 − x∗∥∥2
G1,t

)

=M
∥∥x0 − x∗∥∥2 +

k−1∑
i=0

(τi+1 − τi)
∥∥xi+1 − x∗∥∥2 −

∥∥∥xk+1 − x∗
∥∥∥2
G1,k

≤
⎛
⎝M +

k−1∑
i=0

(τi+1 − τi)

⎞
⎠ R2

=
(
M + √

k
)
R2.

(ii) The above corollary reveals that the worst-case expected convergence rate of SLG-ADMM
for solving general convex problems is O

(
1√
N

)
, where N is the iteration number.

At end of this subsection, we assume that θ1 is μ-strongly convex, i.e., θ1 (x) ≥ θ1
(
y
)+〈∇θ1

(
y
)
, x− y

〉+ μ
2
∥∥x− y

∥∥2,μ > 0 for all x, y ∈ X . With the strong convexity, we can obtain
not only the objective function value gap and constraint violation converge to zero in expectation
but also the convergence of ergodic iterates of SLG-ADMM.

Theorem. Let the sequence
{
wk

}
be generated by the SSL-ADMM and the associated

{
w̃k

}
be

defined in (2), and

w̄k = 1
k

k∑
t=1

w̃t .

Choosing τk = μ
(
k+ 1

)+M, where M is a constant satisfying the ordering relation MIn1 � LIn1 +
βATA, then SLG-ADMM has the following properties

E
[∥∥Ax̄k + Bȳk − b

∥∥]
≤ 1
2
(
k+ 1

) ∥∥(y0, λ0)− (
y∗, λ∗ + e

)∥∥2
H1;2×2

+ 1
2
(
k+ 1

) ∥∥x0 − x∗∥∥2
MIn1−βATA

+ σ 2

2μ
(
k+ 1

) (
1+ ln

(
k+ 1

))
,

(29)
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and

E
[
θ (ūk) − θ

(
u∗)]

≤‖λ∗‖ + 1
2
(
k+ 1

) ∥∥(y0, λ0)− (
y∗, λ∗ + e

)∥∥2
H1;2×2

+ ‖λ∗‖ + 1
2
(
k+ 1

) ∥∥x0 − x∗∥∥2
MIn1−βATA

+ σ 2 (‖λ∗‖ + 1)
2μ

(
k+ 1

) (
1+ ln

(
k+ 1

))
,

(30)

where e is an unit vector satisfying −eT
(
Ax̄k + Bȳk − b

)= ∥∥Ax̄k + Bȳk − b
∥∥, and

H1;2×2 =
(

β
α
βBTB+G2

1−α
α

BT
1−α
α

B 1
βα

In

)
.

Proof. First, similar to the proof of lemma 2, using the μ-strong convexity of f , we conclude that
for any w ∈ �

θ (u) − θ
(
ũk

)
+

(
w− w̃k

)T
F
(
w̃k

)
≥
(
w− w̃k

)T
Qk

(
wk − w̃k

)
−

(
x− x̃k

)T
δk − L

2

∥∥∥xk − x̃k
∥∥∥2 + μ

2

∥∥∥x− xk
∥∥∥2, (31)

where Qk is defined in (7). Then using the result in lemma 3,

(
w− w̃k

)T
Qk

(
wk − w̃k

)
=1
2

(∥∥∥w−wk+1
∥∥∥2
Hk

−
∥∥∥w−wk

∥∥∥2
Hk

)
+ 1

2

∥∥∥xk − x̃k
∥∥∥2
G1,k

+ 1
2

∥∥∥yk − ỹk
∥∥∥2
G2

− α − 2
2β

∥∥∥λk − λ̃k
∥∥∥2.

(32)

Combining (31) and (32), we get

θ
(
ũt
)− θ (u) + (

w̃t −w
)TF (

w̃t)
≤1
2

(∥∥wt −w
∥∥2
Ht

− ∥∥wt+1 −w
∥∥2
Ht

− μ
∥∥xt − x

∥∥2)+ (
x− xt

)T
δt + 1

2μ (t + 1)
∥∥δt∥∥2. (33)

Now using (22) and (33), we have

θ (ūk) − θ (u) + (w̄k −w)TF (w)

≤ 1
k+ 1

k∑
t=0

θ
(
ũt
)− θ (u) + (

w̃t −w
)TF (

w̃t)

≤ 1
2
(
k+ 1

) k∑
t=0

(∥∥xt − x
∥∥2
MIn1−βATA − ∥∥xt+1 − x

∥∥2
MIn1−βATA

)

+ 1
2
(
k+ 1

) k∑
t=0

∥∥(yt , λt)− (
y, λ

)∥∥2
H1;2×2

− ∥∥(yt+1, λt+1)− (
y, λ

)∥∥2
H1;2×2
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+ 1
k+ 1

k∑
t=0

(
x− xt

)T
δt + 1

2μ
(
k+ 1

) k∑
t=0

1
t + 1

∥∥δt∥∥2

≤ 1
2
(
k+ 1

) ∥∥(y0, λ0)− (
y, λ

)∥∥2
H1;2×2

+ 1
k+ 1

k∑
t=0

(
x− xt

)T
δt + 1

2μ
(
k+ 1

) k∑
t=0

1
t + 1

∥∥δt∥∥2
+ 1

2
(
k+ 1

) ∥∥x0 − x
∥∥2
MIn1−βATA . (34)

Finally, taking expectation on both sides of (32) and following the proof for getting (27) and (28),
we obtain
E
[∥∥Ax̄k + Bȳk − b

∥∥]
≤ 1

2
(
k+ 1

) (∥∥x0 − x∗∥∥2
MIn1−βATA +∥∥(y0, λ0)− (

y∗, λ∗ + e
)∥∥2

H1;2×2

)
+ σ 2

2μ
(
k+1

) (
1+ ln

(
k+1

))
and

θ (ūk) − θ
(
u∗)≤ θ (ūk) − θ

(
u∗)+ (

w̄k −w∗)TF (
w∗)+ ∥∥λ∗∥∥ ∥∥Ax̄k + ȳk − b

∥∥ .
Therefore, (29) and (30) are proved.

This theorem implies that under the assumption that θ1 is strongly convex, the worst-case
expected convergence rate for the SLG-ADMM can be improved to O

(
ln k/k

)
with the choice

of diminishing size. The following theorem shows the convergence of ergodic iterates of SLG-
ADMM, which is not covered in some earlier literatures (Ouyang et al., 2013; Gao et al., 2018).
Furthermore, if θ2 is also strongly convex, the assumption that B is full column rank can be
removed.

Theorem. Let the sequence
{
wk

}
be generated by the SLG-ADMM, the associated

{
w̃k

}
be defined

in (2), and

w̄k = 1
k

k∑
t=1

w̃t .

Choosing τk = μ
(
k+ 1

)+M, where M is a constant satisfying the ordering relation MIn1 � LIn1 +
βATA, and assuming B is full column rank and λmin denotes the minimum eigenvalue of BTB, then
we have

E
[∥∥x̄k − x∗∥∥+ ∥∥ȳk − y∗∥∥]

≤
(
1+ ‖A‖√

λmin

)√[
2
μ

(
E [θ (ūk) − θ (u∗)]+ ‖λ∗‖E [∥∥Ax̄k + Bȳk − b

∥∥])]

+ 1√
λmin

E
∥∥Ax̄k + Bȳk − b

∥∥,
(35)

where the bounds for E
[∥∥Ax̄k + Bȳk − b

∥∥] and E [θ (ūk) − θ (u∗)] are the same as in (29) and
(30), respectively.

Proof. Since
(
x∗, y∗, λ∗) is a solution of (1), we have ATλ∗ = ∇θ1 (x∗) and BTλ∗ ∈ ∂θ2

(
y∗) .

Hence, since θ1 is strongly convex and θ2 is convex, we have

θ1 (x̄k) ≥ θ1
(
x∗)+ (

λ∗)T (
Ax̄k −Ax∗)+ μ

2
∥∥x̄k − x∗∥∥2 (36)
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and
θ2

(
ȳk
)≥ θ2

(
y∗)+ (

λ∗)T (
Bȳk − By∗) . (37)

Adding up (36) and (37), we get θ (ūk) ≥ θ (u∗) + (λ∗)T
(
Ax̄k + Bȳk − b

)+ μ
2 ‖x̄k − x∗‖2, that is

∥∥x̄k − x∗∥∥≤
√

2
μ

(
θ (ūk) − θ (u∗) − (λ∗)T

(
Ax̄k + Bȳk − b

))

≤
√

2
μ

(
θ (ūk) − θ (u∗) + ‖λ∗‖ ∥∥Ax̄k + Bȳk − b

∥∥).
(38)

On the other hand, ∥∥Ax̄k + Bȳk − b
∥∥=∥∥A (

x̄k − x∗)+ B
(
ȳk − y∗)∥∥

≥ ∥∥B (
ȳk − y∗)∥∥− ‖A‖ ∥∥x̄k − x∗∥∥ ,

this implies
∥∥B (

ȳk − y∗)∥∥≤ ‖A‖‖x̄k − x∗‖ + ∥∥Ax̄k + Bȳk − b
∥∥ , and hence,∥∥ȳk − y∗∥∥≤ ‖A‖√

λmin

∥∥x̄k − x∗∥∥+ 1√
λmin

∥∥Ax̄k + Bȳk − b
∥∥. (39)

Adding (38) and (39), using Jensen’s inequality EX
1
2 ≤ (EX)

1
2 for a random variable X, and taking

expectation imply

E
[∥∥x̄k − x∗∥∥+ ∥∥ȳk − y∗∥∥]

≤
(
1+ ‖A‖√

λmin

)√
E

[
2
μ

(
θ (ūk) − θ (u∗) + ‖λ∗‖ ∥∥Ax̄k + Bȳk − b

∥∥)]

+ 1√
λmin

E
∥∥Ax̄k + Bȳk − b

∥∥.
The proof is completed.

3.2 High probability performance analysis
In this subsection, we shall establish the large deviation properties of SLG-ADMM. By (23) and
(24), and Markov’s inequality, we have for any ε1 > 0 and ε2 > 0 that

Pr
{∥∥Ax̄N + BȳN − b

∥∥≤ ε1

(
1

2 (N + 1)
∥∥w0 − (

x∗, y∗, λ∗ + e
)∥∥2

H0
+ σ 2

2
√
N

)}
≥ 1− 1

ε1
(40)

and

Pr
{
θ (ūN) − θ

(
u∗)≤ ε2

( ‖λ∗‖ + 1
2 (N + 1)

∥∥w0 − (
x∗, y∗, λ∗ + e

)∥∥2
H0

+ ‖λ∗‖ + 1
2
√
N

σ 2
)}

≥ 1− 1
ε2
.

(41)
However, these bounds are not strong. In the following, we will show these high probabil-
ity bounds can be significantly improved when imposing standard “light-tail” assumption, see,
e.g., Nemirovski et al. (2009); Lan (2020) . Specifically, assume that for any x ∈ X

E
[
exp

{‖G (x, ξ) − ∇θ1 (x)‖2/σ 2}]≤ exp {1} .
This assumption is a little bit stronger than b) in Assumption (iii), which can be explained by
Jensen’s inequality. For further analysis, we assume thatX is bounded and its diameter is denoted
byDX , defined asmaxx1,x2∈X ‖x1 − x2‖. The following theorem shows the high probability bound
for objective error and constraint violation of SLG-ADMM.
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Theorem. Let the sequence
{
wk

}
be generated by the SLG-ADMM, the associated

{
w̃k

}
be defined

in (2), and

w̄N = 1
N + 1

N∑
t=0

w̃t

for some pre-selected integer N. Choosing τk ≡ √
N +M, where M is a constant satisfying the

ordering relation MIn1 � LIn1 + βATA, then SLG-ADMM has the following properties

(i)

Pr
{∥∥Ax̄N + BȳN − b

∥∥≤ 1
2 (N + 1)

∥∥w0 − (
x∗, y∗, λ∗ + e

)∥∥2
H0

+ �DXσ√
N

+ 1
2
√
N

(1+ �) σ 2
}

≥ 1− exp
{−�2/3

}− exp {−�} ,
(42)

(ii)

Pr
{
θ (ūN) − θ

(
u∗)≤ (∥∥λ∗∥∥+ 1

) ( 1
2 (N + 1)

∥∥w0 − (
x∗, y∗, λ∗ + e

)∥∥2
H0

+ �DXσ√
N

+ 1
2
√
N

(1+ �) σ 2
)}

≥ 1− exp
{−�2/3

}− exp {−�} ,
(43)

where e is an unit vector satisfying −eT
(
Ax̄N + BȳN − b

)= ∥∥Ax̄N + BȳN − b
∥∥.

Proof. Let ζ t = 1
N
(
x∗ − xt

)T
δt . Clearly,

{
ζ t}

t≥1 is a martingale-difference sequence. Moreover,
it follows from the definition of DX and that light-tail assumption that

E

[
exp

{(
ζ t)2 /

(
1
N
DXσ

)2
}]

≤E

[
exp

{(
1
N
DX

∥∥δt∥∥)2
/

(
1
N
DXσ

)2
}]

≤ exp {1} .

Now using a well-known result (see Lemma 4.1 in Lan (2020)) for the martingale-difference
sequence, we have for any � ≥ 0

Pr

{ N∑
t=1

ζ t >
�DXσ√

N

}
≤ exp

{−�2/3
}
. (44)

Also, observe that by Jensen’s inequality

exp

{
1
N

N∑
t=1

(∥∥δt∥∥2 /σ 2
)}

≤ 1
N

N∑
t=1

exp
{∥∥δt∥∥2 /σ 2

}
,

whence, taking expectation,

E

[
exp

{
1
N

N∑
t=1

∥∥δt∥∥2 /σ 2

}]
≤ 1

N

N∑
t=1

E

[
exp

{∥∥δt∥∥2 /σ 2
}]

≤ exp {1} .

It then follows fromMarkov’s inequality that for any � ≥ 0

Pr

{
1
N

N∑
t=1

∥∥δt∥∥2 ≥ (1+ �) σ 2

}
≤ exp {−�} . (45)
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Using (44) and (45) in (20) for w= (
x∗, y∗, λ∗ + e

)
, we conclude that

Pr
{∥∥Ax̄N + BȳN − b

∥∥>
1

2 (N + 1)
∥∥w0 − (

x∗, y∗, λ∗ + e
)∥∥2

H0
+ �DXσ√

N
+ 1

2
√
N

(1+ �) σ 2
}

≤ exp
{−�2/3

}+ exp {−�}
(46)

and

Pr
{
θ (ūN) − θ

(
u∗)>

(∥∥λ∗∥∥+ 1
) ( 1

2 (N + 1)
∥∥w0 − (

x∗, y∗, λ∗ + e
)∥∥2

H0
+ �DXσ√

N

+ 1
2
√
N

(1+ �) σ 2
)}

≤ exp
{−�2/3

}+ exp {−�} .
(47)

The result immediately follows from the above inequalities.

Remark 8. In view of the last Theorem, if we take � = ln N, then we have

Pr
{∥∥Ax̄N + BȳN − b

∥∥≤ O

(
lnN√
N

)}
≥ 1− 1

N2/3 − 1
N

and

Pr
{
θ (ūN) − θ

(
u∗)≤ O

(
lnN√
N

)}
≥ 1− 1

N2/3 − 1
N
.

For strongly convex case, using similar derivation, the high probability bound for objective error
and constraint violation of SLG-ADMM is

Pr

{∥∥Ax̄N + BȳN − b
∥∥≤ O

(
(lnN)2

N

)}
≥ 1− 1

N2/3 − 1
N
,

and

Pr

{
θ (ūN) − θ

(
u∗)≤ O

(
(lnN)2

N

)}
≥ 1− 1

N2/3 − 1
N
.

Observe that the convergence rate of ergodic iterates of SLG-ADMM is obtained in (35). The high
probability bound can be also established, which is shown as follows

Pr
{∥∥x̄N − x∗∥∥+ ∥∥ȳN − y∗∥∥≤ O

(
lnN√
N

)}
≥ 1− 1

N2/3 − 1
N
,

where N is the iteration number. In contrast to (40) and (41), we can observe that the results in
the last theorem are much finer.

4. Conclusion
In this paper, we analyze the expected convergence rates and the large deviation properties of a
stochastic variant of generalized ADMM using the variational inequality framework. By means of
this framework, the proof is very clear. When the model is deterministic and SFO is not needed,
our proposed algorithm reduces to a generalized proximal ADMM, and the convergence region
of α is the same as that in the corresponding literature.
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