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Peroxisome proliferator-activated receptor (PPAR) o represents an important member of the
nuclear hormone receptor superfamily that can be activated by a variety of natural fatty acids,
some of their metabolites and by commonly-used anti-lipidaemic drugs. We recently
demonstrated PPARa expression in T lymphocytes, where it controls the initiation of transcription
of T-box expressed in T-cells (T-bet) independent of added agonist. T-bet is an activation-
inducible transcription factor regulator of interleukin 2 (suppression) and interferon Yy
(stimulation) synthesis. A suppressed ability to produce interleukin 2 and an enhanced production
of interferon y occurs in activated T-cells from PPARo—/— mice, as well as in T-cells from wild-
type aged animals whose lymphocytes express lowered basal levels of PPARa. The dysregulated
expression and/or function of cytokines, glucocorticoids or leptin that occurs with advanced age
could all be responsible for the reduced expression of PPARo. Dietary supplementation of aged
mice with vitamin E, or supplementation with known agonists of PPAR0., was associated with
elevation of lymphocyte expression of this nuclear hormone receptor, restoration of control over
T-bet expression and elimination of the dysregulated production of interleukin 2 and interferon y
following lymphocyte activation. Interleukin 2 and interferon 7y play very important roles in the
initiation and/or regulation of immune, inflammatory and autoimmune disease states. Thus, the
mechanisms that control the timing, magnitude and duration of specific cytokine production by
activated T lymphocytes need clarification before appropriate nutritional or therapeutic strategies
can be devised to treat disease conditions where cytokine expression and/or activities are deemed
to be dysregulated and responsible.

Ageing: PPARo: Immunobiology

Overview of peroxisome proliferator-activated receptors

The peroxisome proliferator-activated receptors (PPAR) are
ligand-inducible transcription factors that belong to the
nuclear hormone receptor superfamily. To date, three PPAR
subtypes have been identified: PPARa, PPARP/S and
PPARY (NR1C1, NR2C1 and NR3Cl respectively; Dreyer
et al. 1992; Chen et al. 1993; Lemberger et al. 1996). These
three PPAR isoforms exhibit a high level of sequence and
structural homology, but each isoform displays a divergent
pattern of tissue expression and ligand-binding specificity
(Kliewer et al. 1994; Braissant et al. 1996). PPARo was the

initially described member of this family, being isolated by
Issemann & Green (1990), based on its ability to induce
peroxisome proliferation in rodent hepatocytes in response
to certain xenobiotic compounds. Since that original
observation, it is now known that PPAR« is expressed in a
number of tissues, including liver, heart, and kidney, whose
primary source of energy is derived from fatty acids
(Issemann & Green, 1990; Braissant et al. 1996). In these
tissues PPAR« regulates the expression levels of a number
of genes involved in fatty acid metabolism, as well as genes
involved in lipid homeostasis, cholesterol flux, and control
over cellular redox state (Chinetti et al. 2000).

Abbreviations: IFN-y, interferon vy, IL-2, interleukin 2; MAP, mitogen-activated protein; PPAR, peroxisome proliferator-activated receptors; PUFA,

polyunsaturated fatty acids; T-bet, T-box expressed in T-cells; WT, wild type.
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PPAR positively regulate the expression of genes under
their transcriptional control by binding to specific DNA
sequences known as peroxisome proliferator response
elements as a heterodimeric complex with the 9-cis-retinoic
acid receptor. In the unliganded state PPAR«. is thought
to be transcriptionally inert, due to its physical association
with the nuclear co-repressors N-CoR and SMRT (DiRenzo
et al. 1997). Following ligand activation, the nuclear
co-repressors dissociate from PPARo., thus enabling it to
bind nuclear receptor co-activators such as SRC-1 and
CBP/p300. These protein complexes restructure the
chromatin template through histone acetylation, and allow
the basal transcriptional machinery to access the promoter
regions driving transcription of target genes under PPAR
control (Onate et al. 1995; Bannister & Kouzarides, 1996;
Kamei et al. 1996; Torchia et al. 1997).

Similar to observations reported for other nuclear
hormone receptors, PPAR also possess the ability to
negatively regulate gene expression through a number of
transrepression mechanisms. Anti-inflammatory activities
linked to PPAR are largely mediated through an ability of
the receptors to physically associate with, and antagonize,
the transcriptional activities of many transcription factors,
including signal transducers and activators of transcription,
activator protein-1, nuclear factor of activated T-cells and
nuclear factor kappa B (Gottlicher et al. 1992; Miyata et al.
1996; Ren et al. 1996; Jiang et al. 1998; Ricote et al. 1998;
Staels et al. 1998). Similarly, the PPAR have additionally
been demonstrated to inhibit the activation of certain protein
kinases, thereby affecting downstream transcription factor
activities (Desreumaux et al. 2001). The PPAR are also
known to inhibit expression of certain genes through their
ability to sequester important transcriptional co-activators
that may be expressed in limited amounts within a cell (Li
et al. 2000). The ability of the PPAR to mediate positive as
well as negative gene regulation allows these nuclear
hormone receptors to affect the transcription of a wide range
of genes. Consequently, the PPAR are now appreciated to
play critical physiological roles as lipid sensors, as
regulators of lipid and carbohydrate metabolism, and in the
control of many developmental processes.

Natural peroxisome proliferator-activated receptor o
ligands: a link to nutrition

When compared with other nuclear hormone receptors, the
ligand-binding domains of the PPAR are larger, explaining
their capacity to accommodate a broad range of activating
ligands (Xu er al. 1999). While several ligands, including
some fatty acid species, can serve as pan-agonists for all
three PPAR isoforms, more recent studies have described
the existence of a number of PPAR« isoform-specific
ligands, including the eicosaniod 8(S)-hydroxyeicosa-
tetraenoate, leukotriene B4, n-3 fatty acids, and n-6 fatty
acids (Forman et al. 1997; Kliewer et al. 1997). While a
number of these potential ligands are able to activate
PPARo in vitro, a ligand such as 8(S)-hydroxyeicosa-
tetraenoate is not found at high enough intracellular
concentrations in vivo to effectively serve as an endogenous
ligand for this receptor (Berger & Moller, 2002).
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It has been demonstrated through analysis of a number of
different assay systems that certain polyunsaturated fatty
acids (PUFA) can serve as natural agonists for PPARa. As
PUFA can activate PPARq, and a majority of the PPARo-
regulated genes are involved in fatty acid metabolism, it is
believed that PPARo may be functioning as a ‘lipostat’,
maintaining cellular lipid homeostasis (Djouadi ez al. 1999).
Through this function, PPAR up regulates the expression
of genes required for efficient fatty acid utilization in
response to increases in cellular lipids.

One well-studied example of the role of PPARa as a
‘lipostat’ is the cellular response to leptin. Leptin is a
cytokine produced by adipocytes in response to excesses in
lipid levels. This cytokine signals many peripheral cell types
through the leptin receptor and induces an up-regulation of
PPAR« expression (Ahima & Flier, 2000). PPARo can then
be activated by the mobilized fatty acids to up regulate
expression of those enzymes and fatty acid transporters
necessary for effective mitochondrial fatty acid catabolism
and energy generation through the B-oxidation pathway
(Wang et al. 2001). An inability to effectively regulate the
levels of cytosolic lipids can be directly cytotoxic through
mechanisms involving the formation of lipid peroxides and
ceramide generation (Unger & Zhou, 2001). Such an
inability to effectively regulate cytosolic lipid levels would
probably occur with cellular depressions in either PPAR«
expression or in PPARo activities.

Consequences of a generalized depression in peroxisome
proliferator-activated receptor o expression

Our laboratory previously reported that expression of the
PPARo gene is depressed in cells residing within secondary
lymphoid organs isolated from aged donors (Poynter &
Daynes, 1998). This reduction in PPAR« expression was
linked to the constitutive overproduction of certain pro-
inflammatory cytokines that had previously been reported to
occur in tissues from aged animals, as well as in tissues from
mature adult PPARo—/— mice (Spencer et al. 1997; Poynter
& Daynes, 1998). Further support that depressions in
PPARo expression contributed to this pro-inflammatory
phenotype came from studies where aged wild-type (WT)
and aged PPAR0—/— mice were given daily treatments with
dehydroepiandrosterone or WY 14 643, two PPARo-
specific agonists. Treatment of the WT mice with PPARa
agonists restored normal control over the abnormal
expression of pro-inflammatory cytokines and the redox-
regulated transcription factor nuclear factor kappa B. Aged
PPARO—/— mice failed to benefit from agonist treatment,
and continued to constitutively express pro-inflammatory
cytokines and active nuclear factor kappa B. Interestingly,
treatment of aged WT mice with WY 14,643, or with dehy-
droepiandrosterone, additionally restored normal levels of
PPARo within the secondary lymphoid organs of the aged
animals (Poynter & Daynes, 1998).

Our laboratory has recently demonstrated using quanti-
tative real-time polymerase chain reaction that the levels of
PPARo gene expression are depressed by >50% in a
number of tissues isolated from aged animals, including the
heart, liver and kidney (Fig. 1(A)). The age-associated
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Fig. 1. Transcript levels of (A) peroxisome proliferator-activated receptor (PPAR)a and (B) PPARa-regulated
genes are reduced in tissues from aged mice. mRNA was extracted from various tissues of 4-month-old (zz)
or 24-month-old () C57BL/6 mice and quantitative real-time reverse transcriptase—polymerase chain reaction
was performed. The amount of glyceraldehyde phosphate dehydrogenase transcript in each sample was
equalized as a means of standardization. Similar results were obtained in multiple independent experiments.
ACO, acyl-CoA oxidase; CAT, catalase; CPT, carnitine palmitoyltransferase.

depression of PPAR« expression within these tissues was
accompanied by decreases in the expression levels of a
number of PPARo-target genes essential for fatty acid
metabolism, including carnitine palmitoyltransferases I and
II and acyl-CoA oxidase (Fig. 1(B)). A depressed
expression of these genes in various tissues is known to
correlate with a dysregulation in lipid homeostasis. When
frozen sections of affected tissues were harvested and
stained to detect the presence of cytosolic lipids with oil red
O, tissues from aged mice showed an enhanced presence of
cytosolic lipid droplets when compared with comparable
tissue sections isolated from mature adult mice (Fig. 2).
Watanabe et al. (2000) previously reported a similar
pathology within the heart tissue of PPAR0—/— mice. This
group demonstrated that several enzymes essential for
normal cardiac fatty acid metabolism are expressed at lower
levels within the hearts of PPARo—/— mice. The authors
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concluded that a reduced ability to effectively metabolize
fatty acids was responsible for the development of
myocardial damage and fibrosis within the hearts of
PPARo—/— mice. We feel that similar effects may be
occurring in various tissues with ageing, and that age-
associated depressions in PPARo expression may be
partially responsible.

Peroxisome proliferator-activated receptor o.and the
immune system

PPAR« has been extensively studied in tissues that utilize
fatty acids as a primary energy source, such as heart, liver,
muscle and kidney (Issemann & Green, 1990; Braissant
et al. 1996). This receptor isoform has also been found to be
expressed in several other tissues and cell types such as
chondrocytes, keratinocytes and cells of the immune system
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(Chinetti et al. 1998; Bordji et al. 2000; Hanley et al. 2000;
Padilla er al. 2000; Harris & Phipps, 2001). Ligand
activation of PPARo. or PPARY in macrophages can
effectively inhibit activation-induced inflammatory cytokine
production through the active repression of several crucial
transcription factors (Chinetti et al. 1998). The expression of
PPARY has been described recently in B and T lymphocytes
where it has been reported to play a role in cytokine
production, cellular proliferation, and susceptibility to
apoptosis (Padilla et al. 2000; Harris & Phipps, 2001).

We recently established the constitutive expression of
PPAR« in resting T and B lymphocytes (Jones et al. 2002).
Interestingly, we demonstrated that the expression of
PPARo within T lymphocytes is rapidly down regulated
following cellular activation. This finding is in contrast with
observations for PPARY expression in lymphocytes, which
appears to increase with T-cell activation (Harris & Phipps,
2001; Jones et al. 2002). The dynamic flux that PPARa
exhibited within T-cells following activation suggested that
this nuclear hormone receptor might be involved in early
activation events within T-cells. One of the earliest events to
occur in T-cells post activation is the induced synthesis of
interleukin 2 (IL-2), an important T-cell growth factor.
Interestingly, the amount of IL-2 protein produced by
PPARo—/— T-cells post activation is markedly reduced
(>75%) when compared with that of WT T-cells. A kinetic
analysis of IL-2 mRNA revealed that the transcription of
IL-2 in PPAR0—/— T-cells is terminated at a much earlier
time post activation than the IL-2 transcription in WT T-
cells. This finding is in contrast with interferon y (IFN-y)
gene expression and protein production, which is expressed
earlier and is greatly elevated in PPARo—/— T-cells. Thus,
dysregulations in the initiation and termination of the
transcription of two cytokine genes occurs within T-cells
isolated from PPARO—/— animals. We have now determined
that the dysregulated production of these two cytokines in
T-cells from PPARo—/— donors arises from a kinetically-
accelerated post-activation induction of T-box expressed in
T-cells (T-bet). This transcription factor has recently been
described to induce T-helper 1 cell differentiation through
its ability to transactivate the IFN-y gene, while simul-
taneously suppressing expression of the IL-2 gene (Szabo
et al. 2000). T-bet is also required for IFN-y production by
natural killer cells, but is apparently not entirely responsible
for controlling IFN-y production by CD8* T-cells (Szabo
et al. 2002).

We (DC Jones and RA Daynes, unpublished results)
hypothesized that activation-induced suppression of
endogenous PPARa expression in T-cells from WT donors
is ultimately responsible for relaxing its controlling
influences over the initiation of T-bet transcription and gene
expression. This hypothesis was supported by the finding
that T-bet expression and IFN-y production were
solidly inhibited in an activated T-cell line which constitu-
tively expressed PPARo following transfection with a
cytomegalovirus—PPARol  construct. Consequently, the
constant presence of PPARo in T-cells was somehow toni-
cally suppressing the initiation of T-bet transcription
following activation, and thereby retarding any regulatory
influences controlled by this transcription factor.
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Since the cellular localization of PPARo within T-cells is
exclusively cytoplasmic (Jones et al. 2002), we suggested
that the ability of PPAR« to regulate T-bet transcription was
probably not mediated through a DNA-binding-dependent
process, but rather through the ability of PPARo to
antagonize some signalling pathway essential for T-bet
transcription. Previous reports have suggested a prominent
role for the p38 mitogen-activated protein (MAP) kinase in
both IFN-y production and T-helper 1 differentiation,
processes that are now appreciated to be mediated by T-bet
(Rincon et al. 1998; Lu et al. 2001). We utilized the
chemical p38 MAP kinase inhibitor, PD169 316, to
determine that p38 MAP kinase activity within T-cells is
necessary for T-bet transcription. We also found that the
absolute level of phospho-p38 MAP kinase was much
higher within activated PPARo—/— T-cells when compared
with WT T-cells activated under the same conditions.
Furthermore, we determined that constitutive expression of
PPARo within a cytomegalovirus—PPAR« transfected
T-cell line markedly suppressed the levels of phospho-p38
MAP kinase following activation. Together, these findings
suggest that the ability of PPARa to regulate T-bet
transcription within activated T-cells, and ultimately the
protein production, is mediated through the ability of
PPAR« to regulate the activation of p38 MAP kinase. A
hypothetical model, outlining our present ideas concerning
the molecular pathways that appear to be controlled by
PPARo in WT T-cells is presented in Fig. 3. This model
suggests that the ability of PPAR« to control the initiation
of T-bet transcription is indirect, being mediated through its
capacity to somehow suppress the activation of p38 MAP
kinase. We are presently investigating the means by which
PPARao is able to control p38 MAP kinase activation.

The profile of cytokine production from activated T-cells
isolated from young adult PPAR0—/— mice was found to be
strikingly similar to that observed from T-cells isolated from
aged animals (Engwerda et al. 1996). In view of this
similarity in cytokine production, we questioned whether
there might be a depressed expression of PPARo and an
accelerated expression of T-bet within T-cells isolated from
aged donors. Using quantitative real-time polymerase chain
reaction, we found that PPARa mRNA expression in T-
cells from aged mice was three to four times lower than that
observed in T-cells isolated from adult mice. T-cells isolated
from aged donors also demonstrated a markedly accelerated
induction of T-bet that was kinetically similar to what was
observed in activated PPARo—/— T-cells.

To further question the role of PPAR in the regulation
of T-cell cytokine production, we kinetically analysed
T-cells from aged mice placed on diets supplemented
with the antioxidant c-tocopherol. Our laboratory had
previously demonstrated that providing «o-tocopherol
supplementation to aged mice increased the PPARa. mRNA
in splenocytes to levels observed in splenocytes from young
donors (Poynter & Daynes, 1998). We had also demon-
strated that this therapeutic administration of a-tocopherol
normalized the production of cytokines by activated T-cells.
When T lymphocytes from aged animals supplemented with
o-tocopherol were stimulated in vitro, their ability to
produce IL-2 was markedly increased compared with that
produced by T-cells from unsupplemented aged mice.
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Fig. 2. Accumulation of intracellular lipids in the hearts and livers of aged mice. Frozen tissue sections were prepared from the hearts (A and
B) and livers (C—F) of young (A,C and E) or aged (B,D and F) (C57BL/6 x DBA2) F1 mice. Tissues were harvested from mice that were either
fed ad libitum (A-D) or fasted for 24 h (E and F). All sections were stained with oil red O for analysis of lipid droplets. The presence of red droplets
(1) indicates positive staining for neutral lipids. Photographs are representative of similar results observed in tissue sections prepared from four
to six mice per group. Magnification x400.

TCR-CD3 complex

Fig. 3. Model for peroxisome proliferator-activated receptor (PPAR)o-mediated suppression of the transcription of T-box expressed in T-cells
(T-bet). The ability of PPARo. to alter the kinetic induction of T-bet transcription might arise through this nuclear hormone receptor’s ability to
transiently suppress the phosphorylation of the p38 mitogen-activated protein kinase following T-cell activation. TCR, T-cell receptor; MKK, MAP
kinase kinase; p 38, MAP kinase; X,Y, unknown transcription factors X and Y respectively; IFN-y, interferon y; RXR, 9-cis-retinoic acid receptor;
Ras, monomeric guanine nucleotide protein encoded by the ras proto-oncogene; MEK, MAP kinase kinase; ERK, extracellular signal-regulated
kinase; IL-2, interleukin 2.
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Conversely, the levels of activation-induced IFN-y were
reduced from the normally high levels produced by T-cells
from unsupplemented aged animals. The kinetics of T-bet
induction in activated T-cells from the supplemented aged
animals was found to resemble that of young mice.
Together, these observations suggest an expanding role for
PPAR« in T-cells of the immune system. It will be of great
interest and importance to decipher the roles PPARa might
play in other cells of the immune system, including B-cells
and dendritic cells.

Conclusion

In the short history since their original discovery, it has
become quite clear that the PPAR play critical roles in
the regulation of energy homeostasis (through their
ability to control major aspects of lipid and carbohydrate
metabolism). It is also appreciated that dysregulated PPAR
activities are involved in a number of pathological states
including cancer, inflammation, infertility, demylination
and atherosclerosis (Devchand et al. 1996; Mueller et al.
2000; Berger & Moller, 2002; Takano & Komuro, 2002).
Recently, the expression of specific PPAR subtypes have
been described in myeloid and lymphoid cell types, creating
a possible linkage between PPAR expression and the
immune system. PPARY, known to be expressed in both T
and B lymphocytes, is thought to be involved in suppression
of cytokine production and proliferation (Padilla ef al. 2000;
Harris & Phipps, 2001). We have recently described that
PPARo is also expressed in resting T and B lymphocytes
(Jones et al. 2002). We now believe that PPAR« is playing
an unique role in T-cell activation through its ability to
regulate the expression of T-bet, ultimately determining the
timing, sequence and magnitude of cytokines produced by
activated T-cells. Due to the ability of PPARa to carry out
these influences within the T-cell, as well as the breadth of
metabolic functions PPARa carries out in other cell types,
an ability to regulate the expression of PPARa and its
activities may represent useful therapeutic strategies to
many pathological conditions.
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