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The boundary element method for the eddy current problem (BEM-ECP) was proposed in a number
of papers and is applicable to important tasks such as the problem of inductive heating and transmis-
sion of electromagnetic energy. BEM-ECP requires the construction of a system of linear algebraic
equations in which the matrix is inherently dense and is constructed out of element matrices. For the
process of the element matrix computation, two cases are normally considered: far-field interaction
and near-field interaction, because the construction of element matrices requires integration of a sin-
gular function. In this article, we suggest a transform that allows computing the matrix components
of the near-singular interaction part while implementing only the single and double layer potentials.
The previously suggested modified double layer potential (MDLP) can be integrated by means of this
transform, which simplifies the program implementation of BEM-ECP significantly. Solving model
problems, we analyse the drawbacks of the previously suggested approach. This analysis includes
the proof of the MDLP singularity that makes the integration of this potential a rather difficult task
without the help of our transform. The previously suggested approach does not work well with sur-
faces that are not smooth. Our approach does consider such cases, which is its main advantage. We
demonstrate this on the model problems with known analytical solutions.

Keywords: Boundary element method, Eddy current problem, modified double layer potential,
numerical integration, singular function
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1 Introduction

Boundary element method for the eddy current problem (BEM-ECP) is highly useful for the
applications where the unbounded regions are involved and the electromagnetic energy trans-
mission plays an important role. This method allows one to solve the Maxwell equations when
eddy currents are taken into account. BEM-ECP was initially introduced in [17] written by Jörg
Ostrowski and was also described in [7] by Jens Breuer for the problem of inductive heating and
cooling.

BEM-ECP incorporates the Stratton–Chu formula first introduced in [21] as a valuable
part of the electromagnetic wave diffraction theory. The most recent paper considering the
same foundation for the boundary element method approach is [2] by Yang et al. However,
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the optimisation method mentioned in [2] deals with the case of the far-field interactions and
the paper does not cover the computations of integrals with singular and near-singular issues.
However, the only work that highlighted this approach, as we know, is Ostrowski’s [17] where
the modified double layer potential was suggested to be applied to construct the components
of the SLAE matrix of BEM-ECP for the near-singular cases. The convergence theorems were
proved in [7] and [17] both for BEM-ECP and for the coupled approach used together with the
finite element method correspondingly. Hence, this topic is not covered here.

In this article, we introduce a conceptually different method from what was initially proposed
in the aforementioned works and highlight the drawbacks of the previously suggested method in
[17]. We prove that modified double layer potential (MDLP) can be singular and hence it cannot
be integrated by the means of the quadrature rules that do not take into account this singularity.
We also show that MDLP is redundant and the matrix of BEM-ECP can be constructed for the
singular and near-singular cases via the single and double layer potentials only.

The scalar single and double layer potentials can be extended to the vector-valued case in an
obvious component-wise fashion. This leads to the significant simplification of the BEM-ECP
implementation. A wide variety of methods consider the integration of these potentials, such
as: Quadrature by Expansion (QBX) highlighted in [24, 25] and [1], the singularity extraction
method described in [12] and the singularity cancellation methods [6, 23]. All of these methods
can be applied to BEM-ECP with the suggested modification. In this article, we present the
results for model problems to demonstrate the benefits of our approach.

We must mention that here we only consider the case of σ �= 0 everywhere (conductivity is not
zero in every domain). If this assumption is not true for some domains, we refer to [19] where
we use the coupled approach with vector and scalar potentials. To consider the vector potential
in [19], we use BEM-ECP with the enhancements we suggest in the present work.

2 Integral operators for eddy current problem

In this section, we give a brief description of BEM-ECP and the main integral operators involved
in the computations. Also, we describe a special case of one integral operator defined in [17] and
called MDLP.

2.1 Eddy current model and the boundary integral problem

Let us consider the case of domains with constant scalar material parameters of conductivity
and magnetic permeability. The equations of the eddy current model for the time-harmonic
electromagnetic field in every such domain have a form [7, 17]:

∇ × ∇ × �E(�x) + k2
j
�E(�x) = iωμj�I(�x), �x ∈ �j, �j ⊂R

3, j = 1, N , (2.1)

where �E is the electric field,
{
�j

}N

j=1
is a set of domains in R

3, �m,j is a piece of boundary surface
between �m and �j, kj – complex wave number defined in �j, ω – angular frequency, �nm – an
exterior normal vector defined on ∂�m, μj is the magnetic permeability, �I – exciting current and
i – imaginary one. Two additional requirements imposing continuity of tangential components
of �E on �m,j as well as continuity of tangential components of �H are also applied to the model
[7]. Note that in �j the relation �H = i

ωμj
∇ × �E is valid.

https://doi.org/10.1017/S0956792522000183 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000183


Modified double layer potential 387

The wave number kj can be expressed in terms of magnetic permeability μj and conductivity
σj of �j as follows:

kj =
√

iωμjσj, (2.2)

where the square root is taken in the sense that guarantees the positive real values for a purely
imaginary argument. Note that kj �= 0 for every value of j.

Let a continuously differentiable vector function �U be defined in a three-dimensional domain
� with at least partially smooth boundary �. The normal vector �n is defined on � and directed
to the exterior of �. The Neumann trace operator γ �

N , the Dirichlet trace operator γ �
D and the

normal trace γ �
n are defined as follows [17, 7, 10]:

γ �
N

�U(�x) = lim
�r∈�,�r→�x∈�

(∇�r × �U (�r)) × �n(�x), (2.3)

γ �
D

�U(�x) = lim
�r∈�,�r→�x∈�

(�n(�x) × �U (�r)) × �n(�x), (2.4)

γ �
n

�U(�x) = lim
�r∈�,�r→�x∈�

(�n(�x) · �U (�r)) , (2.5)

where the subscript of ∇�r means that the function-argument is differentiated by �r.
The foundation of the boundary element method for eddy current problem is the Stratton–Chu

representation formula [7, p. 46] that gives the solution to (2.1) in terms of the mentioned trace
operators:

�E(�x) = ∇�x ×
∫

�

Gk(�x, �y)
(
γ �

D
�E(�y) × �n(�y)

)
ds�y+

+
∫

�

Gk(�x, �y)
(
γ �

N
�E(�y)

)
ds�y+

+ ∇�x
∫

�

Gk(�x, �y)
(
γ �

n
�E(�y)

)
ds�y. (2.6)

where ds�y means that integration variable is �y and the integral is taken along a surface to which
�y belongs, similarly, ∇�x designates the differentiation by the parameter �x; Gk is the singular
function of the Helmholtz equation [20, 21]:

Gk(�x, �y) = e−k‖�x−�y‖

4π‖�x − �y‖ . (2.7)

It must be noted that when k �= 0, the following relation between the normal trace and the
Neumann trace takes place [7, p. 34, formula (4.10)]:

γ �
n

�E(�x) = − 1

k2
∇�x · γ �

N
�E(�x), (2.8)

so the two trace operators are connected. The relation (2.8) is valid for every �E satisfying (2.1).
Let a vector function �u(�x) be defined for �x ∈ � and �u(�x) ⊥ �n(�x) for almost all �x ∈ �. Using the

trace operators one can write the integral operators Ak and Bk in accordance with [7] (see [7, p. 47,
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formula (5.10)], [7, p. 48, formula (5.11)] for the operator Bk definitions; we define operator Ak ,
that is denoted in [7] as Ãl

κ , in accordance with [7, p. 51, formula (5.26)]):

(Bk�u) (�x) :=
∫
�

γ �
N ,�x (Gk(�x, �y)�u(�y))ds�y, �x ∈ �, (2.9)

(Ak�u) (�x) :=
∫
�

γ �
D,�x (Gk (�x, �y) �u(�y))ds�y

− 1

k2
∇�x

∫
�

Gk(�x, �y)∇�y · γ �
N ,�y�u(�y)ds�y, �x ∈ �, (2.10)

For any two vector functions, �u and �v defined on and tangential to � almost everywhere on �,
we introduce the scalar product [7]:

〈�u, �v〉 =
∫
�

�u(�x) · �v(�x)ds, (2.11)

where · means complex conjugation.

Suppose there are two function spaces [7]: H
− 1

2
‖ (div� , �) – the space of the Neumann trace

image. It contains vector-valued functions tangential to � and having continuous components

normal to the edges of �; H
− 1

2
⊥ (curl� , �) – the space of the Dirichlet trace image. It also con-

tains vector-valued functions tangential to �, but in this case these functions have continuous
components tangential to the edges of �; The detailed description of these spaces is beyond the
scope of this work. For more information, see [7, 17] and [10].

Applying the Dirichlet trace operator to (2.6) and reformulating the resulting expression in
terms of the integral operators (2.10) and (2.9), one can derive the following variational problem
from [7, p. 51] using special properties of the integral operators listed in [7, p. 48]:

〈Akγ
�
N

�E, �u〉 = 〈γ �
D

�E,

(
1

2
Id + Bk

)
�u〉, ∀�u ∈ H

− 1
2

‖ (2.12)

γ �
N

�E ∈ H
− 1

2
‖ (div� , �) , γ �

D
�E ∈ H

− 1
2

⊥ (curl� , �) , (2.13)

where Id is the identity operator.
The integrals involved in the computation of Ak can be easily represented through the scalar

single layer potential as it was demonstrated in [7] and [10]. The subsequent is concerned with
the operator Bk .

2.2 Modified double layer potential

To obtain a discrete version of (2.12), one has to define two finite subspaces:

W K
‖ ⊂ H

− 1
2

‖ (div� , �) and W M
⊥ ⊂ H

− 1
2

⊥ (curl� , �) where K and M are the dimensions of
the corresponding finite subspaces. Suppose we have to find a value for the following expression
arising from (2.12):

〈�v, Bk�u〉,

�v ∈ W K
⊥ ⊂ H

− 1
2

⊥ (curl� , �) , �u ∈ W M
‖ ⊂ H

− 1
2

‖ (div� , �)
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Applying well known identities of vector calculus to the Neumann trace operator, we get
similarly to [17, p. 42]:

〈�v, Bk�u〉 =
〈
�v,

∫
�

γ �
N ,x

(
Gk (�x, �y) �u(�y)

)
ds�y

〉

=
〈
�v,

∫
�

(∇�x × (
Gk (�x, �y) �u(�y)

)) × �n(�x)ds�y

〉

=
〈
�v,

∫
�

(∇�xGk (�x, �y) × �u(�y)
) × �n(�x)ds�y

〉

=
〈
�v,

∫
�

(
−∇�xGk (�x, �y) (�n(�x) · �u(�y)) + �u(�y)

∂�xGk(�x, �y)

∂�n(�x)

)
ds�y

〉
.

For what follows next, the angular brackets are replaced with an integral in accordance with
(2.11) and the order of integration is changed as it was done in [17]. This, as it will be shown
in the subsequent, does not change the result and is a valid operation of mathematical analysis.
However, there might be some numerical issues related to the change of integration order that
will be highlighted afterwards.

〈�v, Bk�u〉 = −
∫
�

⎡
⎣∫

�

�n(�x) (�v(�x) · ∇�xGk(�x, �y))ds�x

⎤
⎦ · �u(�y)ds�y

+
∫
�

⎡
⎣∫

�

�v(�x)
∂�xGk (�x, �y)

∂�n(�x)
ds�x

⎤
⎦ · �u(�y)ds�y. (2.14)

The integral in square brackets of the second term in (2.14) can be expressed via the double
layer potential Kk

� [20]: (
Kk

�f
)

(�y) :=
∫
�

∂�xGk (�x, �y)
∂�n(�x)

f (�x)ds�x, (2.15)

in a component-wise fashion for vector-valued functions.
For more information about the basic properties of Kk

� that allow the mentioned above
interchange of integrals in (2.14), see [20].

The other integral in square brackets can also be expressed in terms of MDLP Mk
� introduced

in [17] for each component of �n:(
Mk

��p)
(�y) :=

∫
�

∇�xGk(�x, �y) · �p(�x)ds�x. (2.16)

The component-wise approach mentioned here will be demonstrated in Section 4.

3 Analysis of MDLP

Here, we demonstrate the singularity of MDLP. To do so, we present the formula of integration
by parts on a surface in the first subsection. In the second one, we use this formula to prove the
mentioned property of MDLP.
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FIGURE 1. Illustration of the example on the square of unit edge.

3.1 Example

The singularity of Mk
S can be demonstrated with help of a simple example. Let S be a square

in OXY plane. The square belongs to the first quadrant on the OXY plane and the edge length
is equal to 1. Also, let k = 0 and �u = (1, 0, 0) in Cartesian coordinates. When k = 0, to check
the singularity of Mk

S is a trivial task of calculus – this is the only place in the article where we
allow this case to be true. It’s relatively easy to see that the same singularity occurs when k �= 0.
Consider the following relation for arbitrary k:

(
Mk

S �v)
(�y) =

∫
S

∇�xGk(�x, �y) · �v(�x)ds�x

=
∫
S

(
−e−k‖�x−�y‖ (�x − �y)

4π‖�x − �y‖3
− k

e−k‖�x−�y‖ (�x − �y)
4π‖�x − �y‖2

)
· �v(�x)ds�x

=
∫
S

e−k‖�x−�y‖
(

−1 + k‖�x − �y‖
4π‖�x − �y‖3

)
(�x − �y) · �v(�x)ds�x

=
∫
S

e−k‖�x−�y‖
(

ek‖�x−�y‖ − 1 − k‖�x − �y‖
4π‖�x − �y‖3

)
(�x − �y) · �v(�x)ds�x + (

M0
� �v)

(�y)

=
∫
S

Q (�x, �y)ds�x + (
M0

� �v)
(�y). (3.1)

One can see, that the function Q of �x and �y integrated in the first term of (3.1) is bounded when
�x → �y. Hence, the first-term integral is also bounded as a function of �y.

In Figure 2, we plot the function
(
M0

S �u)
(�y) at the points taken along the line parallel to the

direction of �u (along OX) and splitting the square in half to demonstrate the growth at the edges.
The line of the output and the square both can be seen in Figure 1.

https://doi.org/10.1017/S0956792522000183 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000183


Modified double layer potential 391

FIGURE 2. Demonstration of singularity for a particular case.

Here, we must mention that the integrand of the MDLP in (2.14) vanishes on a plane surface
because �u and �n become orthogonal. The analysis below is valuable for the proper consideration
of the edges and corners of surface geometry.

3.2 Integration by parts on a surface

Let S be a smooth bounded surface in R
3. Here and in the following we suppose that S = S = S ∪

∂S. Suppose that there exists a one-to-one mapping from R
2 to S with this map’s first and second

derivatives being continuous on R
2. Hence, every point on S is a function of two parameters q1

and q2, and the two vectors:

�rp = ∂�r
∂qp

, �r ∈ S, p = 1, 2,

are linearly independent.
The normal direction �n to the surface S is naturally defined as a normalised cross product of

these vectors:

�n = �r1 × �r2

|�r1 × �r2| .

The triplet of vectors �r1, �r2 and �n constitutes a reference frame which is always right.
It is customary to introduce the vector �τ defined on ∂S and tangential to it [9]:

�τ =
2∑

s=1

dqs

dt
�rs,
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where t is the parameter of length measured along the boundary curve. Finally, let �p be defined
in accordance with the formula:

�p = �τ × �n, (3.2)

notice that �p is directed to the exterior of S.

Theorem 3.1. Let �a be a continuously differentiable vector function defined on a smooth surface
S and be tangential to it everywhere on S. If the surface S can be mapped to a subdomain Q of
R

2 such that the map is continuously differentiable then the equality below is true:∫
S

∇ · �ads =
∫
∂S

�p · �adt, (3.3)

where t is the parameter of length of the boundary curve ∂S.

Proof. See [3] or [4]. �

Theorem 3.2. Let u be the scalar function differentiable on S and �a be just as before. Then∫
S

∇u · �ads = −
∫
S

u∇ · �ads +
∫
∂S

u�a · �pdt. (3.4)

The relation (3.4) is known as the integration by parts formula.

Proof. This result directly follows from Theorem 3.1 and from the fact that

∇ · (u�a) = ∇u · �a + u∇ · �a. �

3.3 Singularity of the MDLP

Here we prove the fact, which is illustrated in Subsection 3.1, for a more general case. Let the
surface S be as in the previous subsections. The integral in (2.16) is regular if the point-argument
�y is not on S. Otherwise, the integral in (2.16) is computed in the following sense: one must take
a ball centered at �y with radius r and subtract it from S. For the resulting integral, the limit should
be computed when r → 0. Let’s denote this ball as Br(�y), then using formula (3.4) we get:(

Mk
S\Br(�y)�u

)
(�y) =

∫
S\Br(�y)

∇�xGk(�x, �y) · �u(�x)ds�x

= −
∫

S\Br(�y)

Gk(�x, �y)
(∇�x · �u(�x)

)
ds�x

+
∮

∂

(
S\Br(�y)

) Gk(�x (t) , �y)
(�u(�x (t)) · �p(�x (t))

)
dt, (3.5)

where �p is the unit vector orthogonal to the normal vector �n at the points of ∂(S\Br(�y)) and it is
directed to the exterior of S\Br(�y). The mentioned means that(

Mk
S �u)

(�y) := lim
r→0

(
Mk

S\Br(�y)�u
)

(�y). (3.6)
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The use of formula (3.4) is justified because the function �u can be expressed in terms of �rs, s = 1, 2
only, so the normal component of ∇�xGk(�x, �y) is multiplied by zero.

Theorem 3.3. Let S be a simple analytic smooth open surface. Let �y ∈ ∂S and the boundary
curve ∂S be such that there exists a positive number ε for which all the spheres centered at �y
with their radiuses being smaller than ε have only two intersection points with ∂S. Also, for
the part of ∂S inside the ball Bε(�y) the diffeomorphism exists between the length of the curve
measured from �y to any point on ∂S ∩ Bε(�y) and the Euclidean distance measured between the
same points. The diffeomorphism must be a monotonous function, that is: when the Euclidean
distance decreases, the distance along the curve decreases as well. Under these conditions,
if �u is tangential to and differentiable on S and if the function �u(�x) · �p(�x) is continuous when
�x ∈ ∂S ∩ Bε(�y) and �u(�x) · �p(�x) does not change its sign in ∂S ∩ Bε(�y) then the absolute value of
the modified double layer potential computed at the point �y is infinitely large.

Proof. The first term on the right hand side of formula (3.5) has a form of the single layer
potential operator applied to the function ∇�x · �u(�x). The single layer potential is expressed as
follows [20]:

(
Ṽ k

S ω
)
(�y) =

∫
S

Gk(�x, �y)ω(�x)ds�x, (3.7)

where ω is a scalar function. The single layer operator is known to be weakly singular and
bounded [20] when �y ∈ ∂S and hence the limit:

lim
r→0

∫
�x∈S\Br(�y)

Gk(�x, �y)
(∇�x · �u(�x)

)
ds�x

= lim
r→0

(
Ṽ k

S\Br(�y)∇ · �u
)

(�y) = (
Ṽ k

S ∇ · �u)
(�y) (3.8)

exists and is finite. For the second term on the right hand side of formula (3.5), let’s choose an
arbitrary positive small number ε. Using the addition property we have∮

�x∈∂

(
S\Br(�y)

) Gk(�x, �y)
(�u(�x) · �p(�x)

)
dt

=
∫

�x∈∂(S\Br(�y)):|�x−�y|≥ε

• +
∫

�x∈∂(S\Br(�y)):|�x−�y|<ε

•. (3.9)

The second term on the right hand side of (3.9) is of a particular interest as the first term is just a
regular integral that definitely has a finite value.

Let τ be the parameter of length from the point �x to the point �y and t be the distance between
these points measured along the curve. By the conditions of the theorem, there exists a small
positive real number ε such that the function ∂t

∂τ
does not change its sign as well as the function

�u · �p. Also, the surface of Bε(�y) has a radius ε small enough so there are only two points of
intersection between the curve ∂S and the surface of Bε(�y). The same is true for the spherical
surface of Br(�y) because r → 0 and for the fixed value of ε we can consider the case of r < ε.
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We denote the points of integration along the two different parts of the curve as �x1 and �x2 as a
reminder that there are two points of intersection between the curve and ∂Bε(�y).

Let’s denote the points of intersection between the spherical surface of Br(�y) and the curve ∂S
as �ρ1 and �ρ2. The curve lying on S and connecting the points �ρ1 and �ρ2 along a curve-linear arch
of the boundary ∂ (S\Br(�y)) we denote as Carch. The distance from the points of Carch to the point
�y remains equal to r.

Carch belongs to the surface of Br(�y). Hence, we can project this curve onto a ball of unit radius.
We denote the projection curve as Cproj. Let α be the parameter of length along the projection
curve Cproj. Then dt

dα
= r. Hence, we get

lim
r→0

∫
�x(t)∈∂(S\Br(�y)):|�x−�y|<ε

Gk(�x (t) , �y)
(�u(�x (t)) · �p(�x (t))

)
dt

= lim
r→0

⎛
⎜⎝e−kr

4π

∫
Cproj

(�u(�x(t(α))) · �p(�x(t(α)))) dα

+
2∑

j=1

ε∫
r

e−kτ

4πτ

(�u(�xj(τ )) · �p(�xj(τ ))
) ∂t

∂τ
dτ

⎞
⎠ . (3.10)

The functions ∂t
∂τ

, �u and �p are continuous at the point �y and are not equal to zero. Also, ∂t
∂τ

is
bounded because the principal curvatures of S are bounded inside Bε(�y). As one can see, the
limit exists for the first term in (3.10) because this integral is regular at r = 0. The two remaining
terms have the same sign by the conditions of the theorem. We arrive to the conclusion now:

Cj = min
τ∈(0,ε)

∣∣∣∣ ∂t

∂τ
e−kτ

(�u(�xj(τ )) · �p(�xj(τ ))
)∣∣∣∣ > 0, j = 1, 2,

C = min{C1, C2} �= 0,∣∣∣∣∣∣limr→0

2∑
j=1

ε∫
r

∂t

∂τ

e−kτ

4πτ

(�u(�xj(τ )) · �p(�xj(τ ))
)

dτ

∣∣∣∣∣∣ > C

∣∣∣∣∣∣
ε∫

0

1

τ
dτ

∣∣∣∣∣∣ = ∞ (3.11)

�

Corollary 1. By choosing values of constants C̃1 and C̃2 one can find the upper bound of the
form:

C̃j = max
τ∈(0,ε)

∣∣∣∣ ∂t

∂τ
e−kτ

(�u(�xj(τ )) · �p(�xj(τ ))
)∣∣∣∣ > 0, j = 1, 2,

C̃ = 2 max
{

C̃1, C̃2

}
,

∣∣∣∣∣∣
2∑

j=1

ε∫
r

∂t

∂τ

e−kτ

4πτ

(�u(�xj(τ )) · �p(�xj(τ ))
)

dτ

∣∣∣∣∣∣ < C̃

∣∣∣∣∣∣
ε∫

r

1

τ
dτ

∣∣∣∣∣∣ . (3.12)

From this, we conclude that the MDLP has a logarithmic growth and therefore it’s integrable
in a singular sense.
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3.4 Weakly singular integral of MDLP

Let � be a subdomain in R
3. Also, let its boundary � = ∂� be composed out of the finite number

of surface pieces that are parametrisable in the sense of Theorem 3.1:

� =
N⋃

i=1

Si, (3.13)

where N is the number of surface elements constituting �. We note specifically that the
intersection of any two sets Si and Sj is either ∅, a curve or a single point but never a surface.

We are interested in the integral: ∫
Si

w(�y)
(
Mk

��u)
(�y)ds�y, (3.14)

where w is a scalar function continuous on Si. Substituting (3.5) into (3.14) we get:∫
Si

w(�y)
(
Mk

��u)
(�y)ds�y

=
∫
Si

w(�y)

⎛
⎜⎝− lim

r→0

∫
S\Br(�y)

Gk(�x, �y)
(∇�x · �u(�x)

)
ds�x

⎞
⎟⎠ds�y + J , (3.15)

where

J =
∫
Si

w(�y)

⎛
⎜⎜⎝lim

r→0

∮
∂

(
Sj\Br(�y)

) Gk(�x (t) , �y)
(�u(�x) (t) · �p(�x (t))

)
dt

⎞
⎟⎟⎠ds�y. (3.16)

By Theorem 3.3, the integration on Si (3.16) is singular. Hence, there are issues with numer-
ical integration of J because the most popular approaches to the numerical integration consider
the integrated function to be at least continuous. A better way of computing J would be to inter-
change the integrals in (3.16), so that the integration problem can be reduced to the known ones.
To do so, one can take a vicinity of ∂Sj that we denote as Bε

(
∂Sj

)
and ∂Bε

(
∂Sj

)
is a curved

pipe-like surface situated along the curve ∂Sj with the diameter equal to ε. Now, we can use the
additivity of the integral in (3.16) taken over Si:

J =
∫
Si

w(�y)

⎛
⎜⎜⎝lim

r→0

∮
∂

(
Sj\Br(�y)

) Gk(�x, �y)
(�u(�x) · �p(�x)

)
dt�x

⎞
⎟⎟⎠ds�y

=
∫

Si\Bε(∂Sj)

w(�y) lim
r→0

∮
∂

(
Sj\Br(�y)

) F
(�x (�t) , �y)

dtds�y

+
∫

Si
⋂

Bε(∂Sj)

w(�y) lim
r→0

∮
∂

(
Sj\Br(�y)

) F
(�x (�t) , �y)

dtds�y,

F(�x, �y) = Gk(�x, �y)
(�u(�x) · �p(�x)

)
. (3.17)
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The first term of summation in (3.17) has only regular integrals and hence the two integrals
are interchangeable. The second term in (3.17) has a weakly singular external integral (computed
for Si

⋂
Bε

(
∂Sj

)
) and by the corollary (1) it converges to zero with ε → 0. Using (3.7), we get

J =
∮
∂Sj

(�u(�x (t)) · �p(�x (t)))
(
Ṽ k

Si
w

)
(�x (t))dt. (3.18)

4 Method discussion and implementation notes

The integration of MDLP, as we demonstrated in this paper, can be reduced to the integration
of the single layer potential along a curve and on a surface. The techniques of the singular inte-
gration developed for numerical implementation are discussed in [14, 15, 8, 12] and [20]. The
numerical integration of continuous functions is also needed. Such methods can be found in [16].

We can substitute (3.18) into (2.14), we get

〈�v, Bk�u〉 =
∫
�

⎡
⎣∫

�

�v(�x) (�n(�x) · ∇�xGk(�x, �y))ds�x

⎤
⎦ · �u(�y)ds�y

−
∫
�

⎡
⎣∫

�

�n(�x) (�v(�x) · ∇�xGk(�x, �y))ds�x

⎤
⎦ · �u(�y)ds�y

=
∫
�

⎡
⎣∫

�

�v(�x) (�n(�x) · ∇�xGk(�x, �y))ds�x

⎤
⎦ · �u(�y)ds�y

−
∫
�

3∑
q=1

(
Mk

�

(�n · �cq

) �v)
(�y)

(
�cq · �u(�y)

)
ds�y, (4.1)

where �cq are the Cartesian basis unit vectors. Applying the results of the previous chapters, we
find

−
∫
�

3∑
q=1

(
Mk

�

(�n · �cq

) �v)
(�y)

(
�cq · �u(�y)

)
ds�y

=
∫
�

3∑
q=1

(
Ṽ k

�∇ · ((�n · �cq

) �v))
(�y)

(
�cq · �u(�y)

)
ds�y

−
N∑

i=1

∮
∂Si

3∑
q=0

((�n(�x) · �cq

)
(�v(�x) · �p(�x))

) (
Ṽ k

�

(
�cq · �u

))
(�x)dt�x. (4.2)

Formula (4.2) deals with integration of continuous functions on the integration domain. Hence,
these integrals can be computed numerically with help of integration scheme applicable to the
case of continuous functions.

5 About coupling with finite element method

To use the coupling with the finite element method (FEM), we exploited the concept of the
Steklov–Poincare operator variational formulation presented in [7].
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FIGURE 3. A ball with a coil centered at the same point.

In order to define the Steklov–Poincare integral operator, the operators Nk and Ck were defined
in [7, p. 47, formula (5.10)]:

(Nk�u) (�x) := γN ,�x∇�x ×
∫
�

Gk(�x, �y) (�u(�y) × �n(�y))ds�y, �x ∈ �, (5.1)

(Ck�u) (�x) := γD,�x∇�x ×
∫
�

Gk(�x, �y) (�u(�y) × �n(�y))ds�y − 1

2
�u(�x), �x ∈ �, (5.2)

If the function �u is the solution of (2.1) then(
Skγ

�
D �u)

(�x) = γN �u, (5.3)

where

Sk = Nk +
(

1

2
Id + Bk

)
A−1

k

(
1

2
Id − Ck

)
. (5.4)

The existence of the inverse operator A−1
k is proved in [7]. The corresponding variational problem

looks like this: 〈
Skγ

�
D �u, �v〉 = 〈γN �u, �v〉 , ∀�v ∈ H

− 1
2

⊥ (curl� , �) , (5.5)

where �v is the test function of the variational problem.
The coupling of the variational problem (5.5) with the finite element method for eddy current

problems is not a difficult task and it was presented in a number of works such as [18] and [22].
The operators Nk and Ck do not involve computation of integrals that cannot be seen as special

cases of the double layer potential and the single layer potential operators both computed either
for the scalar functions or vector functions in a component-wise fashion. To find out more about
these operators, see [7]. For more information about BEM-ECP, see [11].

6 Model problem

A model problem was presented in [17] to test convergence for the numerical approach
implemented in the context of BEM-ECP. Here, we solve the same problem to test our approach.

Let � be a conducting ball of radius a with an infinitely thin coil of radius b > a both centered
at the same point as it is illustrated by Figure 3.

The integral value of exciting current I is not zero at the points of the coil whereas the direction
of current is continuously tangential to the coil. The spherical coordinate system is defined by
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three parameters: r, ϕ, θ where r is the distance from the center of the ball, ϕ is the angle of
rotation around the axis perpendicular to the plane of the coil and θ is the angle between the
mentioned axis and the radius vector �x of the point where the value of �E is desired. The equality
θ = π

2 corresponds to the position of the coil. The analytic solution �E has only one non-zero
component Eϕ (r, θ) in the spherical coordinate system. Let EI

ϕ be the desired component of the

electric field �E inside the ball and EO
ϕ – outside the ball. The solution can be expressed via the

formulas [17, p. 87, formulas (6.28)–(6.34)]:

EI
ϕ(r, θ) = iω

∞∑
n=0

EI
n · r− 1

2 · J2n+ 3
2
(irk) · P1

2n+1(u), (6.1)

EO
ϕ (r, θ) = iω

∞∑
n=0

(
EO

n · r−2n−2P1
2n+1(u) − EC

n · r2n+1P1
2n+1(u)

)
, (6.2)

with

EO
n = EC

n a4n+3

iak
J

2n+ 1
2

(iak)

J
2n+ 3

2
(iak)

− 2n − 1 − μr (2n + 2)

iak
J

2n+ 1
2

(iak)

J
2n+ 3

2
(iak)

− 2n − 1 + μr (2n + 1)

, (6.3)

EI
n = EO

n · a−2n− 3
2 − EC

n · a2n+ 3
2

J2n+ 3
2
(iak)

(6.4)

EC
n = Ibμ0 (−1)n (2n − 1)!!

2n+2 (n + 1)!b2n+2
, (6.5)

u = cos(θ) , μ = μrμ0, (6.6)

where μ0 is the magnetic permeability of free space, μ is the magnetic permeability of the con-
ducting ball, Pm

n are the associated Legendre functions of the first kind, Jν are the Bessel functions
of the first kind.

The problem we solved contains two subdomains: the inside of the conducting ball and the
outside for which we specified a conductivity value σ0 = 0.005 (�m)−1 made small enough to
approximate the case of zero conductivity so that formula (2.8) would still make sense. The
parameters of the model problem under consideration are: I = 1000 A, ω = 2π10 kHz, a = 0.05
m and b = 0.065 m. The parameters of the conducting ball are: σ = 0.8 · 106 (�m)−1, μr = 10.0.

The coarse spherical mesh we used for the computation contains 234 nodes and 464 elements.
Its finer counterpart we used to test the approximation contains 946 nodes and 1888 elements.
The finest mesh we tested contains 3810 nodes and 7616 elements. These meshes are not
subdivisions of one another – they were constructed via making two times more steps in a
parameter space of the sphere with each refinement. The coarse, finer and finest meshes are
illustrated in Figure 4.

We used two types of numerical experiments. In the first one, the matrix of the conducting ball
was computed via the boundary element method. In the second one, the coupling with FEM was
exploited.
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FIGURE 4. coarse, finer and finest meshes.

FIGURE 5. Illustration of volume subdivision steps.

For the approach involving FEM, we used volume meshes with radial condensation of volume
element size directed to the spherical surface. The number of radial subdivisions Nr applied to
the volume mesh is equal to 4 for the coarse case, 8 for the finer case and 16 for the finest with the
parameter of condensation q equal to 3,

√
3, and 4

√
3 respectively. The radius of the ball (denoted

above as a) is equal to the following expansion:

a = Cr

p=Nr−1∑
p=0

qp, (6.7)

where the smallest (the first) term in the sum corresponds to the first step from the spherical
surface made towards the ball centre (for p = 0); Cr – the smallest step made from the spherical
surface. The step can be deduced in accordance with (6.8).

Cr = a(1 − q)

1 − qNr
, (6.8)

The illustration of the aforementioned steps is presented in Figure 5.
We compare the smallest step Cr from the spherical surface with the value of penetration depth

δ computed in accordance with (6.9):

δ =
√

2

σμω
. (6.9)
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In our case, this value is approximately equal to 1.78 mm. Cr for the coarse mesh is equal to
1.25 mm, for the finer mesh – 0.458 mm and for the finest – 0.198 mm.

In these experiments, we implemented the incomplete edge-associated basis functions used
both for FEM and BEM-ECP parts. Their edge-tangential components remain constant along the
points of the edges they are associated with. For more information about the edge-associated
vector basis applied to the FEM part, see [13, 5]. As for the case of the BEM-ECP part, see [17]
and [7].

We used a coil mesh with a square section that has 2 mm edge length and 40 sections to
approximate the round coil geometry. We used the boundary condition (6.10) applied to the thin
coil in order to simulate the source of current. It has the following form [7]:(

− 1

μ0
∇ × �E

)
× �n

∣∣∣∣
�c

= iω �H × �n∣∣
�c

, (6.10)

where �c is the coil surface, �n is the external normal vector defined on �c and the function �H is
chosen to be such that the equality: ∮

C

�H · �dl = I (6.11)

is true for all the loops C circumventing the coil. On the spherical surface along a meridian, we
computed the surface current Is from one pole to the other:

Is = σ
∣∣�E∣∣ √

2

2
. (6.12)

The numerical solutions and the analytical solutions are illustrated in Figures 6 and 8. The
corresponding values of numerical discrepancies divided by the maximum absolute value of the
analytical solution are presented in Figures 7 and 9.

We estimated the discrepancy numerically by taking Nϕ values of θ such that θn = n π
Nϕ

where
n = 0..Nϕ . We used these values to compute the relative error ε by formula (6.13).

ε :=

√√√√√√√
Nϕ∑

n=1

∣∣Is (a, θn) − Is
num (a, θn)

∣∣2

max
n=1,Nϕ

|Is(a, θn)|2
, (6.13)

where Is is the approximation computed as a truncated series in accordance with (6.1)–(6.5) and
(6.12), Is

num is the numerical solution obtained via one of the mentioned approaches. These values
are depicted in Table 1 for the mentioned numerical experiments.

The number of variables used in each mentioned computational approach is listed in Table 2.
The number of variables used for the computation on coil is equal to 480 for all the cases listed
in Table 2. It is constant because further subdivisions (with adjustments of the points to fit the
coil geometry) of the coil mesh did not influence the results.

We performed the direct integration of the MDLP implemented in accordance with the for-
mulas mentioned in [17] and we found no significant difference from our results. Hence, we
introduce a primitive test with a box to clearly demonstrate that the problem does occur – the
geometry is not smooth now.

The mentioned box is expressed as � = [[−0.5, 0.5] , [−0.5, 0.5] , [−0.5, 0.5]] (see Figure 10).
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FIGURE 6. surface current, BEM-ECP comparison.

FIGURE 7. values of relative discrepancy, BEM-ECP comparison.

The test solution to (2.1) with k = i is expressed as a function:

�u(�x) = 0 · �c1 + 0 · �c2 + cos(�x · �c1) �c3,

∇ × �u(�x) = 0 · �c1 + sin(�x · �c1) · �c2 + 0 · �c3, (6.14)

where �ci – Cartesian basis functions.
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FIGURE 8. surface current, BEM-ECP coupled with FEM.

FIGURE 9. values of relative discrepancy, BEM-ECP coupled with FEM.

Table 1. Values of ε computed for computational
methods applied to three different meshes

ε BEM-ECP Coupled approach

Coarse 0.40 1.86
Finer 0.25 0.38
Finest 0.12 0.16
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Table 2. Number of variables used for each computation

Number of variables BEM-ECP Coupled approach

Coarse 1176 9540
Finer 3264 75,672
Finest 11,616 613,008

FIGURE 10. Illustration of the box example.

Suppose the Neumann trace is known. Then, we solve the problem (5.5) to find an approximate
value of the Dirichlet trace in a finite subspace W M

⊥ using BEM-ECP.
The Dirichlet trace found by BEM-ECP is expressed in following terms:

γ �
D �u(�x) ≈

M∑
i=1

di�fi(�x), �fi ∈ W M
⊥ (6.15)

where M – is the number of the basis functions (and their associated edges). As before, the levels
of subdivision are denoted as x1, . . . , x8. For the cube, we used uniform meshes obtained by
the subdivision of one another. The x1 mesh of the cube is made out of 12 triangles.

The numerical discrepancy for the Dirichlet trace is listed in Table 3 and computed similarly
to (6.13) (we involve all the weights):

diff =
(∑M

i=1 (di − Di)
2∑M

i=1 D2
i

) 1
2

, (6.16)

where diff – is the relative numerical discrepancy, di – the decomposition weights (6.15) found
via BEM-ECP with or without the integration by parts approach, Di – the weights obtained for
the known solution via the least square method. In particular, Di are deduced as a result of the
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Table 3. Numerical comparison for a box where k = i

Levels of subdivision Diff, by parts integration Diff, direct integration

x1 0.038277 0.0412703
x2 0.017791 0.0203979
x4 0.00782615 0.0119067
x8 0.00305161 0.00974076

FIGURE 11. Illustration of the box example.

following minimisation problem:〈
M∑

i=1

Di�fi(�x) − γ �
D �u(�x),

M∑
i=1

Di�fi(�x) − γ �
D �u(�x)

〉
→ min, �fi ∈ W M

⊥ . (6.17)

In (6.17), the scalar product (2.11) produces only a non-negative real number, so the minimisa-
tion problem makes sense.

As one can see in Table 3, the loss of convergence does indeed occur for fine meshes and is
significantly larger than the one produced by the integration-by-parts approach.

We use the Stratton–Chu representation formula (2.6) to evaluate the solution on a segment
along the OX line inside the box. This segment is coloured green in Figure 11.

Let us denote the solution computed through the Stratton–Chu representation formula as �U –
for that, we use the value of the Dirichlet trace computed via BEM-ECP (Di weights for both the
direct and by-parts integrations of the MDLP). The discrepancy of the solution given along the
highlighted line in Figure 11 is illustrated in Figure 12.

As one can see, the discrepancy is significantly larger for the case of direct integration of
MDLP. The largest discrepancy is seen near the faces of the box.
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FIGURE 12. Discrepancy for the finest mesh; �U evaluated for both the direct and by-parts integrations of
the modified double layer potential.

FIGURE 13. Discrepancy for the finest mesh; �U evaluated for both the direct and by-parts integrations.

We also plot the Dirichlet trace discrepancy, expressed as γD

(�u(�x) − �U(�x)
) · �c3, along the green

segment belonging to the face with the normal vector directed opposite to the positive direction
of OX and aligned with the direction of OZ; the illustration of the position of the output segment
is given in Figure 13. The discrepancy itself is given in Figure 14.
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FIGURE 14. Discrepancy for the finest mesh – values are given along the segment illustrated in Figure 13;
�U evaluated for both the direct and by-parts integrations of the modified double layer potential.

7 Conclusions

The numerical experiments presented in this work showed that our approach to MDLP integra-
tion based on the integration-by-parts formula provides numerical convergence for the supplied
meshes.

Numerical experiments showed that our approach helps produce much better results at the
edges and corners of the model geometry than one can produce with the direct integration of the
MDLP.
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