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HOW LARGE IS THE JUMP
DISCONTINUITY IN THE DIFFUSION

COEFFICIENT OF A
TIME-HOMOGENEOUS DIFFUSION?

CHRISTIAN Y. ROBERT

ENSAE and Université de Lyon

We consider high-frequency observations from a one-dimensional time-homogeneous
diffusion process Y. We assume that the diffusion coefficient σ is continuously
differentiable in y, but with a jump discontinuity at some level y, say y = 0. We first
study sign-constrained kernel estimators of functions of the left and right limits of
σ at 0. These functions intricately depend on both limits. We propose a method to
extricate these functions by searching for bandwidths where the kernel estimators
are stable by iteration. We finally provide an estimator of the discontinuity jump
size. We prove its convergence in probability and discuss its rate of convergence. A
Monte Carlo study shows the finite sample properties of this estimator.

1. INTRODUCTION

In recent years, the broad availability of high-frequency intraday financial data has
led to a considerable collection of works on statistical modeling and inference for
jumps of time-continuous stochastic processes. However, methods for estimating
volatility jumps have not been as well developed from a statistical point of view.
Empirical evidence of jumps in the volatility process was first obtained using
econometric techniques developed for jumps in the price process and applied
to an observable volatility measure such as the index of implied volatility of
S&P 500 index options (VIX, Chicago Board Options Exchange Volatility Index;
see Todorov and Tauchen, 2011). Considering the question of whether price and
volatility jump together, Jacod and Todorov (2010) introduced left and right local
volatility estimators from the neighboring high-frequency price increments at the
time where a jump price is suspected. Bibinger and Winkelmann (2018) extended
their approach to take into account market microstructure. We refer readers to
Chapter 10.5 in Ait-Sahalia and Jacod (2014) for recent results on the almost sure
convergence of estimators of the locations of volatility jumps and on the stable
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convergence for jump sizes. The best achievable rate of convergence was shown
to be n1/4 where n is the number of price increments.

In this paper, we consider a stochastic process satisfying a time-homogeneous
stochastic differential equation (SDE) and are interested in the estimation of the
size of a discontinuity of the diffusion coefficient function. This discontinuity
may generate volatility jumps, but it is not possible to consider local volatility
estimators (in time) as proposed in Jacod and Todorov (2010) due to the intricate
structure of jump times which are strongly linked with the local time of the
diffusion process at the level of the discontinuity. It is necessary to consider the
local estimators in space, but not in time, and to take into account constraints on
the value of the process itself.

There exists a large econometric literature on the estimation of time-
homogeneous diffusion processes with jumps in various asymptotic setups when
the drift, diffusion coefficient, jump intensity, and conditional impact of a jump
satisfy local Lipschitz and growth conditions (they are very often assumed to be
at least twice continuously differentiable functions of the Markov state). Based
on n observations of the state variable in the time span [0,T], two asymptotic
setups are considered: infill asymptotics, where the distances between adjacent
discretely sampled observations asymptotically decrease and T is fixed, and long
span asymptotics, where the length of data increases as T tends to infinity. In
absence of the jump component, the nonparametric estimation of the diffusion
coefficient was first studied by Florens-Zmirou (1993) in an infill asymptotic setup,
and then the approach was refined and extended to long span asymptotics in Jiang
and Knight (1997), Stanton (1997), Bandi and Phillips (2003), and Renò (2008),
among others. In the presence of a finite activity doubly stochastic compound
Poisson jump part, the nonparametric estimation of the diffusion coefficient was
first considered by Bandi and Nguyen (2003) and Johannes (2004) in a long
span asymptotic setup. Mancini and Renò (2011) use the fact that it is possible
to disentangle the discontinuous part of the state variable through the squared
increments between observations not exceeding a suitable threshold function to
propose consistent asymptotic normal estimators in the presence of both finite and
infinite activity (finite variation) jumps.

In comparison, the estimation of time-homogeneous diffusion processes when
the drift and the diffusion coefficients may be discontinuous has been less studied.
However, many research areas are concerned with these types of diffusion pro-
cesses, e.g., geophysics (LaBolle et al., 2000), population ecology (Cantrell and
Cosner, 1999), and finance (Decamps, Goovaerts, and Schoutens, 2006; Rossello,
2012; Gairat and Shcherbakov, 2016).

In a recent paper in mathematical finance (Pigato, 2019), a local volatility model,
taking two possible values (σ− and σ+) depending on the value of the underlying
price with respect to a fixed threshold, has been considered. It was proved that
when the threshold is taken at the money (ATM), the ATM implied volatility skew
explodes for short maturities. This phenomenon has been observed for several
implied volatility surfaces on financial markets. More precisely, it was established
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that as the time to maturity T tends to 0, the skew is equivalent to

−
√

π

2
θ

1√
T

, for T ↓ 0,

where θ = (σ− −σ+)/(σ− +σ+) is the relative jump size of the discontinuity. The
European call option price of this model strongly depends on the values σ−, σ+ as
well as on their difference δ = σ− −σ+. Therefore, the question of a discontinuity
in the diffusion coefficient and its size is important since it can provide a possible
explanation of this empirically stylized fact.

Lejay and Pigato (2018) recently facilitated the study of the parameters of the
oscillating Brownian motion (OBM) for which the diffusion coefficient can take
only two values (see Keilson and Wellner, 1978). Lejay, Mordecki, and Torres
(2013, 2019) investigated the estimation of the parameter of the skew Brownian
motion (SBM) which is intrinsically connected to the oscillating Brownian motion
by a simple increasing transformation.

As explained above, we focus on a stochastic process satisfying a time-
homogeneous SDE whose diffusion coefficient is continuously differentiable in
the values of the process, but with a jump discontinuity at some level. We first
study estimators of the right and left limits (in space) of the diffusion coefficient
at the discontinuity. However, this approach, which was developed in Lejay and
Pigato (2018), cannot be used to estimate these limits because their estimators
are built using the whole path of the diffusion process. In contrast, we have to
focus on the process when it takes values around the level of the discontinuity.
Therefore, we introduce kernel estimators. Nevertheless, these estimators are only
able to estimate the right and left limits up to constant factors. Unfortunately,
these factors depend on the bandwidth parameters of the kernels as well as
the right and left limits themselves. This issue leads us to propose an original
method that searches for bandwidth parameters for which the kernel estimators
are stable by iteration and from which it is possible to infer the value of the ratio
of both right and left limits, and then the size of the discontinuity of the diffusion
coefficient.

The remainder of this paper is organized as follows. Section 2 introduces our
settings, our estimators, and assumptions for the time homogeneous diffusion to
be used in the rest of the paper. In Section 3, we explain how to reduce the study
of the asymptotic convergences of the estimators of the right and left limits (in
space) of the diffusion coefficient at the discontinuity to the case of the SBM.
Some parts of our proofs require the adaptation to the SBM of results on the
convergence toward the local time given in Jacod (1998), although some of them
have already been extended in Lejay et al. (2019). We shall provide a new central
limit theorem for some local time-related statistics for the SBM. In Section 4,
we prove the convergence in probability of our estimator and discuss its rate of
convergence. We also provide a test of whether there is a discontinuity in the
diffusion coefficient. Section 5 introduces a family of alternative estimators and
contains a Monte Carlo study that provides evidence of the good finite sample
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properties of our estimators. Proofs are deferred to Section 7. Additional proofs
can be found in the Supplementary Material.

2. SETTINGS, ESTIMATORS, AND ASSUMPTIONS

Consider a filtered probability space (�,F, (Ft)t≥0 ,P) on which a process Y is
defined as the (pathwise unique) solution of the following one-dimensional time-
homogeneous SDE:

dYt = b(Yt−)dt +σ (Yt−)dWt +
∫

|x|≥1
G(Yt−,x)N (dt,dx), Y0 = y0, (1)

where (Wt)t≥0 is a standard Brownian motion, N is a Poisson random measure
on [0,∞)×R\{0} associated to a Lévy process (with a finite compensator), b is
a bounded Borel measurable function, σ is a continuously differentiable positive
function on R\{0} such that limy↗0− σ (y) = σ− < ∞, limy↘0+ σ (y) = σ+ < ∞
(moreover, limy↗0− σ ′ (y) and limy↘0+ σ ′ (y), where σ ′ denotes the first derivative
of σ on R\{0}, exist and are finite), and G is a Borel measurable function such that
the mapping y → G(y,x) is continuous for all |x| ≥ 1. We denote δ = σ− −σ+ as
the difference between the left and right limits of σ at 0.

The existence and pathwise uniqueness of the solution to equation (1) is derived
from the interlacing structure of the arrival times of the compound Poisson∫
|x|≥1 xN (dt,dx) (following the approach proposed in Section 6 of Applebaum

(2009) and the existence of unique and strong nonexploding solutions between
these arrival times by using the arguments developed by Nakao (1972) or LeGall
(1984)). It is noteworthy that such a construction is possible because this is the case
of “finite activity” jumps. The more general case taking into account jumps with
infinite activity is considered in Applebaum (2009) but only under the assumption
that σ is Lipschitz (see Section 6.2 in Applebaum (2009)).

Process Y is assumed to be observed at discrete times i/n, i = 0, . . . ,n. Let c
be a positive constant that will be considered as a bandwidth size. We first study
“sign-constrained” kernel statistics (based on the absolute values of the increments
of Y) that seem to be natural estimators of the right and left limits (in space)
of the diffusion coefficient at the discontinuity (up to the constant factor

√
2/π

which is the mean of the absolute value of a standard Gaussian random variable).
However, it is important not to include jumps of Y in these estimators. We introduce
a sequence of deterministic and positive thresholds un such that un = γ n−� where
γ > 0 and � ∈ (0,1/2) to disentangle jumps from the diffusive component. The
estimators of the right and left limits are then defined, respectively, by

An
− (c,un) =

∑n
i=1 I{−c/

√
n<Y(i−1)/n<0,Yi/n<0,|Yi/n−Y(i−1)/n|≤un}

√
n|Yi/n −Y(i−1)/n|∑n

i=1 I{−c/
√

n<Y(i−1)/n<0,Yi/n<0,|Yi/n−Y(i−1)/n|≤un}
,

An
+ (c,un) =

∑n
i=1 I{0<Y(i−1)/n<c/

√
n,Yi/n>0,|Yi/n−Y(i−1)/n|≤un}

√
n|Yi/n −Y(i−1)/n|∑n

i=1 I{0<Y(i−1)/n<c/
√

n,Yi/n>0,|Yi/n−Y(i−1)/n|≤un}
,
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if the denominators are positive; otherwise, they are equal to 0. We describe these
kernel estimators as sign-constrained estimators because we only consider the
increments of Y, i.e., Yi/n − Y(i−1)/n, when both Y(i−1)/n and Yi/n have the same
sign. Note also that the kernels are therefore asymmetric.

We denote the continuous part of Y by Yc, that is, Yc
t = Yt −

∫ t
0

∫
|x|≥1 G(Yt−,x)

N (dt,dx), and assume that σ is bounded (otherwise, it is possible to use a
localization procedure). Then,

E[|Yc
i/n −Yc

(i−1)/n|p] ≤ Kpn−p/2,

for all p ≥ 1 (by Burkholder–Davis–Gundy inequalities), and Markov’s inequality
yields

n∑
i=1

P
(|Yc

i/n −Yc
(i−1)/n| > un

)≤ Kpn−p/2+1/up
n.

This quantity goes to 0, as n → ∞, if p > 1/(1/2 −�). It follows by the Borel–
Cantelli lemma that, for all n large enough, |Yc

i/n −Yc
(i−1)/n| ≤ un, for all i = 1, . . . ,n.

Let us denote T1, . . . ,Tq as the q arrival times of the compound Poisson process∫
|x|≥1 xN (dt,dx) over [0,1], and νq = infj=1,...,q |YTj−| > 0. We now impose the

following mild regularity condition: the jump marks of Y almost surely do not
fall on the boundary of [0,1] ×R\{0} (see, e.g., Proposition 1 in Li, Todorov,
and Tauchen (2017)). Given this assumption, when n is large enough, among all
intervals ((i−1)/n,i/n], exactly q of them contain a single jump. All others contain
no jumps at all, and Yi/n −Y(i−1)/n = Yc

i/n −Yc
(i−1)/n. Since νq > 0, we also have that,

for all n large enough, with probability approaching 1, any interval ((i−1)/n,i/n]
for which |Y(i−1)/n| < c/

√
n will contain no jumps. It is therefore possible to retain

only those intervals where there are no jumps. At the end of the Supplementary
Material, we provide a discussion that shows that the study of the asymptotic
behavior of An− (c,un) and An+ (c,un) is based on the same methodology as if there
were no jumps. The developments of proofs are actually minimally impacted by
the presence of a finite activity jump component.

For simplicity of exposition, we therefore assume that process Y is defined as the
(pathwise unique) solution of the following one-dimensional time-homogeneous
SDE:

dYt = b(Yt)dt +σ (Yt)dWt, Y0 = y0. (2)

That is, we assume that the finite activity jump component of Y in equation (1) is
equal to 0. The estimators An− (c,un) and An+ (c,un) are then replaced by

An
− (c) =

∑n
i=1 I{−c/

√
n<Y(i−1)/n<0,Yi/n<0}

√
n|Yi/n −Y(i−1)/n|∑n

i=1 I{−c/
√

n<Y(i−1)/n<0,Yi/n<0}
,

An
+ (c) =

∑n
i=1 I{0<Y(i−1)/n<c/

√
n,Yi/n>0}

√
n|Yi/n −Y(i−1)/n|∑n

i=1 I{0<Y(i−1)/n<c/
√

n,Yi/n>0}
.
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Using volatility estimators based on the auxiliary parameter c may appear as
unusual. However, the estimators An− (c) and An+ (c) will not be able to estimate
what they have intended to estimate, i.e., the right and left limits of the diffusion
coefficient at the discontinuity. The auxiliary parameter c is necessary to achieve
this goal and will be explained later. Finally, note that our approach differs from
the approach developed by Lejay and Pigato (2018). In this study, it is assumed that
the diffusion coefficient is constant over (−∞,0) and (0,∞) and both values of
this function are estimated considering the square increments of the negative and
positive parts of the process. We need to consider increments for which Y(i−1)/n

is close to the origin (i.e., in the interval (−c/
√

n,c/
√

n)) to locally estimate
the right and left limits, and the auxiliary parameter c plays a central role. This
local approach substantially changes the asymptotic properties of our estimators
compared to Lejay and Pigato (2018).

Let

θ = σ− −σ+
σ− +σ+

∈ (−1,1)

be the “relative” jump size of the discontinuity. For c > 0, we define

ϕθ (c) =
∫ c

0

[
E[|Z|I{Z>−x}]+ θE[|Z −2x|I{Z>x}]

]
dx∫ c

0

[
�̄(−x)+ θ�̄(x)

]
dx

,

where Z is a standard Gaussian random variable with cumulative and survival
distribution functions denoted by � and �̄, respectively. We will prove that, as
n → ∞,

An
− (c)

ucpc�⇒ Aθ,− (c) := σ− ×ϕ−θ (c/σ−) and

An
+ (c)

ucpc�⇒ Aθ,+ (c) := σ+ ×ϕθ (c/σ+),

where
ucpc�⇒ means that there is uniform convergence in probability over compact

sets of R
+\{0}. However, the constants ϕ−θ (c/σ−) and ϕθ (c/σ+) cannot be

estimated directly since they depend on σ− and σ+. We propose a method that
is based on the fixed points of Aθ,− and Aθ,+ to find particular values, c− and
c+, for which the ratio Aθ,− (c−)/Aθ,+ (c+) only depends on θ and not on σ−
or σ+.

For θ ∈ (−1,1), we denote sθ as the unique fixed point of ϕθ , i.e., the constant
that satisfies ϕθ (sθ ) = sθ . The fixed point of Aθ,− (resp. Aθ,+) is denoted as cθ,−
(resp. cθ,+) and satisfies cθ,− = σ− × s−θ (resp. cθ,+ = σ+ × sθ ).

Let us now define the function θ �→ H (θ) from (−1,1) to R
+ as

H (θ) := cθ,−
cθ,+

= 1+ θ

1− θ

s−θ

sθ

.
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Figure 1. Graphical representation of the function log(H).

H is a positive, increasing, and one-to-one function on (−1,1) (see Section 7.9 and
Figure 1), and satisfies

log(H (−θ)) = − log(H (θ)), θ ∈ (−1,1) .

Therefore, we define estimators of cθ,−, cθ,+, and θ as follows:

cn
− = arg min

An−(c)>0
{|An

− (c)− c|} and cn
+ = arg min

An+(c)>0
{|An

+ (c)− c|},

and

θ̂n = H−1 (cn
−/cn

+
)

.

The estimators of the right and left limits of the diffusion coefficient at the
discontinuity are finally given by

σ̂ n
− = cn

−/s−θ̂n
and σ̂ n

+ = cn
+/sθ̂n

,

and an estimator of δ is then naturally derived as

δ̂n = σ̂ n
− − σ̂ n

+.

The choice of the absolute values of the increments of Y has been made to provide
theoretical arguments on the existence and uniqueness of the fixed point sθ , which
is the key element for the construction of the estimators of σ− and σ+. However,
it is possible to propose alternative estimators based on other powers of absolute
values of the increments of Y. Such estimators are introduced in Section 5, where
we conduct a Monte Carlo study and discuss the finite sample properties of δ̂n as
well as of the other alternative estimators.
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3. REDUCTION TO THE SBM CASE AND ASYMPTOTIC BEHAVIORS
OF SOME LOCAL TIME-RELATED STATISTICS

3.1. Reduction to the SBM Case

It is usual for diffusion processes to consider twice differentiable transformation
functions and the Ito formula. In the present case of a discontinuous diffusion
coefficient, the considered transformation function will be written as the difference
of two convex functions (and therefore will not be necessarily a twice differentiable
function everywhere) in order to use the generalized Ito–Tanaka–Meyer formula
for continuous semimartingales (see, e.g., Theorem 70 in Protter (2005) or The-
orem 7.1 in Karatzas and Shreve (2000)). More specifically, let us consider the
function S, which is defined as

S(y) =
∫ y

0

1

σ(x)
dx, y ∈ R\{0}, S(0) = 0.

This transformation function is well known (Lamperti transform) and is used to
obtain a diffusion coefficient equal to 1. Note that, for y ∈ R\{0},

S′(y) = 1

σ(y)
, S′′(y) = − σ ′(y)

σ 2(y)
.

It follows that S may be written as the difference of two convex functions (see,
e.g., Problem 6.24, Chapter 3, in Karatzas and Shreve (2000)).

For a process X with continuous paths, we denote L (X) as its symmetric local
time at level 0, which is given by

Lt (X) = |Xt|− |X0|−
∫ t

0
sgn(Xs)dXs,

where sgn(x) = 1 if x > 0, = −1 if x < 0, and = 0 if x = 0.

PROPOSITION 1. By the Ito–Tanaka–Meyer formula for continuous semi-
martingales,

S(Yt) = S(y0)+
∫ t

0
a(Ys)ds+Wt + θLt (S(Y)),

where

a(y) =
(

b(y)

σ (y)
− 1

2
σ ′(y)

)
I{y�=0}.

Let Xt := S(Yt), x0 := S(y0), and Lt := Lt (S(Y)) = Lt (X), and assume that b(y) =
σ ′(y)σ (y)I{y�=0}/2. Then,

Xt = x0 +Wt + θLt (3)

is an SBM (see Lejay (2006) for a presentation of the properties of the SBM as
well as various ways to construct this process).
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We now follow the same arguments as developed in Section 2 of Jacod (1998)
to reduce the study of the asymptotic behaviors of local time-related statistics for
Y to the case of the SBM X.

Let (Gt)t≥0 be the filtration generated by Y. First, one may assume that Ft = Gt

and that it is possible to replace the original space with the canonical space. Second,
if the asymptotic results for the convergence of local time-related statistics hold
for a given pair (σ,b) (satisfying the assumptions given in Section 2), then they
hold for any other pair (σ,b̃). As a consequence, we can choose, without loss of
generality,

b(y) = 1

2
σ ′(y)σ (y)I{y�=0}

such that Xt = S(Yt) is an SBM. Third, if the asymptotic results hold for σ ,
1/σ , σ ′ bounded, they also hold without the boundedness of σ , 1/σ , σ ′, via a
localization procedure. We will therefore assume that σ , 1/σ , σ ′ are thereafter
bounded functions.

Now, we remark that

An
− (c) =

∑n
i=1 I{S(−c/

√
n)<X(i−1)/n<0,Xi/n<0}

√
n
∣∣S−1

(
Xi/n

)−S−1
(
X(i−1)/n

)∣∣∑n
i=1 I{S(−c/

√
n)<X(i−1)/n<0,Xi/n<0}

,

An
+ (c) =

∑n
i=1 I{0<X(i−1)/n<S(c/

√
n),Xi/n>0}

√
n
∣∣S−1

(
Xi/n

)−S−1
(
X(i−1)/n

)∣∣∑n
i=1 I{0<X(i−1)/n<S(c/

√
n),Xi/n>0}

,

where S−1 denotes the inverse function of S. For X(i−1)/nXi/n > 0, using the
Lagrange form in the remainder of Taylor’s theorem, we obtain

S−1
(
Xi/n

)−S−1
(
X(i−1)/n

)= σ
(
Yi,n

)(
Xi/n −X(i−1)/n

)
,

where Yi/n ∧Y(i−1)/n ≤ Yi,n ≤ Yi/n ∨Y(i−1)/n, and

S
(−c/

√
n
)= − 1

σ (un)

c√
n

and S
(
c/

√
n
)= 1

σ (vn)

c√
n
,

where −c/
√

n ≤ un ≤ 0 and 0 ≤ vn ≤ c/
√

n. Therefore, we have the following
approximations when n is large:

An
− (c) � σ−Bn

− (c/σ−) and An
+ (c) � σ+Bn

+ (c/σ+),

where

Bn
− (c) =

∑n
i=1 I{−c/

√
n<X(i−1)/n<0,Xi/n<0}

√
n
∣∣Xi/n −X(i−1)/n

∣∣∑n
i=1 I{−c/

√
n<X(i−1)/n<0,Xi/n<0}

,

Bn
+ (c) =

∑n
i=1 I{0<X(i−1)/n<c/

√
n,Xi/n>0}

√
n
∣∣Xi/n −X(i−1)/n

∣∣∑n
i=1 I{0<X(i−1)/n<c/

√
n,Xi/n>0}

.
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More precisely, we will prove (see the proof of Corollary 1) that

n1/4
∣∣An

− (c)−σ−Bn
− (c/σ−)

∣∣ ucpc�⇒ 0 and n1/4
∣∣An

+ (c)−σ+Bn
+ (c/σ+)

∣∣ ucpc�⇒ 0.

Now, we focus on local time-related statistics for the SBM.

3.2. Asymptotic Behaviors of Local Time-Related Statistics
for the SBM

We assume that X is the SBM defined as the strong solution of equation (3) and
that θ is a constant in (−1,1). The transition density of the SBM is given by

pθ (t,x,y) = p(t,x− y)+ sgn(y)θp(t,|x|+ |y|),

where p(t,x) = (2π t)−1/2 exp
(−x2/(2t)

)
(see Walsh (1978)). Note that the SBM

presents the same scaling property as Brownian motion.
The joint probability density function (pdf) of (Xt,Lt) given that X0 = x0, denoted

as f θ
x0,Xt,Lt

(x,l), has been entirely characterized in Corollary 3.3 in Appuhamillage
et al. (2011a) (see also Appuhamillage et al. (2011b)). Let us, for example, provide
the pdf when x0 = 0:

f θ
0,Xt,Lt

(x,l) =
⎧⎨
⎩

2α(l+x)√
2π t3

exp
(
− (l+x)2

2t

)
, if x ≥ 0,l > 0,

2(1−α)(l−x)√
2π t3

exp
(
− (l−x)2

2t

)
, if x ≤ 0,l > 0,

(4)

where α = (1+ θ)/2. It is deduced that the pdf of Lt is given by

f θ
0,Lt

(l) = 2√
2π t

exp

{
− l2

2t

}
,

and we observe that it does not depend on θ . In particular, Eθ
0 [L1] = √

2/π and
E

θ
0

[
L2

1

]= 1, where Eθ
x denotes the expectation of X given X0 = x, when the initial

condition has to be explained.
In this section, we first provide Propositions 1 and 2 of Lejay et al. (2019) that

extend results of Theorems 1.1 and 1.2a, respectively, of Jacod (1998) for the SBM,
and propose an extension when also considering the increments of the local time
L. Let us first introduce some notations. For a Lebesgue-integrable function f on
R, we let λ(f ) = ∫

f (x)dx and

λθ(f ) = (1+ θ)

∫ +∞

0
f (x)dx+ (1− θ)

∫ 0

−∞
f (x)dx.

For a Borel function f on R and γ ≥ 0, let βγ (f ) = ∫ +∞
−∞ |x|γ |f (x)|dx. Let g be a

Borel function on R, h be a Borel function on R
2, and f be a Borel function on R

3,
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and define

V(g)n
t =

�nt�∑
i=1

g
(√

nX(i−1)/n
)
,

U(h)n
t =

�nt�∑
i=1

h
(√

nX(i−1)/n,
√

n(Xi/n −X(i−1)/n)
)
,

T(f )n
t =

�nt�∑
i=1

f
(√

nX(i−1)/n,
√

n(Xi/n −X(i−1)/n),
√

n(Li/n −L(i−1)/n)
)

.

Finally, we let

Hθ,h (x) =
∫

pθ (1,x,y)h(x,y− x)dy = E
θ
x [h(x,X1 − x)],

Gθ,f (x) =
∫

f θ
x,X1,L1

(y,l) f (x,y− x,l)dydl = E
θ
x [f (x,X1 − x,L1)] .

We also introduce the following four conditions.

Condition 1. The function g is bounded on R and β2 (g) < ∞.

Condition 2. The function h is a Borel function on R
2 such that the functions

Hθ,h, Hθ,h2 satisfy Condition 1.

Condition 3. The function f is a Borel function on R
3 such that the functions

Gθ,f , Gθ,f 2 satisfy Condition 1.

Condition 4. The function h is a Borel function on R
2 such that |h(x,y) | ≤

h̄(x)ea|y|, where a ∈ R, the functions x → h̄(x) and x → |x|h̄(x) are positive and
bounded on R, and βγ (h̄) < ∞, for some γ > 4.

We can now provide the following results for the ucpt convergence (in time) of
the local time related statistics V(g)n

t , U(h)n
t , and T(f )n

t following Propositions 2.4
and 2.7 in Lejay et al. (2019).

PROPOSITION 2. (i) Let g be a Borel function on R satisfying Condition 1.
Then, as n → ∞, we obtain

1√
n

V(g)n
t

ucpt�⇒ λθ (g)Lt.
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(ii) Let h be a Borel function on R
2 satisfying Condition 2. Then, as n → ∞, we

obtain

1√
n

U(h)n
t

ucpt�⇒ λθ(Hθ,h)Lt.

(iii) Let f be a Borel function on R
3 satisfying Condition 3. Then, as n → ∞, we

obtain

1√
n

T(f )n
t

ucpt�⇒ λθ (Gθ,f )Lt.

Let us now discuss the rate of convergence of the statistic U(h)n
t /

√
n in the case

when λθ(Hθ,h) = 0, and the weak limit of the normalized statistic. Some additional
notations are necessary. We denote Pθ = (

Pθ
t

)
t≥0 as the semigroup of the SBM

with parameter θ : Pθ
t f (x) = ∫

pθ (t,x,y) f (y)dy, where f is a Lebesgue-integrable
function. Note that λθ is the invariant measure of this semigroup. If λθ(f ) = 0,
we let

Fθ (f )(x) =
∞∑

j=1

Pθ
j f (x),

which is well defined if βθ
2 (f ) < ∞ since the series is absolutely convergent by

equation (2.4) in Lemma 2.1 in Lejay et al. (2019). Let us now define

�h (x) = Fθ (Hθ,h)(x)

and, for a Lebesgue-integrable function f,

H̄θ,h,f (x) = E
θ
x [(h(x,X1 − x) f (X1))] =

∫
pθ (1,x,y)h(x,y− x)f (y)dy.

We can also define a bilinear and nonnegative function ηθ in the following way:

ηθ (h,h̃) = λθ

(
Hθ,hh̃ + H̄θ,h,�h̃

+ H̄θ,h̃,�h

)
,

where h and h̃ satisfy, respectively, λθ (Hθ,h) = 0 and λθ(Hθ,h̃) = 0, and Condition
4. The fact that ηθ exists is not obvious (see Lemma 1) and that it is nonnegative
follows from the fact that this quantity is a limit of nonnegative numbers (see the
proof of Proposition 3 as well as the remark at the top of page 511 in Jacod (1998)).

Following Jacod (1998), we expect a rate of convergence of n1/4. Let h =(
hi
)

1≤i≤d be a d-dimensional measurable function such that, for i = 1, . . . ,d,

λθ(Hθ,hi) = 0, and let U(h)n = (
U(hi)n

)
1≤i≤d. Therefore, we consider

Zn = 1

n1/4
U(h)n

as an element of E, the space of càdlàg functions in R
d endowed with the Skorohod

topology.
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Before stating the result, we need to recall the notion of stable convergence,
which was introduced in Renyi (1963). Let E be a Polish space, Zn be a sequence
of E-valued random variables defined on the same probability space (�,F,P),
G be a sub-σ -field of F , and Z be an E-valued random variable defined on an
extension, (�̃,F̃,P̃). Then we state that Zn converges G-stably to Z (and write

Zn
G−stably�⇒ Z) if

lim
n→∞E[Uf (Zn)] = Ẽ[Uf (Z)]

for all bounded continuous functions f on E and all bounded G-measurable random
variables U. This notion of convergence is stronger than convergence in law—but
weaker than convergence in probability.

PROPOSITION 3. Assume that hi, i = 1, . . . ,d, are bounded Borel functions on
R

2 such that λθ (Hθ,hi) = 0, i = 1, . . . ,d, and satisfy Condition 4. Then,

Zn G1−stably�⇒ Z,

where Z is defined on an extension of the space (�,G1,P) and is a G1-conditional
Gaussian continuous martingale with bracket〈
Zi,Zj

〉= ηθ

(
hi,hj

)
L.

Note that Proposition 3 is an extension of Theorem 1.2(ii-a) in Jacod (1998) to
the case of the SBM when λθ(Hθ,hi) = 0, for i = 1, . . . ,d. Recently, Mazzonetto
(2021) established a more general result (without assuming that λθ(Hθ,hi) = 0)
using the same type of approach as proposed in Jacod (1998).

4. ASYMPTOTIC PROPERTIES OF THE ESTIMATORS AND A TEST
FOR DISCONTINUITY IN THE DIFFUSION COEFFICIENT

We now present the asymptotic properties of the estimators of θ , σ+, σ−, and δ.
Regardless of the method that is used, estimating these parameters on the basis
of observations within the time interval [0,1] is of course possible only if Y (or
X) visits the value 0 (where σ is discontinuous) before time 1. Thus, we consider
estimating the parameters only if we are inside the following equivalent subsets
of �:

�Y
0 = {ω : L1 (Y) (ω) > 0} = �X

0 = {ω : L1 (X)(ω) > 0} .

Assuming, for example, that y0 = 0 ensures that � = �Y
0 = �X

0 .
We first study the ucpc convergence of Bn− (c) and Bn+ (c). Actually, we obtain

Bn
− (c) = U(hc,σ−)n

t

U(hc,k−)n
t

and Bn
+ (c) = U(hc,σ+)n

t

U(hc,k+)n
t
,
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where

hc,σ− (x,y) = I{−c<x<0,y+x<0}|y|, hc,k− (x,y) = I{−c<x<0,y+x<0},
hc,σ+ (x,y) = I{0<x<c,y+x>0}|y|, hc,k+ (x,y) = I{0<x<c,y+x>0}.

By using Proposition 2, we deduce the following result.

PROPOSITION 4. As n → ∞, we obtain

Bn
− (c)

ucpc�⇒ λθ(Hθ,hc,σ−)

λθ (Hθ,hc,k−)
= ϕ−θ (c) and Bn

+ (c)
ucpc�⇒ λθ(Hθ,hc,σ+)

λθ (Hθ,hc,k+)
= ϕθ (c),

in restriction to the set �X
0 .

Let us now present some properties of ϕθ .

PROPOSITION 5. For θ ∈ (−1,1), there exists a unique sθ such that ϕθ (sθ ) =
sθ . Moreover, θ → sθ is a differentiable function on (−1,1).

Let us finally introduce two empirical functions that depend on θ

σ n
− (θ) = s−1

−θAn
−
(
cθ,−

)
and σ n

+ (θ) = s−1
θ An

+
(
cθ,+

)
.

These functions converge in probability, respectively, to σ− and σ+. We derive
from Propositions 4 and 5 the following results.

PROPOSITION 6. As n → ∞,

An
− (c)

ucpc�⇒ Aθ,− (c) and An
+ (c)

ucpc�⇒ Aθ,+ (c),

in restriction to the set �Y
0 . Therefore, as n → ∞,

σ n
− (θ)

P→ σ− and σ n
+ (θ)

P→ σ+,

in restriction to the set �Y
0 . Moreover, as n → ∞,

cn
−

P→ cθ,− and cn
+

P→ cθ,+,

and

θ̂n
P→ θ , σ̂ n

−
P→ σ−, σ̂ n

+
P→ σ+, δ̂n P→ δ,

in restriction to the set �Y
0 .

We were not able to provide a central limit theorem for
(
σ̂ n−,σ̂ n+

)
. There-

fore, we only provide a central limit theorem for
(
σ n− (θ),σ n+ (θ)

)
. The main

reason for this occurrence is that we are only able to provide such a limit
theorem for

(
Bn− (c−),Bn+ (c+)

)
(c− and c+ being fixed), but not for

((
Bn− (c1),

Bn+ (c2)
))

(c1,c2)∈(0,∞)×(0,∞)
when considered as a multiparameter process because

we failed to prove some necessary tightness conditions for this process.
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Let

hc−,θ,− (x,y) = I{−c−<x<0,y+x<0} (|y|−ϕ−θ (c−)),

hc+,θ,+ (x,y) = I{0<x<c+,y+x>0} (|y|−ϕθ (c+)) .

PROPOSITION 7. As n → ∞, we have

n1/4

(
Bn− (c−)−ϕ−θ (c−)

Bn+ (c+)−ϕθ (c+)

)
G1−stably�⇒ Tθ (c−,c+),

in restriction to the set �X
0 , where Tθ (c−,c+) is defined on an extension of the space

(�,G1,P) and is a G1-conditional centered Gaussian random vector with variance
given by

L−1
1

(
σ11,θ (c−) σ12,θ (c−,c+)

σ21,θ (c−,c+) σ22,θ (c+)

)
,

where

σ12,θ (c−,c+) = σ21,θ (c−,c+) = λ−1
θ (Hθ,hc−,k−)λ−1

θ (Hθ,hc+,k−)

×λθ

(
Hθ,hc−,θ,−hc+,θ,+ + H̄θ,hc−,θ,−,�hc+,θ,+ + H̄θ,hc+,θ,+,�hc−,θ,−

)
,

σ11,θ (c−) = λ−2
θ (Hθ,hc−,k−)λθ

(
Hθ,h2

c−,θ,−
+2H̄θ,hc−,θ,−,�hc−,θ,−

)
,

σ22,θ (c+) = λ−2
θ (Hθ,hc+,k+)λθ

(
Hθ,h2

c+,θ,+
+2H̄θ,hc+,θ,+,�hc+,θ,+

)
.

We derive the following corollary.

Corollary 1. As n → ∞, we have

n1/4

(
σ n− (θ)−σ−
σ n+ (θ)−σ+

)
G1−stably�⇒ Uθ (cθ,−,cθ,+),

in restriction to the set �Y
0 , where Uθ (c−,c+) is defined on an extension of the

space (�,G1,P) and is a G1-conditional centered Gaussian random vector with
variance given by

L−1
1(

s−2
−θσ

2−σ11,θ (cθ,−/σ−) s−1
−θ s−1

θ σ−σ+σ12,θ (cθ,−/σ−,cθ,+/σ+)

s−1
−θ s−1

θ σ−σ+σ21,θ (cθ,−/σ−,cθ,+/σ+) s−2
θ σ 2+σ22,θ (cθ,+/σ+)

)
.
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Although it is not possible to obtain a central limit theorem for
(
σ̂ n−,σ̂ n+

)
at

rate n1/4, we can provide an upper bound for the convergence rate for δ̂n and θ̂n,
n1/5/(logn)1+η, for some η > 0.

PROPOSITION 8. Let η > 0. As n → ∞, we have

n1/5

(logn)1+η

∣∣∣δ̂n − δ

∣∣∣ P→ 0 and
n1/5

(logn)1+η

∣∣∣θ̂n − θ

∣∣∣ P→ 0,

in restriction to the set �Y
0 .

We end this section by proposing a test to decide whether the discontinuity size
δ is equal to 0 (i.e., the diffusion coefficient function is continuous): H0 : δ = 0
versus H1 : δ �= 0. A central limit theorem for

(
σ̂ n−,σ̂ n+

)
is actually not needed for

such a test. Indeed, σ− = σ+ implies that A− (c) = A+ (c) for all c > 0, and a test
can be based on the comparison of their empirical versions without considering
the fixed points of these functions. We propose the following test statistic:
for c > 0,

Tn (c) = √
n
(
An

− (c)−An
+ (c)

)2 Ln
1

V (c,σ n)
,

where

V (c,σ ) = σ 2
[
σ11,0(c/σ)+σ22,0(c/σ)−2σ21,0(c/σ,c/σ)

]
and

σ n = λ0
(
H0,hd

)
λ0
(
H0,hu

)
∑n

i=1 I{Y(i−1)/nYi/n<0}
√

n
∣∣Yi/n −Y(i−1)/n

∣∣∑n
i=1 I{Y(i−1)/nYi/n<0}

,

Ln
1 = 1

λ0
(
H0,hd

) 1√
n

n∑
i=1

I{Y(i−1)/nYi/n<0},

where hu (x,y) = |y|I{x(x+y)<0} and hd (x,y) = I{x(x+y)<0}.
First, note that using Proposition 2 and similar arguments as developed in

the proof of Proposition 6, we can easily establish that σ n P→ σ and Ln
1

P→ L1.
Second, using the same approach as in Proposition 7 and Corollary 1, we have that
n1/4

(
An− (c)−An+ (c)

)
stably converges to a Gaussian distribution. Under H0, θ = 0,

and we deduce that Tn (c)
d→ χ2 (1), whereas, under H1, Tn

P→ ∞. It is of course
possible to generalize this test by considering several values 0 < c1 < · · · < cd and
the quantity

∑d
i=1

(
An− (ci)−An− (ci)

)2
for the test statistic.
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5. EXTENSION TO ESTIMATORS WITH OTHER POWERS AND A
SIMULATION STUDY

5.1. A Family of Estimators

Rather than considering the absolute values of the increments in the definitions
of An− (c) and An− (c), it is possible to use other powers of the absolute values of
the increments for building other estimators. We introduce for α > 0 the following
quantities:

An
− (c,α) =

(∑n
i=1 I{−c/

√
n<Y(i−1)/n<0,Yi/n<0}

√
n|Yi/n −Y(i−1)/n|α∑n

i=1 I{−c/
√

n<Y(i−1)/n<0,Yi/n<0}

)1/α

,

An
+ (c,α) =

(∑n
i=1 I{0<Y(i−1)/n<c/

√
n,Yi/n>0}

√
n|Yi/n −Y(i−1)/n|α∑n

i=1 I{0<Y(i−1)/n<c/
√

n,Yi/n>0}

)1/α

,

and define

ϕθ,α (c) =
(∫ c

0

[
E[|Z|αI{Z>−x}]+ θE[|Z −2x|αI{Z>x}]

]
dx∫ c

0

[
�̄(−x)+ θ�̄(x)

]
dx

)1/α

.

Using the same approach as for An− (c) and An− (c), it is possible to prove that, as
n → ∞,

An
− (c,α)

ucpc�⇒ Aθ,α,− (c,α) := σ− ×ϕ−θ,α (c/σ−) and

An
+ (c,α)

ucpc�⇒ Aθ,α,+ (c,α) := σ+ ×ϕθ,α (c/σ+) .

Although we were not able to prove the existence of a unique fixed point of ϕθ,α ,
denoted by sθ,α , for θ ∈ (−1,1), we observe numerically that it is the case. The
fixed point of Aθ,α,− (resp. Aθ,α,+) is denoted as cθ,α,− (resp. cθ,α,+) and satisfies
cθ,α,− = σ− × s−θ,α (resp. cθ,α,+ = σ+ × sθ,α). We define the function θ �→ Hα (θ)

from (−1,1) to R
+ as

Hα (θ) := cθ,α,−
cθ,α,+

= 1+ θ

1− θ

s−θ,α

sθ,α

.

We observe numerically that Hα is an increasing and one-to-one function over
(−1,1). Therefore, we define estimators of cθ,α,−, cθ,α,+, and θ as follows:

cn
α,− = arg min

An−(c,α)>0
{|An

− (c,α)− c|} and cn
α,+ = arg min

An+(c,α)>0
{|An

+ (c,α)− c|},

and

θ̂α,n = H−1
α

(
cn
α,−/cn

α,+
)

.

The estimators of the right and left limits of the diffusion coefficient at the
discontinuity are given by

σ̂ n
α,− = cn

α,−/s−θ̂n,α
and σ̂ n

α,+ = cn
α,+/sθ̂n,α

,
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Table 1. Biases, standard deviations, and RMSEs of the estimators δ̂n
α .

n = 105 n = 106

α Bias Sd RMSE Bias Sd RMSE

1.0 0.0276 0.1589 0.1613 0.0360 0.1184 0.1237

1.5 0.0018 0.1499 0.1499 –0.0021 0.1044 0.1044

2.0 –0.0077 0.1471 0.1473 –0.0097 0.0968 0.0973

2.5 –0.0140 0.1400 0.1407 –0.0114 0.0955 0.0962

3.0 –0.0174 0.1299 0.1310 –0.0163 0.0908 0.0922

3.5 –0.0291 0.1213 0.1248 –0.0261 0.0865 0.0903

4.0 –0.0474 0.1190 0.1281 –0.0396 0.0769 0.0865

4.5 –0.0737 0.1118 0.1339 –0.0725 0.0758 0.1050

5.0 –0.1023 0.1064 0.1476 –0.1069 0.0739 0.1300

and new estimators of δ are then naturally given by

δ̂n
α = σ̂ n

α,− − σ̂ n
α,+.

5.2. Simulation Study

In this section, we study the finite sample properties of our estimators of the
discontinuity size δ. We work with the OBM with the parameters given by σ 2− =
0.7, σ 2+ = 0.3, and initial value y0 = 0. Therefore, δ � 0.289 and θ � 0.209. Note
that by considering the OBM, we assume that σ is a piecewise constant function,
which is not necessary but simplifies the simulation scheme. This assumption
leads to only studying the bias due to the structural forms of the estimators
rather than incorporating an additional part due to the fact that limy↗0− σ ′ (y) and
limy↘0+ σ ′ (y) are different from 0.

In Keilson and Wellner (1978), the OBM was constructed as a limit of discrete
processes, called Oscillating Random Walks, analogously to how the Brownian
motion (BM) is constructed as a limit of Random Walks (see also Lejay and Pigato
(2018)). We use this approximation to generate several paths of the OBM with
initial condition Y0 = 0.

Then, c− � 0.697 and c+ � 0.663. When n = 105, c−/
√

n � 2.204×10−4, and
when n = 106, c−/

√
n � 6.97 × 10−5. This implies that the assumption that σ is

piecewise constant is not very restrictive here since the optimal bandwidths are
small when compared to σ− and σ+. Therefore, the additional part of the bias due
to the first derivatives of σ will only appear for very large values of limy↗0− σ ′ (y)
and limy↘0+ σ ′ (y) .

In Table 1, we provide the biases, standard deviations, and root mean square
errors (RMSEs) of the estimators δ̂n

α with respect to the values of α. These values
have been computed using samples of size 500.
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We observe that the biases and standard deviations decrease with α. The smallest
absolute values of the biases are obtained when α = 1.5, whereas the smallest
RMSE values are obtained when α = 3.5 and n = 105 and when α = 4 and n = 106.
The biases for these optimal values of α decrease with n.

The changes in the standard deviation with respect to α are the consequences of
two opposing effects. On the one hand, when α increases, the one-sided truncated
moments in ϕθ,α increase, which leads to an increase in the standard deviations
of the estimators. On the other hand, for a fixed value of c, when α increases,
An− (c,α) (resp. An+ (c,α)) also increases. Since we look for the value cn

α,− (resp.
cn
α,+) such that An−

(
cn
α,−,α

)� cn
α,− (resp. An−

(
cn
α,+,α

)� cn
α,+), we deduce that it is

necessary to consider larger values for c to find the fixed point of An− (c,α) (resp.
An+ (c,α)) when α increases. As a consequence, the empirical mean, An− (c,α) (resp.
An+ (c,α)), has more random components which “stabilizes” the ratio and decreases
the standard deviation of cn

α,− (resp. cn
α,+). The second effect appears to be more

important in the simulation study and leads to a decrease in the standard deviation
of δ̂n

α .
We finally observe that the average values of the ratios of the standard deviations

when n = 105 and n = 106 (over the different values of α) is approximately equal
to 1.45 while 101/4 � 1.77 and 101/5 � 1.58, respectively, which may suggest that
the rate of convergence of the estimators is perhaps not n1/4.

6. CONCLUSION

We consider a one-dimensional time-homogeneous diffusion process whose dif-
fusion coefficient is discontinuous at some known level. We develop an estimator
of the discontinuity jump size by using asymmetric kernels to evaluate the left and
right limits of the diffusion coefficient function at the discontinuity level (σ− and
σ+). We can guarantee an upper bound on the rate of convergence of our estimator,
but it remains to obtain the appropriate rate to show that it is asymptotically
normal.

We would like to point out that, since limc→∞ ϕθ (c) = √
2/π for any θ ∈ (−1,1),

natural estimators of σ− and σ+ are also given by

σ̂ n
− (un) =

√
π

2

∑n
i=1 I{−1<unY(i−1)/n<0,Yi/n<0}

√
n|Yi/n −Y(i−1)/n|∑n

i=1 I{−1<unY(i−1)/n<0,Yi/n<0}
,

σ̂ n
+ (un) =

√
π

2

∑n
i=1 I{0<unY(i−1)/n<1,Yi/n>0}

√
n|Yi/n −Y(i−1)/n|∑n

i=1 I{0<unY(i−1)/n<1,Yi/n>0}
,

where un → ∞ and un/
√

n → 0. Although such estimators seem to be attractive,
their properties cannot be studied with the mathematical tools that we develop in
this paper and that extend the results developed in Jacod (1998) to the case of
the SBM. Therefore, the study of such estimators and the choice for an optimal
sequence (un) are left for future research.
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Finally, it would be very relevant to propose a statistical test to decide whether
the diffusion coefficient function has a discontinuity without knowing the level
where the discontinuity is located.

7. PROOFS

The proofs of Propositions 1, 2, and 5–7 and Corollary 1 are given in this
section. The proofs of Propositions 3 and 8 are deferred to the Supplementary
Material.

The constant K may change from line to line and will depend neither of n, x, y,
c nor t.

7.1. Proof of Proposition 2

(i) Condition 1 is equivalent to the conditions of Hypothesis 2.2 in Lejay et al.
(2019) since g is bounded onR and βγ (g) < +∞ for γ = 2, implying that βγ (g) <

+∞ for γ = 0,1. We conclude with Proposition 2.3 of Lejay et al. (2019).
(ii) First note that Hθ,hγ in this paper is equal to Fγ in Lejay et al. (2019) (f (x,y)

in this paper has to be replaced by h(x,y− x)). The assumption that Hθ,h2 satisfies
Condition 1 is equivalent to the assumption that F2 satisfies the conditions of
Hypothesis 2.2 in Lejay et al. (2019). The assumption that Hθ,h satisfies Condition
1 is equivalent to the assumption that F1 satisfies the conditions of Hypothesis 2.2
in Lejay et al. (2019). Note that this last condition also implies that (F1)

2 satisfies
the conditions of Hypothesis 2.2 in Lejay et al. (2019). Therefore, the conditions
of Hypothesis 2.6 in Lejay et al. (2019) are satisfied, and we can conclude by
Proposition 2.3 of Lejay et al. (2019).

(iii) Note that Condition 3 does not appear in Lejay et al. (2019). However, the
same arguments as those developed in the proof of Proposition 2.3 in Lejay et al.
(2019) can be used to prove the uniform convergence in time replacing Condition
2 by Condition 3.

7.2. Lemma 1

Lemma 1. Assume that h is a Borel function satisfying Condition 4, then
λθ(|Hθ,h|) < ∞ and λθ(|Hθ,h2 |) < ∞. Moreover, if λθ (Hθ,h) = 0, then
λθ(|H̄θ,h,�h̃

|) < ∞.

Proof. From Condition 4, the function h is a Borel function on R
2 such that

|h(x,y) | ≤ h̄(x)ea|y|, where a ∈ R, the function x → h̄(x) is positive and bounded
on R, and βγ (h̄) < ∞, for some γ ≥ 2.

(i) Since Hθ,h (x) = E
θ
x [h(x,X1 − x)] and E

θ
x

[
ea|X1−x|] < ∞ from equation (4),

we deduce that

λθ(|Hθ,h|) ≤ 2
∫

|Hθ,h (x) |dx ≤ K
∫

|h̄(x)|dx = Kβ0(h̄) < ∞.
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(ii) Since Hθ,h2 (x) = E
θ
x

[
h2(x,X1 − x)

]
and E

θ
x

[
e2a|X1−x|] < ∞ from equation

(4), we deduce that

λθ(|Hθ,h2 |) ≤ 2
∫

|Hθ,h2 (x) |dx ≤ K
∫

|h̄(x)|2dx ≤ K
∫

|h̄(x)|dx = Kβ0(h̄) < ∞.

(iii) Recall that �h̃ (x) = Fθ (Hθ,h̃)(x). Note that β2(Hθ,h̃) < ∞, since

β2(Hθ,h̃) =
∫

|x|2|Hθ,h̃ (x) |dx ≤ K
∫

|x|2|h̄(x)|dx = Kβ2(h̄)

and then

|�h̃ (x) | ≤ K
(
β2(Hθ,h̃)+β1(Hθ,h̃)|x|

)
by equation (2.4) of Lemma 2.1 in Lejay et al. (2019). Since H̄θ,h,�h̃

(x) =
E

θ
x

[(
h(x,X1 − x)�h̃ (X1)

)]
and E

θ
x

[|X1|ea|X1−x|] < ∞ from equation (4), we
deduce that

λθ(|H̄θ,h,�h̃
|) ≤ K

∫
|x||h̄(x)|dx = Kβ1(h̄) < ∞. �

7.3. Proof of Proposition 1

Let us denote μ as the measure associated to the second derivative of S. For any
once-differentiable function g with compact support, μ satisfies∫ ∞

−∞
g(x)μ(dx) = −

∫ ∞

−∞
g′(x)S′(x)dx.

Therefore, we deduce that

μ(dx) = − σ ′(x)
σ 2(x)

I{x �=0}dx+ δ0(x)

(
1

σ+
− 1

σ−

)
,

where δ0 denotes the Dirac function at 0. By the Meyer–Ito–Tanaka formula (since
Y is a continuous semimartingale), we have

S(Yt) = S(y0)+
∫ t

0

1

σ(Ys)
(b(Ys)ds+σ (Ys)dWs)− 1

2

∫ t

0
σ ′(Ys)I{Ys �=0}ds

+ 1

2

(
1

σ+
− 1

σ−

)
Lt (Y)

= S(y0)+
∫ t

0
a(Ys)ds+Wt + 1

2

(
1

σ+
− 1

σ−

)
Lt (Y),

where L (Y) = (Lt (Y))t≥0 is the symmetric local time of Y at 0.
By definition of the local time of S(Y) at level 0, we have

|S(Yt)| = |S(y0)|+
∫ t

0
sgn(S(Ys))dS(Ys)+Lt (S(Y)) .
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Since sgn(S(Ys)) = sgn(Ys), we also have

|S(Yt)| = |S(y0)|+
∫ t

0
sgn(Ys)a(Ys)ds+

∫ t

0
sgn(Ys)dWs +Lt (S(Y)) .

Now, we consider the function y → |S(y)| (which can also be written as the
difference of two convex functions), we derive by the Ito–Tanaka–Meyer formula
that

|S(Yt)| = |S(y0)|+
∫ t

0

1

σ(Ys)
sgn(Ys)(b(Ys)ds+σ (Ys)dWs)

− 1

2

∫ t

0
sgn(Ys)σ

′(Ys)I{Ys �=0}ds+ 1

2

(
1

σ+
+ 1

σ−

)
Lt (Y)

= |S(y0)|+
∫ t

0
sgn(Ys)a(Ys)ds+

∫ t

0
sgn(Ys)dWs + 1

2

(
1

σ+
+ 1

σ−

)
Lt (Y) .

Therefore, we deduce that

Lt (S(Y)) = 1

2

(
1

σ+
+ 1

σ−

)
Lt (Y)

and

S(Yt) = S(y0)+
∫ t

0
a(Ys)ds+Wt + θLt (S(Y)) .

7.4. Proof of Proposition 4

Since

hc,σ− (x,y) = I{−c<x<0,y+x<0}|y|, hc,k− (x,y) = I{−c<x<0,y+x<0},
hc,σ+ (x,y) = I{0<x<c,y+x>0}|y|, hc,k+ (x,y) = I{0<x<c,y+x>0},

it is easily deduced that Condition 2 is satisfied for hc,σ−, hc,σ+, hc,k−, and hc,k+.
Therefore, we can use Proposition 2 and deduce that

1√
n

U(hc,σ−)n
1

= 1√
n

n∑
i=1

I{−c/
√

n<X(i−1)/n<0,Xi/n<0}
√

n
∣∣Xi/n −X(i−1)/n

∣∣ P→ λθ(Hθ,hc,σ−)L1,

1√
n

U(hc,σ+)n
1

= 1√
n

n∑
i=1

I{0<X(i−1)/n<c/
√

n,Xi/n>0}
√

n
∣∣Xi/n −X(i−1)/n

∣∣ P→ λθ(Hθ,hc,σ+)L1,
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1√
n

U(hc,k−)n
1 = 1√

n

n∑
i=1

I{−c/
√

n<X(i−1)/n<0,Xi/n<0}
P→ λθ(Hθ,hc,k−)L1,

1√
n

U(hc,k+)n
1 = 1√

n

n∑
i=1

I{0<X(i−1)/n<c/
√

n,Xi/n>0}
P→ λθ(Hθ,hc,k+)L1.

Let us compute the limits.
(i) Case σ−: We have

Hθ,hc,σ− (x) =
∫

pθ (1,x,y)hc,σ−(x,y− x)dy =
∫

pθ (1,x,y)I{−c<x<0,y<0}|y− x|dy

= I{−c<x<0}
[∫ 0

−∞
p(1,x− y)|y− x|dy− θ

∫ 0

−∞
p(1, − x− y)|y− x|dy

]

= I{−c<x<0}
[
E[|Z|I{Z<−x}]− θE[|Z −2x|I{Z<x}]

]
and, therefore,

λθ(Hθ,hc,σ−) = (1− θ)

∫ 0

−c

[
E[|Z|I{Z<−x}]− θE[|Z −2x|I{Z<x}]

]
dx.

In the same way, we have

λθ(Hθ,hc,k−) = (1− θ)

∫ 0

−c
[�(−x)− θ�(x)]dx,

and it follows that

λθ(Hθ,hc,σ−)

λθ (Hθ,hc,k−)
=
∫ 0
−c

[
E[|Z|I{Z<−x}]− θE[|Z −2x|I{Z<x}]

]
dx∫ 0

−c [�(−x)− θ�(x)]dx
.

(ii) Case σ+: We have

Hθ,hc,σ+ (x) =
∫

pθ (1,x,y)hc,σ+(x,y− x)dy =
∫

pθ (1,x,y)I{0<x<c,y>0}|y− x|dy

= I{0<x<c}
[∫ +∞

0
p(t,x− y)|y− x|dy+ θ

∫ +∞

0
p(t,x+ y)|y− x|dy

]

= I{0<x<c}
[
E[|Z|I{Z>−x}]+ θE[|Z −2x|I{Z>x}]

]
and, therefore,

λθ(Hθ,hc,σ+) = (1+ θ)

∫ c

0

[
E[|Z|I{Z>−x}]+ θE[|Z −2x|I{Z>x}]

]
dx.

In the same way, we have

λθ(Hθ,hc,k+) = (1+ θ)

∫ c

0

[
�̄(−x)+ θ�̄(x)

]
dx,
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and it follows that

λθ(Hθ,hc,σ+)

λθ (Hθ,hc,k+)
=
∫ c

0

[
E[|Z|I{Z>−x}]+ θE[|Z −2x|I{Z>x}]

]
dx∫ c

0

[
�̄(−x)+ θ�̄(x)

]
dx

= ϕθ (c) .

(iii) Since Z has a symmetric distribution, we have∫ 0
−c

[
E[|Z|I{Z<−x}]− θE[|Z −2x|I{Z<x}]

]
dx∫ 0

−c [�(−x)− θ�(x)]dx

=
∫ c

0

[
E[|Z|I{Z>−x}]− θE[|Z −2x|I{Z>x}]

]
dx∫ c

0

[
�̄(−x)− θ�̄(x)

]
dx

= ϕ−θ (c) .

Now, since n−1/2U(hc,σ−), n−1/2U(hc,σ+), n−1/2U(hc,k−), and n−1/2U(hc,k+) are
increasing functions with respect to c, with continuous limits in c, we deduce that
the convergence is locally uniform in c, and finally that

Bn
− (c)

ucpc�⇒ ϕ−θ (c) and Bn
+ (c)

ucpc�⇒ ϕθ (c) .

7.5. Proof of Proposition 5

We split the proof into several parts. Let us denote by ϕ the pdf of the standard
Gaussian distribution.

(i) For x > 0,

E[|Z|I{Z>−x}] =
∫ ∞

−x
|z|ϕ(z)dz

= [|z|(−�̄(z)
)
]∞−x +

∫ ∞

−x
sgn(z)�̄(z)dz

= x�̄(−x)−
∫ 0

−x
�̄(z)dz+

∫ ∞

0
�̄(z)dz

= x�̄(−x)−
∫ 0

−x
�̄(z)dz+ 1

2

√
2

π

and∫ c

0
E[|Z|I{Z>−x}]dx =

∫ c

0
x�̄(−x)dx+ 1

2

√
2

π
c−

∫ c

0

∫ 0

−x
�̄(z)dzdx

=
∫ c

0
x�̄(−x)dx+ 1

2

√
2

π
c−

∫ 0

−c
(x+ c)�̄(x)dx

= 2
∫ c

0
x�̄(−x)dx+ 1

2

√
2

π
c− c

∫ c

0
�̄(−x)dx.
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(ii) For x > 0,

E[|Z −2x|I{Z>x}] =
∫ ∞

x
|z−2x|ϕ(z)dz

= [|z−2x|(−�̄(z)
)
]∞x +

∫ ∞

x
sgn(z−2x)�̄(z)dz

= x�̄(x)−
∫ 2x

x
�̄(z)dz−

∫ 2x

0
�̄(z)dz+

∫ ∞

0
�̄(z)dz

= x�̄(x)−2
∫ 2x

x
�̄(z)dz−

∫ x

0
�̄(z)dz+ 1

2

√
2

π

and∫ c

0
E[|Z −2x|I{Z>x}]dx

=
∫ c

0
x�̄(x)dx+ 1

2

√
2

π
c−

∫ c

0

∫ x

0
�̄(z)dzdx−2

∫ c

0

∫ 2x

x
�̄(z)dzdx

=
∫ c

0
x�̄(x)dx+ 1

2

√
2

π
c−

∫ c

0
(c− x)�̄(x)dx−2

∫ c

0

∫ 2x

x
�̄(z)dzdx

= 2
∫ c

0
x�̄(x)dx+ 1

2

√
2

π
c− c

∫ c

0
�̄(x)dx−2

∫ c

0

∫ 2x

x
�̄(z)dzdx.

(iii) Let

ψθ (c) =
∫ c

0

[
E[|Z|I{Z>−x}]+ θE[|Z −2x|I{Z>x}]

]
dx− c

∫ c

0

[
�̄(−x)+ θ�̄(x)

]
dx.

We have

ψθ (c) = −2

[∫ c

0
(c− x)�̄(−x)dx+ θ

∫ c

0
(c− x)�̄(x)dx+ θ

∫ c

0

∫ 2x

x
�̄(z)dzdx

]

+ 1

2

√
2

π
c(1+ θ)

= −2

[∫ c

0
(c− x)�̄(−x)dx+ θ

∫ 2c

0

(
c− x

2

)
�̄(x)dx

]
+ 1

2

√
2

π
c(1+ θ)

= −2

[∫ c

0
(c− x)�̄(−x)dx+2θ

∫ c

0
(c− x)�̄(2x)dx

]
+ 1

2

√
2

π
c(1+ θ)

= −2
∫ c

0
(c− x)

[
�̄(−x)+2θ�̄(2x)

]
dx+ 1

2

√
2

π
c(1+ θ) .
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Note that

ϕθ (sθ ) = sθ ⇐⇒ ψθ (sθ ) = 0.

The first and second derivatives of ψθ with respect to c are given by

ψ ′
θ (c) = −2

∫ c

0

[
�̄(−x)+2θ�̄(2x)

]
dx+ 1

2

√
2

π
(1+ θ),

ψ ′′
θ (c) = −2

[
�̄(−c)+2θ�̄(2c)

]
.

If θ ∈ [−1/2,1), then ψθ is a concave function. If θ ∈ (−1, − 1/2), ψθ is convex
over [0,zθ ] and concave over [zθ,∞), where zθ satisfies �̄(−zθ ) + 2θ�̄(2zθ ) =
0. Moreover, ψθ (0) = 0, ψ ′

θ (0) > 0, and limc→∞ ψθ (c) = −∞. Therefore, there
exists a unique positive sθ such that ψθ (sθ ) = 0 or equivalently ϕθ (sθ ) = sθ .

(iv) We have

ψθ (sθ ) = 0

with

ψθ (c) = −2
∫ c

0
(c− x)

[
�̄(−x)+2θ�̄(2x)

]
dx+ 1

2

√
2

π
c(1+ θ) .

Since (θ,c) → ψθ (c) is differentiable on (−1,1)×R, sθ is a differentiable function
in θ , and we have

0 = ∂ψθ (sθ )

∂θ
= ∂ψθ (s)

∂s

∣∣∣∣
s=sθ

∂sθ

∂θ
+ ∂ψθ (s)

∂θ

∣∣∣∣
s=sθ

.

Since

∂ψθ (s)

∂s
= −2

∫ s

0

[
�̄(−x)+2θ�̄(2x)

]
dx+ 1

2

√
2

π
(1+ θ),

∂ψθ (s)

∂θ
= −4

∫ s

0
(s− x)�̄(2x)dx+ 1

2

√
2

π
s,

we have

sθ

∂ψθ (s)

∂s

∣∣∣∣
s=sθ

= −2
∫ sθ

0
x
[
�̄(−x)+2θ�̄(2x)

]
dx,

and then

1

sθ

∂sθ

∂θ
= −

∂ψθ (s)
∂θ

∣∣∣
s=sθ

sθ
∂ψθ (s)

∂s

∣∣∣
s=sθ

=
−4

∫ sθ
0 (sθ − x)�̄(2x)dx+ 1

2

√
2
π

sθ

2
∫ sθ

0 x
[
�̄(−x)+2θ�̄(2x)

]
dx

. (5)
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7.6. Proof of Proposition 6

(i) We have

An
− (c) = σ−Bn

−

(
c

σ (un)

)
+Rn

− (c)

with

Rn
− (c) =

n∑
i=1

(
σ
(
Yi,n

)−σ−
) I{S(−c/

√
n)<X(i−1)/n<0,Xi/n<0}

√
n
∣∣Xi/n −X(i−1)/n

∣∣∑n
i=1 I{S(−c/

√
n)<X(i−1)/n<0,Xi/n<0}

.

Now, by Taylor’s theorem with a Lagrange form for the remainder, we have

σ
(
Yi,n

)−σ− = σ ′ (Wi,n
)

Yi,n, with X(i−1)/n < 0 and Xi/n < 0,

where Yi,n ≤ Wi,n ≤ 0. Let σ , σ̄ , σ ′, σ̄ ′ be, respectively, the lower and upper bounds
of σ and σ ′. Now, note that

σ̄
(
Xi/n ∨X(i−1)/n

)≤ S−1
(
Xi/n ∨X(i−1)/n

)≤ Yi,n ≤ S−1
(
Xi/n ∧X(i−1)/n

)
≤ σ

(
Xi/n ∧X(i−1)/n

)
and then

Rn
− (c)

≤ σσ ′ 1√
n

∑n
i=1 I{S(−c/

√
n)<X(i−1)/n<0,Xi/n<0}n

∣∣Xi/n −X(i−1)/n

∣∣ (Xi/n ∧X(i−1)/n
)

∑n
i=1 I{S(−c/

√
n)<X(i−1)/n<0,Xi/n<0}

,

Rn
− (c)

≥ σ̄ σ̄ ′ 1√
n

n∑
i=1

I{S(−c/
√

n)<X(i−1)/n<0,Xi/n<0}n
∣∣Xi/n −X(i−1)/n

∣∣ (Xi/n ∨X(i−1)/n
)

∑n
i=1 I{S(−c/

√
n)<X(i−1)/n<0,Xi/n<0}

.

Let us recall that S
(−c/

√
n
)= −c/(σ (un)

√
n) where −c/

√
n ≤ un ≤ 0. Let

hc,σ−,u (x,y) = I{−c<x<0,y+x<0}|y|((x+ y)∧ x),

hc,σ−,d (x,y) = I{−c<x<0,y+x<0}|y|((x+ y)∨ x) .

Then, using Proposition 2, we have∑n
i=1 I{S(−c/

√
n)<X(i−1)/n<0,Xi/n<0}n

∣∣Xi/n −X(i−1)/n

∣∣ (Xi/n ∧X(i−1)/n
)

∑n
i=1 I{S(−c/

√
n)<X(i−1)/n<0,Xi/n<0}

ucpc�⇒ λθ (Hθ,hc/σ−,σ−,u)

λθ (Hθ,hc/σ−,k−)
,

n∑
i=1

I{S(−c/
√

n)<X(i−1)/n<0,Xi/n<0}n
∣∣Xi/n −X(i−1)/n

∣∣ (Xi/n ∨X(i−1)/n
)

∑n
i=1 I{S(−c/

√
n)<X(i−1)/n<0,Xi/n<0}

ucpc�⇒ λθ (Hθ,hc/σ−,σ−,d )

λθ (Hθ,hc/σ−,k−)
.

https://doi.org/10.1017/S0266466622000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000214


HOW LARGE IS THE JUMP DISCONTINUITY? 875

It follows that

Rn
− (c)

ucpc�⇒ 0.

Since Bn− (c)
ucpc�⇒ ϕ−θ (c) by Proposition 4, we deduce that

An
− (c)

ucpc�⇒ Aθ,− (c) .

The same arguments hold for the following convergence:

An
+ (c)

ucpc�⇒ Aθ,+ (c) .

(ii) Recall that

σ n
− (θ) = s−1

−θAn
−
(
cθ,−

)
and σ n

+ (θ) = s−1
θ An

+
(
cθ,+

)
.

The convergences σ n− (θ)
P→ σ− and σ n+ (θ)

P→ σ+ directly follow from (i), the fact
that Aθ,− (c) = σ− ×ϕ−θ (c/σ−), Aθ,+ (c) = σ+ ×ϕθ (c/σ+), cθ,− = σ− × s−θ , and
cθ,+ = σ+ × sθ .

(iii) Note that cn− = argminAn−(c)>0{|An− (c) − c|} and limc→∞ Aθ,− (c) =
σ−

√
2/π . Since for c > 0, An− (c)

ucpc�⇒ Aθ,− (c) > 0, and
∣∣An− (c)− c

∣∣ ucpc�⇒∣∣Aθ,− (c)− c
∣∣, we have

cn
− = arg min

An−(c)>0
{|An

− (c)− c|} P→ argmin
c>0

{|Aθ,− (c)− c|} = cθ,−.

The same arguments hold for cn+
P→ cθ,+ .

(iv) Since H is a continuous and increasing function, we deduce by the contin-
uous mapping theorem that

θ̂n
P→ θ

and finally that

σ̂ n
−

P→ σ−, σ̂ n
+

P→ σ+, δ̂n P→ δ.

7.7. Proof of Proposition 7

We have the following decomposition for n1/4
(
Bn− (c)−ϕ−θ (c)

)
:

n1/4
(
Bn

− (c)−ϕ−θ (c)
)

= n1/4

(∑n
i=1 I{−c/

√
n<X(i−1)/n<0,Xi/n<0}

√
n
∣∣Xi/n −X(i−1)/n

∣∣∑n
i=1 I{−c/

√
n<X(i−1)/n<0,Xi/n<0}

−ϕ−θ (c)

)

= 1

n−1/2
∑n

i=1 I{−c/
√

n<X(i−1)/n<0,Xi/n<0}
n−1/4
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n∑
i=1

[
I{−c/

√
n<X(i−1)/n<0,Xi/n<0}

{√
n
∣∣Xi/n −X(i−1)/n

∣∣−ϕ−θ (c)
}]

= Dn− (c)

Nn− (c)
,

where

Nn
− (c) = n−1/2

n∑
i=1

I{−c/
√

n<X(i−1)/n<0,Xi/n<0}.

By Proposition 2, we deduce that

Nn
− (c)

P→ λθ(Hθ,hc,k−)L1. (6)

Let

h =
(

h1 (x,y)

h2 (x,y)

)
=
(

hc−,σ− (x,y)−ϕ−θ (c−)hc−,k− (x,y)

hc+,σ+ (x,y)−ϕθ (c+)hc+,k+ (x,y)

)

and note that λθ (Hθ,h1) = 0 and λθ (Hθ,h2) = 0 since

λθ(Hθ,h1) = λθ(Hθ,hc−,σ−)−ϕ−θ (c−)λθ (Hθ,hc−,k−),

λθ (Hθ,h2) = λθ(Hθ,hc+,σ+)−ϕθ (c+)λθ (Hθ,hc+,k+),

and λθ (Hθ,hc,σ−) = ϕ−θ (c)λθ (Hθ,hc,k−) and λθ(Hθ,hc,σ+) = ϕθ (c)λθ (Hθ,hc,k+) for
c > 0 by Proposition 4.

Since

Dn
− (c) = n−1/4

n∑
i=1

h1
(√

nX(i−1)/n,
√

n
(
Xi/n −X(i−1)/n

))
,

Dn
+ (c) = n−1/4

n∑
i=1

h2
(√

nX(i−1)/n,
√

n
(
Xi/n −X(i−1)/n

))
,

we deduce the result of Proposition 7 from Proposition 3 and equation (6).

7.8. Proof of Corollary 1

Let us consider the case of An− (c)

An
− (c) =

∑n
i=1 I{S(−c/

√
n)<X(i−1)/n<0,Xi/n<0}

√
n
∣∣S−1

(
Xi/n

)−S−1
(
X(i−1)/n

)∣∣∑n
i=1 I{S(−c/

√
n)<X(i−1)/n<0,Xi/n<0}

.

We use the same notation as in the proof of Proposition 6(i). First, it is easily seen
that

n1/4Rn
− (c)

ucpc�⇒ 0.
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Then,∣∣∣∣Bn
−

(
c

σ (un)

)
−Bn

−

(
c

σ−

)∣∣∣∣
≤
∑n

i=1 I{−c/(σ (un)∨σ−
√

n)<X(i−1)/n<−c/(σ (un)∧σ−
√

n),Xi/n<0}
√

n
∣∣Xi/n −X(i−1)/n

∣∣∑n
i=1 I{−c/(σ (un)

√
n)<X(i−1)/n<0,Xi/n<0}

+
∑n

i=1 I{−c/(σ−
√

n)<X(i−1)/n<0,Xi/n<0}
√

n
∣∣Xi/n −X(i−1)/n

∣∣∑n
i=1 I{−c/(σ−

√
n)<X(i−1)/n<0,Xi/n<0}

×
∑n

i=1 I{−c/(σ (un)∨σ−
√

n)<X(i−1)/n<−c/(σ (un)∧σ−
√

n),Xi/n<0}∑n
i=1 I{−c/(σ (un)

√
n)<X(i−1)/n<0,Xi/n<0}

.

Let

fn (x) = I{−c/(σ (un)∨σ−)<x<−c/(σ (un)∧σ−)}.

We have

λθ (fn) ≤ K |σ− −σ (un)| ≤ K
1√
n
,

since −c/
√

n ≤ un ≤ 0. By using the same arguments as those for equation (3.10)

in Jacod (1998), we deduce that

E
θ
x

[
n∑

i=1

I{−c/(σ (un)∨σ−
√

n)<X(i−1)/n<−c/(σ (un)∧σ−
√

n)}

]
≤ fn

(√
nx
)+Kλθ (fn)

√
n ≤ K.

It follows that

n1/4 1√
n
E

θ

[
n∑

i=1

I{−c/(σ (un)∨σ−
√

n)<X(i−1)/n<−c/(σ (un)∧σ−
√

n)}

]
→ 0

and

n1/4 1√
n

n∑
i=1

I{−c/(σ (un)∨σ−
√

n)<X(i−1)/n<−c/(σ (un)∧σ−
√

n)}
P→ 0

and also

n1/4 1√
n

n∑
i=1

I{−c/(σ (un)∨σ−
√

n)<X(i−1)/n<−c/(σ (un)∧σ−
√

n)}
ucpc�⇒ 0.

Therefore, we have

n1/4 1√
n

n∑
i=1

I{−c/(σ (un)∨σ−
√

n)<X(i−1)/n<−c/(σ (un)∧σ−
√

n),Xi/n<0}
ucpc�⇒ 0.

https://doi.org/10.1017/S0266466622000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000214


878 CHRISTIAN Y. ROBERT

Then, for i ≥ 2,

E
θ
x

[
I{−c/(σ (un)∨σ−

√
n)<X(i−1)/n<−c/(σ (un)∧σ−

√
n),Xi/n<0}

√
n
∣∣Xi/n −X(i−1)/n

∣∣]

≤ E
θ
x

[
I{−c/(σ (un)∨σ−

√
n)<X(i−1)/n<−c/(σ (un)∧σ−

√
n)}

√
n
∣∣Xi/n −X(i−1)/n

∣∣]

= E
θ
x

[
I{−c/(σ (un)∨σ−

√
n)<X(i−1)/n<−c/(σ (un)∧σ−

√
n)}

√
nEθ

x

[∣∣Xi/n −X(i−1)/n

∣∣ |F(i−1)/n
]]

≤ E
θ
x

[
I{−c/(σ (un)∨σ−

√
n)<X(i−1)/n<−c/(σ (un)∧σ−

√
n)}
]

.

Therefore, we easily deduce that

n1/4 1√
n

n∑
i=1

I{−c/(σ (un)∨σ−
√

n)<X(i−1)/n<−c/(σ (un)∧σ−
√

n),Xi/n<0}
√

n
∣∣Xi/n −X(i−1)/n

∣∣
ucpc�⇒ 0.

Recall that

hc,σ− (x,y) = I{−c<x<0,y+x<0}|y|, hc,k− (x,y) = I{−c<x<0,y+x<0},
hc,σ+ (x,y) = I{0<x<c,y+x>0}|y|, hc,k+ (x,y) = I{0<x<c,y+x>0}.

Since

1√
n

n∑
i=1

I{−c/(σ (un)
√

n)<X(i−1)/n<0,Xi/n<0}
ucpc�⇒ λθ (Hθ,hc/σ−,k−),

1√
n

n∑
i=1

I{−c/(σ−
√

n)<X(i−1)/n<0,Xi/n<0}
√

n
∣∣Xi/n −X(i−1)/n

∣∣ ucpc�⇒ λθ(hc/σ−,σ−),

1√
n

n∑
i=1

I{−c/(σ−
√

n)<X(i−1)/n<0,Xi/n<0}
ucpc�⇒ λθ(Hθ,hc/σ−,k−),

we finally deduce that

n1/4

∣∣∣∣Bn
−

(
c

σ (un)

)
−Bn

−

(
c

σ−

)∣∣∣∣ ucpc�⇒ 0.

7.9. Increasingness property of H

Recall that

H (θ) = 1+ θ

1− θ

s−θ

sθ

, θ ∈ (−1,1),
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where sθ and s−θ are positive. It follows that H (θ) > 0, and we can define

log(H (θ)) = log(1+ θ)− log(1− θ)+ logs−θ − logsθ .

Since θ → sθ is differentiable, we have

∂ logH (θ)

∂θ
= 1

1+ θ
+ 1

1− θ
+ 1

s−θ

∂s−θ

∂θ
− 1

sθ

∂sθ

∂θ
.

Using equation (5), numerical evaluations provide that ∂ logH (θ)/∂θ > 0, for θ ∈
(−1,1).

SUPPLEMENTARY MATERIAL

To view the online supplementary material for this article, please visit http://doi.
org/10.1017/S0266466622000214
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