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Instability of a viscoelastic film with insoluble
surfactants on an oscillating plane
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The linear instability of viscoelastic film with insoluble surfactants on an oscillating
plane for disturbances with arbitrary wavenumbers is investigated. The combined effects
of viscoelastic and insoluble surfactants on the instability are described using Floquet
theory. For long-wavelength instability, the solution in the limit of long wave perturbations
is obtained by the asymptotic expansion method. The results show that the presence of
viscoelastic film shifts the stability boundaries to the low-frequency region in the absence
of gravity when the imposed frequency is less than 6. The U-shaped neutral curves with
separation bandwidth appear in the presence of gravity. The finite-wavelength instability
is solved numerically based on the Chebyshev spectral collocation method. Different from
the previous results, a new branch point with special structure of a neutral curve is detected
for clean-surface film. Results show that the presence of the surfactants will decrease
the unstable frequency bandwidth and increase the critical Reynolds number. Both the
travelling-wave mode and standing-wave mode are found due to the existence of surface
surfactants. For high-frequency oscillation, the viscoelastic parameter may significantly
destabilize the flow and the instability is determined by the finite-wavelength mode over a
relatively large frequency range.

Key words: viscoelasticity, thin films

1. Introduction

The stability of free surface flow over an oscillating plane is of considerable theoretical
interest and has a variety of applications in atomization technology, such as fuel spray
formation, high-tech surface cleaning and advanced material processing (Woods & Lin
1995). Different from the stability of steady flow, the time-dependence base flow makes
the problem troublesome to deal with even numerically. For the flow of Newtonian liquid
on a horizontal oscillation plane, Yih (1968) first studied the stability of single-layer flow
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with free deformation of the upper surface. Based on a long-wave expansion, Floquet
theory was used to resolve the time-dependent Orr–Sommerfeld boundary value problem,
and a mode related to surface deformation was found. Yih found that in the absence
of gravity, the instability of this long-wave mode does not depend on the oscillation
amplitude of the plate. The stable and unstable regions appear alternately with the increase
of the oscillation frequency. When the influence of gravity is considered, the instability
occurs for a sufficiently large amplitude of modulation within regions corresponding to
separated bandwidths of the imposed frequency. As the oscillation frequency increases,
the critical value increases rapidly. Later, Or (1997) extended the long-wave stability
analysis of Yih (1968) to the finite-wavelength instability for infinitesimal disturbances
with arbitrary wavenumbers. By solving the time-dependent Orr–Sommerfeld problem
numerically, Or demonstrated that linear disturbances with wavelengths comparable to the
depth of film can also cause instability. The results show that the neutral stability curves for
the long-wave instability are U-shaped, and the set of monotonic neutral curves associated
with the finite-wavelength instability emerges through the branch points detected on the
long-wave neutral curves. Actually, the finite-wavelength mode is more unstable than the
long-wave mode in a few regimes of the imposed frequency owing to the competition of
the long- and finite-wavelength modes. Besides, Benilov & Chugunova (2010) examined
the stability of frozen waves developing in a thin viscous film on a vibrating substrate.
It is assumed that the time scale of the flow evolution is much larger than the period
of substrate oscillation, and it is reported that all periodic and solitary-wave solutions are
unstable, regardless of their parameters. For an inclined vibrating plane, the linear stability
of a shear-imposed viscous flow is deciphered for disturbances of arbitrary wavenumbers
to investigate the effect of imposed shear stress on Faraday instability (Samanta 2021).

For flow with a free surface, surface tension plays an important role in controlling the
instability of fluid flow. The insoluble surfactant can be added to change the transition
process of the surface instability. For steady membrane flow, the stability in the presence of
surfactants has been extensively studied. For example, Wei (2005a) studied the effect of an
insoluble surfactant on the linear stability of a shear-imposed flow down an inclined plane
in the limit of long-wavelength perturbations. It is found that the existence of an insoluble
surfactant will lead to an unstable flow. Two-fluid film flow down an inclined plane is
investigated (Gao & Lu 2007). It is revealed that the inertialess instability of relatively
long waves can be predominantly weakened by a surface surfactant and enhanced by an
interfacial surfactant. Samanta (2014) extended the result of the model proposed by Gao
& Lu (2007), and incorporated inertia up to moderate values of the Reynolds number.
Then, Thompson & Blyth (2016) considered the three layers film flow under conditions of
Stokes flow. The results suggested that adding surfactant to one of the film surfaces can
destabilize an otherwise stable flow configuration. The above-mentioned results indicated
that the existence of an insoluble surfactant may have a stable or unstable effect on stability.

For the oscillatory free surface in the presence of surfactants, Gao & Lu (2006)
performed a long-wave stability analysis of a single layer oscillatory film flow. The
unstable regions are found to shrink in the parameter space due to the surfactant, which
means surfactants can stabilize the flow. Gao & Lu (2008) further extended the stability
analysis of long-wave to finite-wavelength instability. Stability boundaries are obtained
numerically in a wide range of amplitude and frequency of the modulation as well as
surfactant elasticity. It is shown that the presence of surfactants can either stabilize or
destabilize the finite-wavelength instability of the flow depending on the strength of the
surface elasticity. More recently, the stability of the two-layer film flow in the limit of
long-wavelength perturbations was investigated (Wang et al. 2021). The effects of several
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key parameters, such as the viscosity ratio, thickness ratio, density ratio and insoluble
surfactant, were systematically considered. They found the surface surfactants generally
stabilize the two-layer oscillatory flow.

In all the above-mentioned studies, the authors mainly focused on the stability of
Newtonian liquid flow. The research on viscoelastic liquid flow has also been of special
interest in the chemical industry. Furthermore, the instabilities of viscoelastic liquid flow
on an oscillating plane occur in a wide variety of applications, e.g. coating, lubrication
and polymer processing operations. Dandapat & Gupta (1975) first introduced this model
to analyse the linear stability of non-Newtonian flow on an oscillating plane. The
stability was studied by a perturbation method in the long-wave regime. It was reported
that the elastic parameter of the fluid was found to be destabilizing and stabilizing in
different ranges of frequency. Based on this configuration, Samanta (2017) explored the
stability of infinitesimal disturbances with arbitrary wavenumbers. It was shown in the
finite-wavenumber regime that the instability can be more ‘dangerous’ than the long-wave
instability. Besides, the stability of the interface between two viscoelastic liquids above
the periodic oscillations horizontal plate was also considered by Garcia-Gonzalez &
Fernandez-Feria (2017). There are also some papers in the literature that consider the
influence of both non-Newtonian fluids and surfactants on stability (Wei 2005b; Zhou
et al. 2014; Pal & Samanta 2021), but the basic flows are steady-state.

Up to now, there has been little research on the effect of insoluble surfactants on the
stability of time-dependent oscillatory non-Newtonian flows. Presence of the insoluble
surfactant invokes surface tension at the interface, then the Marangoni flow will be
generated by the gradient of surface tension, which causes the motion of the neighbouring
liquids by viscous traction and generates the Marangoni force. As a result, the stability
of the flow is determined by two coupled Floquet modes associated with the surface
deformation and the Marangoni force (Hu, Fu & Yang 2020; Li & He 2023). The main
purpose of this paper is to study the long- and finite-wavelength stability of the single
film flow driven by an oscillatory plate. The novelty of this study is that the influences
of insoluble surfactants and the viscoelasticity of non-Newtonian fluids are taken into
account for time-dependent oscillatory flow. The remainder of this investigation is outlined
as follows. In § 2 the governing equations of the fluid problem are described. The results
of long-wavelength instability are presented in § 3. The numerical procedure for solving
the time-dependent Orr–Sommerfeld equation are documented in § 4. The results of
finite-wavelength instability are obtained in § 5. Finally, conclusions are presented in § 6.

2. Mathematical formulation

2.1. Flow configuration
We consider a two-dimensional incompressible viscoelastic liquid film with insoluble
surfactant in the horizontal oscillation plane, as shown in figure 1. The density and
limiting kinematic viscosity of the fluid are ρ and ν. The oscillation plane is infinite in the
x∗-direction with velocity U0 cosωt∗, where U0 and ω are the amplitude and frequency of
the oscillation, respectively. The superscript ‘∗’ denotes the dimensional variables. The
origin is located at the free surface and the upper surface of the film is described by
y∗ = η∗(x∗, t∗). The non-Newtonian liquid film is covered by a monolayer of insoluble
surfactant with concentration Γ ∗(x∗, t∗). Here, the velocity components in the streamwise
and vertical directions are represented by u∗

x = u∗ and u∗
y = υ∗, respectively. When the

liquid film is at rest, the thickness of the film is d, as shown by the dash–dotted line in
figure 1.
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U0cos ωt∗
Viscoelastic fluid

d
g

x∗

y∗

η∗(x∗, y∗)

O

Figure 1. Schematic geometry of the physical system under consideration. A thin viscoelastic film is confined
between its deformable free surface η∗(x∗, t∗) and a horizontal oscillation plane. The dash–dotted line
corresponds to the undeformed surface in the quiescent base state.

The governing equations are given by

∂iu∗
i = 0, (2.1a)

ρ(∂t∗u∗
i + u∗

j ∂ju∗
i ) = ρgi + ∂jτ

∗
ij , (2.1b)

where τ ∗
ij is stress tensor and the subscript i, j are summed over the x∗- and y∗-directions. In

this paper, Walter’s liquid B′′ is considered as the rheological model, which is a first-order
elastic approximation of Newtonian behaviour and possesses a rapidly fading memory.
The constitutive equation of liquid B′′ is (Beard & Walters 1964; Andersson & Dahl 1999)

τ ∗
ij = −p∗δij + 2ρνe∗

ij − 2M0
δ

δt∗
e∗

ij, (2.2)

where p∗ is the isotropic pressure, δij is the Kronecker symbol, e∗
ij = (∂iu∗

j + ∂ju∗
i )/2 is

the strain rate tensor, 2ρνe∗
ij is the Newtonian stress while 2M0(δ/δt∗)e∗

ij corresponds to
elastic stress, M0 is the viscoelastic coefficient. The corotational derivative of the strain
rate tensor is defined as (Shrestha 1970; Samanta 2017)

δ

δt∗
e∗

ij = ∂t∗e∗
ij + u∗

k∂ke∗
ij − ∂ku∗

j e∗
ik − ∂ku∗

i e∗
kj. (2.3)

The corresponding boundary conditions are:

(i) at the bottom of liquid film y∗ = −d,

u∗ = U0 cosωt∗, υ∗ = 0; (2.4a,b)

(ii) the kinematic boundary condition at the free surface,

∂t∗η
∗ = υ∗ − u∗∂x∗η∗; (2.5)

(iii) the normal and tangential stresses at the free surface,

τ ∗
ij ninj = γ ∗ ∂x∗x∗η∗

(1 + ∂2
x∗η∗)3/2

, (2.6a)

τ ∗
ij njti = − ∂x∗γ ∗

(1 + ∂2
x∗η∗)−1/2

, (2.6b)

where γ ∗ is the surface tension, n is the unit normal vector and t is the unit tangent
vector.

973 A39-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

75
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.759


Instability of oscillatory viscoelastic film with surfactant

Note that the tangential stress at the free surface is not equal to zero, which is different
from that in the work of Samanta (2017). Owing to the existence of surfactant, the dynamic
condition requires a balance between the hydrodynamic traction, the surface tension and
the Marangoni traction. The right-hand term of (2.6b) is the Marangoni stress term.
The surface tension will depend on the concentration of the local surfactant. For the
two-dimensional stability problem, the surfactant concentration Γ ∗(x∗, t∗) is controlled
by the following transport equation (Halpern & Frenkel 2003):

∂t∗(HΓ ∗)+ ∂x∗(HΓ ∗u∗) = Ds∂x∗(H−1∂x∗Γ ∗), (2.7)

where H =
√

1 + η∗2
x∗ . Here Ds is the surface molecular diffusivity of the surfactant, which

can usually be ignored. Considering that the disturbance at the free surface is infinitesimal,
the relation between the surface tension γ ∗ and the surfactant concentration Γ ∗(x∗, t∗) can
be approximated as

γ ∗ = γ0 − E(Γ ∗ − Γ0), (2.8)

where E is the surface elasticity and is a constant, Γ0 is the basic value of the surfactant
concentration, corresponding to a uniform surface tension γ0.

To normalize the governing equation and boundary conditions, the following
characteristic scales are introduced. The mean thickness of liquid film d is selected as the
characteristic length scale, ν/d as the velocity scale, 1/ω as the time scale, and ρν2/d2 as
the pressure scale. The surfactant concentration and surface tension are normalized by Γ0
and γ0, respectively.

Then, a set of dimensionless parameters are obtained as follows:

Re = U0d
ν
, χ = gd3

2ν2 , Ca = ρν2

γ0d
, M = M0

ρd2 , β =
√
ωd2

2ν
, Ms = EΓ0

ρU2
0d
,

(2.9a–f )

where Re is the Reynolds number, the Galileo number χ is the ratio of gravity force
to viscous force, the Capillary number Ca shows the effect of the surface tension,
the viscoelastic parameter M represents the effect of the viscoelasticity, the Womersley
number β is the ratio of the mean thickness of the film to the thickness of the Stokes layer,
Ms represents the influence of surface surfactant.

For the basic flow, the surface is flat, i.e. y = η = 0, and we assume that the surface
pressure is zero. The surfactant concentration Γ and surface tension γ are normalized to
unity. By the method of separation of variables, we obtain the unsteady flow solution on
the oscillating plane

U( y, t) = Re
[

Re cosh[Ω(1 + iS)y]eit

cosh[Ω(1 + iS)]

]
, V( y, t) = 0, (2.10a,b)

with

S = (1 + 4M2β4)1/2 + 2Mβ2, Ω = β

√
(1 + 4M2β4)1/2 − 2Mβ2

1 + 4M2β4 . (2.11a,b)

Here Re[·] represents the real part of that complex function. The pressure is induced by
gravity

P( y) = −2χy, −1 ≤ y ≤ 0. (2.12)

Note that (2.9a–f ) is identical to that of Samanta (2017), which means the surfactant has
no effect on the basic flow. This is to be expected physically, as the curvature of the free
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surface for the basic flow is zero, the effect of surface tension on the basic flow disappears.
Besides, when the viscoelastic parameter M = 0, (2.9a–f ) will degenerate into that of Or
(1997).

2.2. Linear stability problem
For the linear stability problem, it is assumed that the disturbances are infinitesimal to the
basic state (2.9a–f ) and (2.12). The non-dimensional variables are

u = U + ũ, υ = υ̃, p = P + p̃, Γ = 1 + Γ̃, γ = 1 + γ̃ . (2.13a–e)

Considering that the problem we are dealing with is two-dimensional, the continuity in
(2.1a) is automatically satisfied by introducing a stream function ψ̃(x, y), such that

ũ = ∂yψ̃, υ̃ = −∂xψ̃. (2.14a,b)

In the following stability analysis, general infinitesimal disturbances for modal analysis are
decomposed into the following form:

ψ̃(x, y, t) = φ( y, t)eikx, η̃(x, t) = h(t)eikx, Γ̃ = ξ(t)eikx, (2.15a–c)

where k ∈ R is the wavenumber in the streamwise direction. Note that the pressure p̃ can
be eliminated by combining the Navier–Stokes equations, and hence it does not appear in
the linearized system. The time-dependent perturbation equation governing the stability of
viscoelastic liquid film is

2β2(L + ML 2)∂tφ = L 2φ − ik[U(L + ML 2)− (D2U + MD4U)]φ, (2.16)

with differential operators D = ∂y and L = D2 − k2. The boundary conditions on the
oscillation wall are given by

φ = Dφ = 0, at y = −1. (2.17)

The linearized kinematic boundary condition and transport equation for surfactant are
expressed by

2β2∂th = −ikφ − ikUh, at y = 0, (2.18a)

2β2∂tξ = −ik∂yφ − ikUξ, at y = 0. (2.18b)

The linearized conditions for the normal and tangential stresses at y = 0 are

2β2[D + M(L − 2k2)D]∂tφ = −ik[U{D + M(L − 2k2)D}.
+ M(D2UD − D3U)]φ

+ (L − 2k2)Dφ − 2ik
(
χ + k2

2Ca

)
h, (2.19a)

2β2M(L + 2k2)∂tφ = (L + 2k2)φ − ikM[U(L + 2k2)− D2U]φ

+ [D2U − 2β2MD2∂tU]h + MsRe2ikξ. (2.19b)

The time-dependent Orr–Sommerfeld equation (2.16) subject to conditions (2.17)–(2.19)
forms a Floquet system. For finite-wavelength instabilities, the Floquet system has to be
solved numerically, while the long-wavelength instability can be analytically obtained by
a series expansion in k, and we will discuss the long-wavelength solutions below.
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3. The long-wavelength expansion

According to the Floquet theorem as proposed by Yih (1968), under the limit of long
waves, i.e. k � 1, the solution can be expanded as follows:

φ( y, t) = eμt[φ0( y, t)+ kφ1( y, t)+ k2φ2( y, t)+ . . . ], (3.1a)

h(t) = eμt[h0(t)+ kh1(t)+ k2h2(t)+ . . . ], (3.1b)

ξ(t) = eμt[ξ0(t)+ kξ1(t)+ k2ξ2(t)+ . . . ], (3.1c)

where the eigenfunctions φj( y, t), hj(t) and ξj(t) (j = 0, 1, 2, . . .) are 2π-periodic in time,
the Floquet exponent μ = μr + iμi is the complex growth rate of the disturbance, and μ
is expanded as a power series in k:

μ = μ0 + kμ1 + k2μ2 + . . . . (3.2)

Substituting expansions (3.1) and (3.2) into the Floquet system and collecting like terms
with different order, a set of coupled partial/ordinary differential equations for φj, hj
and ξj will be obtained, and the equations can be solved sequentially. The basic flow is
unstable if there exists at least one Floquet exponent μ, with positive real part, i.e. μr > 0,
corresponding to an exponential growth of the disturbance.

For the first order O(1), the Floquet system can be simplified as

∂th0 + μ0h0 = 0, (3.3a)

∂tξ0 + μ0ξ0 = 0. (3.3b)

Since h0 must be periodic in t, we have μ0 = 0, h0 = const. and ξ0 = const. Otherwise,
according to the theory of ordinary differential equations, it can be shown that μ0 /= 0
results in a damping mode h0 ∝ e−μ0t. The leading-order approximation can be obtained,
as follows:

2β2(D2 + MD4)∂tφ0 = D4φ0, (3.4)

with boundary conditions

φ0 = Dφ0 = 0 at y = −1, (3.5a)

2β2MD2∂tφ0 = D2φ0 + (D2U − 2β2MD2∂tU)h0 at y = 0, (3.5b)

2β2(D + MD3)∂tφ0 = D3φ0 at y = 0. (3.5c)

Solving (3.4) and (3.5), the first-order solution for φ0( y, t) can be expressed as

φ0( y, t) = Re
[

Re{1 − cosh[Ω(1 + iS)( y + 1)]}eit

cosh2[Ω(1 + iS)]

]
h0. (3.6)

Note that the Marangoni number does appear in (3.4) and (3.5), so the basic flow at
leading-order is not affected by surfactant.

For O(k), the kinematic condition and the transport equation are

2β2(μ1h0 + ∂th1) = −i[φ0 + Uh0], (3.7a)

2β2(μ1ξ0 + ∂tξ1) = −i[Uξ0 + Dφ0], (3.7b)

where φ0 and U(0, t) are periodic in t. It is necessary to set μ1 = 0 to ensure that h1(t) and
ξ1(t) have periodic solutions. Then, the expressions of h1(t) and ξ1(t) can be obtained, as
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follows:

h1(t) = − iRe
2β2 h0 Im

[
eit

cosh2[Ω(1 + iS)]

]
+ h1(0), (3.8)

ξ1(t) = − iRe
2β2 ξ0 Im

[
eit

cosh[Ω(1 + iS)]

]

+ iRe
2β2 h0 Im

[
[Ω(1 + iS)] sinh[Ω(1 + iS)]

cosh2[Ω(1 + iS)]
eit

]
+ ξ1(0), (3.9)

where Im[·] represents the imaginary part of complex function. Here h1(0) and ξ1(0) can
set to be zero without loss of generality. Then, the first-order approximation of the Floquet
system becomes

2β2(D2 + MD4) ∂tφ1 = D4φ1 − i [U(D2 + MD4)− (D2U + MD4U)]φ0, (3.10)

with boundary conditions

φ1 = Dφ1 = 0 at y = −1, (3.11)

2β2MD2∂tφ1 = D2φ1 + [D2U − 2β2MD2∂tU) h1

− iM[UD2φ0 − D2U]φ0 + iξ0MsRe2 at y = 0, (3.12)

2β2(D + MD3)∂tφ1 = D3φ1 − 2iχh0 − i [U(D + MD3)

+ M(D2UD − D3U)]φ0, at y = 0. (3.13)

Obviously, the right-hand side of (3.10) contains inhomogeneous terms. Both U( y, t) and
φ0( y, t) are functions with a period of 2π, so the combination of non-homogeneous term
U( y, t)φ0( y, t)will only lead to a steady part and a function with a period of π. In addition,
the spatial derivative of φ1 is up to the fourth order, and the solution of the steady part
only needs to be assumed to be a cubic polynomial. It can be assumed that φ1( y, t) =
φs

1( y)+ φ̂1( y)ei2t + φ̌1( y)e−i2t. Here φs
1( y) is the steady part of solution. Similar to the

process of Gao & Lu (2006), it is sufficient to determine the value of μ2 by solving φs
1( y).

Here, the time-independent solution of first-order equations can be expressed as

φS
1( y) = a1 + b1y + c1y2 + d1y3 − 2iRe2h0Re[L0] + 2iRe2h0Re[L1], (3.14)

with

a1 = −2d1 + iRe2A2(1 + γ 2)

β2 (R2 − R1)h0 − i
2

MsRe2ξ0, (3.15)

b1 = −3d1 + iRe2A2(1 + γ 2)

β2 R2h0 − i MsRe2ξ0, (3.16)

c1 = − i
2

MsRe2ξ0, d1 = i
3
χh0, (3.17)

L0 = iA2(1 + γ 2)(1 − 4M2β4)

8β2S2 tanh[Ω(1 + iS)]{S4 sinh(2Ωy)+ i sin(2ΩSy)}, (3.18)

L1 = iA2(1 + γ 2)

2β2
cosh[Ω(1 + iS)y]
cosh[Ω(1 − iS)]

, (3.19)

where the expressions of A, γ , R1, R2 are the same as those in Samanta (2017).
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For O(k2), the Floquet system can be written as

2β2(μ2h0 + ∂th2) = −i[φ1 + Uh1], (3.20a)

2β2(μ2ξ0 + ∂tξ2) = −i[Uξ1 + Dφ1]. (3.20b)

By taking the steady terms on both sides, (3.20) can be expressed as

2β2μ2h0 =
[

A2Re2(1 + γ 2)

β2 (R2 − R1)− 2χ
3

]
h0 − Re2Ms

2
ξ0, (3.21a)

2β2μ2ξ0 =
[

A2Re2(1 + γ 2)

β2 R2 + Re2R3 − χ

]
h0 − Re2Msξ0, (3.21b)

where R3 is of the form

R3 = Ω{sinh(2Ω)(1 + 2S2)+ sin(2ΩS)(S3 + 2S)− 4M2β4 sinh(2Ω)

− 4M2S3β4 sin(2ΩS)}/4Sβ2[cosh(2Ω)+ cos(2ΩS)]2. (3.22)

We use the following notation for brevity:

I1 = A2Re2(1 + γ 2)

β2 (R2 − R1), (3.23a)

I2 = A2Re2(1 + γ 2)

β2 R2 + Re2R3. (3.23b)

Then, (3.21) can be rewritten in the matrix form⎡
⎣I1 − 2χ

3
−Re2Ms

2
I2 − χ −Re2Ms

⎤
⎦ [

h0
ξ0

]
= 2β2μ2

[
h0
ξ0

]
. (3.24)

It should be noted that different from the single formula derived by Samanta (2017) when
solving the Floquet exponent, the transport equation for surfactant is considered here, so
the problem needs to deal with the eigenvalue problem of a second-order matrix. In (3.24),
the effects of viscoelasticity M and oscillation frequency β are included in I1 and I2. Here
2χ/3 and χ are the gravity terms. Equation (3.24) constitutes an eigenvalue problem,
which determines a set of eigenvalues of μ2 for given different parameters, as well as the
corresponding eigenfunctions of h0 and ξ0. It is not difficult to obtain the analytic solution
of its eigenvalue by theoretical derivation. By solving the quadratic equation, we have

θ2 + bθ + c = 0, (3.25)

where θ = 2β2μ2, b and c are the coefficients

b = 2
3
χ + Re2Ms − I1, c = Re2Ms

(
I2

2
− I1 + χ

6

)
. (3.26a,b)

If the influence of surfactant is not considered, i.e. Ms = 0, the coefficient b will
correspond to the terms VECT + GT + ST in Samanta (2017). When the viscoelasticity
is absent, (3.24) is the same with Gao & Lu (2006). And if the viscoelastic and surfactant
effects are removed simultaneously, the eigenvalue problem will degenerate into the form
of Yih (1968) by reformulating some parameters.
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Figure 2. The neutral curves in the Ms–β plane for different viscoelastic parameters when χ = 0,Ca =
0.05,Re = 200. Here, the black solid, blue dashed and orange dash–dotted lines stand for M = 0, M = 0.005
and M = 0.01, respectively.

Considering that the coefficients b and c are real, the solution of (3.25) can be two real
or conjugate complex roots. According to the analysis of Gao & Lu (2006), the neutral
condition is obtained as

χ = 3
2 max(4I1 − 2I2, I1 − Re2Ms). (3.27)

With different parameters, one can determine whether the flow is stable or not by (3.27).
In the following analysis, we will discuss the influence of surfactants on the stability of
viscoelastic liquid films in the absence and presence of gravity, respectively.

3.1. Absence of gravity χ = 0
In some microgravity environments, the absence of gravity often occurs, so it is necessary
to consider the stability of oscillating liquid film flow in this situation. We can discuss the
influence of viscoelastic M and surfactant Ms on neutral stability conditions by directly
analysing (3.27). For the long-wavelength instability (k → 0), the neutral condition
becomes

max(4I1 − 2I2, I1 − Re2Ms) = 0. (3.28)

It is worth noting that the expression of (3.28) used here is consistent with Gao & Lu
(2006) in form, but the influence of viscoelasticity is introduced into the expressions I1 and
I2 in this paper. Figure 2 displays the influence of viscoelasticity on the (Ms − β) neutral
curve under given partial parameters. For Newtonian fluid (M = 0), the characteristics
of the neutral curves (black solid lines) are consistent with those found by Gao & Lu
(2006), i.e. for a given Ms, with the increase of β, the flow will alternately show stable and
unstable properties in the corresponding frequency interval. And the neutral curve will
become a vertical straight line (curve to straight line) with the increase of Ms, accompanied
by the narrowing of the unstable interval. The curve part is mainly controlled by I1 −
Re2Ms corresponding to the conjugate complex roots (travelling waves), while the vertical
straight lines are controlled by 2I1 − I2 corresponding to the standing waves. For different
viscoelastic parameters, there is no qualitative change in these stability characteristics.
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Figure 3. The real part of θ/Re2 as functions of β when Re = 200 for (a) Ms = 0.01 and (b) Ms = 10−4 with
M = 0 (black dashed lines), M = 0.005 (orange solid lines) and M = 0.01 (blue dash–dotted lines). The black
thin lines represent Newtonian fluids without surfactants.

Nevertheless, with the increase of viscoelasticity, for low frequency oscillation (β < 6),
the unstable region will be narrowed and move towards the direction of smaller β. In
addition, increasing viscoelasticity will also cause the shrinkage position to be raised. For
the higher frequency oscillation (β > 6), there is no obvious characteristic of the change
of the unstable interval in the presence of viscoelasticity.

In order to explore more clearly the influence of viscoelasticity on different Floquet
modes in the presence of surfactants, two groups of typical values of Ms and M are
selected. Figure 3 shows the variation of the real part of the growth rate of two Floquet
modes with the oscillation frequency β. For comparison, the growth curves of Newtonian
fluid (M = 0) and clean surface (Ms = 0) are also shown in black solid lines. According
to the result of Gao & Lu (2006), the existence of surfactants will inhibit the growth
of disturbance and make the flow more stable. For a larger Ms (see figure 3a), with
the increase of viscoelasticity, the growth rate corresponding to the most unstable mode
also increases, and the maximum growth rate within the given parameter range does not
exceed that of the clean surface. This means that although viscoelasticity promotes the
growth of disturbance, the effect of destabilization is not as obvious as the effect of
stabilization from surfactant. The increase of viscoelasticity has no obvious effect on
the oscillation frequency corresponding to the maximum growth rate (β = 1.1), but for
high frequency (β > 4), the position of the local maximum of the growth rate curve
will move in the direction of decreasing frequency (see the inset). Floquet exponents are
real numbers in most frequency ranges, which is shown as two branches of the growth
rate curve, and the characteristic mode is a standing wave. In a small frequency range,
such as 1.94 < β < 2.62 when M = 0.01, the two branches merge into a curve. The
Floquet exponent is a pair of conjugate complex numbers, and the positive and negative
imaginary parts represent the opposite propagation directions of travelling-wave modes.
In figure 3(b), a smaller surfactant parameter (Ms = 10−4) is introduced, and it is found
that when the viscoelasticity is large enough, the flow is still more unstable than that of
Newtonian fluid with a clean surface, despite the presence of surfactant. Therefore, when
surfactant and viscoelasticity exist at the same time, the stability of oscillating liquid film
depends on their competitive relationship.
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Figure 4. The neutral curves in the Re–β plane for different viscoelastic parameters and surfactants with
χ = 1. (a) Specified surfactant Ms = 0.01, the blue solid lines, black dashed lines and orange solid lines
represent M = 0, M = 0.005 and M = 0.01, respectively. (b) Specified viscoelastic parameter M = 0.01,
the blue solid lines, black dashed lines, orange solid lines and open circles represent Ms = 0, Ms = 10−4,
Ms = 10−3 and Ms = 10−2, respectively.

3.2. Presence of gravity χ = 1
When the influence of gravity is considered, the neutral curves corresponding to
long-wave instability present the U-shaped curves with separated bandwidth of frequency.
Underneath the curve and outside the bandwidth range, all infinitesimal long-wave
disturbances are stable. Dandapat & Gupta (1975) and Samanta (2017) studied the
viscoelastic liquid film on the clean surface, and Gao & Lu (2006) also studied the
Newtonian liquid film containing surfactants. Here, we consider both viscoelastic and
surfactant effects. Figure 4(a) shows the influence of different viscoelastic parameters on
the neutral curve when Ms = 0.01 is fixed. For low-frequency oscillation (β < 3), the
neutral curves corresponding to different viscoelastic parameters are all stacked together,
which means that viscoelasticity hardly affects the stability of low-frequency oscillation
liquid film. When 4 < β < 6, with the increase of viscoelasticity, the critical Reynolds
number and the imposed oscillation frequency gradually decrease. The interesting result
is that, high frequency oscillation (β > 10) significantly enhances the instability of
viscoelastic liquid film, which is different from low-frequency oscillation. The effects of
different surfactants on the stability of viscoelastic liquid film are shown in figure 4(b).
The neutral curves are plotted in the Re–β plane parameterized by the value of Ms with
fixed M = 0.01. The results show that with the increase of Ms, the unstable frequency
bandwidth decreases gradually and the corresponding Reynolds number increases. Similar
to the results in the absence of gravity, the surfactant will still weaken the instability of
viscoelastic liquid film and make the flow more stable in the presence of gravity. It is
worth mentioning that the scattered points (Ms = 0.01) and thin lines (Ms = 0.001) of the
second and third family neutral curves (4 < β < 8) in figure 4(b) are coincident. This is
because with the increase of Ms, the dominant term of (3.27) changes from I1 − Re2Ms to
2I1 − I2, and Ms no longer influences the neutral curve.

4. Numerical procedure

In this section, we briefly discuss the numerical method implemented to solve
the time-dependent perturbation equations (2.16)–(2.19) for disturbances of arbitrary
wavenumbers. According to the Floquet theory, the disturbances can be expanded in the
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following forms of truncated complex Fourier series:

φ( y, t) = eμt
K∑

n=−K

φ̂n( y)eint, h(t) = eμt
K∑

n=−K

ĥneint, ξ(t) = eμt
K∑

n=−K

ξ̂neint.

(4.1a–c)
By substituting (4.1a–c) into perturbation equations (2.16)–(2.19) and collecting the
coefficients of Fourier components eint, the matrix differential equations are obtained as

Aφ̂n−1 + B(n)φ̂n + Cφ̂n+1 = μS1φ̂n, (4.2)

with

A = ik[(D2U+ + MD4U+)− U+(L + ML 2)], (4.3a)

B(n) = [L 2 − 2inβ2(L + ML 2), (4.3b)

C = ik[(D2U− + MD4U−)− U−(L + ML 2)], (4.3c)

S1 = 2β2(L + ML 2), (4.3d)

where U+ and U− are defined as U( y, t) = U+( y)eit + U−( y)e−it. The linearized
kinematic boundary condition and transport equation (2.18) are

ikU+ĥn−1 + 2iβ2nĥn + ikU−ĥn+1 + ikφ̂n = −2μβ2ĥn, (4.4a)

ikU+ξ̂n−1 + 2iβ2nξ̂n + ikU−ξ̂n+1 + ikD φ̂n = −2μβ2ξ̂n. (4.4b)

The system of equations (4.2)–(4.4) is solved numerically using the Chebyshev spectral
collocation method (Schmid & Henningson 2001). Considering that the Chebyshev
polynomials are defined over the domain [−1,+1], we need to map the computational
domain onto the physical domain [−1, 0]. Then, the continuous function is discretized
on the Gauss–Lobatto collocation points and the differential operators are replaced by
pseudospectral matrix approximations. Each function of φ̂n( y) is represented as a vector
of its function values on Gauss–Lobatto points. The linear system (4.2)–(4.4) can be turned
into a matrix eigenvalue problem

RX = μSX , (4.5)

where R is a block tridiagonal matrix, which is composed of matrices A, B(n) and C,
and S is a block diagonal square matrix. Here X = [φ̂−K · · · φ̂K ĥ−K · · · ĥK ξ̂−K · · · ξ̂K]T

is a column matrix. The boundary conditions are treated carefully by replacing the rows
in the corresponding positions in the matrices R and S. Finally, the eigenvalues μ and
eigenvectors X are obtained by solving the generalized eigenvalue problem of sparse
matrix R and S. The purpose of numerical simulation is to find the neutral stability curve,
i.e. for given parameters, the real parts of Floquet exponent μ is zero. For the eigenvalues
with negative real parts, (μr < 0) will provide stable modes and are not relevant for the
instability analysis.

For different parameters (e.g. capillary number, Ca; Womersley number, β; and
viscoelastic parameter, M), several tests have been performed for different Chebyshev
points N and Fourier modes K to ensure numerical convergence. Table 1 shows the results
of numerical convergence tests for typical parameters. In the calculation, the number of
N and K is increased until the Floquet exponents μ obtained are accurate enough. The
long-wavelength analytical results of (3.27) are also shown in table 1 (marked in bold)
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M k K N μr μi

0.01 0.001 5 5 −4.251065 × 10−8 1.062553 × 10−5

10 10 −4.066574 × 10−8 2.518897 × 10−7

10 20 −2.538726 × 10−8 −1.522171 × 10−7

12 24 −2.538700 × 10−8 −1.522139 × 10−7

— — −2.538699 × 10−8 −1.522138 × 10−7

0.005 0.001 5 5 −4.923212 × 10−8 1.207995 × 10−6

10 10 −8.923988 × 10−8 2.527577 × 10−8

10 20 −4.712559 × 10−9 −1.466775 × 10−7

12 24 −4.712391 × 10−9 −1.466769 × 10−7

−4.712390 × 10−9 −1.466767 × 10−7

0.01 2 5 5 −0.135445 0.000000
10 10 −0.057135 −0.049746
10 20 −0.102120 −0.088404
12 24 −0.102135 −0.088407

0.005 2 5 5 −0.098329 0.123066
10 10 −0.085089 −0.143388
10 20 −0.097199 −0.129671
12 24 −0.097199 −0.129672

Table 1. Numerical results of convergence tests for Chebyshev points N and Fourier modes K when Re = 100,
β = 6, χ = 1, Ca = 0.05 and Ms = 0.001. The values marked in bold indicate the long-wavelength expansion
results of (3.27).

μ2, μ3 μ4 μ2, μ3 μ4
k (Gao & Lu 2008) (Gao & Lu 2008) (Current result) (Current result)

1 T (−0.163600,±0.129833) −1.153222 — —
1 N (−0.163610,±0.129819) −1.153222 (−0.163609,±0.129819) −1.153209
1.5 T (−0.237132,±0.347132) −1.190857 — —
1.5 N (−0.237149,±0.347087) −1.190857 (−0.237148,±0.347087) −1.190834

Table 2. Comparison of theoretical (T) and numerical (N) results for μ2, μ3 and μ4 with Re = 0.5, β = 3,
χ = 0, Ca = 0.05, M = 0 and Ms = 0.001.

to validate the numerical method. Further increasing the values of N and K by five,
the relative error of eigenvalues varies by less than 10−10, but it will consume more
computational resources. Thus, in most subsequent numerical calculations, the number
of Chebyshev points N = 24 and Fourier modes K = 12 are used to accurately compute
the eigenvalue problem. For β > 8 with large value of wavenumber, N = 40 and K = 20
are also used to check the accuracy of the calculations.

When viscoelasticity is not considered (M = 0), we compare the numerical results with
those of Gao & Lu (2008). In the absence of gravity, the results for fixed values of Re =
0.5, β = 3, Ca = 0.05 and Ms = 0.001 are shown in table 2. The first four eigenvalues
obtained under these parameters are μ1 ∼ μ4. Here μ1 corresponds to the trivial solution
and is not shown. Here μ2 and μ3 are complex conjugates and μ4 is real. It is observed
that the current results agree well with the results from Gao & Lu (2008).

In order to further verify the accuracy of the current code and the correctness
of the long-wavelength analysis results, we compare the analytical solution of the
long-wavelength limit obtained in § 3 with the current numerical results. Actually, these
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Figure 5. Comparison of long-wave approximation results (solid lines) and numerical results (scatters) for
χ = 1, Ca = 0.05, M = 0.01, Ms = 10−2 and Re = 200. (a) Complex conjugate μ for β = 2, the blue
and orange solid lines represent the real part μr and imaginary part μi, respectively. (b) The first two real
eigenvalues for β = 3, the blue and orange solid lines represent the first eigenvalue μ1 and the second
eigenvalue μ2, respectively.

two results can be verified by each other. The eigenvalue given by (3.24) for k � 1
can be approximated as μ = k2θ/(2β2). Figure 5 illustrates the comparison between the
approximate analytical solution and the numerical solution in the range of 10−4–10−1,
and the typical parameters χ = 1, Ca = 0.05, M = 0.01, Ms = 10−2 and Re = 200 are
selected. The Floquet exponent is conjugate complex when β = 2 as shown in figure 5(a).
The real part of μ is positive at different k, which means the disturbance increases
under this parameter, which eventually leads to instability of the flow. It is reasonable
to note that the numerical results gradually deviate from the long-wavelength theoretical
solution when k > 0.01, because the theoretical results will gradually become invalid with
the increase of k. However, for k < 0.01, the numerical results are in good agreement
with the theoretical solutions. Figure 5(b) shows the absolute values of the first and
second eigenvalues μ1 and μ2 of the most ‘dangerous’ mode for β = 3. Since μ1 and
μ2 are real, their corresponding modes are standing waves. Similarly, the numerical
results are consistent with theoretical solutions for small values of k. After verifying
the numerical convergence and the correctness of the results at different wavelengths
(long- and finite-wavelength), we concluded that the results of numerical procedure are
reassuringly in very good agreement with previously available data.

5. Finite-wavelength instability

In this section, we will discuss the stability of viscoelastic oscillating liquid film
containing surfactants under arbitrary wavelength disturbance. According to the results of
long-wavelength analysis in § 3, the presence of surfactant on the surface of the liquid film
plays a vital role in stability. Both clean surface (Ms = 0) and the existence of surfactant
will be considered with or without gravity in this section. For comparison, we choose the
same parameters as those in Or (1997) and Gao & Lu (2008), i.e. Ca = 0.05, χ = 0 or 1,
and the stability characteristics will be analysed by varying β, Re, Ms and M.

5.1. Clean surface in the absence/presence of gravity
The influences of viscoelasticity in the presence of gravity are considered by Samanta
(2017). However, the results of the absence of gravity are not involved in his work.
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Figure 6. Stability characteristics in the absence of surfactants with Ca = 0.05 for different viscoelastic
parameters M = 0.005 (a,b) and M = 0.01 (c,d). Panels (a,c) represent the stability boundaries in the
(β,Re)-plane and panels (b,d) represent variation of the corresponding wavenumber k with β. The U-shaped
orange solid lines and open circles represent long- and finite-wavelength instability for χ = 1. The blue solid
lines represent finite-wavelength instability for χ = 0. The vertical dash–dotted lines represent the boundaries
of unstable regions for χ = 0.

Before considering the combined effects of viscoelasticity and surfactant, let us briefly
analyse the stability of clean-surface viscoelasticity liquid film without gravity. Figure 6
shows the Reynolds number and its corresponding wavenumber versus imposed frequency
for two viscoelastic parameters (M = 0.005 and 0.01). As described in the results
of long-wavelength stability, the disturbances are unstable over alternating frequency
intervals, and the boundaries of unstable regions are indicated by vertical dash–dotted
lines in figures 6(a) and 6(c). Different from the long-wavelength results, when the
Reynolds number exceeds the critical value, finite-wavelength instability occurs in the
region where the long-wavelength disturbance is stable. If β continues to increase to the
next long-wavelength instability interval, although the finite-wavelength instability still
exists (see the blue dotted lines), the critical Reynolds number Rec is not determined by
the finite-wavelength disturbance due to the long-wave mode being still unstable when
Re → 0. These phenomena are similar to those found by Gao & Lu (2008). In addition,
the neutral curve in the presence of gravity (χ = 1) is also given in figure 6(a), in which
the U-shaped curve represents the result of the long-wavelength instability. It can be seen
that with the increase of β, the flow instability is first dominated by the long-wave mode.
When β increases to 2.4925, the critical Reynolds number corresponding to the long-wave
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mode is equal to that of the finite-wavelength, and then the oscillation frequency range is
dominated by the finite-wavelength mode until the neutral curve intersects the second
U-shaped neutral curve. Thus, in the presence of gravity, Rec is a continuous function
of the imposed frequency, although the long-wavelength mode and the finite-wavelength
mode alternate with increasing frequency, which is quite different from the results in the
absence of gravity. Two points should be noted in figures 6(a) and 6(c). On the one hand,
the critical Reynolds number corresponding to a finite-wavelength seems to be insensitive
to gravity except for near β = 8, which can be seen from the coincidence of the neutral
curves χ = 0 (blue solid lines) and χ = 1 (open circles). In fact, for β = 3 in figure 6(a),
the critical Reynolds number corresponding to χ = 1 is 58.95, while that corresponding
to χ = 0 is 59.77, with a difference of only 1.37 %. On the other hand, the oscillation
frequencies corresponding to the bifurcation points in the presence of gravity (orange solid
circle) and the absence of gravity (open diamond) are also affected slightly by gravity.
For example, β values corresponding to the presence and absence of gravity at the first
bifurcation point are 2.4925 and 2.5564, respectively. Considering that gravity has little
influence on the boundary of the stability region and the critical Reynolds number, the
results with or without gravity will not be distinguished in the following analysis unless
otherwise specified.

For the larger viscoelasticity (M = 0.01), as shown in figure 6(c), Re increases with
the increase of β for the low-frequency oscillation (2.4970 < β < 3.86), while in the
high-frequency region (8.014 < β < 11.22), Re shows a decreasing trend, i.e. Reynolds
number does not always monotonically increase with the imposed frequency. In addition,
when the flow instability changes from long-wavelength mode to finite-wavelength mode,
the critical wavenumber does not necessarily change continuously, as shown in figure 6(d).
The discontinuity of wavenumber is explained as follows. For χ = 0, the first branch
point (P1) is located at β1 = 2.4968, and we plot the neutral curves for the slightly
higher and lower values of β1 in figure 7(a). It can be seen that for β = 2.4970 (orange
solid line), the critical wavenumber corresponding to the local minimum of the neutral
curve is 0.2, while for β = 2.4967 (blue solid line), the neutral curve monotonically
increases from the coordinate origin (k,Re) = (0, 0). Therefore, the critical wavenumber
can be continuously transitioned from long-wavelength instability to finite-wavelength
instability. For the second branch point (P2), β2 = 5.1305, the neutral curve for slightly
higher frequency has a local minimum at k = 0.54 (see figure 7b), which makes the
critical wavenumber discontinuity near β2. The characteristics of the first two bifurcation
points are qualitatively consistent with the results obtained by Gao & Lu (2008) in the
study of oscillating Newtonian fluid films with surfactants. The neutral curve near that
third branch point (P3, β3 = 7.9909) is different from the first two branch points. It first
separates a new branch at P3 with a rapid increase in Reynolds number (see blue solid
line in figure 6c). Then, in a small range of β, it intersects with another monotonically
decreasing neutral curve at P4. It can be seen from figure 6(d), in the k–β plane, the
critical wavenumber increases rapidly from zero at first, after that, it appears discontinuous
with the increase of β, and continuously changes at a higher wavenumber. Note that the
parameters used here are consistent with figure 5 in Samanta (2017). However, there is
no stable bandwidth in the present work for both χ = 0 and χ = 1. On the contrary, a
neutral curve with finite-wavelength is found. In order to more comprehensively analyse
the different structural characteristics of critical parameter changes near β3, the neutral
curves corresponding to different β on the Re–k plane are plotted in figure 7(c). It can be
seen that when the frequency is less than β3, the neutral curve increases monotonically
over the range of 0 < k < 0.5, which may explain why the critical wavenumbers increase
from zero. Nevertheless, when the long-wavelength instability is eliminated, the neutral
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Figure 7. The neutral curves in the neighbourhood of branch point when M = 0.01, Ms = 0, Ca = 0.05 and
χ = 0: (a) first branch point P1; (b) second branch point P2; (c) third branch point P3.

curves corresponding to β = 7.991 contain two local minima which correspond to a
small wavenumber of 0.08 and a larger wavenumber of 4.2, respectively. With the
increase of β, the Reynolds number corresponding to the extreme point of the smaller
wavenumber increases rapidly while that of the larger wavenumber decreases slowly.
Until β increases to 8.014, the two local lowest points have the same Reynolds number
Re = 138.6 corresponding to the point P4, and then the global minimum of the neutral
curve is controlled by the part of large wavenumber. This is why the critical Reynolds
number is continuous in figure 6(c) and the corresponding wavenumber jumps from 0.32
to 4.2. It should be noted that the Floquet exponents corresponding to the above critical
parameters are all zero, i.e. the characteristic mode always exists as a standing wave.

5.2. Effect of surfactants in the absence/presence of gravity
In this section, we will focus on the combined effect of viscoelasticity and surfactants
on the stability of oscillating liquid films. The typical parameter Ms = 0.001 is selected
for analysis. Similar to the previous discussion, the presence or absence of gravity has
an extremely limited effect on finite-wavelength stability, as shown in figure 8. Due to
the effect of the surfactant on the long-wavelength instability, the bandwidth of each
instability interval is shorter than that in the absence of the surfactant, which means
that the oscillation frequency range occupied by the finite-wavelength instability will
be wider, which can be observed by comparing figure 6(a) with figure 8(a). There
are three significant differences in the neutral curve for finite-wavelength instability
when considering surfactants. First, in the low-frequency region, with the increase of
β, the unstable mode changes from the long-wavelength mode to the finite-wavelength
mode. Careful examination of the Floquet exponent reveals that μ corresponding to the
finite-wavelength mode is a pair of conjugate complex numbers, which means that the
disturbance is a travelling wave. Continue increasing β to 3.5, where there is a bifurcation
point (P) to the right of which corresponds to the higher wavenumber, as shown in
figure 8(b). Different from the travelling-wave mode on the left-hand side of the bifurcation
point, the mode corresponding to the high wavenumber is a standing-wave. Second, in
the intermediate frequency region (4.8 < β < 6.9), the finite-wavelength neutral curve
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Figure 8. Stability characteristics in the presence of surfactants with Ms = 0.001 and Ca = 0.05 for different
viscoelastic parameters M = 0.005 (a,b) and M = 0.01 (c,d). Panels (a,c) represent the stability boundaries in
the (β,Re)-plane and panels (b,d) represent variation of the corresponding wavenumber k with β. The meanings
of curves and symbols are consistent with figure 6.

shows a discontinuity at β = 6.7, which is caused by the standing-wave mode competition
between two different wavelengths. This case has been analysed in detail in the work of Or
(1997) and Gao & Lu (2008), and will not be described here. Third, for the high-frequency
region (β > 7.44) in figure 8(a), compared with the Newtonian fluid, the critical Reynolds
number in the presence of viscoelasticity is no longer monotonically increasing, while the
critical wavenumber corresponding to the finite-wavelength mode is gradually increasing
with β. More importantly, as shown in figure 8(c), for higher viscoelastic parameters
(M = 0.01), the viscoelasticity causes the instability of the oscillating liquid film to
be determined by the standing-wave mode of finite wavelength over a relatively large
frequency range (4.6 < β < 11.4). The above results again imply that viscoelasticity has
a significant effect on the stability of the high-frequency oscillation liquid film.

In order to study the stability characteristics of surfactants to viscoelastic liquid film
under finite-wavelength disturbance more clearly, we calculated the variation of critical
Reynolds number and critical wavenumber with oscillation frequency for more values
of Ms, as shown in figure 9. The left and right endpoints of each curve represent the
boundary between long-wave instability and finite-wavelength instability. Figures 9(a)
and 9(b) show the effects of surfactants on the critical Reynolds number and critical
wavenumber in the low-frequency range, respectively. In order to better distinguish the
differences between different curves, in figure 9(a), the same method is adopted as in Gao
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& Lu (2008) to deal with the ordinate. It can be seen that with the increase of Ms, the range
of finite-wavelength instability widens, which is discussed in the long-wavelength stability
analysis considering gravity (see figure 4b). Different surfactant concentrations will lead
to the competition between travelling-wave mode and standing-wave mode. For example,
when Ms = 0, the unstable mode is a standing wave, but when the surfactant concentration
is very small (0 < Ms ≤ 10−4), the unstable mode becomes a travelling wave. And with
the increase of Ms, the critical Reynolds number increases, which means that surfactants
can make the flow more stable. Further increasing the influence of surfactant (Ms = 10−3

or 10−2), the critical curve becomes two branches. The left-hand branch represents the
travelling-wave mode with a smaller critical wavenumber, while the right-hand branch
represents the standing-wave mode and has a large critical wavenumber. With the increase
of Ms, the intersection of the two branches will move in the direction of decreasing
oscillation frequency. Nevertheless, the flow in the presence of surfactant with Ms ≤ 10−2

is always more stable than that in the absence of surfactant. When Ms is large enough, e.g.
Ms = 10−1, the unstable modes in the whole low-frequency oscillation range are standing
waves, which is consistent with the clean-surface case. In addition, the curve of Ms = 0
and the curve of Ms = 10−1 intersect, which means that whether the flow is stabilized or
destabilized by the surfactant depends on the oscillation frequency of the plate. The effects
of surfactants on critical Reynolds number and critical wavenumber in higher frequency
range are shown in figures 9(c) and 9(d). For the clean-surface case, the unstable mode
is still a standing wave, and the curve is discontinuous in the range of 6.76 < β < 7.92,
which is dominated by long-wavelength instability. When the concentration of surfactant
is increased, Ms = 10−5 or 10−4, the unstable mode will change from a travelling wave
to a standing wave with the increase of β, and the oscillation frequencies at the mode
change points are β = 8.4 and 5.4, respectively, which are marked by arrows in figure 9(d).
When Ms is further increased, Ms = 10−3, the unstable mode reverts to the standing-wave
type, and the discontinuity in the unstable curve is caused by the competition of different
standing-wave modes. It is worth mentioning that surfactants can promote or inhibit flow
stability at both lower and higher oscillation frequencies.

6. Conclusion

In this work, we have studied the linear instability of viscoelastic film with insoluble
surfactants on an oscillating plane for disturbances with arbitrary wavenumbers. Floquet
theory is utilized to describe the combined effects of viscoelastic and insoluble surfactants
on the linear instability of oscillating liquid film. The time-dependent perturbation
equations governing the stability of viscoelastic liquid film are derived for an unsteady
basic flow. Then, the solution of the eigenvalue problem is derived analytically by
the asymptotic expansion method in the limit of long-wavelength perturbations. The
finite-wavelength instability is solved numerically by utilizing the Chebyshev spectral
collocation method. The theoretical solution of the long wave and the numerical solution
of the finite wavelength are consistent when k � 1.

The flow is governed by five parameters: Reynolds number Re; viscoelastic parameter
M; surface surfactant Ms; Galileo number χ ; Womersley number β. The present
parametric study is mainly focused on the critical mode of the linear problem. The main
conclusions of the analysis are as follows. For long-wavelength instability, the presence
of viscoelasticity shifts the stability boundaries to the low-frequency region for β < 6
and χ = 0. The growth rate corresponding to the most unstable mode increase with the
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Figure 9. Effects of surfactants on the finite-wavelength instability characteristics of the flow in different
frequency range with χ = 1, Ca = 0.05 and M = 0.01. Variation of (a) e−βRe and (b) the corresponding
critical wavenumber k with β in low-frequency. Variation of (c) Re and (d) the corresponding critical
wavenumber k with β in higher frequency.

increasing M. When considering the effect of gravity, the U-shaped neutral curves with
separation bandwidth appear. For low-frequency oscillation (β < 3), the viscoelasticity
almost has no effect on the stability, while high-frequency oscillation significantly
enhances the instability of viscoelastic liquid film. Besides, the presence of surface
surfactants will decrease the unstable frequency bandwidth and increase the corresponding
Reynolds number. For finite-wavelength instability, we first discuss the stability of the
clean surface in the absence/presence of gravity. The critical parameters corresponding to a
finite wavelength seem to be insensitive to gravity except for near β = 8. Different from the
results of Samanta (2017), four branch points are detected and the neutral curves are plotted
near those branch points. Finally, the combined influence of viscoelasticity and surfactants
on the stability are also considered. Both travelling-wave mode and standing-wave mode
are found due to the existence of surface surfactants. For high-frequency oscillation plane,
increasing viscoelastic parameters will cause the critical Reynolds number to increase
non-monotonically and the instability to be determined by the finite-wavelength mode over
a relatively large frequency range. The above conclusions suggest that viscoelasticity has a
great influence on the stability of liquid film with high-frequency oscillation. In addition,
for fixed viscoelastic parameter M = 0.01, different surfactant concentrations will lead to
the competition between travelling-wave mode and standing-wave mode. When Ms is large
enough, the disturbance modes in the form of a standing wave dominate the instability of
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the flow for finite-wavelength disturbance. And the flow can be stabilized or destabilized
by the surfactant depending on the oscillation frequency of the plate.

Although only infinitesimal disturbances are considered in this paper, the present
configuration can be extended to analyse the finite-amplitude instability. For
non-Newtonian flow, only Walter’s liquid B′′ is considered here and it is also necessary to
study the stability of other rheological models. In addition, the experimental or numerical
simulation data are needed as a supplement to the theoretical results, which will be the
subject of future exploration. Despite this, we anticipate that the results provided in this
paper may serve as a guide for the sequence of bifurcation leading to turbulence for such
a flow system driven by an oscillating wall.
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