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When Ramanujan died in 1920 he left behind three notebooks containing statements
of a few thousand theorems, mostly without proofs. The second notebook is an enlarged
edition of the first, and the third is short and fragmentary. Thus our primary attention may
be directed toward the second notebook. In the decade following Ramanujan's death, G.
N. Watson and B. M. Wilson agreed to perform the enormous task of editing the
notebooks. Unfortunately, this task was never completed, possibly, in part, due to the
premature death of Wilson in 1935. In 1957, a photostat edition [19] of the notebooks
was published, but no editing whatsoever was undertaken.

After Watson died in 1965, his papers were donated by Mrs. Watson to the Trinity
College library at Cambridge University at the suggestion of R. A. Rankin. Included in
these manuscripts was the unfinished work that Watson and Wilson accomplished in their
efforts to edit the notebooks. For many chapters, a substantial amount of work had been
done, but some chapters were virtually untouched. Wilson was given the task of editing
the earlier chapters in the second notebook, and Chapter 2 was almost completed by
Wilson. The first two named authors have taken Wilson's notes for this chapter and
completed the work. It is hoped that other chapters will be similarly edited. Before the
first author had learned of the existence of the Watson-Wilson manuscripts at Trinity
college, he had edited Chapter 14 [4]. (Watson examined only six entries from Chapter
14.)

Chapter 2 is fairly elementary, but several of the formulae are very intriguing and
evince Ramanujan's ingenuity and cleverness. Ramanujan gives more proofs in this
chapter than in most of the later chapters. Chapter 2 contains 68 theorems and formulas,
most of which are identities between finite sums. Many of these identities involve arctan x,
and because this function arises so frequently in the sequel, we shall put A(x) = arctan x.
It will be assumed that -TT/2^A(X)<TT/2 . Several of Ramanujan's theorems concerning
this function arise from the elementary equalities

±A (0.1)
. - x y / '

except when xy > 1, and

A(x)-A(y) = A( ), (0.2)
\1 + xy /

except when - x y > l .
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Entries 1,2,4,5, and 6 involve the function

where a is an integer exceeding one. Furthermore, we put <p(a)= lim <p(a, n).

ENTRY 1. For each positive integer n,

n 1 « " 1

kt1^Tk = 2n + l +
 fct'1(2k)3-2fc' ( " }

Proof. We give Ramanujan's proof. In the easily verified identity

1 l ^ i (12)x3-x 2(x-l) 2(x + l) x

let x = 2fc and sum on k, l < f c < n . The right side of (1.1) is then found to be equal to

1 A 1 1 A 1 1 A 1. n A 1 1 A 1

2k4'12k-l+2lct'12fc + l 2fct'1k
 + ^

COROLLARY.

Proo/. Since [2, p. 43],

l im{xi-logx] = 7, (1.4)

where y denotes Euler's constant, we find from the last equality in (1.3) that

lim £ -n;=lim {( f ~log(2n))-( £ i-logn)]+log2 = log2.

The result now follows from Entry 1 and the definition of <p(a).
There is a different proof of this corollary in Ramanujan's first notebook [IS?, vol. I.,

p. 7]. This proof is also discussed in [3, p. 154].

EXAMPLE. For each positive integer n,

y n-k_ y 1 n

fct'1(2k-l)2k(2k + l)

Proof. The proof below is given by Ramanujan. Multiply both sides of (1.1) by In to
get

y 2 n
 = 2 i i Y - | 2 " 2

%n + k k r i (2k- l )2k(2k + l)
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RAMANUJAN'S SECOND NOTEBOOK 201

Subtract 1 from each term on the left side of (1.5) and n from the right side of (1.5) to
achieve the desired equality.

ENTRY 2. For each positive integer n,

? 1 ^ + k = <p(3'n)- (2ll)

Proof. Using (1.2), we find that

from which the desired result follows.

COROLLARY. Iog3 = <p(3).

Proof. The proof is like that of the corollary to Entry 1. Let n -» » in (2.1) and use
the fact that, by (1.4),

lim £ i = log3. (2.2)

Ramanujan's proof of the corollary above is similar to the aforementioned proof that
he gave in the first notebook for the corollary of Entry 1. Ramanujan replaced n by 1/dx
in the left side of (2.1) and regarded this sum as a Riemann sum. Thus,

r 2 V dx

from which the corollary follows.

ENTRY 3. For each positive integer n,

Proof. By (0.1) and (0.2), respectively,

and

for each positive integer fc. By (3.2), (3.3), and (0.2), we find that
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If we now sum both sides of (3.4) for 1 < k < n, we readily complete the proof of Entry 3.
Note that, by (3.1) and Taylor's theorem,

= I
(£=„+

Letting n —> °° and using (2.2), we deduce that

which is given by Ramanujan in his first notebook [19, vol. I, p. 9].

ENTRY 4. For each positive integer n,

Proo/. The complete proof is given by Ramanujan. By (1.2),

4n+l -i -i 2n i 1 n 1

fc=i k 2 fc==1 k 2 k=1 k

3n+l 1 "

= y —— - y
%n + k %

which proves the first equality in (4.1).
Next, using the second equality in (4.2), we find that

which establishes the second equality in (4.1).
In the proof above, and elsewhere, Ramanujan frequently used a rather unorthodox

I In I I 4n+l I
notation. Thus, for example, X 7T" means Y — and X means X T-

2n k=i k 4n + l k=i k

https://doi.org/10.1017/S0017089500004675 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500004675
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The corollary below represents the first problem that Ramanujan submitted to the
Journal of the Indian Mathematical Society [16], [18, p. 322]. Ironically, this result was
previously posed as a problem by Lionnet [12] in 1879. The problem and its solution are
also given in Chrystal's textbook [6, p. 249].

COROLLARY. | log2 = <p(4).

Proof. Let n —> °° on the right side of (4.1) and use the equality £ (-l)k+1/fc =

log 2.

ENTRY 5. For each positive integer n,

Proof. By (1.2),

_ 6"y * 1 1 M M 1 1 1 J_
~kTifc 3^xk fct'1l6k-4 + 6k-3 + 6k-2 + 6fc

_6'rJ'l 1 M l j ! l l j . 1
k=i k 3 f c = 1 k 2k=lk 3k=12k — 1

=
 6y1I_I y I_l y I_I(y I_I y I
k=i k 3 k = 1 fc 2 k = 1 fc 3 U=i k 2fc=1fc

-^y1!-! y I_A y l_i y I
k=i k 2 k = 1 fc 3 fc = 1 k 6|c = 1fc

_ 6y1 I_I y ±A y I
k=n + l ^ -^ k=n + l K J fc=n + l "•

In 1 3n 1 -i 2n 1

Z l ^i 1 I ri 1

lr " U + 1 ^ " fc-'

from which (5.1) easily follows.

COROLLARY. \ log 3 +5 log 4 = cp(6).

Proof. Letting n—»«> in (5.1) and employing (1.4), we achieve the desired equality.

EXAMPLE 1. ilOg2 = j 1

Proof. The right side above is equal to §{<p(2)-<p(4)}. Hence, the result follows from
the corollaries to Entries 1 and 4.
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Proof. The right side above is 2<p(4)-<p(2), and so the example again follows from
the corollaries to Entries 1 and 4.

EXAMPLE 3. For each positive integer n,

Proof. From Entries 1 and 4, respectively,

(5.3)

and
In -i In i

<P(4, n)= £ fe+^2k+T' ( 5 4 )

Thus, the right side of (5.2) may be written as

4n 1 2n 1 1 2n4n i 2n 1 o 2n 1

k=2n+l K k = n+l " ™ T i k = n + l K

which completes the proof.

EXAMPLE 4. For each positive integer n,
1 2n 1 4n + l

9(4. n) = i I 1+ I
•̂  k = n + l K k = 2 n + l

Proo/. This expression for <p(4, n) arises from a rearrangement of the terms in (5.4).

EXAMPLES. |

Proof. The right side above is ^{<p(3) - <p(6)}, and so the result follows immediately
from the corollaries of Entries 2 and 5.

EXAMPLE 6. f

Proo/. The right side above is 2<p(6)-<p(3), and so the result is a consequence of the
corollaries to Entries 2 and 5.

EXAMPLE 7. For each positive integer n,

2<p(6, n)+J<p(2, n) = <p(3, n) + «p(2,3n) + /g.. , i N / ._
2 „ „ ._ , „, . (5.5)
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Proof. By Entries 2 and 5, respectively,
3n+l i

«P(3,")= I T (5.6)
lc=tt+l K

and
O 2n -l 3n -i

Thus, by (5.3) and (5.7), the left side of (5.5) is equal to
In -i 3n i i 6n + l 1 3n -I

2 Y 1 + 2 V - i X " ^ X ^ X

3(2n-
3n 1 6n+l -i i3n 1 6n+l i

6n + 3
1 6n -I "?An2-

By (5.3) and (5.6), the far right side of (5.8) is easily seen to be equal to the right side of

Proof. Apply (3.1) with n = l and with n = 4. Adding the two results yields the
desired equality.

EXAMPLE 9. For each positive integer n,

Proof. Rewriting the left side of (5.9) and then employing (0.1) and (0.2) several
times, we find that
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EXAMPLE 10. For each positive integer n,

£ A \n~+k) +
 k?0

 AV2M+2k + l
4k

Proo/. We first rewrite the left side of (5.10) and then use (0.1) and (0.2) several
times. Accordingly, we get

" / 1 \ "£ A ) + ?

= - Y A / 9fc \ y / 4k \
" 4 +

 kt'1 \32k4 + 22k 2 - l / + ^ \128k4 + 8fc2 + 1A

ENTRY 6. Let k and n be nonnegative integers and define Ak = 3k(n +5)—5. Then if r
is a positive integer,

where we define A_t = 0.

Proof. This proof was given by Ramanujan. First, it is easily shown that Ak+1 =
3Ak + l, k>0 . Hence, by Entry 2, with n = Ak,

Ak+i -1

i=Ak + l 7

Now sum both sides of this equality on k, 0 ^ f c ^ r - l , to obtain
A r 1 r - l A k 1

I
j=n+l ] k=0/ = l

Rearranging the right side above, we deduce the desired equality.

COROLLARY. For each positive integer r,

(3'-l) /2 -I r - l Ak -I

I =r+2l(r-fc) I
k = l K k = l j

where Ak=(3k-1)12, k>0 .
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Proof. This corollary is the case n = 0 of Entry 6.

At this point, Ramanujan claims that if au ..., a,, are in arithmetic progression and if
n

ax and c^ are large then £ l/afc is approximately equal to 2n/(a1 + an). Unfortunately,
3n+l

this remark is false. For example, consider Sn = X 1/fc. If Ramanujan were correct,

then for large n, Sn would approximately be equal to 2(2n + l)/(4n + 2) = 1. However, by
(2.2), Sn -> log 3 as n -» ».

Nonetheless, Ramanujan's assertion is correct if nlax is "small", as we now demon-
strate. Letting a, d, and n denote positive integers, define

S(a,d,n)= Z - ^ - T .
fcrf0 a + fed

Now, 2n/(a1 + an) in Ramanujan's notation becomes 2(n + l)/(2a + nd) in our notation.
Thus, we wish to examine

£ (n-2k)d

fcto (a + kd)(2a •
d f / I 1 \ . _ / 1 1 \

n +(n-2) ; —
I \a a + nd/ \a + d a + (n — \)dl

where

\aHn-l)dl2-aHn\l)dll' if " is o d d '

l a + (n-2)d/2-a + (n2
+2)d/2' if " is

Hence, with d fixed,

:

as n/a tends to 0. Thus, under this assumption, Ramanujan's approximation is, indeed,
valid.

EXAMPLE 1 . | I i ^ ^ ^

Proof. In the previous corollary, let r — 3. Since Ao = 0, Ax = 1, A2 = 4, and A3 = 13,
we find that

4
ii 3 3 - 3 + \6 3 -6 + 9 3 -9

and the result follows.

1 4 / 1 1 1 \
k " 3 3 3 + \6 3 -6 + 9 3 -9 (12)3-12>
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1000 J
EXAMPLE 2. H= £ y = ^h "very nearly."

Proof. In the previous corollary, let r = 7. In addition to Ao, Ax, A2, and A3 calcu-
lated above, we need the values A4 = 40, A5 = 121, A6 = 364, and A7 = 1093. Thus,

^ f c 2 \l05 + 360 + 858/ fct5(3k)3-3fc k£tk£t4(3fc)3-3fc
121 j 364 j

= 7 + 0-5 + 0-067335442 . . . +0-006435448 . . .

+ 0-000541282 . . . +0-000040137 . . . +0-000002230 . . .

= 7-574354539.... (6.1)

Next, by the remarks prior to Example 1,
1093 1

fc=iooiK

Thus, from (6.1) and (6.2) we conclude that H«7-48552932 This is probably the
method that Ramanujan employed to estimate H. On the other hand, by using the
Euler-Maclaurin summation formula or a programmable calculator, it can readily be
shown that H = 7-48547086 In any event, the estimate of 1\ for H is not as good as
Ramanujan would lead us to believe.

ENTRY 7. Let n > 0 and suppose that r is a natural number. Then

) A

Proof. The proof is very briefly sketched by Ramanujan. Since n > 0, it follows from
(0.2) that

Now sum both sides of (7.1) on fc, 0 ^ f c ^ r - l , to get

An application of (0.2) on the left side of (7.2) completes the proof.

COROLLARY. For n>0 ,
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Proof. Ler r tend to °° in (7.2).

EXAMPLE 1. For n>0 ,

where p(n) = 7r if n<(V3~-l)/2 and p(n) = 0 otherwise.

Proof. The proof is sketched by Ramanujan. From the previous corollary and (0.1),

? A ? A ) + ? A

since p(n) = 7r if and only if n2 + n < l , i.e., n<(V5-l) /2 . This completes the proof.

EXAMPLE 2. For n > 0,

f (-l)fc+1A(—^-=) = A ( - 5 - ^ Y (7.5)

Proof. The proof is very similar to that of Example 1.

EXAMPLE 3. For n>0 ,

Proof. Replace n by 2n + l in the corollary to Entry 7.

_ Z, (2 \ 3ir
EXAMPLE 4. Y Al—; = — .

ic-! \k*J 4

Proof. Since the series on the left side of (7.4) converges uniformly for 0 ^ n ̂  1, we
may let n tend to 0 on both sides of (7.4). The desired result then immediately follows.

Example 4 and the first equality in Example 5 which follows were apparently first
established by Glaisher [7] in 1878. This paper contains many other examples of this
sort. Example 4 is a problem in Chrystal's book [6, p. 357] as well as in Loney's textbook
[13, p. 206]. The latter fact is interesting because the borrowing of Loney's book from a
friend while in fourth form was evidently a pivotal event in Ramanujan's mathematical
development [18, p. xii]. Still another proof of Example 4 can be found in Wheelon's
book [21, p. 46].
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I ( l ) k + 1
EXAMPLES. I A ( ) J

\2fc 4
Proof. The series on the left sides of (7.5) and (7.6) each converge uniformly for

0 < n < l . Letting n tend to 0 in (7.5) and (7.6), we immediately deduce the evaluations
above.

EXAMPLE 6. £ .

Proof. In Example 3 let n = 1/J2. A short calculation shows that tan(ir/8) =
1/(V2 + 1), and so the result readily follows.

EXAMPLE 7. Y A [ ^ 1
X 2 k l 75)2/ 2

Proof. Since the left side of (7.4) converges uniformly for 0 < n < l , we may let n
tend to (V5-l)/2 + 0. The desired equality then follows.

EXAMPLE 8.

Proof. The series on the left side of (7.3) converges uniformly for O^n ^ 1. Letting n
tend to 0 in (7.3) yields the desired result.

Example 8 is also found in Glaisher's paper [7].
In Entry 8 Ramanujan considers an entire function / with zeros z1; z2> • • • • He

DO

evidently assumes that X l/|zfc| converges and states a corresponding special case of the
ic=i

Hadamard factorization theorem [20, p. 250]. He then takes the logarithmic derivative of
this product representation for / and evaluates it at z = 0.

In Entries 9(i) and (ii) the familiar product representations for sin x and cos x are
stated. Corollaries 1 and 2 of Entry 9 give the well-known product representations of
sinh x and cosh x.

COROLLARY 3. For each complex number x,

cos(x/4) + sin(x/4)= n (1 +7^I—u~r

COROLLARY 4. Let x and a be complex, where a is not an integral multiple of IT. Then

sin(x + a) x + a A f/ x \ / . x M
—• = 11 \\X~'i ) l 1 + l ' '•

sin a a k = 1 l\ kTT-a/\ I
Corollary 3 is easily derived from Corollary 4 by setting a = ir/4 and replacing x by

x/4. Corollaries 3 and 4 are rather straightforward exercises which can be found in
Bromwich's book [S, p. 224], for example, and so it is pointless to give a proof of
Corollary 4 here.
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EXAMPLE 1. Let x and a be complex, where a is not an odd multiple of ir/2. Then

cos(x + a) -f

cos a

Example 1 is easily derived from Corollary 4 by replacing a by a + ir/2. Example 2
below follows from Corollary 4 and Example 1 upon the use of the identity

sin x _ sin{|(x + a)} cos{|(x - a)}
sin a sin(|a) cos(|a)

EXAMPLE 2. Let x and a be complex, where a is not an integral multiple of TT. Then

1 + sinx = o ± x ^ [ f/ x_\/ _ x _ \ / x \ / x \ |
sina a k = 1 U 2k7r-a/\ 2kir + a)\ (2k-l)ir + a/V (2fc-l)ir-a/J

oa

Next, Ramanujan asserts that if the value of F(x)= \\ (l + akx) is known, then it is

possible to find the value of IT (l + a"xB), where n is a positive integer. Ramanujan's
declaration evidently arises from the identity

which is a consequence of the factorization

l + aBxn = n(l-«»2'"1x).

where co = exp(Tn'/n).
In Entry 10, the familiar partial fraction decompositions of cot x, tan x, esc x, and

sec x are given [5, pp. 217, 225].

ENTRY 11. Let x and a be real. Then

A ( - V £ ( A ( 1 - ^ - ) - A ( 7 - 5 — ) ] = A(tanhx cot a). (11.1)

Proof. The main idea for the proof is indicated by Ramanujan. By Corollary 4 of
Entry 9,

/sin(a + ix)\ [I ix\ A / ix \ / ix \1
Imlog — \ -) = I m l o g | ( l + - ) n ( l - l 1 + 7 ~ ^

\ sina / l\ a/fc^V kn-a/X
/J

https://doi.org/10.1017/S0017089500004675 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500004675


212 B. C. BERNDT, P. T. JOSHI AND B. M. WILSON

up to an additive multiple of IT. On the other hand,

Im log I : ) = Im log(cosh x + i sinh x cot a)
\ sin a /

= A(tanhx cot a), (11.3)

up to an additive multiple of TT. Combining (11.2) and (11.3), we have shown that (11.1) is
valid up to an additive multiple of TT. We now show that this additive multiple of IT is,
indeed, 0.

First, if a is a multiple of ir, it is readily checked that (11.1) is valid. Suppose now
that a is fixed but not a multiple of v. For x = 0, (11.1) is certainly true. Since both sides of
(11.1) are continuous functions of x, that additive multiple of ir must be 0 for all x. Since
a is arbitrary, the proof is complete.

COROLLARY 1. Let x and a be real. Then

= A(sinhxcsca). (11.4)

Proof. First, by Example 2 of Entry 9,

, , / sinhx\
A(sinhx csca) = Imlogl 1 + J —

\ sin a /

up to an additive multiple of it. Thus, (11.4) is valid up to an additive multiple of IT. TO
show that this multiple of TT is 0, we proceed in the same manner as in the proof of Entry
11.

COROLLARY 2. For real x,

Proof. Replacing x by irx/4 and setting a = ir/4 in Entry 11, we readily achieve the
desired formula.

COROLLARY 3. For real x,

f ( - 1 ) ^ — ^ — ^ = A(>/Zsinh(irx/4)).
k=TU. \4fc + l /

Proof. In Corollary 1 of Entry 11 replace x by TTX/4 and let a = TT/4 to deduce the
formula sought.
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The next two examples are obtained by replacing a by TT/2—a in Entry 11 and
Corollary 1, respectively. In the second notebook there is a minor misprint in Example 1.

EXAMPLE 1. For x and a real,

- l)ir - a

EXAMPLE 2. For x and a real,

= A(tanhxtana).

) = A(sinh x sec a).
)7r-a/

Entry 11 is an exercise in both the books of Chrystal [6, p. 373] and Loney [13, p.
208]. Corollary 2 is also a problem in Loney's book [13]. Entry 11, Corollaries 1 and 2,
and Example 1 are given in Hansen's tables [10, p. 276]. Several other arctangent series
in the spirit of those given above are summed in this compendium [10]. Ramanujan
himself summed other arctangent series in [14], [18, p. 42]. Glasser and Klamkin [8] have
summed several arctangent series in an elementary fashion. Further examples of
arctangent series are found in Bromwich's book [5, pp. 314-315].

EXAMPLE 3. n (1 + 1/fc3)=- cosh(7r73/2).
I c - l I T

EXAMPLE 4. fl ( l - l / k 3 ) = — cosh(irV3/2).
k=2 3iT

Examples 3 and 4 constitute the second problem that Ramanujan submitted to the
Journal of the Indian Mathematicial Society [17], [18, p. 322]. In a later paper [15], [18,

pp. 50-52], Ramanujan studied the more general product fl | l + ( r~7) r
k=o I \a + kdJ J

ENTRY 12. Ramanujan here presents a method for approximating the root z0 of
smallest modulus of the equation

It is assumed that all other roots of (12.1) have moduli strictly greater than \zo\. For \z\
sufficiently small, write

. _ y p -ic-i

l - Z Akz
k k = 1

It follows easily that Pi = 1 and

i, (ns2) . (12.2)
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Now assume that lim PJPn+l exists and is equal to L. Then, of course, the radius of
oo

convergence of £ Pkz
k is equal to \L\. Moreover, by a theorem of Fabry [9, pp. 39-40],

k = l

L is a singularity of the function represented by this series. It follows that if the radius of
oo

convergence of the series £ Akz
k is greater then |L|, then z = L is a root of (12.1).

k = l

Ramanujan's discourse is characteristically brief; he gives (12.2) and claims, with no
hypotheses, that PJPn+l approaches a root of (12.1).

In the case that (12.1) is an algebraic equation, this method is originally due to Daniel
Bernoulli. Accounts of Bernoulli's method may be found in the books of Whittaker and
Robinson,[22, pp. 98-99] and Henrichi [11, p. 663]. Usually a change of variable is made
so that the method yields the approximate value of the root with largest modulus.
Bernoulli's method has been generalized by Aitken [1] who found a way to approximate
any root of a polynomial.

Ramanujan concludes this chapter by giving six examples to illustrate his method. He
takes Po = 0, and so the first convergent is always 0/1.

EXAMPLE 1. The roots of x + x 2 = l are ( -1±N/5 ) /2 , and so (V5-l)/2 = 0-618034...
is the root of least modulus. Ramanujan gives the first eight convergents to this root with
the last being PJPg = 13/21 = 0-619048 . . . .

EXAMPLE 2. By Newton's method the real root of x + x2 + x3 = 1 is 0-543689013
Ramanujan gives the first eight convergents to this root with the last equal to 24/44 =
0-5454... .

EXAMPLE 3. Ramanujan lists the first ten convergents to the real root of x + x3 = 1,
with the last convergent being 13/19 = 0-684210 By Newton's method, this root is
0-682327804....

EXAMPLE 4. The last polynomial equation examined by Ramanujan is 2x + x2 + x3 =
1. He calculates seven convergents to the real root and finds the seventh to be 84/214 =
0-392523 . . . . This root is 0-392646782 . . . , by Newton's method.

At this point, Ramanujan claims that "If plq and r/s are two consecutive convergents
to x, then we may take (mp + nr)l(mq + ns) in a suitable manner equivalent to x." If m
and n are to be taken as real, then Ramanujan's remark is pointless, for then this ratio
may be made to take any real value. On the other hand, if m and n are to be understood
as positive, then Ramanujan's assertion is false. Ramanujan's claim would be valid if the
limit L were always between two consecutive convergents. However, this may not be true.
For example, the last three convergents 13/33, 33/84, and 84/214 given by Ramanujan in
Example 4 satisfy the inequalities 13/33 > 33/84 > 84/214.

EXAMPLE 1. In this example Ramanujan examines ex = 2 and finds the first six
convergents to log 2 = 0-69315 The sixth convergent is 375/541 = 0-69316
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EXAMPLE 2. In this last example Ramanujan approximates the root of e~x = x. He
calculates five convergents with the last one equal to 148/261 = 0-567049 By New-
ton's method, the root is 0-567143290

E. M. Wright has written several papers [23], [24], [25], [26], [27], in which he has
studied solutions of equations generalizing the one in the last example. Such equations are
very important in the theory of differential-difference equations.
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