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Abstract
This paper proposes a linear quadratic approximation approach to dynamic nonlinear rationally inat-
tentive control problems with multiple states and multiple controls. An efficient toolbox to implement
this approach is provided. Applying this toolbox to five economic examples demonstrates that rational
inattention can help explain the comovement puzzle in the macroeconomics literature.
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1. Introduction
People do not pay attention to all available information because processing information is costly.
Sims (1998, 2003, 2011) introduces rational inattention (RI) models that study how people should
optimize when their abilities to translate external data into action are constrained by a finite
Shannon capacity to process information. Suchmodels can generate sluggish and inertia responses
to external information without introducing frictions like adjustment costs and thus have wide
applications in macroeconomics.1

Despite the rapid growth of this literature, a major hurdle for beginners is the difficulty of
solving general multivariate nonlinear control problems under RI. Sims (2003, 2011) formulates
such problems in the linear-quadratic Gaussian (LQG) framework. Using dynamic semidefinite
programming in this framework, Miao, Wu, and Young (henceforth MWY) (2022) provide a
characterization of the optimal solution under RI and both the value function-based and first-
order conditions-based numerical methods to compute such a solution. However, little is known
about how to solve general multivariate nonlinear rationally inattentive control problems.

The goal of this paper is to fill this gap in the literature by making three contributions. First,
we develop an LQ approximation approach that consists of two broad steps. In step 1, we take the
decision-maker (DM)’s information structure as exogenously given and then solve the nonlinear
control problem under partial information by LQ approximation. The approximated linear policy
function is the same as that under full information by the certainty equivalence principle. In step
2, we use the methods of MWY (2022) to solve for the optimal information structure. Under
Gaussian uncertainty, the optimal information structure can be represented by a signal vector
that is a linear transformation of hidden states plus a noise. Both the linear transformation and
the noise covariance matrix are endogenously chosen.
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Second, we develop a Matlab toolbox to efficiently compute LQ approximations for multivari-
ate nonlinear rationally inattentive control problems. This toolbox is robust and easy to apply
in practice. It delivers the same approximated linear policy function based on the perturbation
approach as in the dynamic stochastic general equilibrium (DSGE) literature computed by a
number of public packages, for example, Dynare.

Third, we apply our toolbox to five economic examples that can be formulated as rationally
inattentive nonlinear control problems with multivariate states and multivariate controls. In a PC
with Intel Core i7-10700 CPU and 64GBmemory, it takes less than 1 s to solve each of these exam-
ples for a wide range of parameter values. The first example illustrates the pitfall of the ad hoc LQ
approximation method. The next three examples consider a rationally inattentive social planner’s
resource allocation problems with various sources of exogenous shocks. These decision problems
come from the real business cycles (RBC) literature, though we do not study decentralized market
equilibrium. We use these examples to illustrate how RI combined with variable capital utiliza-
tion can generate comovement among investment, consumption, and labor hours in response to
various shocks to the demand side of the economy. In the last example, we study a consump-
tion/saving problem with both durable and nondurable goods similar to Luo et al. (2015). The
utility function takes a general power form beyond a quadratic function. This example shows that
RI can generate damped and delayed responses of both durable and nondurable consumption to
income shocks.

Our paper is related to two strands of the literature. First, the LQ approximation method
in step 1 of our solution approach is related to the Hamiltonian approach to the deterministic
continuous-time control problem in Magill (1977). Judd (1998) points out that it may deliver an
inaccurate solution if one adopts an ad hoc LQ approximation method by simply computing a
quadratic approximation to the objective function and a first-order approximation to the model
structural relations. Magill’s approach has been applied to the optimal policy problems in discrete
time by Levine et al. (2008) and Benigno and Woodford (2012). We extend Magill’s approach to
incorporate partial information in discrete time.

Second, our paper is related to the RI literature in the LQG framework.2 Most papers in this lit-
erature focus on dynamic tracking problems in which states follow exogenous dynamics. For these
problems, Sims (2003) proposes a brute force optimization method for the univariate case in the
frequency domain.3 Peng (2005), Peng and Xiong (2006), and Maćkowiak andWiederholt (2009)
propose methods under a signal independence assumption. For a general case with one action that
is driven by possibly multiple autoregressive moving average (ARMA) processes, Maćkowiak et al.
(2018) develop amethod based on the state space representation without any ad hoc restriction on
the signal form. Afrouzi and Yang (2021) develop numerical methods to solve general multivariate
tracking problems.

While Sims (2003, 2011) formulates rationally inattentive control problems with endogenous
state dynamics in the LQG framework, his solution approach applies to the univariate case in
which the optimal signal is equal to the state plus a noise. Luo (2008) and Luo et al. (2015) apply
Sims’s approach when a multivariate consumption/saving problem can be reduced to the uni-
variate case. As aforementioned, MWY (2022) propose an approach to study general multivariate
rationally inattentive control problems. Unlike other approaches in the literature that only com-
pute the steady state solution for the optimal information structure with the subjective discount
factor equal to 1, both MWY (2022) and Afrouzi and Yang (2021) compute transition dynamics
as well as steady state with any discount factor between 0 and 1. For simplicity here, we focus on
the steady state information structure only.

For nonlinear control or tracking problems, the literature typically uses LQ approximations
to transform these problems into tracking problems in the LQG framework. While this proce-
dure is feasible in some cases [e.g. Maćkowiak and Wiederholt (2009, 2015, 2020), Maćkowiak
et al. (2018), and Zorn (2018)], it is cumbersome and may not apply to more complicated control
problems, in which controls affect state dynamics. For these control problems, ad hoc LQ approx-
imations may lead to inaccurate solutions [Judd (1998)]. MWY (2022) apply the Kydland and
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Prescott (1982) approach to conduct LQ approximations to a nonlinear investment problem. This
approach is a special case of our new approach in this paper with linear constraints only. Our new
approach can apply to a much wider class of economic problems beyond those in MWY (2022)
and Maćkowiak–Wiederholt’s studies. Moreover, the Matlab toolbox implements our approach
and should be useful for researchers.

The remainder of the paper proceeds as follows. Section 2 formulates a general rationally inat-
tentive control problem. Section 3 presents an LQ approximation approach. Section 4 describes a
Matlab toolbox to implement our LQ approximation approach. Section 5 studies five examples to
demonstrate the toolbox. Section 6 concludes. All proofs are relegated to an appendix.

2. Rationally inattentive control problem
In this section, we first present the standard control model under full information and then
formulate the rationally inattentive control problem.

Consider an infinite-horizon discrete-time setup and time is denoted by t ≥ 0. Let xt denote an
nx × 1 vector of states at time t. States evolve according to the dynamics:

xt+1 = g(xt , ut , εt+1) , t ≥ 0, (1)

where x0 is exogenously given, ut is an nu × 1 control vector, εt+1 is an nε × 1 white noise vec-
tor with an identity covariance matrix, and g :Rnx ×R

nu ×R
nε →R

nx . The state vector xt may
consist of exogenous components such as AR(1) shocks and endogenous components such as
capital.

Under full information, the DM observes the history of shocks εt = {ε1, . . . , εt} at any time
t ≥ 1 and the history of states xt = {x0, x1, . . . , xt} . A control plan {ut} is a sequence of controls
that map xt to ut

(
xt

)
for t ≥ 0, where all functions ut

(
xt

)
are measurable. Let �0 denote the set

of all such control plans. Then the DM’s objective under full information is to solve the following
problem:

sup
{ut}∈�0

E

[ ∞∑
t=0

βtf (xt , ut)

]

subject to (1), where f :Rnx ×R
nu →R and β ∈ (0, 1) .

Next, we turn to the control problem under RI. Suppose that the initial state x0 is random and
has a probability measure denoted by μ0

(
dx0

)
. The DM does not fully observe the state xt at

any time t ≥ 0. The DM can acquire endogenous information about the state by paying informa-
tion costs. Assume that information costs are measured in utility units. The DM chooses a signal
about the state xt with realization st in some signal space S. The DM’s choice is a strategy pair({ut} , {qt}) composed of

• an information strategy
{
qt

}
consisting of a sequence of distributions qt

(
dst|xt , st−1) for

all st , xt , t ≥ 0, s−1 =∅;
• a control plan {ut} consisting of a sequence of functions ut : St →R

nu , which deliver a
control ut = ut

(
st
)
after observing a history of signals st for t ≥ 0.

Let � denote the set of all such strategies
({ut} , {qt}) . Following Sims (2011), we model the

information cost by the discounted mutual information. To define it formally, we need to con-
struct the joint distribution of states and signals. The function g and the distribution of εt+1 induce
a transition kernel for the state, denoted by π

(
dxt+1|xt , ut

) = Pr
(
g(xt , ut , εt+1) ∈ dxt+1|xt , ut

)
.
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The state transition kernel π and the strategy
({ut} , {qt}) induce a sequence of joint distributions

for xt+1 and st recursively

μt+1
(
dxt+1, dst

) = π
(
dxt+1|xt , ut

(
st
))

qt
(
dst|xt , st−1) μt

(
dxt , dst−1) ,

whereμ0
(
dx0, ds−1) = μ0

(
dx0

)
is given and s−1 =∅. Using this sequence of distributions, we can

compute the prior/predictive distributions μt
(
dxt|st−1) and the posteriors μt

(
dxt|st

)
, and hence

we can define the discounted information cost as:
T∑
t=0

βtI(
xt ; st|st−1) , (2)

where

I(
xt ; st|st−1) =H

(
xt|st−1) −H

(
xt|st

)
. (3)

Here, H(X|Y) denotes the conditional entropy of a random variable X given Y .4 Entropy mea-
sures the amount of uncertainty. Equation (3) shows that the mutual information measures the
reduction of uncertainty about the state after observing additional information. As Sims (2011)
and MWY (2022) argue, introducing discounting in equation (2) ensures dynamic consistency in
the choice of optimal information structure and thus one can apply the dynamic programming
method.

Now we are ready to formulate the rationally inattentive control problem as follows:

Problem 1. (Rationally inattentive control)

sup
({ut},{qt})∈�

E

[ ∞∑
t=0

βtf (xt , ut)

]
− λ

∞∑
t=0

βtI(
xt ; st|st−1) (4)

subject to equation (1), where λ > 0.

The parameter λ > 0 transforms the discounted mutual information into utility units. If λ = 0,
then information is free and thus Problem 1 is reduced to the standard control problem under full
information. If λ > 0, acquiring information incurs information costs measured in utility units
and thus reduces the DM’s utility. The parameter λ may be interpreted as the Lagrange multiplier
associated with an information processing constraint. Then, Problem 1 can be interpreted as a
relaxed problem derived from a constrained optimization problem given information processing
constraints [Sims (2011) and MWY (2022)]. Without additional structure, Problem 1 is hard to
analyze as one has to solve for both the optimal control {ut} and the optimal information structure{
qt

}
. In the next section, we propose an LQG approximation approach.

3. Linear quadratic approximation
We first fix the information structure and solve the optimal control problem under partial infor-
mation. Specifically, we take the filtration

{
st
}
generated by the histories of signals st as given.

The DM’s information set is
{
st
}
. Let �1 denote the set of control plans that are adapted to the

filtration
{
st
}
.

Consider the following control problem under partial information:

sup
{ut}∈�1

E

[ ∞∑
t=0

βtf (xt , ut)

]
subject to equation (1). Under the standard concavity and differentiability conditions on f and g,
the following first-order conditions are necessary and sufficient for optimality:5
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ut : Et
[
fu(xt , ut)

] + �′
tEt

[
gu(xt , ut , εt+1)

] = 0, (5)

xt+1 : �t = βEt
[
fx(xt+1, ut+1) + �′

t+1gx(xt+1, ut+1, εt+2)
]
, (6)

where βt�t is the Lagrange multiplier associated with equation (1) and Et [·]≡E
[·|st]. Here,

{�t} is adapted to the filtration
{
st
}
. Unlike in the full information case, the state xt is not

observable and thus equation (5) involves estimate Et [·]≡E
[·|st] given partial information st .

In a nonstochastic steady state, εt = 0, xt = x, ut = u, and �t = � for all t. It follows from
equations (5) and (6) that

fu(x̄, ū) + �
′gu(x̄, ū, 0) = 0, (7)

βfx(x̄, ū) + β�
′gx(x̄, ū, 0) = �. (8)

Together with the steady state version of equation (1),

x̄= g(x̄, ū, 0) ,

equations (7) and (8) determine a steady state solution for
(
x, u,�

)
. Suppose that a solution exists.

Then linearizing equations (1), (5), and (6) around this steady state yields the system:

g′
u�̃t +

(
fuu + �

′guu
)
ũt +

(
fux + �

′gux
)
Et [̃xt]= 0, (9)

�̃t = βEt
[(

fxx + �
′gxx

)
x̃t+1 +

(
fxu + �

′guu
)
ũt+1 + g′

x�̃t+1
]
, (10)

x̃t+1 = gx̃xt + guũt + gεεt+1, (11)

where all partial derivatives are evaluated at the nonstochastic steady state (x, u, 0) and a variable
with a tilde denotes the level deviation from its steady state, for example, x̃t ≡ xt − x. As the state
xt or x̃t is unobservable, the DM must estimate it given information st . We thus have Et [̃xt] in
equation (9).

The above linear system can be solved by the standard method, and the solution takes a linear
form. In particular, the certainty equivalence principle holds in that the optimal policy satisfies

ũt = −FEt [̃xt] , (12)

where F is the same as that obtained in the deterministic linear system with εt = 0 for all t.
Next, we study how the optimal information structure is determined. To apply the LQG frame-

work of MWY (2022), we adopt the LQ approximation approach adapted fromMagill (1977) and
take into account the impact of partial information. This approach delivers a quadratic approx-
imation of the objective function and a linear approximation of the constraint. To ensure the
resulting LQ control problem gives a linear solution that is the same as equation (12), it is critical
to approximate the Hamiltonian function defined as:

H(xt , ut , εt+1) = f (xt , ut) + �
′g(xt , ut , εt+1) . (13)

Notice that � in H is the steady state Lagrange multiplier. Then, we have the following result:

Lemma 1. Suppose that f and g are twice continuously differentiable and limT→∞ E [̃xT]= 0.
Then given equation (1),

E

[ ∞∑
t=0

βtf (xt , ut)

]
≈ 1

2
E

∞∑
t=0

βt [̃x′
t , ũ

′
t
] [

Hxx Hxu

Hux Huu

] [
x̃t
ũt

]

+ f (x, ū)
1− β

+ 1
2
Tr(Hεε) ,
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up to second-order moments of (̃xt , ũt , εt+1) , where Tr(·) denotes a trace operator, and Hxx, Hxu,
Hux, and Huu denote the second-order partial derivatives of H evaluated at the nonstochastic steady
state (x, u, 0).

Ignoring the constant and higher-order terms, the following lemma shows that the LQ problem
gives the same solution as that obtained by linearizing the first-order conditions for the original
nonlinear control problem.

Lemma 2. The following problem

max{̃ut}∈�1

1
2
E

∞∑
t=0

βt [̃x′
t , ũ

′
t
] [

Hxx Hxu

Hux Huu

] [
x̃t
ũt

]
subject to equation (11) gives the same solution as that delivered by the system (9), (10), and (11).

The LQ approach of Kydland and Prescott (1982) is a special case. They assume that the con-
straint function g is linear. Then theHessianmatrix ofH evaluated at the steady state is the same as
the Hessian matrix of the objective function f evaluated at the steady state. Thus, taking quadratic
approximation of H is the same as that of f . While one can often use a suitable change of vari-
ables to make the constraint function linear, the Hamiltonian approach is more general and more
convenient.

Notice that the ad hoc LQ approach differs from our correct Hamiltonian approach by the
second-order derivative terms of function g. The intuition comes from the linearized first-order
conditions (9) and (10). The ad hoc LQ approach disregards second-order derivative terms of g in
equations (9) and (10), leading to an inaccurate solution if g is nonlinear.

By Lemma 2, we obtain the following LQ approximation of the rationally inattentive control
problem.

Problem 2. (Rationally inattentive LQ control)

sup
({̃ut},{qt})∈�

1
2
E

∞∑
t=0

βt [̃x′
t , ũ

′
t
] [

Hxx Hxu

Hux Huu

] [
x̃t
ũt

]
− λ

∞∑
t=0

βtI(
xt ; st|st−1)

subject to equation (11).

To simplify the computation of the mutual information and stay in the LQG framework of
Sims (2011) and MWY (2022), we consider Gaussian shocks only.

Assumption 1. (i) The initial state x0 is Gaussian with mean x0 and covariance matrix �−1. (ii)
The innovation εt is identically and independently drawn from a standard Gaussian distribution.

Problem 2 corresponds to the infinite-horizon version of Problem 2 in MWY (2022) using the
following notations:

Q≡ −1
2
Hxx, R≡ −1

2
Huu, S≡ −1

2
Hxu, (14)

A≡ gx, B≡ gu, W ≡ gεg′
ε . (15)

As shown in Sims (2011) and Tanaka et al. (2017), the optimal information structure will be
Gaussian in that the optimal estimate of x̃t conditional on st is Gaussian with mean zero and
covariancematrix�t =E

[(̃
xt −E

[̃
xt|st

]) (̃
xt −E

[̃
xt|st

])′ |st
]
. Moreover, a linear signal st of the

form

st = Ct̃xt + vt (16)
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can generate such a posterior covariance matrix �t , where vt is a Gaussian white noise with mean
zero and covariance matrix Vt . This noise is independent of {εt}. As �t will be endogenously
chosen, and both Ct and Vt are also endogenous and satisfy

C′
tV

−1
t Ct = �−1

t − (A�t−1A+W)−1 .
Given Gaussian uncertainty, the mutual information takes an explicit form:

I(
x0; s0|s−1) = I (̃

xt ; st|st−1) = 1
2
log det (�−1) − 1

2
log det(�0) , (17)

I(
xt ; st|st−1) = I (̃

xt ; st|st−1) = 1
2
log det

(
A�t−1A′ +W

) − 1
2
log det�t , (18)

for t ≥ 1.
Now, we have mapped Problem 2 into the framework of MWY (2022). We can then apply

their method and their toolbox described in Miao and Wu (2021) to solve this problem. In the
next section, we describe the details.

4. A Matlab toolbox
In this section, we describe a Matlab toolbox to implement the LQG approximation approach
described in the previous section. The only inputs that the user needs to provide are the state
vector xt , the control vector ut , the objective function f , the constraint function g, and the non-
stochastic steady state values of (xt , ut ,�t) given by

(
x, u,�

)
. For the example in Section 5.2, the

Matlab code RBCPref_model.m describes xt , ut , f , and g, and the code RBCPref_model_ss.m
solves the steady state. We use the Matlab Symbolic Math toolbox to compute the analytical
derivatives of f and g in the code anal_derivative.m. The code num_derivative.m evaluates the
analytical derivatives at the steady state values.

The code RBCPref_Run.m is the main code that implements the following steps.

Step 1. Compute matrices Q, R, S,A, B,W in equations (14) and (15). Then use the code
LQG.m to compute the Riccati equation for P :

P =Q+ βA′PA− (
βA′PB+ S

) (
R+ βB′PB

)−1 (
βB′PA+ S′) , (19)

and
F = (

R+ βB′PB
)−1 (

S′ + βB′PA
)
.

The optimal policy is given by equation (12).

Step 2. The optimal information structure {�t}∞t=0 solves the following problem.

Problem 3. (Optimal information structure for Problem 2)

min
{�t}∞t=0

∞∑
t=0

βt [tr(	�t) + λI(
xt ; st|st−1)]

subject to equations (17) and (18),
�t 
A�t−1A′ +W, (20)

�0 
 �−1, (21)

for t ≥ 1,6 where 	 is given by:
	 = F′(R+ βB′PB)F. (22)
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For this problem to be a well-defined convex optimization problem, we make the following
assumption [Afrouzi and Yang (2021) and MWY (2022)]:

Assumption 2. W � 0 and AA′ +W � 0.

If this assumption is violated, then the matrix A�t−1A′ +W may be singular even though
�t−1 is nonsingular, for example, �t−1 = I. In this case, the mutual information in equation (18)
is not well defined. Moreover, this assumption is also sufficient for the convexity of Problem 3.We
will focus on the steady state solution � to the above problem. The Matlab code RI_SS_FOC.m
computes this solution.

Step 3.Use the codeRI_SIG.m to compute the steady state optimal signal structure (C,V) that
generates the optimal steady state posterior covariance matrix �. Notice that the optimal signal
structure (C,V) is derived from the following equation:

C′V−1C = �−1 − (A�A+W)−1 ,
and the solution is not unique.

Step 4. Use the code RI_IRF3.m to generate impulse response functions (IRFs) using the
steady state Kalman filter for the state space system:

x̃t+1 = Ãxt + B̃ut + Lεt+1,
ũt = −FEt [̃xt] , (23)
st = C̃xt + vt ,

where L≡ gε and vt is a Gaussian white noise with covariance matrix V and is independent of
{εt} . The Kalman filter is given by:

x̂t = (I −KC) (A− BF) x̂t−1 +K (C̃xt + vt) , (24)

x̃t+1 = Ãxt − BF̂xt + Lεt+1, t ≥ 0, (25)
where x̂t =Et [̃xt] and the matrix K is the Kalman gain:

K ≡ (
A�A′ +W

)
C′ [C(

A�A′ +W
)
C′ +V

]−1 . (26)
So far we have described how to solve a linear approximate solution. In economics, one is often

interested in a log-linear approximate solution for positive variables. Such a solution can be easily
found by noting that

log xt − log x≈ x̃t
x
, (27)

for any positive variable xt up to a first-order approximation. We can then divide the linear
approximate solution for any variable of interest by its steady state value to obtain its log-linear
approximate solution. The other way is to make a change of variables xlt = log xt and ult = log ut
and linearize with respect to xlt and ult . We also replace the signal equation (16) by:

st = Ct̃xlt + vt

and replace the mutual information I (̃
xt ; st|st−1) by I

(̃
xlt ; st|st−1

)
. We can then apply the

previous toolbox.

5. Examples
In this section, we present five examples to illustrate our toolbox. The first example illustrates some
pitfalls of the ad hoc LQ approximation method. The next three examples are about social planner
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problems as in the RBC literature. We do not consider decentralized market equilibrium because
our toolbox applies only to decision problems. The final example studies a consumption/saving
problem and shows that one can suitably define the state and control variables to transform a
complicated decision problem into our framework. For all examples, we focus on the solution
methods instead of quantitative economic implications, and thus parameter values are chosen for
illustration, but not for matching data closely.

5.1. Pitfalls
Judd (1998) uses a simple deterministic growth model in continuous time to show that the ad
hoc LQ approximation method can generate inaccurate solutions. In this subsection, we present
a stochastic growth model in discrete time to highlight additional issues that may arise under full
information and under limited information with RI.

Formally, consider a planner’s choice of consumption and capital processes {Ct} and {Kt+1}
under full information:

maxE

[ ∞∑
t=0

βt log Ct

]
subject to

Ct +Kt+1 = exp(a1t + a2t)Kα
t , (�3t)

where a1t and a2t follow independent AR(1) processes:

ai,t+1 = ρiait + εi,t+1, (�it) , i= 1, 2. (28)

Here, εi,t , i= 1, 2, are Gaussian white noises with variances σ 2
i . Let �it , i= 1, 2, 3, be the Lagrange

multipliers associated with the above three equations.
The above control problem admits a closed-form solution:

Kt+1 = αβ exp(a1t + a2t)Kα
t , Ct = (1− αβ) exp(a1t + a2t)Kα

t .

The deterministic steady state is given by:

K = (αβ)1/(1−α) , C = (1− αβ)Kα ,

�3 = 1
C
, �1 = β�3K

α

1− βρ1
, �2 = β�3K

α

1− βρ2
.

The true linearized solution around the steady state is given by:

K̃t+1 = αK̃t + αβKαa1t + αβKαa2t ,

C̃t = (1− αβ) αKα−1K̃t + (1− αβ)Kαa1t + (1− αβ)Kαa2t . (29)

Then both optimal consumption and capital are stationary processes.
If one adopts the ad hoc LQ approximation method, one solves the following approximated

problem:

max{C̃t ,K̃t+1}
E

[ ∞∑
t=0

βt
(
log C + 1

C
C̃t − 1

2C2 C̃
2
t

)]
subject to the linearized constraints:

C̃t + K̃t+1 =Kα
(a1t + a2t) + αKα−1K̃t .
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Figure 1. Impulse responses of Ct to a one-standard-deviation innovation in the two TFP components under full information
and under RI. The left and right two panels display results using our method and the ad hoc LQ approximation method,
respectively. All vertical axes are measured in percentage changes from the steady state.

This problem becomes a permanent income model of consumption in the LQ framework. The
Euler equation is given by:

C̃t =EtC̃t+1,

which implies that optimal consumption is nonstationary and follows a random walk. It follows
that the optimal consumption level is proportional to the permanent income:

C̃t =
(
αKα−1 − 1

)
K̃t +

(
αKα−1 − 1

)
Kα

αKα−1 − ρ1
a1t +

(
αKα−1 − 1

)
Kα

αKα−1 − ρ2
a2t .

Clearly, this solution is inaccurate compared to equation (29).
Now we turn to the case under limited information. Suppose that the planner does not fully

observe any state of the model and can acquire information about the states subject to discounted
information costs. Since our method nests the full information case, it delivers the same linearized
solution as in equation (29). To show quantitative implications, we set parameter values α = 0.33,
β = 0.99, ρ1 = 0.9, σ1 = 0.01, ρ2 = 0.5, σ2 = 0.05, and λ = 0.005. Figure 1 plots the IRFs of con-
sumption to a one-standard deviation innovation shock to the two total factor productivity (TFP)
components. The left two panels display the result derived from our method and toolbox. One can
verify that the numerical solution under full information is consistent with the analytical solution
in equation (29). Under RI, the initial consumption response is weaker, and the later response is
delayed. It takes a longer time for consumption to return to its steady state level.

The right two panels display the result derived from the ad hoc LQ approximation method.
Optimal consumption under full information (solid lines) jumps to a higher steady state level
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immediately and stays at that level forever. But the initial consumption response under RI is
weaker. Consumption gradually rises to a higher steady state level. This result is consistent with
that in Luo (2008) and MWY (2022) for permanent income LQ models of consumption but is
drastically different from the true linearized solution shown earlier.

The above example demonstrates that the ad hoc LQ approximation method may generate
not only an inaccurate solution but also qualitatively different economic behavior both under full
information and under limited information with RI. The ad hoc LQ approximationmethod works
only when the constraints (1) are linear [see Judd (1998)]. In this case, the Hessian for the term
�

′g(xt , ut , εt+1) in equation (13) is equal to zero. This case can happen for pure tracking problems
when exogenous states follow AR(1) processes like equation (28).

It merits emphasis that our LQ approach implies that the certainty equivalence principle holds
for the approximated LQ control problem. This implies that uncertainty does not matter for the
linear decision rule. Because this principle does not apply to the general nonlinear control prob-
lem, our LQ approach is not well suited to handle questions such as welfare comparisons across
alternative stochastic environments. For example, Kim and Kim (2003) show that in a simple two-
agent economy, a welfare comparison based on an evaluation of the utility function using a linear
approximation to the policy function may yield the spurious result that welfare is higher under
autarky than under full risk sharing. Our LQ approach is also not suitable to study questions
related to risk premium, in which uncertainty plays an important role. To study these questions,
one has to take at least a second-order approximation to the decision rule. In this case, our solution
method under RI does not apply.

5.2. Planner’s problem I: preference shock
We next consider a more complicated social planner’s problem. Under full information, the plan-
ner’s objective is to maximize the representative household’s utility over consumption {Ct} and
labor {Nt}:

E

[ ∞∑
t=0

βtU(Ct ,Nt , zt)

]
, U(C,N, z) = exp(z) log (C) − χ

N1+ν

1+ ν
,

subject to

Ct + It = exp(at) (etKt)
α N1−α

t , (30)

Kt+1 = (1− δ (et))Kt + It , (31)

zt+1 = ρzzt + εz,t+1, (�1t) (32)

at+1 = ρaat + εa,t+1, (�2t) (33)
for t ≥ 0, where Kt , It , et , at , and zt represent capital, investment, capital utilization rate, TFP
shock, and preference shock, respectively. Equations (30) and (31) are the resource constraint
and the law of motion for capital, respectively. Equations (32) and (33) give AR(1) process
specifications, where εa,t+1 and εz,t+1 are independent Gaussian white noises with variances σ 2

a
and σ 2

z .
More intensively utilized capital raises capital efficiency but alsomakes capital depreciate faster.

Let the depreciation rate satisfy

δ (et) = δ + φe
(et)γ − 1

γ
, γ > 1, φe > 0.

Suppose that the planner does not fully observe any state of the model and can acquire infor-
mation about the states subject to discounted information costs. We choose the state vector as
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xt = (zt , at ,Kt)
′ and the control vector as ut = (Ct ,Nt , et)′ . Assume that the initial values of the

states Kt , at , and zt are drawn from independent Gaussian distributions. After using equation (30)
to substitute It in equation (31), we obtain the state transition equation:

Kt+1 = (1− δ)Kt + exp(at) (etKt)
α N1−α

t − Ct . (�3t) (34)
Then the planner’s problem is transformed into our framework.

Let �it , i= 1, 2, 3, denote the (undiscounted) Lagrange multipliers associated with equations
(32), (33), and (34). Their steady state values are given by:

�1 = β log
(
C
)

1− βρz
, �2 = βUc

(
C,N

)
KαN1−α

1− βρa
, �3 =Uc

(
C,N

)
.

To solve this problem numerically, we set parameter values as α = 0.33, δ = 0.025, ν = 1, β =
0.99, γ = 1.2, ρa = 0.95, ρz = 0.8, σa = σz = 0.01, and λ = 0.002. We also choose χ = 7.8827 such
that the steady state labor is 1/3 and φe = 0.0351 such that the steady state capital utilization rate
is 1. The linearized solution gives the policy function ũt = −FE

[̃
xt|st

]
, where

F =

⎡⎢⎢⎣
−0.6978 −0.3520 −0.0213
−0.0286 −0.2855 0.0061
−0.0662 −1.8091 0.0955

⎤⎥⎥⎦ .

Notice that the Kydland–Prescott LQ approximation method does not apply to the above
formulation because equation (34) is nonlinear.

One can easily check that the linearized state transition matrix A is invertible, but the covari-
ance matrixW for the state transition noise is not invertible. Assumption 2 is satisfied and one can
apply our toolbox to solve the RI problem. The optimal steady state posterior covariance matrix
is given by:

� =

⎡⎢⎢⎣
0.0276 −0.0028 −0.0286

−0.0028 0.0348 0.0382
−0.0286 0.0382 1.9343

⎤⎥⎥⎦ × 10−2.

The posterior variances of zt and at are smaller than their unconditional values 5.2632× 10−4 and
0.001. Even though zt and at are ex ante independent, they are ex post negatively correlated. This
is due to the following optimal signal form computed from our toolbox:

st = 0.3015zt + 0.9507at + 0.0725K̃t + vt , (35)
where vt is a Gaussian white noise with variance 0.0023. When observing the same realization
of the signal st , the planner may attribute a positive preference shock zt to a negative TFP shock
at , holding K̃t and vt constant. On the other hand, observing a positive signal, the planner may
attribute it to a positive TFP shock or a positive preference shock, holding K̃t and vt constant.

We find both methods discussed in Section 4 generate the same log-linearized optimal policy
functions and almost the same IRFs for the log-linearized solution. Here, we present the IRFs
using the first method. As is well known, there is no comovement in response to a preference shock
under full information. In this case, a positive preference shock causes consumption and labor to
rise, but investment to fall, as shown in Figure 2. By contrast, under RI, the optimal signal form in
equation (35) implies that the inattentive planner confuses a preference shock with a TFP shock
given the same realization of the signal. Observing a positive signal, the planner may interpret
a positive preference shock as a positive TFP shock. Given the parameterization, consumption,
labor, investment, and hence output all rise on impact in response to a positive preference shock.

Notice that capital utilization plays an important role in this comovement result. By results not
reported here but available upon request, we find that there is no comovement even under RI if
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Figure 2. Impulse responses of It , Nt , and Ct to a one-percent innovation in the TFP and preference shocks under full
information and under RI. All vertical axes are measured in percentage changes from the steady state.

there is no endogenous capital utilization. The intuition is as follows: a positive preference shock
raises consumption and labor. But themagnitude of the rise of labor and hence output is too small,
leading investment to fall by the resource constraint. With endogenous capital utilization, a rise in
labor also causes capital to be utilized more intensively and thus raises output further. The large
increase in output allows investment to rise.7

The bottom panels of Figure 2 shows that RI generates damped and delayed responses to TFP
shocks. Moreover, the responses are hump-shaped, even though there is no adjustment cost in
this model.

As shown in MWY (2022), the signal dimension weakly increases as the information cost
parameter λ decreases. Intuitively, as the information cost becomes smaller, the planner acquires
more information. For example, when λ = 0.0005, the optimal signal takes the form:

st =
[

−0.3704 −0.9285 −0.0249
0.2356 −0.1199 0.9644

] ⎡⎢⎢⎣
zt
at
K̃t

⎤⎥⎥⎦ + vt ,

where vt is a two-dimensional vector of independent Gaussian noises with variances 0.0004 and
0.1347. As λ becomes smaller, acquiring information is less costly and hence the solution under
RI is closer to that under full information.

As is well known in control theory, the optimal solution under full information does not
depend on a particular choice of states and controls. For example, one can choose the control
vector as ut = (It ,Nt , et)′ instead of (Ct ,Nt , et)′ . Then one can eliminate Ct using equation (30)
and replace the state transition equation (34) for capital with equation (31). This procedure does
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not affect the solution under full information but matters under RI. The intuition is that con-
trol variables must be known to the DM; that is, they must be adapted to the DM’s information
set

{
st
}
. This may force some other variables not adapted to the information set by the model

constraints. For example, if one chooses (It ,Nt , et)′ as the control vector, then consumption Ct
may not be adapted to st because the resource constraint (30) must be satisfied. If both Ct and It
were adapted to st , then output exp(at) (etKt)

α N1−α
t would be adapted too. But this is generally

impossible because both at and Kt are unobserved states.

5.3. Planner’s problem II: investment shock
In this subsection, we remove the preference shock in the previous example but introduce an
investment shock. Under full information, the planner’s problem is to maximize the following
objective:

E

[ ∞∑
t=0

βtU(Ct ,Nt)

]
, U(C,N) = log (C) − χ

N1+ν

1+ ν
,

subject to equation (30) and

Kt+1 = (1− δ(et))Kt + exp(zt) It , (�3t), (36)
at+1 = ρaat + εa,t+1, (�2t),
zt+1 = ρzzt + εz,t+1, (�1t),

where zt represents an investment shock and�it , i= 1, 2, 3 are the Lagrangemultipliers associated
with the state transition equations for zt , at , and Kt . Here, εa,t and εz,t are independent Gaussian
white noise with variances σ 2

a and σ 2
z .

We choose xt = (zt , at ,Kt)
′ as the state vector and ut = (Ct ,Nt , et)′ as the control vector. Use

equation (30) to substitute for It in equation (36). The steady state values of �it , i= 1, 2, 3,
satisfy

�1 = βI
(1− βρz) C

, �2 = βUc
(
C,N

)
KαN1−α

1− βρa
, �3 =Uc

(
C,N

)
,

given the steady state capital utilization rate e= 1.
We set the parameter values as α = 0.33, δ = 0.025, ν = 1, β = 0.99, γ = 1.2, ρa = 0.95, ρz =

0.7, σa = 0.01, σz = 0.01, and λ = 0.002. We choose χ = 7.8827 and φe = 0.0351 such that the
steady state labor and capital utilization rate are equal to 1/3 and 1, respectively. The coefficient
matrix in the optimal linearized policy function ũt = −FE

[̃
xt|st

]
is given by:

F =

⎡⎢⎢⎣
0.6716 −0.3520 −0.0213

−0.3881 −0.2855 0.0061
−2.0462 −1.8091 0.0955

⎤⎥⎥⎦ .

The matrixW is singular, but A is invertible and thus AA′ +W is invertible. As Assumption 2
is satisfied, our toolbox can be applied to compute the optimal information structure under RI.
We find the optimal posterior covariance matrix for the state is given by:

� =

⎡⎢⎢⎣
0.0195 −0.0018 −0.0028

−0.0018 0.0335 0.0335
−0.0028 0.0335 1.7259

⎤⎥⎥⎦ × 10−2.
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Figure 3. Impulse responses of It , Nt , and Ct to a one-percent innovation in the TFP and investment shocks under full
information and under RI. All vertical axes are measured in percentage changes from the steady state.

and the optimal signal takes the following form:
st = 0.2594zt + 0.9632at + 0.0706K̃t + vt , (37)

where vt is a Gaussian white noise with variance 0.0022. The signal is one-dimensional and indi-
cates that the planner may attribute a positive investment shock to a positive TFP shock given a
positive realization of the signal.

Figure 3 presents the IRFs to the two shocks. As is well known, the investment shock cannot
generate comovement between consumption and investment under full information. In this case,
a positive investment shock causes investment to rise, but consumption to fall. By contrast, under
RI, the planner confuses an investment shock with a TFP shock given the optimally chosen signal
of the form (37). Thus, the investment responses to either a positive TFP shock or a positive
investment shock are damped and delayed. Moreover, consumption rises on impact following a
positive investment shock, generating comovement with investment.

Again endogenous capital utilization plays an important role. With exogenous capital utiliza-
tion with et = 1 for all t, the model under RI could not generate comovement. In response to
a positive investment shock, both investment and capital utilization rise, causing output to rise
more beyond the rise of labor. This allows consumption to rise.

5.4. Planner’s problem III: news shock
We now remove the investment shock in the previous example and consider a news shock. Under
full information, the planner’s problem is to maximize the following objective:

E

[ ∞∑
t=0

βtU(Ct ,Nt)

]
, U(C,N) = log (C) − χ

N1+ν

1+ ν
,
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subject to equations (30), (31), and

at+1 = ρaat + εa,t+1 + εn,t−h,

where εn,t−h is a Gaussian white noise with variance σ 2
n . The noise εn,t represents a news shock to

the future TFP that is announced at date t but realized in h+ 1 period later.
This model does not directly fit into our general framework. We use a simple example with

h= 2 to illustrate how this model can be transformed into our framework. We define the state
vector as xt =

(
at ,Kt , y1t , y2t , y3t

)′ and the control vector as ut = (Ct ,Nt , et)′ . The state transition
equations become

at+1 = ρaat + εa,t+1 + y1t , (�1t)

Kt+1 = (1− δ(et))Kt + exp(at) (etKt)
α N1−α

t − Ct , (�2t)
y1,t+1 = y2t , (�3t)

y2,t+1 = y3t , (�4t)

y3,t+1 = εn,t+1, (�5t)

where �it , i= 1, 2, .., 5, represent the Lagrange multipliers associated with these equations. Only
the steady state value of �2t matters for the LQ approximation as the others are associated with
linear constraints.

We choose the same parameter values as in Section 5.1 except for λ = 0.005. In addition, we set
σn = 1%. Using our toolbox, we derive the coefficient matrix in the linearized policy function:

F =

⎡⎢⎢⎣
−0.3520 −0.0213 −0.3293 −0.3184 −0.3078
−0.2855 0.0061 0.1327 0.1283 0.1240
−1.8091 0.0955 0.3066 0.2964 0.2865

⎤⎥⎥⎦ .

The optimal signal takes the form:

st = 0.6619at + 0.0490Kt + 0.5340εn,t−2 + 0.4184εn,t−1 + 0.3151εn,t + vt , (38)

where vt is a Gaussian white noise with variance 0.0026. This signal form is similar to that in
Maćkowiak et al. (2018). Their model does not have the endogenous capital state. Maćkowiak
and Wiederholt (2020) include capital in an equilibrium model and show that the household’s or
firm’s decision problem can be approximated by an LQ tracking problem. These two papers show
that RI can help explain the comovement puzzle. Unlike these papers, here we analyze a social
planner’s control problem in which Kt is a hidden state and is included in the signal.

As is well known, news shock cannot generate comovement in a standard RBC model under
full information [Beaudry and Portier (2004)]. As shown in Figure 4, a positive news shock about
future TFP raises consumption but reduces labor and investment. Introducing variable capital
utilization alone does not help because the capital utilization declines making output declines
even more. Thus, a positive news shock cannot cause both consumption and investment to rise.
To generate comovement in the RBC framework, Jaimovich and Rebelo (2009) argue that one has
to introduce two more elements: preferences that allow the modeler to parameterize the strength
of wealth effects and investment adjustment costs.

By contrast, Figure 4 shows that RI combined with variable capital utilization can generate
comovement. The intuition comes from the optimal signal form in equation (38), which implies
that the planner cannot distinguish a positive news shock about the future TFP from a positive
shock to the current TFP. Thus, the planner raises labor supply, investment, and capital utilization
in response to a positive news shock. The model also generates damped, delayed, and hump-
shaped responses to the current TFP shock, even though there is no investment adjustment cost.
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Figure 4. Impulse responses of It , Nt , and Ct to a one-percent innovation in the TFP and news shocks under full information
and under RI. All vertical axes are measured in percentage changes from the steady state.

5.5. Durable and nondurable consumption
In this subsection, we study an agent’s consumption/saving problem with both durable and non-
durable goods. We modify the models of Bernanke (1985) and Luo et al. (2015) by introducing a
general power utility function and adjustment costs.

Under full information, the agent chooses nondurable consumption {ct} , durable good
investment {It} , and asset holdings

{
bt+1

}
to maximize discounted utility:

E

∞∑
t=0

βt
[
U

(
ct , kt

) − φb
2

(
bt − b

)2]
, U

(
c, k

) =
(
cθk1−θ

)1−γ

1− γ
,

subject to

ct + bt+1 + It + φkkt
2

(
It
kt

− δ

)2
= Rbt + y exp

(
y1t + y2t + εzt

)
, �5t

kt+1 = (1− δ) kt + It , (�4t)
y1,t+1 = ρ1y1t + ε1,t+1, (�1,t) (39a)
y2,t+1 = ρ2y2t + ε2,t+1, (�2t)

where β = 1/R, kt represents durable consumption, and ε1t , ε2t , and εzt are independent Gaussian
white noise with variances σ 2

1 , σ 2
2 , and σ 2

z , respectively. Here, y1t and y2t are two persistent
components of labor income and εzt is a purely temporary component.

Assume that durable investment incurs quadratic costs with parameter φk > 0. Following
Schmitt-Grohé and Uribe (2003), we also introduce portfolio adjustment costs with parameter
φb > 0 to ensure that there is a nonstochastic steady state for the model given β = 1/R. One
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can show that the steady state asset holdings are b and the steady state nondurable and durable
consumption is given by:

c= (R− 1)b̄+ ȳ
1+ δβ(1−θ)

θ[1−β(1−δ)]
> 0, k= β(1− θ)

θ [1− β(1− δ)]
c.

This is a version of the permanent income hypothesis in that both durable and nondurable
consumption levels are proportional to the annuity value of his human and nonhuman wealth
(R− 1) b+ y in the steady state.

When there is no adjustment cost (φk = φb = 0) and when utility is quadratic, for example,
U

(
c, k

) = − (c− cmax)
2 − θ

(
k− kmax

)2, Luo et al. (2015) show that one can choose the expected
lifetime resource (analogous to permanent income) as a single state variable so that optimal dural
and nondurable consumption is linear in this state variable. As both consumption processes follow
a random walk, there is no nonstochastic steady state. Unfortunately, their approach does not
apply to models beyond the LQ framework, like our model.

We now apply our LQ approximation approach. We choose the state vector as xt =(
y1t , y2t , yzt , kt , bt

)′ and the control vector as ut = (ct , It)′ . The state variable yzt represents the
temporary shock εzt , and its transition equation is given by:

yz,t+1 = εz,t+1. (�3t)

Replace εzt with yzt in (39a). Then the model fits into our general framework. Let�it , i= 1, . . . , 5,
denote the Lagrange multipliers associated with the state transition equations for xt . One can
derive their steady state values as:

�1 = βy
1− βρ1

Uc, �2 = βy
1− βρ2

Uc,

�3 = βyUc, �4 = �5 =Uc, Uc =
(
cθk1−θ

)−γ

θcθ−1k1−θ .

Suppose that the agent does not fully observe the states and acquires information to learn about
the states subject to discounted information costs modeled by the discounted mutual informa-
tion. To solve the model numerically, we set the following parameter values: R= 1.01, β = 1/R,
γ = 2, θ = 0.8, y= 1, b= 0.2, δ = 0.02, φk = 0.5, φb = 0.001, ρ1 = 0.97, ρ2 = 0.8, σ 2

1 = 0.0001,
σ 2
2 = 0.003, σ 2

z = 0.01, and λ = 0.005.
Our toolbox delivers the coefficient matrix in the linearized policy function:

F =
[

−0.3980 −0.1037 −0.0234 −0.0071 −0.0236
−0.6889 −0.2660 −0.0851 0.1489 −0.0860

]
.

The optimal signal is given by:

st = 0.9593̃y1t + 0.2678̃y2t + 0.0604̃yzt − 0.0240̃kt + 0.0610̃bt + vt , (40)

where vt is a Gaussian white noise with variance 0.0129.
Figure 5 shows IRFs to a one-percent positive innovation shock to y1t . Under full information,

both nondurable consumption ct and the durable good expenditure It rise on impact and decline
monotonically to the steady state. By contrast, both responses under RI are damped, delayed, and
have a hump shape. Figures 6 and 7 present IRFs to a one-percent positive innovation shock to the
less persistent income y2t and the purely temporary income yzt . These figures show that they have
similar patterns, though the magnitudes of responses are different. The intuition comes from the
optimal signal form in (40). The agent cannot differentiate three sources of income shocks given
this signal.
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Figure 5. Impulse responses to a one-percent innovation shock to y1t under full information and under RI. All vertical axes
are measured in percentage changes from the steady state.
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Figure 6. Impulse responses to a one-percent innovation shock to y2t under full information and under RI. All vertical axes
are measured in percentage changes from the steady state.
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Figure 7. Impulse responses to a one-percent innovation shock to εzt under full information and under RI. All vertical axes
are measured in percentage changes from the steady state.

6. Conclusion
In this paper, we have proposed an LQ approximation approach to dynamic nonlinear rationally
inattentive control problems with multiple states and multiple controls. We have also provided
a toolbox to implement this approach efficiently. Applying our toolbox to five economic exam-
ples, we show that RI possibly combined with variable capital utilization can help explain the
comovement puzzle in the DSGE literature.

While our approach is quite general and can be easily implemented just as in the DSGE litera-
ture, some qualifications and weaknesses need to be stressed. First, our approach is local in nature
and needs the problem to be smooth and the solution to be interior. Thus, our approach does
not apply to problems with occasionally binding constraints or nonsmooth objective functions.
Second, our approach applies to decision problems under Gaussian uncertainty only. Solving
market equilibrium problems needs an outer loop to find equilibrium prices. Third, our approach
obtains a correct linearized solution around a deterministic steady state. As Kim and Kim (2003)
point out, when this linearized solution is used to evaluate welfare, it can lead to spurious results.
Finally, because the certainty equivalence principle holds in our approach, the equilibrium distri-
bution from the linearized solution does not take into account the feedback of risk on the DMs’
behavior in the nonlinear control problems.

Notes
1 See Sims (2011), Angeletos and Lian (2017), and Maćkowiak et al. (2020) for surveys.
2 There is also a literature that studies rationally inattentive discrete choice problems [e.g. Woodford (2009), Matějka and
McKay (2015), Steiner et al. (2017), Caplin et al. (2019), and Miao and Xing (in press)]. Sims (2006), Mondria (2010),
Kacperczyk et al. (2016), Kőszegi and Matějka (2020), Hébert and La’O (2021), Fulton (2022), and Miao and Su (2023) study
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static RI models with continuous choices. By contrast, our paper focuses on dynamic control problems with continuous
choices.
3 See, for example, Zorn (2018) and Maćkowiak and Wiederholt (2015) for applications of this approach.
4 It is defined as:

H(X|Y) =
∫ ∫

p
(
x, y

)
log p(x|y)dxdy,

where p
(
x, y

)
and p

(
x|y) are the joint pdf of (X, Y) and the conditional pdf of X given Y . See Cover and Thomas (2006).

5 There is also a transversality condition:
lim
t→∞ β t

E [λtxt+1]= 0.

6 We use the conventional matrix inequality notations: X �(�) Y means that X − Y is positive definite (semidefinite) and
X ≺ (
) Y means X − Y is negative definite (semidefinite).
7 See Angeletos and Lian (2022) for a discussion of the importance of both partial information and variable capital utilization
for generating comovement.
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Appendix A: Proofs
Proof of Lemma 1: Define the function H as in (13). Using (1), we derive

E

∞∑
t=0

βtf (xt , ut) =E

∞∑
t=0

βt
[
f (xt , ut) − �

′ (xt+1 − g(xt , ut , εt+1)
)]

.

Take a second-order Taylor expansion around the nonstochastic steady state. The constant
term is

f (x, ū)
1− β

.

The first-order terms are equal to

E

∞∑
t=0

βt
[
fx̃xt + fuũt − �

′ (̃xt+1 − gx̃xt − guũt − gε ε̃t+1
)]

=E

∞∑
t=0

βtũt
(
fu + �

′gu
)

+E

(
fx + �

′gx
)
x̃0 +E

[
β
(
fx + �

′gx
)
x̃1 − �

′̃x1
]

+βE
[
β
(
fx + �

′gx
)
x̃2 − �

′̃x2
]
+ . . . + lim

T→∞ �
′
βT

E [̃xT+1] .

Clearly, Ẽx0 = 0 as x0 is exogenously given and Ẽεt+1 = 0 as ε̃t+1 = εt+1. It follows from (7), (8),
and limT→∞ E [̃xT+1]= 0 that the above first-order terms are equal to zero.
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The second-order terms are equal to

1
2
E

∞∑
t=0

βt

⎡⎢⎢⎣
x̃t
ũt

ε̃t+1

⎤⎥⎥⎦
′ ⎡⎢⎢⎣

Hxx Hxu Hxε

Hux Huu Huε

Hεx Hux Hεε

⎤⎥⎥⎦
⎡⎢⎢⎣

x̃t
ũt

ε̃t+1

⎤⎥⎥⎦
= 1

2
E

∞∑
t=0

βt [̃x′
t , ũ

′
t
] [

Hxx Hxu

Hux Huu

] [
x̃t
ũt

]
+ 1

2
Tr(Hεε) ,

because Eεt+1 = 0 and
E

[̃
ε′
t+1Hεε ε̃t+1

] = Tr
(
HεεE

[̃
εt+1̃ε

′
t+1

]) = Tr(Hεε) .
Combining the terms above yields the desired result. Q.E.D.

Proof of Lemma 2: Define the Lagrangian as:

1
2
E

∞∑
t=0

βt [̃x′
t , ũ

′
t
] [

Hxx Hxu

Hux Huu

] [
x̃t
ũt

]
−E

∞∑
t=0

βt�′
t
[̃
xt+1 − gx̃xt − guũt − gεεt+1

]
,

where �t denotes the Lagrange multiplier adapted to st . The first-order conditions are given by:
ũt : Huuũt +HuxEt [̃xt]+ g′

u�t = 0,

x̃t+1 : �t = βEt
[
Hxx̃xt+1 +Hxuũt+1 + g′

x�t+1
]
.

By the definition of H in equation (13), we deduce that the above conditions are the same as
equations (9) and (10) by setting �t = �̃t . Q.E.D.
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