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Abstract

Alarm flood classification (AFC) methods are crucial in assisting human operators to identify and mitigate the
overwhelming occurrences of alarm floods in industrial process plants, a challenge exacerbated by the complexity
and data-intensive nature of modern process control systems. These alarm floods can significantly impair situational
awareness and hinder decision-making. ExistingAFCmethods face difficulties in dealingwith the inherent ambiguity in
alarm sequences and the task of identifying novel, previously unobserved alarm floods. As a result, they often fail to
accurately classify alarm floods. Addressing these significant limitations, this paper introduces a novel three-tier AFC
method that uses alarm time series as input. In the transformation stage, alarm floods are subjected to an ensemble of
convolutional kernel-based transformations (MultiRocket) to extract their characteristic dynamic properties, which are
then fed into the classification stage, where a linear ridge regression classifier ensemble is used to identify recurring
alarm floods. In the final novelty detection stage, the local outlier probability (LoOP) is used to determine a confidence
measure of whether the classified alarm flood truly belongs to a known or previously unobserved class. Our method has
been thoroughly validated using a publicly available dataset based on the Tennessee-Eastman process. The results show
that our method outperforms two naive baselines and four existing AFC methods from the literature in terms of overall
classification performance as well as the ability to optimize the balance between accurately identifying alarm floods
from known classes and detecting alarm flood classes that have not been observed before.

Impact Statement

We introduce the convolutional kernel-based alarm subsequence identification method (CASIM), which improves
industrial alarm flood classification. CASIM extracts a wide range of alarm dynamics, unlike previous approaches
that use a limited set of alarm characteristics. This helps CASIM identify more relevant features, improving its
ability to classify complex alarm floods.Moreover, expandingwindows inCASIM’s online application, inspired by
early time series classification, allows alarm flood classification over time. Our evaluation shows that this can
provide faster andmore accurate insights than existingmethods.We believe that our proposedmethod CASIM can
improve operational decision-making and reduce operator effort. By making the implementation of our method
publicly available, we aim to encourage wider adoption and research in the field.
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1. Introduction

Due to advancements in automation technology, modern industrial process plants have becomemore data
intensive. The amount of data collected and stored annually, such as time series readings from sensors and
alarm logs, may reach hundreds of gigabytes (Klopper et al., 2016). These data can potentially be used in
machine learning (ML) to gain insight into a process’s complex interdependencies and behavior.
Consequently, ML can offer a human operator valuable decision support (Manca et al., 2021).

Process control systems implement alarms that are triggered when a predetermined threshold in a
process variable, such as the level in a column, is exceeded. Alarms inform operators of critical process
deviations requiring manual intervention (Takai et al., 2012). Ideally, the number of simultaneous alarms
should be kept to a minimum (EEMUA, 2013). In more complex abnormal situations, however, many
alarms can be activated in a short period. This is referred to as an alarm flood (Takai et al., 2012; EEMUA,
2013), and it has the potential to impair the operator’s situational awareness, making prompt and precise
decisions difficult (ASM Joint R&D Consortium, 2009; Mustafa et al., 2023).

Alarm floods are typically caused, among other things, by propagating disturbances that result in
deviations and, consequently, the activation of alarms in different but interconnected plant sections (Wang
et al., 2016; Mustafa et al., 2023). In such a scenario, the operator may not be able to rely on addressing
activated alarms in chronological order, as arbitrary alarm thresholds may prevent critical alarms from being
activated first (Rodrigo et al., 2016). Instead, the operator must initiate a decision-making process, during
which the evaluation of the underlying abnormal situation can be a time-consuming and challenging manual
task (ASM Joint R&D Consortium, 2009; Takai et al., 2012; EEMUA, 2013). Here, an ML-based analysis
may capture implicit patterns and knowledge from historical alarm floods and provide the operator with
valuable insights in the event that a similar situation occurs. Such advanced operator support could facilitate
the safe and effective restoration of a desired process (ASM Joint R&DConsortium, 2009; Takai et al., 2012;
EEMUA, 2013; Wang et al., 2016; Lucke et al., 2019; Manca & Fay, 2022; Mustafa et al., 2023).

One type of alarm data analysis technique is alarm flood classification (AFC), which classifies
recurrent alarm flood situations based on similar historical alarm floods (Lucke et al., 2019) or, more
generally, alarm subsequences (ASs). In this context, ASs are smaller subsets of a potentially infinite
alarm data stream (Ahmed et al., 2013; Manca & Fay, 2021b; Vogel-Heuser et al., 2015). Specifically,
AFC seeks to determine whether an AS belongs to an existing class of historical ASs or if it represents a
novel, previously unobserved AS class (Lucke et al., 2019). The operator could then be provided with
readily available and useful information regarding the most likely AS class, such as the underlying root
cause or recommendations regarding appropriate actions (Lucke et al., 2019; Parvez et al., 2022). As a
result, AFC methods may reduce task saturation among human experts and relieve them of time-
consuming and error-prone manual assessment.

In recent years, a substantial body of research has emerged to address the challenges presented by AFC
methods. While these methods have brought about advancements, they also reveal persistent limitations,
as detailed in Section 2. Specifically, existing methods often fail to represent the intricate and diverse
dynamic characteristics inherent in alarm data. By focusing predominantly on a single property, for
example, the alarm activation order, thesemethods fail to capture the full range of characteristics exhibited
by the alarm data. This observation underpins the motivation for our research. In response, this paper
introduces a novel AFC method designed to more comprehensively harness the dynamic properties of
alarms. Our contributions are twofold. First, we adopt a state-of-the-art time series transformation and
classification technique and tailor it to industrial alarm data. Second, we adapt a detection method for
open-set classification, enabling the distinction between familiar AS classes and those previously
unobserved. With these improvements, our method promises a more nuanced and detailed representation
of alarm dynamics, addressing the gaps observed in AFC.

Building on our previous work in Manca and Fay (2022),1 which was presented and discussed at the
“IEEE 20th International Conference on Industrial Informatics” in Perth, Australia, in July 2022, this

1 https://doi.org/10.1109/INDIN51773.2022.9976139.
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paper introduces significant enhancements, including an oversampling technique to tackle class imbal-
ance—a common challenge in industrial datasets. By generating synthetic samples, our method aims to
offer a more robust solution suitable for both practitioners and researchers. Furthermore, our improved
AFCmethod incorporates the use of an expandingwindows strategy, which is applied during both the off-
line training phase and the online inference phase. This approach, inspired by developments in the field of
early time series classification (ETSC), enables our method to adapt to local alarm dynamics as an AS
unfolds, ensuring more prompt and accurate classifications. This feature represents a notable improve-
ment over our previous approach inManca and Fay (2022), whichwas limited to the off-line classification
of alarm floods. Further improvements encompass an expanded coverage of related work, a more
comprehensive exposition of our novel method, and a more thorough evaluation.

Our contribution to the field extends beyond theoretical advancements. In a commitment to fostering
growth and transparency in industrial artificial intelligence (AI) applications, we have made our code and
its usage rights openly accessible.2 This decision underscores our belief in the transformative potential of
open-source collaboration to address complex challenges in alarm management and process safety.

The remainder of the paper is structured as follows: Section 2 outlines the AFC requirements and
examines the related work. In Section 3, a novel AFC method is developed. In Section 4, a publicly
available dataset is utilized to evaluate and compare our proposed method with two naive baselines and
four relevant methods from the literature. Finally, this paper concludes in Section 5 with the most
significant findings and suggestions for future research.

2. Related work

2.1. Overview and requirements

Both Parvez et al. (2022) and Alinezhad et al. (2023) provided detailed reviews of existing AFCmethods.
All methods described in these reviews presume that similar ASs result from similar abnormal situations
(Rodrigo et al., 2016). The definitions of similarity, however, vary to some extent (Lucke et al., 2019). In
fact, there is no consensus on a standard set of AFC requirements. Instead, research on the clustering of
similar ASs provides relevant criteria, which we assert are also applicable in AFC. In Cheng et al. (2013),
two requirements (R1 and R2) are defined:

R1: AFC methods should be tolerant of irrelevant alarm activations from ASs that stem from similar
situations.
R2: AFC methods should permit variations in the alarm activation order from ASs caused by similar
situations.

In this context, irrelevant alarms are those that are activated for a short period or for a small number of
similar ASs and are thus not representative of the underlying situation (Manca et al., 2021). For instance,
Charbonnier et al. (2015) defined irrelevant alarms as those that occur in less than half of all alarm floods
within a given class. Typically, the alarm management system within a process control system is
responsible for handling short-term alarms, for example, using delay timers or deadbands (Takai et al.,
2012; EEMUA, 2013). However, not all irrelevant alarms may be effectively managed, inadvertently
blurring certain pertinent alarm dynamics (Wang et al., 2016; Lucke et al., 2019). Therefore, AFC
methods should be capable of handling irrelevant alarms independently.

Figure 1 shows two exemplary ASs, depicted as alarm sequences, that illustrate the phenomena
underlying R1 and R2. Alarm sequences are lists of chronologically ordered and time-stamped alarm
activations in alarm variables, which are the unique identifiers for the alarms defined in a process control
system (Manca et al., 2021). Both ASs in Figure 1 are included in the dataset used for evaluation in
Section 4 and are derived from similar root causes. Nevertheless, Figure 1 reveals that both ASs differ in

2 https://doi.org/10.24433/CO.4874993.v1.
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terms of the activated alarms (R1) and the sequence in which the alarms are activated (R2), as denoted by
the black lines connecting corresponding alarms in both sequences.

In the context of real-world industrial scenarios, where a set of observed disturbances and abnormal
situations may grow throughout the lifespan of a plant, Alinezhad et al. (2023) introduced an additional
open-set requirement (R3) for AFC:

R3: AFC methods should detect ASs that belong to previously unobserved classes.

Most AFC methods described in the literature use a multiclass classification approach with supervised
learning. Thesemethods rely on historical alarm data and annotated class labels (Alinezhad et al., 2023) and
typically follow a three-tier structure. That is, during the transformation stage, themost important features or
characteristics are extracted from the alarm data of a new AS. Next, in the classification stage, a classifier
matches the extracted features to the most fitting class of historical ASs. Finally, in the novelty detection
stage, a threshold is used to determinewhether theAS to be classified belongs to themost likely known class
or is derived from a novel previously unobserved class (Lucke et al., 2019). Despite this common approach,
AFC methods can be categorized based on their alarm data input (Lucke et al., 2019), which can be a set,
sequence, or series representation. An alarm set comprises the unique alarm variables that are activated at
least once in anAS. An alarm series consists ofmultiple binary time series that show the dynamic activity of
individual alarm variables (Lucke et al., 2019). Figure 2 illustrates alarm series and sequence representations
of a typical AS. The corresponding alarm set consists of the alarm variables A, B, C, and D.

Figure 1. Two alarm sequences “A” and “B”. The alarm variable column shows the name of the process
variable (XMEAS) or manipulated variable (XMV) and the activated alarm type (L: low, H: high). The

black lines between the two sequences connect pairs of identical alarm variables.

10

(b)
Time (min)

0 2 4 6 8

AB C C CDAl
ar

m
Se

qu
en

ce

A

(a)
Time (min)

0 2 4 6 8 10

B
C
D

seireS 
mralA

Figure 2. Two types of alarm data representations for alarm variables A to D. (a) Alarm series. The solid
blue lines represent alarm variable time trends. A higher level represents an active alarm. (b) Alarm

sequence. The solid blue lines indicate alarm activations.
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2.2. Alarm set-based methods

The majority of alarm set-based AFCmethods utilize string metrics, which estimate the distance between
any two ASs and do not emphasize the number or order of alarm activations (Lucke et al., 2019). A
weighted dissimilarity index-based method that converts alarm data into binary alarm set vectors was
proposed by Charbonnier et al. (2015). For each historical AS class, a single template alarm set vector is
generated, containing only those alarm variables active in at least half of theASs in the class. The resulting
templates are additionally weighted considering how characteristic a certain alarm variable is of a class
compared to all the other classes. In the case of a new AS, the dissimilarities between it and each of the
weighted historical templates are calculated. This is followed by a classification stage using a nonpara-
metric first-nearest-neighbor (1NN) classifier and a novelty detection stage with a to-be-set threshold.
Henceforth, this AFC method is referred to as WDI-1NN.

Reference Charbonnier et al. (2015) demonstratedWDI-1NN’s improved AFC accuracy compared to
that of othermethods. In fact, by removing the order and number of alarm activations, as well as extracting
only the most relevant alarms,WDI-1NN becomes more resistant to the ambiguities described in R1 and
R2.Despite these advantages, string metrics tend to exaggerate the similarity of twoASs that share alarms
but have substantial differences in their respective dynamics, which may hinder the ability to detect
previously unobserved classes (R3) (Charbonnier et al., 2015; Manca et al., 2021). The Jaccard distance,
which quantifies the unweighted disagreement on alarm sets in two ASs, is a less extensive string metric
that can also be used for AFC (Fullen et al., 2018; Lucke et al., 2019).

2.3. Alarm sequence-based methods

Most alarm sequence-based AFCmethods align the alarm activations in twoASs (Lucke et al., 2019). For
example, in Cheng et al. (2013), a local sequence alignment approach, the Smith–Waterman algorithm,
wasmodified to allow for a swapped order of alarm activations if the affected alarms are close in time (R2).
However, penalizing a difference in the number of alarm activations between ASs makes this method less
resistant to irrelevant alarms (R1) (Manca et al., 2021). Nonetheless, the method proposed by Cheng et al.
(2013) remains an often-used benchmark in AFC (Lai et al., 2017; Lucke et al., 2019; Parvez et al., 2022).
This method is used to calculate the pairwise distances between an AS to be classified and a set of
historical ASs. The new AS is then classified using a 1NN classifier in the classification stage and a
distance threshold in the novelty detection stage.

The high computational cost of the pairwiseASdistance calculation is one limitation of themodified Smith–
Waterman algorithm (Lucke et al., 2019). Additionally, if the historicalAS closest to theAS to be classifiedwas
previouslymislabeled, the class predicted by the 1NNclassifierwould be incorrect aswell. Furthermore, using a
simple detection threshold onASdistancesmaynot explain that different classesmay exhibit different intraclass
densities and, consequently, different distance distributions, making it more challenging to tune this threshold
and detect previously unobservedAS classes (R3) (Alinezhad et al., 2022b). To solve some of these limitations,
Lai and Chen (2017) and Lai et al. (2019) extended themethod proposed by Lucke et al. (2019) using a pattern
extraction technique that generates a single AS pattern for each class.

Other AFC methods apply alternative sequence alignment approaches, such as the basic local
alignment search tool (BLAST) (Hu et al., 2016), the match-based accelerated alignment (MAA) (Guo
et al., 2017), or the Needleman–Wunsch algorithm (Charbonnier et al., 2016; Parvez et al., 2020).

With an exponentially attenuated component (EAC) vector representation, Shang and Chen (2019)
proposed an alarm sequence-based AFC method that emphasizes earlier activated alarms to a greater extent
while maintaining their chronological order. To define the EAC feature vector of any AS, the time distance
between the first activated alarm of each alarm variable and the start of the AS is calculated. To weight earlier
alarm activations more, the relative activation time information is incorporated using an attenuation coeffi-
cient, which is a parameter specific to the process’s dynamic characteristics. After calculating the EAC feature
vectors for all historical ASs, a k-d tree is constructed to facilitate an efficient nearest neighbor search.

For classifying a newAS, the method proposed by Shang and Chen (2019) uses a 1NN classifier based
on the distances incorporated in the constructed k-d tree, e.g., utilizing the L1 or L2 norm. Alternately, in
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Alinezhad et al. (2022a), Gaussian mixture models (GMMs) were utilized to estimate the posterior
probability for each AS class. For the final novelty detection stage, Alinezhad et al. (2022a) implemented
a detection threshold applicable to the posterior class probabilities of the GMM as well as the distances
computed in Shang and Chen (2019) (R3). Henceforth, the AFC method proposed by Shang and Chen
(2019) with the detection threshold used by Alinezhad et al. (2022a) is referred to as EAC-1NN.

One benefit of EAC-1NN is that using the Euclidean distance on the EAC-weighted relative time
distances between alarm activations could help smooth out variations in the alarm order if the activations
are close together (R2). However, the emphasis on a single alarm activation per alarm variable as well as
EAC-1NN weighting may be viewed as limitations in cases where the new AS deviates from historical
patterns over time. A further limitation of EAC’s feature vectors is that EAC-1NNmay not be completely
tolerant of irrelevant alarms if they occur early and therefore have high weights (R1).

Most recently, Alinezhad et al. (2023) presented a novel alarm sequence-based AFCmethod, building
upon a previous method outlined in Alinezhad et al. (2022b). This method uses a modified bag-of-words
(MBW) approach, a vectorization concept from natural language processing that employs the term
frequency-inverse document frequency (TF-IDF), and a weighting strategy to incorporate key charac-
teristics from alarm sequences into a feature vector. The latter is a vector with n dimensions, where n is the
number of alarm variables implemented. Each feature includes three weighting terms: the term frequency,
the inverse document frequency, and the time weight. Similar to the EAC-1NN time weight in Shang and
Chen (2019), the time weight in Alinezhad et al. (2023) preserves information about temporal charac-
teristics and alarm order by assigning greater weights to earlier activations. The set of historical MBW
feature vectors is calculated based on the historical ASs and then used to train multiple binary logistic
regression classifiers, one for each existing AS class.

When a new AS emerges, its MBW feature vector is calculated and provided as input to the logistic
regression classifiers. The latter returns an estimate for the respective AS class probabilities. Instead of
using a single threshold for all classes in the novelty detection stage, the authors of Alinezhad et al. (2023)
used an individual threshold for each class to account for different classes with distinct probability
distributions. Consequently, a threshold estimation technique is proposed that models each class’s
probability distribution as one-half of a Gaussian distribution using the historical ASs’ probability
estimates. Each threshold is then calibrated based on the 95% confidence interval of the respective
Gaussian distribution. The resulting set of thresholds is then used to determine whether the new AS
belongs to a known class or a novel class. Henceforth, this AFC method is referred to as MBW-LR.

Because the transformation stages of MBW-LR and EAC-1NN are similar, some of EAC-1NN’s
advantages and limitations apply, such as its tolerance for alarm order variations (R2). Furthermore, for
novelty detection,MBW-LR has the distinct advantage of not requiringmanual threshold tuning.However, if
historical AS classes have a high intraclass variance of probability estimates, using the standard deviation to
calculate the corresponding thresholds can result in high values, which may impede the detection of any
novel classes (R3). Furthermore,MBW-LRmay be sensitive to irrelevant alarm activations (R1) and assign
them a high IDF weight when the corresponding alarm variable is rarely activated (Manca et al., 2021).

In addition, AFC methods have been proposed that make use of different classification techniques. For
example, inZhou et al. (2022), amodified closed fast sequencemining algorithmwas used to detect frequent
alarm itemsets. In Dorgo et al. (2018), long short-term memory unit-based recurrent neural networks were
used to classify ASs according to their chronologically ordered alarm activations and deactivations. All
sequence alignment methods discussed here rely on the activated alarm order to classify anAS. In industrial
processes, however, the dynamic behavior of process variables is not always deterministic. Thus, alarm
activations and their order can be arbitrary and volatile (R1 and R2) (Charbonnier et al., 2015; Lucke et al.,
2019; Manca et al., 2021; Manca & Fay, 2021b; Rodrigo et al., 2016).

2.4. Alarm series-based methods

Alarm series were suggested forAFCmethods because thesemethods consider the dynamics of anAS to a
greater extent, whereas the chronological order of alarm activations is less important (R2) (Lucke et al.,
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2019; Manca et al., 2021). The AFC method proposed by Lucke et al. (2019) interprets alarm series as
multivariate time series and implements a time series classification approach. First, each historical AS is
transformed into an alarm coactivationmatrix (ACM), where alarm variable pairs are assigned a similarity
measure according to the amount of time they are simultaneously active. The resultingmatrices are used to
train a set of support vector machines (SVMs). If a new AS occurs, both the corresponding ACM and the
trained SVM-based classifier are used in the classification stage to determine the most likely AS class.
Next, the posterior class probability of the latter is compared to a threshold in the novelty detection stage to
decide whether the AS to be classified belongs to the most likely known class or to a novel class (Lucke
et al., 2019). Henceforth, this AFC method is referred to as ACM-SVM.

One limitation of ACM-SVM is derived from the representation of the alarm series using alarm
coactivations. That is, the pairwise similarities in an ACM conceal relevant information about the
dynamics of an AS, such as the approximate time windows where alarms are active, as well as the
situation’s overall duration. Disregarding these dynamics in the AFC may lead to a more ambiguous AS
representation. Moreover, the posterior class probabilities used in ACM-SVM can cause some deficits if
two or more classes in the training data are close to each other and a new AS belongs to either of them. In
that case, the probabilities of the most likely classes might be low since the sum of all probabilities always
equals one. This limits the dynamic range of the detection threshold and could result in erroneous results
when attempting to differentiate between known and previously unobserved classes (R3).

2.5. Findings summary

Upon careful examination of the existing AFC methods, a number of significant limitations become
apparent in the literature. Firstly, existing methods do not sufficiently account for the inherent ambiguity
in alarm sets and sequences, resulting in the misclassification of ASs when irrelevant alarms or variations
in the order of alarm activations obscure the true class (R1 and R2). Secondly, the detection of novel,
previously unobserved ASs classes remains a challenge, as existing AFC methods often lack the
flexibility and sensitivity required to identify newly emerging patterns that differ significantly from
known classes (R3). These limitations justify the proposal of a novel AFC method that makes use of the
most relevant characteristics in an alarm series and enables a more advanced distinction between the
known and novel AS classes.

3. Proposed approach

3.1. Overview of the proposed approach

In response to the limitations discussed in Section 2 and recent advances in time series classification, we
propose a novel three-tier AFC method. First, in the transformation stage, alarm series are fed into an
ensemble of convolutional kernel-based multivariate time series transformations that can handle irrele-
vant alarm activations (R1) and alarms in varying order (R2) to extract a wide range of alarm dynamics
from historical ASs. This approach significantly enhances our ability to discern the nuanced dynamics
within ASs, in contrast to existing AFC methods that only focus on a limited number of dynamic
characteristics. Next, this information is fed into the classification stage, where an ensemble of linear ridge
regression classifiers is used to learn the typical characteristics of the AS classes. In the final novelty
detection stage, a local outlier-based novelty detection method is used to determine whether a new AS
belongs to a known class or to a novel class (R3). This differs from existing AFC methods, where the
output of the classification stage is typically utilized directly in the novelty detection stage. Here, our
method enables a more distinct assessment of the novelty of an AS to be classified. These innovations
collectively address the identified gaps in Section 2 by offering a more flexible and accurate method
for AFC.

Figure 3 presents a detailed formalized process description (VDI/VDE, 2015) of our proposed
convolutional kernel-based alarm subsequence identification method (CASIM). Central to CASIM is
its bifurcation into two distinct operational phases: the off-line training phase and the online inference
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phase. The training phase leverages historical ASs to generate and train theAFCmodel. Subsequently, the
inference phase applies the trained model to new, unseen ASs, facilitating online analysis and classifi-
cation. This methodology is consistent with conventional ML-based classification approaches (Lucke
et al., 2019; Ruiz et al., 2021). In the following subsection, the specific components involved in each
phase, including the process operators (green rectangles) and the processed information (blue hexagons),
are described in detail.

3.2. Details of the proposed approach

CASIM begins with a preprocessing step (O1.1) using multivariate alarm series derived from labeled
historical ASs (I1.1). These ASs are obtained through the alarm coactivation and event detection method
(ACEDM) (Manca & Fay, 2021b), which identifies ASs in historical alarm data by detecting outliers in
the time distances between alarms. This approach has proven to be superior to simple alarm activation rate
thresholds (Manca & Fay, 2021b), for example, those described in Lucke et al. (2019) and Cheng et al.
(2013). Subsequently, clustering algorithms, such as the alarm series similarity analysis method
(ASSAM) (Manca et al., 2021) or convolutional kernel-based alarm subsequence transformation and
clustering ensemble (CASTLE) (Manca et al., 2022b), are applied. These approaches can be used to group
the detected ASs into clusters of similar ASs. For example, the ASSAM employs a TF-IDF-based AS
similarity analysis.

CASIM utilizes ASs in the form of multivariate binary alarm series. Here, each alarm variable is
associated with its own series, where an active alarm is denoted by 1, and an inactive alarm is denoted by
0, as shown in Figure 2a. If the alarm system does not directly providemultivariate binary alarm series, the
alarm data representation can be generated from alarm activation and deactivation information (Lucke
et al., 2019).

Next, we ensure that all ASs in I1.1 are of the same length. To achieve this, we zero pad shorter ASs,
appending zero values to the end of the alarm series. AS length standardization is an integral part of the
CASIM preprocessing and is designed to facilitate subsequent transformations in O1.2. Moreover, an
essential assumption here is that conventional preprocessing steps, as outlined in Ahmed et al. (2013),
Alinezhad et al. (2022a, 2022b, 2023), Charbonnier et al. (2015, 2016), Cheng et al. (2013), Dorgo et al.
(2018), Fullen et al. (2018), Guo et al. (2017), Hu et al. (2016), Lai and Chen (2017), Lai et al. (2017,
2019), Lucke et al. (2019), Parvez et al. (2020, 2022), Shang and Chen (2019), and Zhou et al. (2022),
which are designed to eliminate irrelevant alarms, are unnecessary. This is because our method has the
capability to learn themost relevant alarm dynamics for recurrent abnormal situations fromhistorical data,
considering a variety of dynamic properties. Consequently, CASIM is less affected by irrelevant alarms.
The specific details of this aspect are described in subsequent steps.

I1.1 O1.1 I1.2 O1.2 I1.4 O1.3 I1.6 O1.4 I1.7

I1.3

I1.5

Transformation
Stage

Classification
Stage

Novelty 
Detection Stage
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Labelled
historical alarm 
subsequences

Preprocessed 
historical alarm 
subsequences

Trained and scaled 
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subsequences

Trained and calibrated 
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Figure 3. Formalized process description of the proposed convolutional kernel-based alarm subse-
quence identification method (CASIM).
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In the transformation stage, O1.2, the alarm series of the preprocessed historical alarm clusters (I1.2)
are transformed into features that capture relevant alarm dynamics. There is a large body of research on
multivariate time series transformation and classification. An overview of this topic is provided by Ruiz
et al. (2021). Relevant methods include the hierarchical vote collective of transformation-based ensem-
bles version 2.0 (HIVE-COTE 2.0) (Middlehurst et al., 2021), time series combination of heterogeneous
and integrated embedding forest (TS-CHIEF) (Shifaz et al., 2020), InceptionTime (Fawaz et al., 2021),
and Rocket (Dempster et al., 2020). Recently, a version of Rocket, minimally random convolutional
kernel transform with multiple pooling operators and transformations (MultiRocket), was proposed by
Tan et al. (2022). MultiRocket was found to achieve state-of-the-art classification accuracies while being
considerably faster than other methods. In Tan et al. (2022), MultiRocket was trained approximately
350 times faster than InceptionTime, which uses deep convolutional neural networks. Due to these
benefits, MultiRocket is well suited for AFC.

MultiRocket’s application to alarm data is shown in Figure 4. For each alarm variable in each AS in
I1.2, MultiRocket employs two alarm series representations, namely, the original binary series, with
Xq = xq0,x

q
1,…,xql�1

� �
, where xqt is the alarm state of alarm variable q at time t, l is the length of the series,

and a first-order difference representation of Xq given as (Tan et al., 2022):

X́
q
= xqt � xqt�1 : ∀t∈ 1,…, l�1f g� �

: (1)

Then, in a convolution operation, both X and X́ of each alarm variable in an AS are transformed into a

single feature vector bX of length nfeat = nkernel × 8, where the parameter nfeat directly determines the number
of convolutional kernels nkernel used in the transformation (Tan et al., 2022). Each kernel Wd has nine
weights, W = w0,w1,…,w8f g, with six weights of �1 and three weights of 2, a dilation factor d in the

range ⌊20⌋,…,⌊2 log2 n=8ð Þ⌋
� �

, where n is either l or l�1, a bias b, a padding option, where nkernel=2
kernels utilize zero padding and the other nkernel=2 kernels do not, and the assignment of a random set of
selected alarm variables, K, with a size between 1 and 9 (Ruiz et al., 2021; Tan et al., 2022). EachWd is
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Figure 4.Application ofMultiRocket to a binary alarm series and its first-orderdifference representation,
both of which consist of alarm variables A toD and have a sampling rate of 1/s. The convolution operation
employs two kernels W1 = 2,2,�1,�1,2,�1,�1,�1,�1½ � and W2 = �1,�1,2,2,�1,�1,�1,�1,2½ � in
addition to two dilation factors d1 = ⌊20⌋ and d2 = ⌊2 log2 n=8ð Þ⌋ and a set of selected alarm variables
K = A,B,C,Df g. The combination of kernels and dilation factors yields four convolution outputs per

alarm series representation. All used kernels utilize zero padding.MultiRocket computes four features per
convolution output using the bias b= 0 and four pooling operators: proportion of positive values (PPV),
mean of positive values (MPV), mean of indices of positive values (MIPV), and longest stretch of positive

values (LSPV).
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then used to calculate two convolution outputs,Z, one forX and one for X́. ForX, each zi ∈Z is given by the
following (Dempster et al., 2020):

zi =
X

qϵK
xqi ∗Wdþb=

X
qϵK

X8

j= 0
xqiþ j× dð Þ ×wj

� �
þb, (2)

where ∀i∈ 0,1,…,n�1f g, * symbolizes convolution and b is derived by randomly selecting a single
AS from I1.2 and calculating the quantiles of the respective X∗Wd. A detailed description of the
convolution operation can be found in Dempster et al. (2020). Figure 5 shows an illustration of the
convolution operation applied to a generic univariate series without zero padding, Figure 5a, and with
zero padding, Figure 5b. Three distinct dilation factors d are used to demonstrate how this parameter
affects the spread of the kernel over the time series. After this operation, the initial convolution output z0
with a bias value b of 0 is obtained, as depicted in Figure 5. Figure 4 illustrates how these outputs appear
when computed for a multivariate alarm series, which includes time series data from more than one
alarm variable.

Next, four different pooling operators are used to generate distinct features bxi ∈ bX from each Z. The
proportion of positive values (PPV) (Tan et al., 2022) is given as:

PPV Zð Þ= 1=nð Þ
Xn�1

i =0
zi > 0½ �: (3)

The mean of positive values (MPV) (Tan et al., 2022) is as follows:

MPV Zð Þ= 1=mð Þ
Xm�1

i =0
zi
þ, (4)

where Zþ is the vector of positive values in Z with length m. The mean of indices of positive values
(MIPV) (Tan et al., 2022) is given as:

MIPV Zð Þ = 1=mð Þ
Pm�1

j = 0
ijþ

�1

� ifm> 0

otherwise,
(5)
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Figure 5.Convolution operation applied to a univariate seriesX of seven integer values. The convolution
operation employs two kernels of length three,W1 andW2, and three dilation factors d. The combination
of kernels and dilation factors yields six convolution outputs z0, which are calculated by multiplying the
respective kernel weights by the aligned series values and then summing the results. (a) Original series

without zero padding. (b) Modified series with zero padding. Red zeros represent padded values.
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where Iþ is the vector of indices of positive values in Z.The longest stretch of positive values (LSPV) is as
follows (Tan et al., 2022):

LSPV Zð Þ=max j� ij∀i≤ k≤ j≤ zk > 0
� �

, (6)

providing the maximum length of any subsequence that consists solely of positive values in the
convolution output.

Figure 4 depicts an example of a pooling operation involving the four operators. The resulting features
exhibit varying statistical properties; for instance, the relative PPV ranges between 0 and 1, whereas the
MIPV and LSPV are absolute representations of the respective alarm variables’ activation periods. To
avoid a detrimental effect on the classification performance, we scale all features to unit variance, that is,
we divide each value by the feature’s standard deviation. We do not adjust for the mean of the features to
preserve the sparsity structure of the transformed alarm data, that is, due to inactive alarm variables
(Pedregosa et al., 2011).

MultiRocket is not fully deterministic (Middlehurst et al., 2021). Thus, we propose an ensemble
approach to improve the classification performance by repeating the transformation stage O1.2 nclf times.
The trainedMultiRocket instances and standard deviation of each featurebxi ∈ bX are then stored in I1.3 for
future use in transforming new alarm data.

During the classification stage training in O1.3, the transformed historical AS clusters (I1.4), that is,
feature vectors, are used to train an ensemble of linear ridge regression classifiers (I1.5), as recommended
forMultiRocket by Tan et al. (2022). For each classifier, a set of nclass estimators is trained in a one-versus-
rest approach, where nclass describes the number of classes yi ∈Y , that is, clusters, in I1.4. The
regularization strength parameter, α, is tuned using leave-one-out cross-validation (Dempster et al.,
2020). A description and examples of the ridge regression classifier can be found in the scikit-learn
documentation (Pedregosa et al., 2011). The ridge regression classifier, however, does not provide any
confidence level for the resulting classification (Middlehurst et al., 2021), which we require for CASIM’s
novelty detection stage in O1.4 and O2.3. Hence, we propose applying the multiclass case of Platt’s
probabilistic output, which is also used for ACM-SVM (Lucke et al., 2019), to the ridge regression
classifier, as described in Lin et al. (2007) and Wu et al. (2004). Platt’s probabilistic output calculates a

calibrated estimate of the posterior class probabilities p YjbX� �
for each classified AS feature vector bX. The

parameters of Platt’s probabilistic output, γ and δ, are tuned when fitting its regression model in I1.4 (Lin
et al., 2007).

To produce a single set of posterior class probabilities pi Y jbXi

� �
for the i-th AS, where bXi represents the

nclf feature vectors of the i-th AS, we merge the classifiers’ outputs across all ensemble estimators as
follows:

pi Y jbXi

� �
= 1=nclfð Þ

Xnclf�1

j =0
pji YjbXj

i

� �
, (7)

where pji YjbXj
i

� �
are the posterior class probabilities of all classes in Y for the j-th ensemble classifier. The

label c1i of the most likely class for the i-th AS can then be determined as follows:

c1i = argmax
j∈ 1,…,nclass½ �

pi yjjbXi

� �n o
: (8)

InO1.4,CASIM’s novelty detection stage is trained. To overcome the limitations described in Section 2,
we propose using the novelty detectionmethod local outlier probability (LoOP) presented in Kriegel et al.
(2009). The choice of LoOP for this component of CASIM is rooted in its unique advantages, particularly
its capability to provide intuitive and easily interpretable probabilistic assessments of whether an AS
represents a novel class. This feature is especially beneficial for operators, including those with limited
data science expertise, facilitating immediate and informed decision-making based on the likelihood of an
AS being an outlier within a 0 to 1 probability range (Kriegel et al., 2009). Alternative outlier detection
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methods, such as the local outlier factors (LOF) (Breunig et al., 2000), do not have a fixed range of 0 to
1 and their interpretation is not straightforward for the operator. This is because the range is influenced by the
local density (Kriegel et al., 2009)—a common scenario in AFC where ASs can significantly differ in
density depending on the complexity of the disturbance they represent. In the evaluation dataset in Section 4,
we found that classes with short ASs are denser than clusters with complex disturbance propagations. An
advantage of the LoOP in this context is its tolerance in handling varying densities within the data (Kriegel
et al., 2009). This adaptability ensures that the LoOP can effectively detect novelASclasses, even in datasets
with diverse alarm characteristics. By utilizing the LoOP,CASIM canmore accurately differentiate between
known and previously unobserved AS classes, thus improving overall AFC effectiveness.

Based on a set of clustered training samples, the LoOP computes the local density of the clusters by
averaging the distances of the samples to their k-nearest neighbors. To allow for some variations in
previously unobserved samples, an outlier is defined as deviating from the surrounding cluster’s density
by more than λ times the standard deviation, assuming a Gaussian distribution. If a new sample lies outside
this boundary, the outlier probability increases with the sample’s distance to its k-nearest neighbors (Kriegel
et al., 2009). A detailed mathematical description of LoOP is given in Kriegel et al. (2009).

Rather than using only the posterior class probability of the most likely class, as in ACM-SVM (Lucke
et al., 2019), we propose using a more comprehensive input to the LoOP, namely, a set of features

containing the posterior class probabilities for all the known classes pi Y jbXi

� �
and the difference Δd1,2i

between the probabilities of the most and second most likely classes, which can be computed as follows:

Δd1,2i = pi c1i jbXi

� �
�pi c2i jbXi

� �
, (9)

where c2i is the label of the second most likely class:

c2i = argmax
j∈ 1,…,nclass½ �,yj ≠ c1i

pi yjjbXi

� �n o
: (10)

A similar input was used for SVMs in another context in Schäfer and Leser (2020) and Gupta et al.

(2020). Prior to generating the LoOP input, we first compute the posterior class probabilities p Y jbX� �
of all historical ASs (I1.6) using the historical AS feature vectors bX (I1.4) and the ensemble of trained
and calibrated ridge regression classifiers (I1.5). The correctly classified historical ASs are then used
to train a single LoOP classifier (I1.7) with a parameter kLoOP. The initial tests indicate the need to
oversample classes that have fewer than kLoOPþ1 correctly classified ASs to ensure that the classifier
has a robust representation of the entire AS spectrum and does not suffer from data scarcity for certain
classes, which could potentially lead to inaccurately high outlier probabilities for known classes
(Manca & Fay, 2022).

To this end, we employ the synthetic minority oversampling technique (SMOTE) (Chawla et al., 2002)
as our oversampling strategy, focusing directly on the generated posterior class probabilities (I1.6) of
correctly classified historical ASs. By using the SMOTE to integrate synthetic samples into the original
distribution, we retain the intrinsic characteristics of known AS classes, ensuring that the synthetic data
points do not distort the underlying probability structure (Chawla et al., 2002).

The SMOTE operates by selecting samples that are close in the feature space, drawing a line between
the selected samples, and generating new synthetic points along that line. Specifically, for each minority
class sample, the SMOTE traditionally selects k of its nearest neighbors within the same class (Chawla
et al., 2002). However, in our adapted approach, for classes with a sample count less than kLoOP=2, we use
all available samples within the class for synthetic sample generation. For larger classes, we introduce a
constraint, using kLoOP=2 as an upper bound for the number of neighbors considered. After determining
the set of neighbors, a random neighbor is then selected, and a synthetic sample is created at a random
point between the two instances in the feature space. This process is repeated until each class consists of at
least kLoOPþ1 samples.
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Given the alterations that the SMOTE can introduce to the class probability distributions, a renormal-
ization step becomes necessary to adjust every synthetic sample’s class probabilities so that their sum
equals 1, in accordance with probability theory. Next, using (9) to append the difference Δd1,2i to the
resultant vectors, the LoOP classifier (I1.7) is trained, completing the CASIM training.

Online inference is made using CASIM’s transformation (O2.1), classification (O2.2), and novelty
detection (O2.3) stages after a new AS is recorded (I2.1). I2.1 is zero-padded first if it is shorter than the
ASs in I1.2. In O2.1, the newAS is transformed into a set of scaled feature vectors (I2.2) using the trained
MultiRocket instances and feature standard deviations (I1.3), keeping the randomly assigned alarm
variables K the same as those in O1.2. The vectors in I2.2 are then classified using the trained and
calibrated ridge regression classifier ensemble (I1.5) in O2.2. The new AS posterior class probabilities
(I2.3) are subsequently transformed into the proposed LoOP input vector, and in O2.3, the outlier
probability pout (I2.4) is determined using the trained LoOP classifier (I1.7).

Finally, CASIM concludes with a postprocessing step in O2.4, where pout is compared to a threshold τ.
If pout < τ, the label of the predicted class for the new AS (I2.5) is set to c1, that is, the one with the highest
probability in the merged posterior class probabilities (I2.3); otherwise, I2.5 indicates a novel AS class,
and c1 = �1.

3.3. Classification of evolving alarm subsequences

In this section, we introduce the application of our proposedmethodCASIM to the classification of ASs as
they evolve over time. While the fundamentals remain the same as described in Section 3.2, we will
specifically focus on the necessary adaptations required to ensure that the method can effectively address
dynamic and time-sensitive industrial scenarios.

We adapt concepts from the research field of early time series classification (ETSC), which focuses on
predicting class labels for evolving time series data as quickly and accurately as possible (Gupta et al.,
2020). Specifically, we employ the two-tier early and accurate series classifier (TEASER) method,
presented by Schäfer and Leser (2020).We choose TEASER because it closely aligns with the framework
used in our method, incorporating both a classification and a novelty detection stage. In TEASER, the
novelty detection stage is utilized to determine if sufficient dynamics of a time series have been observed
to confidently output the class label predicted by the classification stage. Furthermore, TEASER has been
shown to outperform other state-of-the-art early time series classification approaches in terms of both
accuracy and earliness (Bilski & Jastrze ̨bska, 2023; Gupta et al., 2020; Schäfer & Leser, 2020; Kladis
et al., 2021), making it a suitable choice for our adaptation of CASIM.

To classify evolving ASs, we employ the concept of segmenting historical ASs using an expanding
window strategy and training multiple sets of respective stage instances for different window lengths as
used in Schäfer and Leser (2020). This concept is illustrated in Figure 6, where Figure 6a demonstrates the
expanding windows used for segmenting historical ASs, with T sið Þ describing the window beginning at
time 0 and ending at the i-th step si = i×w, where w is the selected interval length. In addition, Figure 6b
showcases how a set of stage instances is trained on a specific window T s2ð Þ, that is, the transformation
(ts2), classification (cs2), and novelty detection stages (ds2). This approach differs from the one employed
in ACM-SVM (Lucke et al., 2019)), where the classifier is trained on the entire window length and, as a
result, might be unable to classify based on early dynamics because other characteristics that might
emerge later could be still missing. We argue, that utilizing the proposed sequence of stages can be
advantageous as it enables the learning of relevant and characteristic dynamics for smaller portions of the
ASs, allowing for early identification.

Upon concluding the off-line training using historical ASs, the next step is to apply the trained stages
for on-line identification of evolving ASs. To achieve this, we incrementally process incoming alarm data
and detect ASs as they occur. While the scope of this paper does not encompass a detailed exploration of
specific methodologies for online detection and segmentation of ASs, there are several established
techniques in the literature that can be adapted for this purpose. In Lucke et al. (2019), Parvez et al.
(2022), and Alinezhad et al. (2023), for instance, the alarm activation rate is calculated incrementally over
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sliding windows to detect the beginning of an emerging AS. More broadly, in Manca and Fay (2021b), a
comprehensive overview of various methods for detecting and segmenting ASs is provided.

Following the successful online detection of an emerging AS, the next step is its incremental
identification using the trained stage instances of our proposed method as new data points are progres-
sively added to the AS. The transformation (tsi), classification (csi), and novelty detection stages (dsi) are
executed for each expanding window T sið Þ, leveraging the multiple sets of trained stage instances that
correspond to different window lengths. This incremental approach enables our method to provide the
human operator with a swift identification and classification of evolving ASs while also accurately
detecting any novel patterns that may emerge in an industrial setting.

3.4. Limitations and advantages of the proposed approach

One limitation of the proposedCASIM arises from the calibration of the ridge regression classifier inO1.3.
In fact, Platt’s probabilistic output assumes that the posterior class probabilities follow a sigmoid function
(Lin et al., 2007). Nevertheless, this assumption has only been evaluated for SVMs (Lin et al., 2007). Due
to the similarities between SVMs and ridge regression (Baesens et al., 2000), we argue that the calibration
step in O1.3 applies to both approaches. A further limitation stems from the transformation stage utilized
by CASIM, where MultiRocket’s convolution operation does not permit a straightforward interpretation
of the resulting classifications, making it difficult for a human operator to comprehend the model’s
prediction-making process (Kotriwala et al., 2021;Westin et al., 2016). Another limitation stems from the
proposed ensemble approach in O1.2 and O1.3, which substantially increases the computational cost of
CASIM depending on nclf . However, (Middlehurst et al., 2021) demonstrated that using an ensemble
approach enabled smaller values of nfeat, reduced the computational complexity of the transformation, and
yielded a classification performance comparable to that of a single classifier instance with a considerably
higher nfeat.

Nonetheless, the proposed CASIM shows advantages compared to relevant methods from the litera-
ture. With two different alarm series representations, diverse kernels, and four pooling operators, CASIM
allows for the examination of not only a single characteristic, but a diverse range of dynamics arising from
both alarm activation periods and alarm activation and deactivation events, thus capturing an AS’s alarm
dynamics to a greater extent. Owing to the resulting diversity of the computed features, CASIM is less

Figure 6. Concept of expanding windows for training the proposed CASIM for online classification of
evolving alarm subsequences applied to an exemplary alarm series. With window T, step s, and interval
length w. (a) Application of expanding windows to segment a historical alarm subsequence for off-line

training. (b) Training a set of stage instances using the window T s2ð Þ as input.
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affected by irrelevant alarm activations (R1) and a swapped order of alarms (R2). Moreover, the
multivariate analysis of alarm variables is not limited to pairwise considerations, as in ACM-SVM, as
the dynamic behavior of up to nine alarm variables is considered for a single feature. This allows for the
identification of relationships between different alarm variables and extraction ofmeaningful patterns that
would otherwise go unnoticed.

Furthermore, using the local density-based novelty detection method, the LoOP, in the novelty
detection stage of CASIM instead of a simple nearest-neighbor distance or class probability threshold
allows for a more sophisticated differentiation between the known and novel classes (R3). This is because
our novelty detection stage more accurately captures the characteristics of alarm data, where different
classes may exhibit varying densities. Furthermore, the utilization of techniques from ETSC in CASIM’s
online AFC enhances its ability to focus on the specific dynamics and patterns that are relevant to the
currently observed segment of the evolvingAS to be classified. This is in contrast to otherML-based AFC
methods that prioritize globally significant characteristics for distinguishing classes, which may not be
relevant at the present moment.

4. Evaluation and discussion

In this section, we compare and analyze the performance and characteristics of two naive baselines, four
AFC methods from Section 2, and CASIM from Section 3. In Section 4.1, the evaluation dataset is
summarized, and in Section 4.2, the selection of appropriate evaluationmeasures is addressed. Section 4.3
describes the experimental setup. The results of the AFC evaluation are presented in Section 4.4.

4.1. Tennessee–Eastman process evaluation dataset

Hevner et al. (2004) discuss various systematic evaluation techniques used in information systems
research. These include observational techniques, such as case studies, and experimental techniques,
namely controlled experiments and simulations. Both case studies and controlled experiments utilize real
plant data. Chioua et al. (2019), however, state that the task of obtaining appropriate alarm and process
data from industrial plants is still a major obstacle in the development and assessment of alarm
management methods. This is because industrial companies may have reservations, and alarm systems
may perform inadequately, which hinders the use of advanced alarm analysis methods. Moreover,
intentionally inducing faults and abnormal situations in industrial plants in order to generate authentic
data could result in substantial harm to machinery, resources, individuals, and the surrounding environ-
ment. Hence, this study uses a dataset comprising artificial process and alarm data derived from a realistic
simulation model of an industrial process. This model allows the replication of disturbances without
posing any risk to equipment, products, or personnel.

For evaluation, we use the open access alarm management benchmark (Melo et al., 2022) dataset
presented in Manca and Fay (2021b) and available in Manca (2020).3 The dataset is based on the
MATLAB Simulink implementation of the Tennessee–Eastman process (TEP), which replicates the
operations of a real plant owned by the EastmanChemical Company in Tennessee, USA (Downs&Vogel,
1993). Since its initial publication in 1993, the TEP has gained recognition as a benchmark simulation
model in the process automation of chemical plants (Arroyo, 2017; Bathelt et al., 2015;Melo et al., 2022).
Its academic significance is maintained through various publications in process automation (Ricker,
1996), diagnosis (Arroyo, 2017), and alarm management (Shang & Chen, 2019; Alinezhad et al., 2022a,
2022b, 2023; Tamascelli et al., 2023).

Figure 7 shows the piping and instrumentation diagram (P&ID) of the TEP. The TEP features five
process modules: a chemical reactor, a condenser, a vapor–liquid separator, a stripper, and a reboiler
(Bathelt et al., 2015; Downs & Vogel, 1993). Furthermore, the process model includes 73 field sensors to
measure and record process variables (Bathelt et al., 2015). Some of these measurements are used in the

3 https://doi.org/10.21227/326k-qr90.
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TEP’s 17 control loops that regulate 11 automated pneumatic control valves (Ricker, 1996). Detailed
descriptions and visualizations of the process can be found in (Melo et al., 2022; Ricker, 1996), and
(Bathelt et al., 2015).

Moreover, the dataset provides an alarm system for the TEP that defines 81 low-alarm and 81 high-
alarm thresholds, as well as five high-high-alarm and three low-low-alarm thresholds (Manca & Fay,
2021b). These 170 alarm thresholds follow design recommendations given in industrial standards, that is,
those in Takai et al. (2012) and EEMUA (2013). In addition, two alarm management techniques, an
exponential weightedmoving average filter and alarm deadbands, are implemented and parameterized, as
described in Takai et al. (2012) and EEMUA (2013). As a result, there are no chattering alarms, that is,
alarms that frequently toggle between alarm states (ASMJoint R&DConsortium, 2009; Takai et al., 2012;
EEMUA, 2013) or alarms that are only briefly activated, also known as fleeting alarms (ASM Joint R&D
Consortium, 2009; Takai et al., 2012; EEMUA, 2013).

The TEP dataset contains 100 simulation runs with 300 distinct abnormal situations and a total of
29 variations that differ in their respective disturbance duration, impact scaling, or disturbance combin-
ation (Manca et al., 2022b;Manca&Fay, 2021b). The eight different root cause disturbances thatmake up
these abnormal situations include, for example, a step change that causes a loss in thematerial feed flow to
the reactor or an increase in the chilled water supply temperature of the reactor. From the 300 situations,
the TEP alarm system generates a total of 7343 alarm activations (Manca & Fay, 2021b). The number of
alarm variables that are activated, the order in which alarm instances appear, and their dynamic behavior
are all impacted by the considered variations as well as by random factors. Figure 1 provides an example
of how, for two ASs originating from the same disturbance, the alarm order can differ significantly.
Additional information can be found in the dataset’s technical report.

Figure 8 depicts a typical simulation run with three consecutive abnormal situations and an example
subset of alarm series for 18 alarm variables (Manca et al., 2021). The first and second abnormal situations
are caused by a step change in the amount of the process catalyst and reactants in one of the inlet feeds,
respectively. The third abnormal situation, which rapidly escalates into an emergency shutdown, is caused
by a complete blockage of the control valve for another inlet feed (Manca & Fay, 2021b).

Figure 7.Piping and instrumentation diagram (P&ID) of the Tennessee-Eastman process (TEP) (Arroyo,
2017; Bathelt et al., 2015; Downs & Vogel, 1993; Manca & Fay, 2021b).
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Because all disturbances are explicitly known and documented (Manca et al., 2021, 2022b), it is
possible to compare the computed AFC results to a given ground-truth partition. Here, we apply the
ACEDM4 (Manca & Fay, 2021a) and CASTLE5 (Manca et al., 2022a) to the TEP dataset according to
Manca and Fay (2021b) andManca et al. (2022b), respectively. As a result, 310 historical ASs are detected
that are clustered in 14 distinct classes, and each class contains 3 to 48 similar ASs. Additionally, a cluster
of 8 outliers ASs that contain only random components of the respective underlying abnormal situation
and share few similarities with other ASs is found. The Appendix of Manca et al. (2022b) includes the
labels for the resulting classes. To reduce the computational complexity of the subsequent evaluation
steps, we resample the alarm data at a sampling rate of 1/min and select only those 76 alarm variables that
are active at least once in the dataset.

Then, using stratified 5-fold cross-validation, we divide the 310 ASs into random sets, each containing
a training and test split in which the relative frequency of the AS classes is maintained between the two
splits. In addition, to evaluate the detection performance of novel AS classes, we repeat the cross-
validation 14 times, each time excluding an entire class from the training splits and only utilizing it in the
test splits. Consequently, 70 unique training-test sets are created.

Figure 9 uses t-distributed stochastic neighbor embedding (t-SNE) diagrams to illustrate the distribu-
tion and similarity of all 310 detected and clustered ASs. Two distance measures are applied: one measure
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Figure 8. Three examples of consecutive abnormal situations. The solid blue lines represent the time
trends of the alarm variables. The lower level for each alarm variable represents a low alarm, and the

higher level represents a high alarm. The red dotted lines represent the initiation of a root cause
disturbance. The green dashed-dotted lines represent the return to a normal operation (following Manca

et al. (2021) and Manca and Fay (2021b)).

4 https://doi.org/10.24433/CO.9728090.v1.
5 https://doi.org/10.24433/CO.9085464.v1.
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focuses on the set of activated alarm variables (Fullen et al., 2018), as shown in Figure 9a, and the other
focuses on the relative alarm variable activation duration (Manca et al., 2021), as illustrated in Figure 9b.
The diagrams highlight classes such as nos. 3 and 9, which activate similar alarms but differ in their
dynamics. Moreover, classes such as no. 0 exhibit substantial intraclass variances, while classes such as
no. 1 demonstrate lower levels of variance. Fig. 9 further reveals that despite some classes being easily
distinguishable, identifying newASs as known or novel remains a challenge, especially when relying on a
single alarm characteristic and facing closely related classes.

4.2. Classification performance metrics

Weconsider the actual condition ofASs belonging to the set of known classes as positive (P), whereasASs
from an unknown class are considered negative (N). A true positive (TP) is an AS from a known class
whose predicted class c1 matches the given ground-truth classification ctrue. A true negative (TN) is an AS
belonging to a previously unobserved class that has been classified as such, that is, ctrue = �1. The
classification performance is assessed based on three metrics, including the true positive rate (TPR),
which is weighted equally across all classes in Y, the true negative rate (TNR), and the balanced accuracy
(bACC). The TPR is given as follows:

TPR= 1=nclassð Þ
X

i∈Y
jTPij=jPijð Þ; (11)

where |x| describes the number of ASs in the respective test split with the condition x, Pi are ASs from
known classes with ctrue = i, andTPi are ASs from known classes with ctrue = i and c1 = i. The TNR is given
as follows:

TNR = ∣TN∣=∣N∣: (12)

The bACC measures the trade-off between identifying known classes and detecting novel classes and
is given as follows:

bACC= TPRþTNRð Þ=2: (13)

4.3. Experimental setup

Two naive benchmarks are used: guess random class (GRC) and guess most common class (GMC).GRC
randomly guesses the class of an AS to be classified based on the set of known classes. GMC guesses
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Figure 9. t-distributed stochastic neighbor embedding (t-SNE) representations of the 310 alarm subse-
quences in the Tennessee–Eastman process alarm management dataset presented in Manca and Fay
(2021b). Each symbol represents a unique alarm subsequence, with the color coding and shape indicating

the alarm subsequence’s class. The t-SNE representation employs two distinct alarm subsequence
distance measures. (a) Alarm set-based Euclidean distances. (b) Alarm activation duration-based

Euclidean distances.
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based on the most common class in the respective training split. Both GRC and GMC lack a novelty
detection stage; therefore, they are unable to distinguish between the known and novel classes. Further-
more, we select from the literature four existing AFC methods that cover the three different categories
described in Section 2, that is, WDI-1NN, EAC-1NN, MBW-LR, and ACM-SVM. We compare the AFC
performance of these four methods and the two naive benchmarks to those of our proposed CASIM.

Furthermore, CASIM is compared to a version that replaces the LoOP with the same novelty detection
stage as that in ACM-SVM, namely, a novelty detection threshold on the posterior class probabilities
(CASIM-V1). A second alternative version, CASIM-V2, implements CASIM as proposed in Manca and
Fay (2022), that is, without the oversampling step proposed here. Additionally, a third version, CASIM-
V3, is employed to assess the suggested expanding window strategy and sequence of stages for the online
classification of evolving ASs as described in Section 3.3. CASIM-V3 employs a single set of trained
stages that utilize the entire historical ASs, identical to the implementation of ACM-SVM described by
Lucke et al. (2019). This enables us to assess whether any significant local patterns can be acquired when
training on various window lengths. This evaluation approach permits a comprehensive evaluation of
CASIM’s effectiveness, as well as its components.

For WDI-1NN, we implement the method according to the detailed description given in Charbonnier
et al. (2016). According to Shang and Chen (2019), for the TEP, EAC-1NN’s process-specific attenuation
coefficient λ is set to 0.0667/min. Additionally, the normalized Euclidean distance is applied to EAC-1NN
to normalize the distances to the range 0 to 1, allowing for a more accurate comparison with other
methods. For MBW-LR, the individual class thresholds are computed for each test based on the 95%
confidence interval of the respective Gaussian distribution of training probability estimates (Alinezhad
et al., 2023). The parameter θ for the binary logistic regression classifiers is obtained according to Jurafsky
and Martin (2020) during training using a one-versus-rest strategy. For ACM-SVM, the parameters of
Platt’s probabilistic output to the SVMs, γ and δ, are tuned according to Lin et al. (2007). The parameters
that undergo optimization through cross-validation are adjusted for each individual training-test set,
rendering them dynamic and not explicitly defined in this context.

For the ridge regression classifiers of the proposed CASIM, a set of α values to test needs to be
specified. Here, we use the default values provided by the Python implementation of MultiRocket (Tan
et al., 2022), that is, an array of 10 values between 10�3 and 103 that are spaced evenly on a log10 scale.
Regarding nfeat, Tan et al. (2022) recommend using 50,000 features. The proposed ensemble approach,
however, allows for fewer features. Thus, we set nfeat to the smallest possible number of 672 features (Tan
et al., 2022), that is, nkernel = 84. We also use the recommended 50,000 features (nkernel = 6,250) and a
reduced number of 10,000 features (nkernel = 1,250) for comparison. Moreover, preliminary tests of the
proposed ensemble approach suggest that 10 is a suitable setting for nclf . However, we also test CASIM
with nclf values of 1, 5, and 25. In Middlehurst et al. (2021), nclf = 25 was recommended for the related
Rocket time series transformation. For LoOP, we set λ to 3 and kLoOP to 10, according to the default setting
described in Kriegel et al. (2009). To account for MultiRocket’s remaining nondeterministic behavior, we
repeat each test for CASIM 10 times and calculate the mean performance.

Moreover, exceptMBW-LR, the novelty detection stages of the examined AFC methods use different
types of threshold parameters that share an admissible range of 0 to 1. These parameters, henceforth
simply referred to as novelty detection thresholds, have a substantial influence on the method’s detection
trade-off between the known and novel classes (Charbonnier et al., 2016; Manca et al., 2021). In this
paper, we consider novelty detection threshold settings for each method ranging from 0.001 to 1.000 with
a step size of 0.001. This step size setting enables us to determine a suitable performance resolution, as
preliminary tests have demonstrated that smaller step sizes do not significantly alter the performance
dynamics of the methods examined here.

We further investigate the online classification capabilities of the analyzed AFC methods when
confronted with evolving ASs. In our proposed method CASIM and its variant CASIM-V3, we employ
an interval length ω of 10 minutes to ensure detailed performance resolution, with the initial window,
denoted as T s1ð Þ, set at 10minutes. This choice aligns with the common practice of assessing the presence
of an alarm flood by evaluating the frequency of alarm activations within a 10-minute timeframe
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(EEMUA, 2013; Manca & Fay, 2021b; Takai et al., 2012). Moreover, we extend our evaluation to AS
lengths of 420min, based on preliminary tests indicating that this duration results in a performance plateau
for all examined AFC methods, akin to results obtained with full ASs.

For ACM-SVM, initially designed to be trained solely on the entire length of historical ASs (Lucke
et al., 2019), we utilize both the original version and an alternative version, ACM-SVM-V1, which
employs our proposed expanding window strategy. This comparison demonstrates the potential benefits
of the expanding window strategy for other AFCmethods. Additionally, we apply the expanding window
strategy toWDI-1NN, as it lacks specific guidance on handling evolving ASs (Charbonnier et al., 2015).
Although references for EAC-1NN andMBW-LR suggest incremental classification after each new alarm
activation, our evaluation dataset features relatively low alarm rates (Manca & Fay, 2021b), making
updates infrequent and accurate comparisons more difficult. Therefore, we adopt the same expanding
window strategy for both EAC-1NN andMBW-LR to ensure consistency in our evaluation methodology.

The computational experiments are conducted on a 64-bit Windows PC with an Intel(R) Core(TM)
i7-7700HQ 2.80 GHz CPU and 16.0 GB memory. All AFC methods examined here are implemented in
Python (3.9.7) using NumPy (Harris et al., 2020) (1.22.4), Pandas (McKinney, 2010) (1.5.1), sktime
(0.13.4) (Löning et al., 2019), imbalanced-learn (0.11.0) (Lemaître et al., 2017), and Scikit-learn
(Pedregosa et al., 2011) (1.1.3) as additional libraries. The implementation of our proposed CASIM
and all other examined AFC methods is publicly available6 (Manca & Fay, 2023a).

4.4. Evaluation results

For each method, the TPRs, derived from applying their respective transformation and classification
stages to all training-test sets in the TEP dataset, are visualized in Figure 10. As expected, naive guessing-
based GRC and GMC achieve the lowest median values and overall classification performance.

The alarm set-based method WDI-1NN achieves a median TPR of 0.923 and a TPR range of 0.154,
which is narrower than that of other AFC methods. This result aligns with the theory presented by
Charbonnier et al. (2015), which suggests that classifying ASs using sets of activated alarm variables
might be more effective than using sequence alignment techniques. Nonetheless,WDI-1NN has discern-
ible limitations. For instance, this approach struggles to differentiate between ASs that share a common
root cause but have significantly different disturbance propagation speeds. Such AS classes exhibit
distinct alarm dynamics while sharing a common set of activated alarm variables.

Both alarm sequence-based methods, EAC-1NN and MBW-LR, exhibit distinct performance differ-
ences. EAC-1NN achieves a median TPR of 0.871, outperforming MBW-LR, which scores 0.769. This
discrepancy may be due toMBW-LR’s TF-IDF representation, which considers alarm activation counts to
differentiate between classes. However, in the TEP dataset, this count can vary significantly even within
the same class. However, relying on the initial alarm activations in EAC-1NN presents limitations as well,
especially when discerning different escalation paths of an abnormal situation, as subsequent dynamics
may reveal distinct characteristics.

ACM-SVM, which uses alarm series as its input, achieves a median TPR of 0.796. Upon careful
examination of the evaluation results, it becomes apparent that there are certain challenges encountered in
the classification of relatively short ASs that contain more than 19 active alarm variables. These
challenges are particularly pronounced in cases where the ASs ultimately result in an emergency
shutdown of the TEP. The presence of a significant quantity of coactive alarms within these ASs
frequently leads to a high similarity, which consequently hinders ACM-SVM’s distinguishing capabilities.

Our proposed CASIM demonstrates superior performance in comparison to that of the existing
methods that were evaluated, achieving the highest median TPR of 1.000 and a relatively narrow range
of 0.083. Despite our method’s promising results, there are instances where misclassification occurs. This
happens when CASIM is unable to differentiate between various combinations of similar root cause
disturbances.

6 https://doi.org/10.24433/CO.4874993.v1.
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Figure 11 provides insight into the online classification capabilities of the examined AFC methods
when confronted with ASs that evolve over time. The essence of this evaluation is to comprehend these
methods’ ability to identify known AS classes when presented with truncated segments of the corres-
ponding ASs, as opposed to their complete subsequences shown in Figure 10. Such an analysis considers
scenarios requiring operator intervention during the evolution of an abnormal situation in which online
support in the form of timely and accurate AFCmight become critical (Alinezhad et al., 2023). As a result,
Figure 11 depicts the median TPRs of the examined AFC methods across all tests and using different AS
lengths.

In Figure 11, WDI-1NN, EAC-1NN, ACM-SVM-V1, and our CASIM, which all utilize an expanding
window strategy, start strongly, with median TPR rates between 0.626 and 0.663 in the initial 10 minutes.
This highlights their potential in capturing intrinsic alarm data characteristics with limited data available.
A closer examination of the ASs and their associated ground-truth labels reveals certain classes having a
temporal identity. Specifically, unique escalation paths that emerge later in the underlying abnormal
situations can make early class differentiation challenging.

ACM-AVM andCASIM-V3, on the other hand, which are both trained on the full length of the historical
training ASs, initially have lower TPR rates. However, they gradually improve and reach similar
performance levels as their expanding window versions, ACM-SVM-V1 and CASIM, respectively,
between 350 and 380 min. These findings demonstrate the advantages of our suggested expanding
window strategy in classifying evolving ASs by focusing on local dynamics.

WDI-1NN, EAC-1NN, ACM-SVM-V1, and CASIM reach peak performance between 60 and 120 min,
with CASIM either outperforming or matching others. Together with EAC-1NN, CASIM swiftly achieves
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Figure 10. Violin plots that depict the true positive rate using the examined alarm flood classification
methods across all tests. The median is represented by a red line. The range is depicted by two blue

horizontal lines. The probability distribution is shown by the black boundary lines.

Figure 11.Median true positive rate of the examined alarm flood classification methods across all tests.
The performance measurements were collected at relative time intervals post initiation of the corres-

ponding alarm subsequences in the test.
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its peak within the first hour. In contrast,MBW-LR, which prioritizes alarm activation frequency through
its TF-IDF approach, starts with a modest 0.204 TPR at 10 min. Its gradual climb to peak performance
extends to 420 min. This performance can be attributed to the TEP dataset’s challenges, as outlined in
Manca et al. (2021), wherein the frequencies of alarm activations exhibit notable variations within AS
classes.

Figure 12 depicts the distributions of nearest-neighbor distances and probabilities for all tests
conducted on both the known and novel classes, utilizing the complete ASs. These values are employed
by the novelty detection stages of the analyzed methods. For a more straightforward comparison,
Figure 12 illustrates the reverse posterior class probabilities for ACM-SVM, MBW-LR, and CASIM-V1,
that is, 1 minus the class probability of the most likely class. Having low values for ASs from known
classes and high values for ASs from novel classes is advantageous for distinguishing between known and
novel classes.

Upon examining the AFC methods illustrated in Figure 12, it becomes apparent that none of them are
able to achieve perfect differentiation between known and novel classes. The presence of overlapping
value ranges underscores the inherent trade-off associated with determining the threshold for novelty
detection, leading to subsequent misclassifications. Notably, WDI-1NN, EAC-1NN, MBW-LR, and our
CASIM demonstrate median values close to zero for known classes, suggesting that the corresponding
ASs are accurately identified even when employing low threshold values. In contrast, ACM-SVM exhibits
significantly higher values for known classes, with a median of 0.220 and a minimum of 0.093. This
phenomenon can be attributed to the utilization of SVM’s posterior class probabilities, which frequently
produce lower values, particularly for similar AS classes.

Regarding novel classes,WDI-1NN’s lowmedian distance of 0.119 emphasizes the challenges of using
alarm sets alone for AFC. This implies that there is a tendency for alarm set-based interclass similarities to
be relatively high. EAC-1NN andMBW-LR, employing alarm sequence representation, register medians
of 0.075 and 0.374, respectively.While ACM-SVM records amedian reverse posterior class probability of
0.566 for novel classes, our CASIM stands out with a median outlier probability of 0.952, indicating
superior trade-offs among all methods. However, CASIM does present long tails for both class types,
occasionally resulting in misclassifications during the novelty detection stage.

Furthermore, the probabilities of the alternative versions, CASIM-V1 and CASIM-V2, of our proposed
method CASIM, are also depicted in Figure 12. CASIM-V1, employing a novelty detection stage akin to
ACM-SVM, that is, utilizing only the posterior class probabilities, demonstrates a narrower range of values
for both known classes, with a median of 0.252, and novel classes, with a median of 0.706, when
compared to CASIM. CASIM-V2, which excludes the suggested oversampling in the novelty detection
stage ofCASIM, exhibits an overall similar value distribution for both known and novel classes asCASIM.

Figure 12. Violin plots that depict the nearest-neighbor distances (WDI-1NN and EAC-1NN), the reverse
posterior class probabilities (MBW-LR and ACM-SVM), and the outlier probabilities (CASIM) over all
tests. The distributions of alarm subsequences belonging to the known and novel classes are represented
by blue and red shape fills, respectively. The median is represented by a red line. The range is depicted by

two blue horizontal lines.
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However, there is a noticeable disparity in themean values. Themean value for known classes is 0.046 for
CASIM and 0.088 for CASIM-V2. The mean value of CASIM for novel classes is 0.850, while the mean
value of CASIM-V2 is 0.798. This illustrates that the utilization of the suggested oversampling technique
has the potential to enhance the distinction between known and novel classes.

Figure 13 presents the average classification performance for all examined AFC methods, derived
from both their classification and novelty detection stages. Specifically, Figure 13a displays the classi-
fication and detection results of known classes via the TPR, Figure 13b illustrates the TNR associatedwith
novel classes, and Figure 13c shows their trade-off through the bACC.

In the context of Figure 13,WDI-1NN performs well when dealing with knownAS classes and initially
demonstrates a notable ability to detect novel classes. Nonetheless, when the novelty detection threshold
exceeds 0.052, the TNRdecreases significantly. As shown in Figure 13c,WDI-1NN has a narrow dynamic
range within which it excels in both classification tasks, peaking with a bACC of 0.875 for a novelty
detection threshold of 0.039. Thus, inadequately calibratingWDI-1NNmay prevent it from detecting new
classes, limiting its applicability in industrial settings such as the TEP used here.

The characteristics of EAC-1NN result in TPRs with comparable dynamics to those of WDI-1NN, as
shown in Figure 13a. However, due to the wider range of distance values for novel classes in Figure 12,
EAC-1NN outperforms WDI-1NN in terms of TNRs for thresholds greater than 0.091, as shown in
Figure 13b. The noticeable TNR plateaus are a direct result of EAC-1NN’s distance accumulations, as
shown in Figure 12. The trade-off between the TPR and TNR produces a bACC with a relatively high
maximumvalue of 0.711 for a novelty detection threshold of 0.028, followed by a gradual decrease, with a
mean average of 0.546, similar to that of WDI-1NN.

ForMBW-LR, which does not require the user to define a novelty detection threshold, we observe the
lowest maximum performance with respect to the TPRs and TNRs in Figure 13a and b, respectively. In
fact, for the challenging TEP dataset used here, the class boundaries are sometimes set at high levels, such
as 0.905 for class no. 12, thus making it difficult to detect novel classes if they share similarities with at
least one previously known class. Nonetheless, MBW-LR’s bACC performance is higher than that of all
other examined AFC methods from the literature, making it a viable solution when parameter optimiza-
tion on the novelty detection threshold is not possible.

Although ACM-SVM demonstrates commendable classification performance, as shown in Figure 10,
the probability distribution for known classes in Figure 12 results in the most gradual rise in respective
TPRs for ACM-SVM in Figure 13a. In contrast, ACM-SVM achieves relatively high TNR values for the
majority of the possible novelty detection threshold values. As a result, in the classification trade-off
depicted in Figure 13c, ACM-SVM outperforms WDI-1NN most of the time. Nonetheless, for a novelty
detection threshold of 0.392, ACM-SVM achieves a lower peak bACC of 0.770.

For CASIM, the effects of the long tails present in Figure 12’s probability distributions can be seen in
Figure 13a and b, with the TPR increasing and then plateauing and the TNR decreasing gradually. For

Figure 13. Average performance using the classification and detection stages of the four existing alarm
flood classification methods and the proposed CASIM over all detection threshold parameter settings and

tests. (a) True positive rate. (b) True negative rate. (c) Balanced accuracy.
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novelty detection thresholds greater than 0.344 and 0.217,CASIM exhibits the highest TPRs and TNRs of
all examined methods. For lower thresholds, CASIM provides at least the second-best TNR and TPR
results among all examined methods. This finding is also supported by CASIM yielding a maximum
bACC superior to that of all other examined methods, that is, a value of 0.947 for a novelty detection
threshold of 0.324. Another notable phenomenon revealed in Figure 13c is that CASIM demonstrates an
unmatched trade-off, with a mean average bACC of 0.879 over all considered novelty detection threshold
values.

As shown in Figure 14a, the impact of MultiRocket’s nondeterministic properties on the performance
of the proposedCASIM is investigated using 10 randomly instantiated instances of the latter. To provide a
comprehensive understanding of this effect, we examine the bACCusing themean of allCASIM instances
aswell as two envelope curves: the interquartile range, which describes a range of performance values that
the middle 50% of the CASIM instances fall within, and the range that encompasses all the CASIM
instances. Intriguingly, Figure 14a reveals a narrow envelope for both ranges, especially for lower novelty
detection threshold values, which slightly expands for higher thresholds. An in-depth analysis reveals that
this phenomenon is primarily attributable to variations in the outlier probability values of ASs from novel
classes, which in turn influence the TNR and, by extension, the bACC. Overall, MultiRocket’s non-
deterministic components have a limited impact on CASIM.

To enable a systematic and in-depth examination of the efficacy of our proposed CASIM’s default
parameter settings, we compare themwith other recommended settings given inMiddlehurst et al. (2021)
and Tan et al. (2022). In Figure 14b, we compare various settings for the number of estimators in the
ensemble, namely, nclf values of 1, 5, 10, and 25, whilemaintaining the number of features nfeat at 672. It is
demonstrated that different nclf values have less of an effect, and the observed bACC exhibits a high level
of consistency across the range of novelty detection thresholds examined.

In Figure 14c, we compare various settings for the number of features used inMultiRocket, specifically
nfeat values of 672, 10,000, and 50,000, while keeping the ensemble’s number of estimators nclf at 10. It is
shown that the performance achieved when using the two higher settings is comparable. Interestingly,
CASIM’s observed bACC is slightly better with a higher number of features. The reason for this, once
again, lies in the detection of novel classes, where a higher nfeat may account for finding similarities that
are either desirable or undesirable, depending on the ground truth against which the methods are
evaluated.

In Figure 14d, we examine and compare the performance of the proposedCASIMwith that of CASIM-
V1, aCASIM variant that uses reverse posterior class probabilities rather than LoOP’s outlier probabilities
in the novelty detection stage, and CASIM-V2, a variant that does not use the oversampling step in the
novelty detection stage. It is demonstrated that incorporating the LoOP-based novelty detection stage and
minority class oversampling in the otherwise imbalanced TEP dataset improves CASIM’s overall
performance. CASIM’s bACC is greater than that of CASIM-V1 and CASIM-V2 for most of the detection
thresholds considered.

Figure 14. Balanced accuracy over all detection threshold parameter settings and tests using different
parameter settings and versions of the proposed CASIM. (a) Ten randomly instantiated CASIM instances.
(b) Different number of estimators nclf . (c) Different numbers of features nfeat. (d) CASIM, CASIM-V1, and

CASIM-V2.
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5. Conclusions and outlook

The evaluation in Section 4 offers a comprehensive insight into the AFCmethods examined in this study.
Notably, WDI-1NN, EAC-1NN, MBW-LR, and ACM-SVM consistently outperform the naive baseline
classifiers GMC and GRC. This underscores their ability to discern vital alarm characteristics and
recognize recurring abnormal situations. However, these methods face some challenges with alarm order
ambiguity (R1), irrelevant alarm activations (R2), and differentiation between known and novel AS
classes (R3). Our evaluation dataset is particularly challenging, marked by significant variations in alarm
order, extended intervals between alarm activations, and instances of both high intraclass variance and
interclass similarity. In the context of this complex dataset, the examinedmethods were not able to capture
the full spectrum of alarm dynamics inherent in historical ASs.

Section 4 demonstrates that our proposed CASIM effectively handles most of the dataset’s intricacies,
allowing this method to meet the specified requirements R1 to R3. Notably, CASIM stands out by
delivering superior classification performance and demonstrating a more favorable balance in identifying
both known and novel AS classes relative to other AFCmethods examined. These findings emphasize the
merits of utilizing alarm series for multivariate time series transformation, classification, and novelty
detection to enhance AFC outcomes. Furthermore, it is shown that the employment of an oversampling
strategy to generate synthetic samples during the novelty detection phase significantly improves the
detection efficacy. Furthermore, the implementation of an expanding window strategy on our proposed
CASIM demonstrates a substantial enhancement in the online classification of ASs that evolve over time,
allowing the AFC model to focus on the most relevant local dynamics during the training process.
Therefore, we argue that CASIM holds distinct advantages for industrial AFC applications, where the
dynamic nature of industrial processes necessitates a detailed and nuanced representation of diverse alarm
dynamics and clear differentiation between novel and known classes is essential.

While our research has provided valuable insights into AFC methods and the potential of CASIM, it is
imperative to recognize the constraints given the limited data available for this study. Alarm flood open
access datasets are notoriously sparse (Chioua et al., 2019; Manca & Fay, 2021b), underscoring the need
for additional benchmarks.

In this paper, parameter optimization mainly focuses on the novelty detection threshold, which
serves as the primary parameter for balancing the differentiation between known and novel AS classes.
Nevertheless, it is worth noting that, in this context, Section 4 demonstrates that the set of default
settings for the remaining parameters in our proposed CASIM yields sufficient classification results.
Furthermore, the carefully chosen parameter settings for WDI-1NN, EAC-1NN, MBW-LR, and ACM-
SVM allow an examination of these methods’ features in terms of their capacity to extract and learn
meaningful and diverse alarm dynamics. Future research, however, can further evaluate the application
of additional parameter optimization methods. Such efforts can possibly help to improve the perform-
ance of CASIM and make it applicable to a wide range of industrial processes. However, our findings
illustrate that for our evaluation dataset’s selected 76 alarm variables, a feature count of 672 is feasible
for CASIM. Given that the recommended number of features is 50,000 (Tan et al., 2022), it is
conceivable that our proposed method can represent approximately 5655 alarm variables with similar
effectiveness.

While we have addressed the multifaceted dynamics of alarm floods with CASIM, the challenge of
model interpretability remains due to the convolution operation employed by MultiRocket (Tan et al.,
2022). To bridge this gap and enhance understanding, we have recently explored the domain of
explainable artificial intelligence. Specifically, in Manca and Fay (2023b), we introduced a model-
agnostic method that leverages counterfactual alarm floods. This approach holds the potential to offer
clearer and more actionable insights into CASIM’s classification decisions, thus complementing our
efforts to overcome interpretability limitations.

Abbreviations.

1NN first-nearest-neighbor
ACEDM alarm coactivation and event detection method
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ACM alarm coactivation matrix
AFC alarm flood classification
AI artificial intelligence
AS alarm subsequence
ASSAM alarm series similarity analysis method
bACC balanced accuracy
BLAST basic local alignment search tool
CASIM convolutional kernel-based alarm subsequence identification method
CASTLE convolutional kernel-based alarm subsequence transformation and clustering ensemble
EAC exponentially attenuated component
ETSC early time series classification
GMM Gaussian mixture model
HIVE-COTE
2.0

hierarchical vote collective of transformation-based ensembles version 2.0

LoOP local outlier probability
LSPV longest stretch of positive values
MAA match-based accelerated alignment
MBW modified bag-of-words
MIPV mean of indices of positive values
ML machine learning
MPV mean of positive values
MultiRocket minimally random convolutional kernel transform with multiple pooling operators and

transformations
PPV proportion of positive values
SMOTE synthetic minority oversampling technique
SVM support vector machine
TEP Tennessee-Eastman process
TF-IDF term frequency-inverse document frequency
TNR true negative rate
TPR true positive rate
TS-CHIEF time series combination of heterogeneous and integrated embedding forest
t-SNE t-distributed stochastic neighbor embedding
WDI weighted dissimilarity index
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