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Abstract
The physics behind the transitions of natural Samaras, or the bio-inspired counterparts, to steady autorotation
has been unclear. Theoretical and experimental investigations explore the inertial and aerodynamic characteris-
tics required to guarantee stable transitions of an artificial Samara-like decelerator from chaotic tumbling motions
to azimuthal autorotation. A non-dimensional inertial criterion is proposed, which is in accord with experiments.

Nomenclature

C root chord of the wing
Cd blade element drag coefficient
Cl blade element Lift coefficient
CG centre of gravity
cm centimeter
FQR flying quality rating
g gram
IC initial condition
ISC inertial stability criterion
Ixx MOI of the first (X) axis
Iyy MOI of the second (Y) axis
Izz MOI of the third (Z) axis
KN transformation matrix from the initial frame to the principal frame
⇀

M vector from the CG to the quarter station of the mean aerodynamic chord
MAC mean aerodynamic chord
MOI moment of inertia
⇀

n unit angular velocity vector
The P Axis axis consisted of two carbon fibre rods to support the wing
The R Axis axis skews away from the P axis with some angles to support clay masses
r radius of the blade element
U descending speed of the Samara
x̂ X axis
ŷ Y axis
ẑ Z axis

Greek symbol

αr angle-of-attack at a certain blade element
ε angle between the principal X axis to the body X axis
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ξ angle between the R axis and the P axis
η angle between the principal X axis to the vector drawn from the CG to the quarter station of the mean

aerodynamic chord
� scalar angular rate of the Samara
�ωK

K/N angular velocity in the principal frame with respect to the inertial frame
φ Euler angle rotation around the x axis
φeff Euler angle φ as seen by incoming wind
θ Euler angle rotation around the y axis (coning angle)
ψ Euler angle rotation around the z axis
γ flight path angle
τ torque

Superscript

B body coordinate
K principal coordinate
N inertial coordinate

Subscript

R resultant force component
S side force coordinate
T tangential force coordinate
V vertical coordinate

1.0 Introduction
Natural Samara refers to a large family of winged achene with a variety of aerodynamic mechanisms
to reduce their descent rate while being dispersed by the wind. One of the most common mechanisms
features a single wing with a single seed attached near the root of the wing. When a seed disperses from
its mother tree, it falls freely and tumbles at first and then starts a stable azimuthal autorotation, similar
to a helicopter’s main rotor spiraling down to the ground. We can generally categorise the flying states
of a Samara into three phases (1) free falling from its initial status, (2) transition from the free falling to
stable autorotation, and finally (3) stable autorotation in helical flight path. Observing this autorotation
from an inertial view (laboratory view), the seed only rotates about its vertical traveling path. The focus
of this investigation is to understand the mass properties required to ensure successful transitions to
stable autorotation on an artificial Samara-like decelerator.

To our knowledge, no paper has attempted to quantitatively define the criteria of successful transition.
Norberg [1] qualitatively describes the kinematic motions of the transition. He mentioned that bent,
twisted or undulated trailing edges facilitate rapid transitions to autorotation. The eccentric centre of
gravity (CG) along the wing span direction is essential to excite rotating motion due to the inertial
force and the force of gravity. His experiments determined that the CG of the entire Samara must lie
between 0% and 30% of the span length from one end. He also segmented a sample of Samara into nine
chord-wise strips. The local CG of each strip roughly coincides with the overall CG of the Samara. The
continuous connection of local CGs form the mass axis. He believes the chord-wise location of the mass
axis along with the wing planform governs the Samara’s pitching stability.

Kellas [2] presented the first six-degree-of-freedom mathematical model of a controllable artificial
Samara (monocopter), based on steady blade-element momentum theory. Due to the limitation of the
model, his simulation could not be used to investigate the dynamics of transitions. However, he pointed
out an important discovery that a forward-tilted eigenvector with the minimum moment of inertia (MOI)
is essential for successful transition and stable autorotation. The forward-titled eigenvector is described
with respect to the wing span axis for a rectangular wing planform.
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Varshney et al. [3] recorded the kinematics of transitions with a high-speed camera. In addition
to testing the Samara with its natural forms, testing samples were cut to reduce the chord. Adopting
Kellas’ explanation of the principal coordinate system, the importance of the principal axis with the
minimum MOI was supported. The three essential qualitative requirements to successful autorotation
were confirmed.

To quantitatively understand the influence of the direction of principal axis with minimum MOI, x̂K ,
and its MOI, IK

xx, to the transition stability, carefully designed artificial Samaras are used in experiments
that can alter x̂K without changing the location of CG. In other words, both the eigenvectors and the
eigenvalues of the mass distribution are explored. It is inevitable to change the MOI on three principal
axes while changing the directions of x̂K , but the apparatuses are designed such that there will always
be pairs of experimental data sharing the same principal Z axis MOI. Even though the principal Z axis
MOI are different between different pairs, a particular pair can serve for controlled comparisons. By
testing all combinations of mass properties as planned, the results can be used to develop the inertial
stability criteria, a parametric figure to determine a Samara’s transition stability. The transition stability
is stable if a Samara can repeatably initiate and maintain autorotation after released from some initial
condition. It is unstable if a Samara cannot autorotate or cannot sustain the autorotation.

2.0 Experimental apparatus and results
2.1 Design of apparatuses
An artificial Samara consists of four parts: (1) a 3D printed centre body, (2) thin carbon fibre rods,
(3) a wing made by balsa wood, and (4) FidgetGear adhesive clay. The centre body connecting four
carbon fibre rods serves as the main structure for the wing as well as the clay to alter the mass properties.
Two inline rods are defined as the P axis, coinciding with the body Y-axis (̂yB), to which the wing is
attached on by very thin, light-weight paper tape. The paper tape has been tested that is strong enough
to firmly hold the wing under all experiment conditions. A balance mass is added to the other side of
the centre body to account for the weight of the wing, keeping the CG at the centre of the centre body,
at which is defined as the origin of the body coordinate. Another two rods are placed inline and are
attached to the centre body. These two inline rods form the R-axis, which has an angle (ξ ) with respect
to the P-axis. Three baseline models are made with ξ= 30◦, 45◦, and 60◦.

Four 0.5g pieces of clay are formed into spherical shapes to approximate point masses. A pair of
clay spheres moves along the P-axis and the other pair moves along the R-axis. Each pair always moves
symmetrically, an equal distance from the centre, in order to keep the CG position unchanged. By mov-
ing these two pairs of clay, a range of angles between x̂K and ŷB can be swept. A 1g sphere of clay is
placed on the centre body, serving as a reserved ballast to expand the the sweeping range. By equally
splitting it into two parts, the clay can be arbitrarily placed on either the P axis or the R axis if needed.
The total weight of a complete model with the clay attached is 5.5g. The wing has a rectangular plan-
form (3 ×9cm) with the aspect ratio of 3. It is a simple flat plate [1]. Due to limitations of the testing
environment, the higher wing loading design is used to obtain better control when tossing the mod-
els for testing, as described in the next section. Typical disk loading of natural Samaras can be found
in Ref. [4].

All baseline models place the wing span direction parallel to the P-axis and keep the chord-wise
CG at the semi-chord, which is defined as 0 C in this paper. An example of a baseline model and
its definition of coordinate systems are shown in Fig. 1a. The constant chord wing implies the mean
aerodynamic chord (MAC) locating at the semi-span. Figure 1b presents the Euler angle transforma-
tion that will be extensively used in the Section 3. It is brought to reader’s attention here that the
conventional definition of the coning angle (θ ) is the angle between the North-East-Up (NEU) iner-
tial coordinate to the span-wise axis. A typical coning angle is around 10◦ to 30◦ [4]. In this paper,
the coning angle is defined as the angle between the inertial X-axis (̂xN) to the principal X-axis (̂xK).
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(a) (b)

Figure 1. Definition of the coordinate systems.

However, the difference of the quantity should be negligible from the value defined in the conven-
tional way. Figure 2a presents three baseline models that will be studied in this investigation. The
sign of the non-dimensional chord station follows the definition of the body coordinate. Figure 2b
presents the morphology of a baseline model with three different CG locations along the chord-wise
direction.

2.2 Experiment procedures and data collection methodologies
Due to the limitations of facilities, instead of dropping the models statically from a high building, the
models are tossed at least 3.6m (± 0.3m) above the ground to test the success rate of transitions. Each
model was launched with the wingtip down, and the wing was perpendicular to the ground. Models
were thrown vertically upward by hand with minimal rotation in all axes. All experiments are conducted
during the days of still air with a temperature range between 78 and 85 degree Fahrenheit.

A nearby building with markings on the wall was used to assist the author to determine whether a toss
is straight upward. The testing models with higher wing loading also facilitated the consistency of this
initial condition (IC). It was found that with some practices, the author can easily toss testing models
in consistent and straight upward manner. All testing models can reach the apogee of the launching
trajectory maintaining the wingtip down attitude.

As described in the previous section, the clay masses were progressively positioned at the follow-
ing stations on the P-axis and the R-axis: 1.4, 2.3, 3.5, 4.6, 6.0, 7.0 and 8.0cm, which produces a
7 × 7 matrix of MOI properties for each baseline model. An example of MOI matrix of a partic-
ular baseline model is provided in the appendix. Each MOI configuration was launched 20 times.
It is conceived 20 successful autorotation, or sustainable autorotation, out of 20 launches as stable
regime of transition stability. If a launch fails, for example, the model rotates or the tossing trajec-
tory is not straight, it will not be included and make-up tosses will be perform until reaching 20 times
satisfactory launches. Each successful transition was recorded, and a flying quality rating (FQR) was
assigned for each test. The flying quality rating (Table 1) is an objective kinematic observation of
the apparatus in steady autorotation. Green, Yellow, Orange and Crimson are used to distinguish the
ratings.
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(a)

(b)

(c)

Figure 2. Experiment apparatuses.
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Table 1. Flying quality rating

Rating Definition
Green Stable autorotation with fast angular rate and very low coning angle
Yellow Stable autorotation with slower angular rate than Green rating
Orange Stable autorotation with very slow angular rate and high coning angle
Crimson Cannot or barely autorotate descending fast with extremely high coning angle

2.3 Experimental results and discoveries
The success rate of transitions correlates to the different mass properties, as shown in Fig. 3a, 3b and
3c. The 100% successful transitions are distributed diagonally across the domain, with lower success
rates of transition at the upper left and lower right corners. Connecting these two corners, we find it is
roughly perpendicular to the isolines of IK

y

IK
x

as well as the ε angle, which is the two-dimensional angle
between x̂K to x̂B (Fig. 1a). Since the testing models have very small X-Z and Y-Z asymmetries (three
order of magnitude less than the X-Y product of inertia), the products of inertia of these two parts are
neglected. The transformation from the principal frame to the body frame is essentially an Euler angle
rotation about the principal Z axis. It is also true for most of natural Samara that the X-Z plane is roughly
a plane of symmetry.

This pattern implies for a certain range of IK
y

IK
x

and ε, successful transitions are nearly certain. However,

the criteria are indefinite since the successful ranges of IK
y

IK
x

and ε vary between the three baseline models.
Furthermore, This pattern of Baseline 3 changes at the lower left corner, which implies some other
effects influence on the stability when we altering the mass distribution parameters (stations of clay
masses). Thus the stability criteria are not solely depending on either IK

y

IK
x

or ε along. The FQR charts
(Table 2) also show similar patterns as we have seen in Fig. 3, which implies the dynamics of transitions
also plays an important role in autorotation.

The experiments revealed that the chord-wise CG of the Baseline 2 at +0.5 C and keep the clay on the
P-axis at 7cm (with the 1g ballast at the centre), a bifurcation of the rotation direction occurs as the clay
is moved along the R-axis from 1.4 to 8.0cm. Starting from 1.4cm, the model autorotates in the negative
inertial Z-axis direction (the clockwise direction looking from the top of the model). As the clay moved
to 3.5, 4.6 and 6.0cm, the model started struggling to enter autorotation. At 7.0cm, it was not able to
achieve successful transition. It was observed that the model did initiate rotation about the inertial Z-
axis at the very beginning of the autorotation, but it only achieves about a quarter of a rotation, and the
motion was not able to sustain. The wing quickly flapped up falling like an arrow. The model regained
more successful transitions when the clay was at 8.0cm, even though the FQR was not high. In this mass
configuration, the direction of autorotation changed to rotate in the positive inertial Z-axis (counter-
clockwise looking from the top of the model). To further explore this phenomenon, the 1g ballast was
divided into two 0.5g clay masses and was attached to the original clay masses on the R-axis. Moving
the new clay masses along the R-axis, starting from 6.0 to 8.0cm, the transition stability was improved,
reflected in a higher FQR, and the autorotation direction was in the positive inertial Z-axis. This dis-
covery contradicts Norberg’s assertion that a Samara model has the best autorotation stability when the
CG locates between 27% and 35% of the chord [1]. The same bifurcation was also discovered on the
Baseline 1 model with the CG at +0.5 C. The phenomenon will be further discussed in Section 4.3.

3.0 Principles of Samara dynamics
3.1 Samara dynamics in steady states
The experiments demonstrated that the directions of x̂K with respect to the Samara body axes have a
direct contribution to the stability in transitions. The results also show that the principal MOI has a direct
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Table 2. The FQR charts for three baseline models; numbers in cells are the success
rate of transitions with corresponding FQR rating presenting in colors

connection to the stability as well. According to the results of FQR charts, it is helpful to understand the
dynamics of transitions by looking into the dynamics of Samara in steady autorotation.

The the NEU inertial frame is denoted with superscript N and the Samara’s principal frame is denoted
with superscript K . When a Samara is autorotating in steady states (no accelerations for both translational
and angular motions), there is an unit vector, �n, that does not change with time in the inertial frame. The
dynamic of �n can be expressed as Equation (1)

�̇nK = [KN]�̇nN − �ωK
K/N × �nK (1)

The [KN] is the coordinate transformation matrix from the initial frame to the principal frame. �ωK
K/N is

the Samara angular velocity in the principal frame with respect to the inertial frame. Since the Samara
is in steady state, both �̇nK and �̇nN are equal to zero. We now have the equation �ωK

K/N × �nK = 0, which
implies the vector �nK is parallel to �ωK

K/N if it is a non-zero vector [5].

�nK = ± �ωK
K/N

| �ωK
K/N| (2)
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(a)

(b)

(c)

Figure 3. The success rate of transitions correlating to the three baseline mass properties.

The positive �nK is used representing the angular rate vector pointing upward in the inertial frame.
For a typical Samara, the direction of the steady autorotation in the inertial frame can be written as
Equation (3), where � is the scalar angular rate of the Samara.

�nN = ±
⎡
⎢⎣ 0

0

�

⎤
⎥⎦

N

(3)
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The kinematic differential equation of the 3-2-1 Euler angle presenting �nN in the principal frame can
be derived as Equation (4). The definition of Euler angles can be found in Fig. 1b.

�nK = ± �ωK
K/N

| �ωK
K/N| = ±

⎡
⎢⎣ − sin θ (�)

cos θ sin φ(�)

cos θ cos φ(�)

⎤
⎥⎦

K

(4)

Euler’s equations in steady state can be simplified as Equation (5). IK
xx, IK

yy, and IK
zz are principal moment

of inertia in x̂K , ŷK , and ẑK , respectively.

�τK
x = �ωK

y �ωK
z

(
IK

zz − IK
yy

)
(5a)

�τK
y = �ωK

x �ωK
z (IK

xx − IK
zz) (5b)

�τK
z = �ωK

x �ωK
y

(
IK

yy − IK
xx

)
(5c)

Substituting the elements of �nK into Equation (5), Euler’s equations as functions of Euler angles can
be obtained as Equation (6). Define the Samara rotating in positive ẑN .

�τK
x = ( cos θ )2 sin φ cos φ(�)2

(
IK

zz − IK
yy

)
(6a)

�τK
y = ( − cos θ ) cos φ sin θ (�)2

(
IK

xx − IK
zz

)
(6b)

�τK
z = ( − cos θ ) sin φ sin θ (�)2

(
IK

yy − IK
xx

)
(6c)

The directions of torques in the principal frame that sustain a Samara’s stable autorotation can thus
be determined, since the signs of φ and θ are well documented in the literature. Note the coning angle in
Equation (6) must be a negative quantity, since it is transformed from the inertial coordinate. The sign
follows the direction of the coordinate rotation (Fig. 1). Even though φ has been recorded as a negative
quantity [4, 6], it is physically possible to have a rotor autorotating with positive φ. In fact, it has been
shown that the optimum autorotation performance of a rotor is obtained at slightly positive φ [7]. In the
Section 4, the positive φ will be shown that plays a role to facilitate stable transitions.

The geometry of a natural Samara as well as the artificial versions used in this investigation have
different MOI along each axis (IK

zz �= IK
yy �= IK

xx), and the minimum MOI in the direction of x̂K is near the
span-wise direction. A strict property of MOI is defined in Equation (7) and will be used throughout
the manuscript. Because the wing chord only extends on the XY plane of the body frame, IK

zz is always
slightly higher IK

yy as the clay mass stations are changed.

IK
zz > IK

yy > IK
xx (7)

For negative φ, we obtain τK
xx, τK

yy, and τK
zz are all negative (scenarios (a) and (c) in Fig. 4). For positive

φ, τK
yy is still a negative quantity due to cos φ in the equation. τK

xx and τK
zz are positive (scenarios (b) and (d)

in Fig. 4). Furthermore, the�2 implies the bi-directional property of� for both positive and negative φ.
We then have four possible combinations of torques and autorotation directions for a Samara in steady
states. τK

xx, τK
yy and τK

zz are torques required to sustain steady autorotation, and they are unarguably resulting
from aerodynamic forces.

Scenario (a) in Fig. 4 shows that for negative φ, the centre of pressure of the wing must be in the
quadrant 2 to generate negative τK

yy (the wing flapping up) and negative τK
xx (the wing pitching down).

The negative τK
zz results from the drag of the wing. It is concluded that for negative φ, the x̂K must

lead the chord-wise centre of pressure in the direction of the autorotation to achieve steady autorotation.
Scenario (b) in Fig. 4 shows that for positive φ, the centre of pressure of the wing must be in the quadrant
1 to produce negative τK

yy (the wing flapping up) and positive τK
xx (the wing pitching down). The positive

τK
zz results from the thrust of the wing. It is concluded that for positive φ, the x̂K must lag behind the

chord-wise centre of pressure in the direction autorotation to achieve steady autorotation.
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Figure 4. Four mathematically possible scenarios of equilibrium.

Another way to examine scenarios (a) and (b) in Fig. 4 is by the fact that τK
yy is always negative.

Rewrite Equation (5b) as Equation (8b). It is clear that �ωK
x �ωK

z (IK
zz − IK

xx) must be a positive quantity. In
consequence, �ωK

x and �ωK
z must be the same sign [3]. For scenario (a), the coupling angular velocities �ωK

x

and �ωK
z are in opposite directions to the applied torques �τK

x and �τK
z , respectively. For scenario (b), this

relationship is reversed.

IK
xx �̇ωK

x = �τK
x + �ωK

y �ωK
z

(
IK

yy − IK
zz

)
(8a)

IK
yy �̇ωK

y = �τK
y + �ωK

x �ωK
z

(
IK

zz − IK
xx

)
(8b)

IK
zz �̇ωK

z = �τK
z + �ωK

x �ωK
y

(
IK

xx − IK
yy

)
(8c)

Scenario (c) is actually the same dynamics in the steady state as (b), but rotating in the negative ẑN

direction, which can be seen from the directions of the applied torques and the coupling velocities. The
Euler angle φ is negative to conform to the rules of Euler angle rotations, but it is actually a positive
quantity as seen by the incoming wind (denoted as φeff ). The scenario (d) can be saw in the same way
to scenario (a). This is the bi-directional property mentioned earlier. There are only two distinctive
equilibrium modes.

So far it has been shown that positive and negative φ can mathematically exist if the location of
the centre of pressure is properly placed with respect to x̂K , and the resultant force along the chord-
wise direction is properly formed. However, a positive value of φ is realistically impossible to achieve
for a Samara. We can understand this instability by examining an autorotation diagram (Fig. 5), which
consists of the characteristic of a given rotor blade element as a function of element angle-of-attacks,
αr. The characteristic is described by arctangent of the drag coefficient, Cd, over the lift coefficient,
Cl, which is also known as the flight path angle (γ ). It is physically corresponding to the lift-to-drag
ratio, or the advance ratio, of a given two-dimensional aerofoil. γ is plotted on the vertical axis against
αr on the horizontal axis, to which is drawn to the same scale for both the vertical and the horizontal
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Figure 5. An autorotation diagram and the blade element taken from Ref. [7]. The nomenclature is
modified to the conventions used in this manuscript.

quantities. Each point on the horizontal axis corresponds to the γ of the pointed αr. By connecting all
αr, a continuous blade element characteristic curve at equilibrium can be formed [7].

By definition of Equation (9a), draw a 45◦ line (line abc in Fig. 5) from a known value of φ (φ1 in
Fig. 5) on the horizontal axis. Because the opposite is equal to the adjacent on an isosceles right triangle,
the length of the vertical axis (the opposite) is the γ angle for a given blade element under a certain αr

condition. The acceleration of autorotation is split into two regions by the blade element characteristic
curve. If the γ1 in Fig. 5 is right on the blade element characteristic curve, the point (b), autorotation
is at the equilibrium condition. If the γ1 is at the point (a) larger than the equilibrium γ angle under
some perturbed condition, the resultant force tilts forward, causing acceleration of the autorotation. By
definition of γ in an alternative form (Equation (9b)), where r is the radius to the blade section), it is
inversely proportional to the angular speed of autorotation if γ is small, and the change in the vertical
speed component, U, is negligible (for example under steady descending conditions). The acceleration
leads to a reduction in γ1 back to the equilibrium point at the point (b). The same mechanism applies to
the perturbation when γ1 is at the point (c). The autorotation will slow down to increase the γ to restore
equilibrium. Therefore the flight path angle stability for the autorotation is dynamically stable as long
as the φ is less than the maximum limit as defined by the point (d). Any small positive increment of
γ angle from the point (d) will result in a deceleration and a further increase the γ , which produces
negative torque and stops the autorotation. Mathematically speaking, the point (d) is a half-stable node
for γ angle, and any γ angle smaller than the point (d) on the blade element characteristic curve are
stable nodes. Note if the line abc in Fig. 5 keeps on going and intercepts the curve at an even larger γ ,
it is an unstable node. Another perspective on the stability of angular acceleration of a blade section is
by looking at the horizontal perturbation of φ. If a positive small perturbation on φ is given at the point
(f), the γ will move to the accelerating region, thus restoring equilibrium. If the perturbed φ keeps on
increasing, the restored γ will eventually reach the point (d) and stop the autorotation. Note the equation
of αr is not following the conventional flight dynamics definition. The γ is always positive for negative
glide slopes.

αr = φ + γ (9a)

γ = arctan

(
U

�r

)
(9b)

For traditional gyrocopters or helicopters in autorotation, it is essential to have most of the blade
elements γ intercepting before the point (d) to maintain the stability of the rotor speed. However, it
is a different story on Samaras. Reports have shown that Samara operate in post-stall αr throughout
almost the entire wing span [4, 6]. It is about 65◦ at the root to 10◦ at the tip. φ are slightly negative.
From Refs. [4] and [6], it is about −0.1◦ to −3.5◦. In Ref. [8], the measurements of φ are higher, from
−9.0◦ to −12.6◦. Figure 6 shows the flat plate aerofoil section characteristics curve [9]. It is clear that
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Figure 6. The autorotation diagram of a flat plate section.

Figure 7. The chord-wise location shifts of the centre of pressure due to change in angles of attack. The
figure is taken from Ref. [9].

almost all γ angles from the root to the tip are intercepting on the unstable side of the curve, which
resulting in negative torque. This torque slows down the Samara, as is needed in scenario (a) in Fig. 4
to maintain the equilibrium of the coupling motions. On the other hand, scenario (b) with positive φ,
most of wing elements are operating beyond the stable point, further slowing down the wing, which
makes it impossible for scenario (b) to sustain steady autorotation. Another benefit to the stability of
Samara operating in at post-stall angles of attack is that the chord-wise centre of pressure shifts further
aft (Fig. 7), causing more pitching-down moment about x̂K to stabilise the Samara.
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Figure 8. The top view of the wing planform. The vertical force in the principal frame
(�FK

V

)
generated

by the wing produces the torque �τxy in the principal coordinate.

3.2 Samara dynamics in transitions
To maintain the steady state, a Samara has to be supplied with torques on each axis. The configuration
of Samara in this study has only one aerodynamic surface producing forces in three directions as seen
in the principal coordinate. The lift and drag components from the wind coordinate are transformed
into (1) the vertical force component perpendicular to the wing surface

(�FK
V

)
, (2) the tangential force

component parallel to the wing surface in the direction of the wing chord (�FK
T ), and (3) the side force

component parallel to the wing surface in the direction of the wing span
(�FK

S

)
.

�FK
S is usually small due to a small coning angle (around 5◦ to 30◦) [4]. It causes the CG trajectory

of a Samara to shift, forming a circular track if observed in parallel with the descending direction.
The side force is negligible in the transitions since it is only notable in larger coning angles, and it
contributes small moments to the Samara. �FK

V is the main contributor at the early stage of the transition.
The torques supplied by �FK

V are coupled on x̂K and ŷK (Fig. 8) due to the location of the centre of pressure
with respect to the principal frame. �FK

V produces a torque about ŷK . Since ŷK is a intermediate axis, the
supply of unstable energy on ŷK will be transferred to another stable rotation axis, ẑK [3]. �FK

T is the main
contributor to ẑK , but it is also influenced by the angle-of-attack and the rotational speed of the wing.
The torques on each axis interconnect with each other.

During the early experiments on some natural Samaras, it was found that the stability of transition is
also depending on the initial conditions (ICs) prior to release. Kellas discovered a “kick start” technique,
releasing the artificial Samara with the wing tip pointing down to the ground, that can reduce the distance
required to transit to autorotation [2]. The aerodynamic forces acting against the Samara CG introduce a
initial rotation in its direction of autorotation. However, the experiments conducted in this investigation
using the “kick start” technique found that a Samara tends to flip about its chord-wise direction (roughly
rotating about the x̂B, where ŷK is near by) instead of rotating about ẑB as portrayed in the original
literature. It is suspected that the natural Samaras do not have the wing-tip vertical surface added on
Kellas’ artificial Samaras. Since the wing planform surface has more area than the leading/trailing edge,
the magnitude of aerodynamic forces is greater to rotate the Samara about its chord-wise direction. No
matter the ICs of “kick start”, leading edge up, leading edge down or wing surface parallel to the ground,
it was found during the experiments that a Samara has to undergo a span-wise rotation (roughly rotating
about the body Y axis, ŷB, where x̂K is near by) before the azimuthal autorotation getting pronounced.
The span-wise rotation not only produces aerodynamic thrust to accelerate along the azimuthal axis, but
it also supplies the coupling torque to induce chord-wise rotation. If a Samara is dropped with wingtip
up orientation, it is unlikely to autorotate even though the same Samara has good transition stability
with other ICs. The wing acts like an arrow feather, damping out the disturbance about the span-wise
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and the chord-wise directions. Unless the Samara can incur enough span-wise rotation to produce a
coupling torque to the unstable ŷK during the fall, the Samara falls stably to the ground like a lawn dart.
This stable mode is called “dead falling” by the authors. If the span-wise rotation occurs during the
fall, a dead falling Samara generally would take three to four times longer distance to autorotate. The
importance of the ICs determines whether a Samara can continuously supply energy on the unstable ŷK .
Since the span-wise direction (̂xK is near by) has less MOI, it is easier to perturb around this direction
and gain higher initial acceleration, to which implies another possible cause of failure to transition when
the Samara develops a rotation around the stable x̂K while the angular acceleration around ŷK is damped
out.

To analytically describe the torque caused by �FK
V , define an two-dimensional angle η between x̂K to

the vector, �M, from the CG to the quarter station of the mean aerodynamic chord (MAC) (Fig. 8). If x̂K is
leading ahead of the the quarter chord in its direction of autorotation, η is positive. If x̂K is lagging behind,
η is negative. The quarter chord of the MAC represents a single point of force

(�FK
V

)
corresponding to

the pressure distribution over the entire wing. This assumption is based on the observation mentioned
earlier that a Samara undergoes a span-wise rotation in its transition, and the azimuthal rotation is not
pronounced.

The torque resulted from �FK
V can be expressed by Equation (10a). Simple trigonometry in Equations

(10b) and (10c) show how η distributes the �τK
xy to the X- and the Y-axes.

�τK
xy = �M × �FK

V (10a)

�τK
x = �τK

xy sin η (10b)

�τK
y = �τK

xy cos η (10c)

Dividing Equations (10b) by (10c), tan η is a scaling factor of the torque ratio about the X- and
Y-axes. If this factor is small, it implies larger torque along ŷK axis, and also more angular acceleration
if compared under the same magnitude of MOI. If tanη= 0, all initial accelerations are transferred to the
ŷK . At this point we can see that �FK

T can be considered as a common factor to both X- and Y- axes. The �τK
z

induced by �M × �FK
T could introduce a disturbance to the angle-of-attack. The change in angle-of-attack

will still be reflected in �τK
xy.

4.0 Stability criteria
4.1 Derivation of the inertial stability criterion
It has been deducted that the η serves as an vital role to translate energy to the unstable ŷK axis and to
initiate the autorotation (Fig. 8). The angular acceleration on the x̂K has to be sufficient to account for the
coupling angular velocity, but not so much as to cause the Samara to rotate about it to enter another stable
mode. The angular accelerations on the principal X- and Y-axes are considered an important parameter
to determine the stability of Samaras’ transition.

Figure 9 shows the resultant force �FN
R in the inertial frame can be decomposed into the vertical com-

ponent perpendicular to the wing surface and the tangential component. �τK
xy in Equation (10) can be

rewritten as Equation (11) with the ẑK component.

�τK
x = (�FN

R cos φ × �M)
sin η (11a)

�τK
y = (�FN

R cos φ × �M)
cos η (11b)

�τK
z = �FN

R sin φ × �M (11c)
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Figure 9. Sectional view of the wing sliced perpendicular to x̂K passing through the quarter chord
of MAC.

Take �τK
x dividing by IK

xx, �τK
y dividing by IK

yy, and �τK
z dividing by IK

zz to get the angular accelerations on
three axes, �̇ωK

x , �̇ωK
y and �̇ωK

z , respectively. A non-dimensional method is proposed in Equation (12). The
result of Equation (12) is called the inertial stability criterion (ISC).

�̇ωK
x

�̇ωK
z

�̇ωK
y

�̇ωK
z

=
(�FN

R cos φ × �P) sin η/IK
xx

�FN
R sin φ × �P/IK

zz

(�FN
R cos φ × �P) cos η/IK

yy

�FN
R sin φ × �P/IK

zz

= sin η

cos η

IK
yy

IK
xx

= IK
yy

IK
xx

tan η (12)

4.2 Validation of the inertial stability criterion
The IK

yy

IK
xx

in Fig. 3a, 3b and 3c can be reorganised in the same fashion shown in Fig. 10 (Left). The ISC
is calculated for each baseline case, and plotted against the experimental results as listed in Table 2.
The plot (Fig. 10 (Middle)) shows a consistent correlation to 100% successful transitions if the value
of criterion is between −0.5 and 0.5. As the value increases, the success rate of transitions deceases
rapidly. A negative ISC implies that the principal axis with the minimum MOI (̂xK) is lagging behind
�M in the direction of autorotation. Interestingly, comparing the success rate of transitions in the same
absolute values, Fig. 11 clearly shows that the negative values have, in general, higher success rate of
transitions than the positive cases. This discrepancy gradually converges to zero as the values of the
criterion decreases.

The relatively higher success rate of transitions for the negative ISC is attributed to the initial �τK
z in

the same direction as the autorotation direction (Fig. 4(b)). At the instant when the wing starts generat-
ing force in a relative linear flow condition at an early stage of transition, the force pitches up the wing,
causing the angle-of-attack to increase. Recall the autorotation diagram in Fig. 5. The wing accelerates
when the angle-of-attack is increasing from near zero. After passing the maximum point of acceleration
at point (d) and flipping 180◦ about the ŷK , the wing has been accelerated about ẑK to reach the neces-
sary angular velocity for the coupling motion, and now the x̂K is leading ahead of �M in the direction
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Figure 10. Correlations of experimental results to IK
yy

IK
xx

(left), IK
yy

IK
xx

tan η (middle), | IK
yy

IK
xx

tan η| (right).

Figure 11. The errors between the positive and the negative ISC. As the values of the criterion decrease,
the difference converges to zero. It is also expected that as the values of the criterion increase from the
far right data point, the errors drop to zero again since the rate of successful transitions will be zero for
both positive and negative values.

of autorotation due to the back-shifting centre of pressure near the semi-chord (Fig. 7). Steady-state
autorotation can now be shown as Fig. 4(a).

The physical foundation of the ISC is based on the ratio of angular acceleration about the X- and
Y-axes. It is not surprise that low ISC implies more energy is transferred to the unstable ŷK to start the
chain of reaction of the autorotation.
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Table 3. Baseline 1, CG at +0.5 C, clay masses fixed at 1.4cm on the P Axis

Stations on the R axis 1.4 2.3 3.5 4.6 6.0 7.0 8.0
The direction of autorotation NZD‡ NZD NZD NZD F† PZD§ PZD
ISC (in negative Z direction) −0.13 −0.47 −1.01 −1.55 −2.30 −2.89 −3.54
ISC (in Positive Z direction) −5.16 −4.40 −3.40 −2.65 −1.94 −1.53 −1.18
FQR Green Green Green Yellow Crimson Orange Yellow
‡The Samara model autorotated in negative Z direction (clockwise looking from the top of the model)
†The Samara model failed to autorotate
§The Samara model autorotated in positive Z direction (counter-clockwise looking from the top of the model)

Table 4. Baseline 2, CG at +0.5 C, clay masses fixed at 7.0cm on the P Axis

Stations on the R Axis 1.4 2.3 3.5 4.6 6.0 7.0 8.0 6.0∗ 7.0∗ 8.0∗

The direction of
autorotation

NZD NZD NZD NZD NZD F PZD PZD PZD PZD

ISC (in negative Z
direction)

0.86 0.49 0.01 −0.36 −0.77 −1.04 −1.33 −1.47 −1.92 2.42

ISC (in positive Z
direction)

−5.45 −4.33 −2.96 −2.03 −1.20 −0.77 −0.42 −0.27 −0.13 0.51

FQR Green Green Yellow Yellow Orange Crimson Orange Yellow Green Green
∗ The clay mass on this station is added to 1g on each end of R Axis from the ballast.

4.3 Impacts of bifurcations in directions of autorotation to Samara transition stability
This section elaborates the bifurcation discovered in Section 2.3 using the concept of ISC. Table 5 shows
the clay masses on the P Axis was held at the station of 1.4cm. The model of Baseline 1 was modified
that the CG of apparatus is moved to the +0.5 chord. As the station of clay masses on the R-axis were
swept from 1.4 to 8.0cm, the direction of autorotation changes from the previous negative Z-axis to
the positive Z-axis. Between the bifurcation, a failure case appears. This failure has the same feature
mentioned in Section 2.3. The ISC of each mass configuration was calculated based on the positive and
the negative rotating directions. The Samara rotating in two different directions has different locations
of the quarter chord of MAC, which results in different η. Table 5 reveals that the rotating direction of
the smallest ISC value in each column is the same to experiment results in the first row, which is also as
expected from conclusions in the dynamics of transitions and the physical basis of the ISC. Figure 12a
visualises the directions of the first principal axis on the wing planform of the experiments conducted
in Table 5. Another modified Baseline 2 model was also tested. The results are presented in Table 4
with the visualisation in Fig. 12b. The second set of experiments leads to the same conclusion that a
Samara would autorotate in the direction with less ISC. Despite being a convenient way to determine
the direction of autorotation, comparing two ISCs fails to reveal what mass configuration would lead to
unsuccessful transitions. This paradox can be clearly found on the failure case in Table 4. Although it is
not low enough (−0.77) to guarantee 100% success rate of transitions, it should still be able to achieve
some autorotations in tests.

The failures are suspected due to the back-shifting centre of pressure when the autorotation estab-
lished. If x̂K ends up lagging behind the shifted centre of pressure, the pitching up moment would cause
the autorotation failed. Extending further on this idea, a Samara has two different locations of centre of
pressure for rotating in either directions. The vector of x̂K locating in between the two shifted centre of
pressures would cause the Samara unable to achieve steady-state autorotation in either ways. The state-
ment implies that the η in steady state must be positive to ensure successful initiation at the early stage
of autorotation. Due to the short of necessary equipment to measure the location of centre of pressure
in steady state, the exact range of this criterion is unknown.
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(a)

(b)

Figure 12. The visualisation of the first principal axis directions with respect to the centre of pressure
locations in the positive or negative Z axis autorotation. Each line represents a mass configuration
shaped by the green clay on the R axis.
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Even though it can be confidently shown 100% successful transitions if the ISC is between −0.5 to
0.5, the criterion for the shifted centre of pressure in steady states is obviously depends on the aerofoil
and the planform of the wing. The negative ISC could lose transition stability if the location of shifted
centre of pressure is unclear during the design. To be conservative, a stable range of ISCs is presented
in Equation (13).

0<
IK

yy

IK
xx

tan η≤ 0.5 (13)

Note the ISC cannot be applied on the wing-tip up IC since the physical basis of the ISC is not
applicable in this flow field. The impact of exactly zero ISC is not yet clear, since the most confident
minimum ISC that can be achieved is known to the third decimal place. However, the experiments show
the smaller the ISC is, the faster it can pass the transition.

5.0 Conclusion
The investigation reveals the flight mechanic of a Samara in dynamic transitions and steady autorota-
tions, which leads to the modeling of a quantitative measurement of the transition stability. The key
determination of the stability in transitions is essentially the angular acceleration ratio about the princi-
pal X-axis (̂xK) to that around the principal Y-axis (̂yK) if the Samara has an X-Z plane of symmetry. The
angular acceleration ratio is closely related to the eigenvalues and the eigenvectors of a Samara, which
can be mathematically described as a non-dimensional inertial stability criterion (ISC). If we have the
same torque on x̂K and ŷK ( tan η= 1), large ISC then implies high angular acceleration about x̂K and the
Samara would likely to develop a stable rotation about x̂K , thereby failing to autorotate before hitting
the ground. To drive the Samara out of the stable rotation about x̂K (with the minimum MOI) as soon
as possible, a Samara needs high angular acceleration about the intermediate axis, ŷK . Rotation about
intermediate axis is inherently unstable, and the Samara will have to rotate about the next stable axis, ẑK

to achieve steady autorotation. tan η can be treated as a scaling factor to distribute the torque ratio on x̂K

and ŷK . The traditional approach to determine reliable autorotation by specifying the Samara CG along
the chord-wise direction is insufficient. The bifurcation of the autorotation directions is consistent with
the assertion that the relative positions of the quarter chord on the MAC to x̂K determine the Samara
transition stability. The experiments of bifurcations also disclose that a negative ISC could mislead sta-
bility assessments. If x̂K happens to locate in between the aft-shifting centres of pressure that the Samara
autorotates in either directions, the wing can only produce pitching-up moment and the Samara would
lose the stability at the early stage of autorotation. The characteristics of an aerofoil and the wing plan-
form are important to ensure the proper direction of torque to be supplied. The readers are reminded that
the initial conditions of a Samara prior releasing should be properly chosen, to which the wing-tip up
orientation shall be avoided to prevent the Samara from autorotating about the stable axis with minimum
MOI.

The model of ISC can successfully predict the stability in transitions and the directions of autoro-
tations. It is in hope that the discoveries from the investigation can facilitate designs of Samara-like
decelerators in applications of planetary entry-descent-and-landing vehicles, packages and supplies
deliveries and atmospheric probes. However, the theory and experiments are performed on a basis to
imitate natural Samaras. Further comparisons to experiments on biological specimens are needed to
ascertain the bio-mechanism of the natural counterparts. In the future, with the helps of high speed
cameras and dedicated wind tunnel facilities to identify the locations of shifted centre of pressure would
facilitate pinning the stable boundary of negative ISC.
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Table 5. Principal moment of inertia matrix of Baseline 1, CG at 0 C, with 1g reserved ballast at the centre joint (Unit: kg m2)

Appendix

R Axis stations (cm) 1.4 2.3 3.5 4.6 6.0 7.0 8.0
P Axis station at 1.4cm IK

xx 3.0068E-7 3.5485E-7 4.5135E-7 5.4901E-7 6.6731E-7 7.4118E-7 8.0457E-7
IK

yy 5.4287E-6 5.7076E-6 6.3071E-6 7.1004E-6 8.4661E-6 9.6922E-6 1.1129E-5
IK

zz 5.7130E-6 6.0460E-6 6.7420E-6 7.6330E-6 9.1170E-6 1.0417E-5 1.1917E-5
P Axis station at 2.3cm IK

xx 3.0359E-7 3.5935E-7 4.5966E-7 5.6255E-7 6.8916E-7 7.6936E-7 8.3889E-7
IK

yy 5.7588E-6 6.0361E-6 6.6317E-6 7.4198E-6 8.7772E-6 9.9970E-6 1.1428E-5
IK

zz 6.0460E-6 6.3790E-6 7.0750E-6 7.9660E-6 9.4500E-6 1.0750E-5 1.2250E-5
P Axis station at 3.5cm IK

xx 3.0867E-7 3.6725E-7 4.7449E-7 5.8713E-7 7.2978E-7 8.2260E-7 9.0468E-7
IK

yy 6.4497E-6 6.7241E-6 7.3129E-6 8.0913E-6 9.4326E-6 1.0640E-5 1.2058E-5
IK

zz 6.7420E-6 7.0750E-6 7.7710E-6 8.6620E-6 1.0146E-5 1.1446E-5 1.2946E-5
P Axis station at 4.6cm IK

xx 3.1370E-7 3.7518E-7 4.8964E-7 6.1281E-7 7.7359E-7 8.8132E-7 9.7873E-7
IK

yy 7.3357E-6 7.6072E-6 8.1888E-6 8.9566E-6 1.0280E-5 1.1472E-5 1.2875E-5
IK

zz 7.6330E-6 7.9660E-6 8.6620E-6 9.5530E-6 1.1037E-5 1.2337E-5 1.3837E-5
P Axis station at 6.0cm IK

xx 3.1976E-7 3.8480E-7 5.0842E-7 6.4548E-7 8.3139E-7 9.6088E-7 1.0816E-6
IK

yy 8.8136E-6 9.0815E-6 9.6540E-6 1.0408E-5 1.1706E-5 1.2877E-5 1.4256E-5
IK

zz 9.1170E-6 9.4500E-6 1.0146E-5 1.1037E-5 1.2521E-5 1.3821E-5 1.5321E-5
P Axis station at 7.0cm IK

xx 3.2356E-7 3.9090E-7 5.2054E-7 6.6701E-7 8.7082E-7 1.0165E-6 1.1555E-6
IK

yy 1.0110E-5 1.0376E-5 1.0942E-5 1.1686E-5 1.2967E-5 1.4121E-5 1.5482E-5
IK

zz 1.0417E-5 1.0750E-5 1.1445E-5 1.2337E-5 1.3821E-5 1.5121E-5 1.6621E-5
P Axis station at 8.0cm IK

xx 3.2687E-7 3.9622E-7 5.3126E-7 6.8638E-7 9.0716E-7 1.0689E-6 1.2263E-6
IK

yy 1.1607E-5 1.1870E-5 1.2431E-5 1.3167E-5 1.4430E-5 1.5569E-5 1.6911E-5
IK

zz 1.1917E-5 1.2250E-5 1.2946E-5 1.3837E-5 1.5321E-5 1.6621E-5 1.8121E-5
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