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Abstract

We answer some questions which arise from a recent paper of Campbell, Heggie, Robertson
and Thomas on one-relator free products of two cyclic groups. In the process we show how
publicly accessible computer programs can be used to help answer questions about finite group
presentations.
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1. Introduction

We answer some questions which arise from a recent paper of Campbell,
Heggie, Robertson and Thomas (1992) and in the process show how publicly
accessible computer programs can be used to help answer questions about
finite group presentations. Another discussion of the use of computers in
investigating group presentations is given in Neubiiser and Sidki (1988).

The paper by Campbell et al. is part of a project which investigates one-
relator free products of two cyclic groups. In it they consider the groups,
G(a, n), which have the following parameterised presentation:

{ a, b : a2 = b" = ab~xab{abab~{)a~lab2ab~2 = 1 }

where both a and n are positive integers. They also consider the preimages,
H(a, n), which have the following parameterised presentation:
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{a, b : a2 = bn, ab~x ab{abab~x)a~x ab2ab~2 = 1 }.

Campbell et al. prove that the largest metabelian quotients of the groups
G(a, n) are finite and determine their orders. For n odd and all a, they
show that G(a, n) is finite and soluble, with soluble length at most 3. For
n < 7, they prove that all groups G(a, n) are finite (except (7(1, 6)) and
soluble and they determine their orders and solubility lengths. Further they
establish that

• (7(6, 8) is infinite and soluble with soluble length 4 or 5 and (implicitly) j
that it is polycyclic with Hirsch length (the number of infinite factors in a \
polycyclic series) between 5 and 15; j

• (7(7, 8) is finite and soluble with order divisible by 210 x 33 x 7 x \
172 x 53 and soluble length 4 or 5; \

• (7(6, 10) is finite with order divisible by 29 x 32 x 53 x 13 x 14812 \
and with a composition factor PSU(3, 4);

• H(6, 10) is finite with order divisible by 29 x 32 x 53 x 7 x 13 x 14812.
We show that
• G(6, 8) and if (6, 8) have soluble length 5 and Hirsch length 5;
• (7(7, 8) and H{1, 8) have soluble length 5;
• (7(7, 8) has order 211 x 35 x 7 x 172 x 53;
• H(l, 8) has order 215 x 36 x 7 x 172 x 53;
• G(6, 10) has order 29 x 32 x 53 x 13 x 14812;
• H(6, 10) has order 210 x 32 x 53 x 7 x 13 x 14812.
In Section 2 we describe the computational tools used in our analysis. In

Section 3, we provide some necessary background material from Campbell et
al. (1992). In the remaining sections, we describe in some detail the compu-
tations which lead to the results given above and we remark on some other
structural features of the groups. The order in which the groups are discussed
below reflects the complexity of the methods used.

It should be observed that the large orders of these groups prevent the
explicit computation of their elements on a computer. Our calculations are
with one or two exceptions relatively minor in terms of the sort of resources
now routinely available. A more detailed account of these calculations is
given in a research report which is available from the authors.

We thank Campbell et al. for supplying us with a preprint of their paper.

2. The computational tools

We mention below some of the algorithms, implementations and programs
used in carrying out the computations.

The system CAYLEY, described in Cannon (1984), provides access to the
following:
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• The Alford and Havas implementation of coset enumeration [TC] (see
Cannon, Dimino, Havas and Watson, (1973)).

• The Havas and Newman (1980) implementation of a nilpotent quotient
algorithm [NQ].

• The Havas and Sterling (1979) implementation of integer matrix diag-
onalisation [IMD].

The system SPAS, described in Felsch (1989), provides access to the fol-
lowing:

• The Havas (1974) implementation of the Reidemeister-Schreier algo-
rithm [RS].

• The Aachen implementation of the Reduced Reidemeister-Schreier al-
gorithm [RRS].

• The Tietze Transformation program [TZ] developed by Havas, Kenne,
Richardson and Robertson (1984).

The IMD and NQ implementations are also available as stand-alone pro-
grams. Since these provide enhanced levels of control to the user, the stand-
alone programs were used for the larger computations. We made significant
use of the ability of the SPAS system to produce output files in a format
suitable for input to both of these programs.

All coset enumerations were carried out in CAYLEY using the default HLT
look-ahead method, unless otherwise specified. Structural information about
certain groups was also computed using CAYLEY.

Given a description for a subgroup of finite index in a finitely presented
group, the RS algorithm permits the construction of a presentation for this
subgroup. The algorithm is implemented in both CAYLEY and SPAS. Typi-
cally, the presentation obtained as output from RS contains many redundant
generators and relations. Tietze transformations may be applied to simplify
this presentation by eliminating some of these. A Tietze Transformation
program, implementing these transformations, is available in both CAYLEY
and SPAS. The program may be run automatically or may be driven by the
user. In cases where the presentation obtained is to be handed to NQ for
further analysis, simplification must be continued at least until the number
of defining generators is less than 256 - in order to meet a limitation imposed
by the NQ implementation.

We used SPAS Version 2.4 running on a VAXStation 3100, and CAYLEY
Version 3.8 running on a Sparc Server I+. Both stand-alone programs were
run on the latter machine.

3. The presentations

We use the notation of Campbell et al. (1992) and the following informa-
— 1 b~l

tion from their paper. Two new generators e = abab and d = e are
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introduced into the presentations for the G(a, n) to give

{a, b, d, e : a = b" = ab~ abea~ ab ab = 1, e = abab~ ,

d =e,(eb) -[d,e ] - l , e =ed}.

Let N = (aba, b); then N has index 2 in G(a, n) and has the following
presentation:

{b, d, e : bn = (eb)n = [d, ea~x] = 1, d" = e, eb = ead }.

The derived group, G', of G(a, n) is generated by d and e, has index n
in N and equals the derived group of N. Since G' = (d, e), it follows that
y = ea~ is central in G'. Let Y be the normal closure of y in iV; then Y
is central in G'. Campbell et al. (1992) show that G'/G" is finite for all n
and a. It follows that Y/ Y f| G" is finite and so, by some further argument,
G(a, n) is finite if (and only if) N = N/Y is finite. Clearly G(a, n) is
soluble if N is soluble.

The group if (a, n) has a cyclic central subgroup generated by z — a ,
and G(a, n) is isomorphic to H(a, n)/(z). It is easy to see that z has order
a + 1 modulo H1, and so the order of H(a, n) is divisible by (a + l)x |
G(a,n)\.

4. G(6, 10) and H(6, 10)

Campbell et al. (1992) show that for G = G(6, 10), the order of G/G"
is 23 x 3 x 5 x 14812 and G'/Y is PSU(3, 4) (which has order 62400).
Hence G/G" fl Y has order 29 x 32 x 53 x 13 x 14812. We show this is the
order of G by establishing that G" fl Y is trivial. Clearly YG" = G', so
G"/G"C\Y is PSU(3,4). Since PSU(3,4) has trivial multiplicator (see
Conway et al., 1985), there is a normal subgroup M of G contained in
G" such that M is PSU(3, 4) and M f] Y is trivial. Since r is abelian,
M = G" and hence G" f| 7 is trivial as required.

Although we cannot currently explicitly list the elements of 6 on a com-
puter, it is possible to get quite a detailed picture of its structure. It follows
from the previous paragraph that G is a subdirect product of G/Y and
G/G". The automorphism group of PSU(3, 4) is an extension of PSU(3, 4)
by a cyclic group of order 4 (see Conway et al., 1985). Hence the centre of
G/Y has order 10 or 20. We show that it has order 10 by first using RS to
get a presentation for the normal subgroup of index 5 in G/Y. This group,
of order 62400 x 4 , is sufficiently small to show, using CAYLEY, that it has
a centre of order 2. Let X/Y be the centre of G/Y. Then G/X is the
subgroup of index 2 in the automorphism group of PSU(3, 4) and G is a
subdirect product of G/X and G/G". Let B be the normal closure of b2 in
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G. It is easy to see that G/B is dihedral of order 24. Let A be the normal
closure of ([d, e], duu). Then G/A is an extension of C14gl by C,o x C2

and G is a subdirect product of G/X, G/B and G/A. We refrain from
going further here.

We establish that H(6, 10) has order 210 x 32 x 53 x 7 x 13 x 14812 by
the following steps:

1. We use IMD to verify that H/H' is C2 x C70 .
2. We now construct, using RS, a presentation for H'. We then use TZ to

simplify this presentation. An IMD calculation on the resulting presentation
shows that the torsion invariants of H'/H" are 1481 and 17772, with prime
decompositions 1481 and 2 x 3 x 1481.

3. This calculation shows that H' has non-trivial /(-quotients only for the
primes 2, 3, 1481. The 2- and 3-quotients are clearly cyclic. We use the
presentation constructed for H' as input to NQ to establish that the 1481-
quotient is abelian. It follows that H'/H" is the largest nilpotent quotient
of H'. Hence, a similar argument to that used for (7(6, 10) shows that H"
is PSU(3,4).

5. G(7,8) and H(l, 8)

In considering G(7, 8), Campbell et al. (1991) show that N has soluble
length 4 and the factors of its derived series are C8, C3* C3, C3 and c\ .

We establish our order and solubility claims as follows:
1. We use IMD to verify that G/G' is C2xCg.
2. We now construct, using RS, a presentation for G'. We then use TZ

to simplify this presentation. An IMD computation shows that the torsion
invariants of G'/G" are 51 and 18921, with prime decompositions 3 x 17
and 3 x 7x 17 x 53.

3. Let R be the normal closure of e3 in G. It is easy to establish
that G'/G'"Y has exponent 3 and hence R/Y is abelian. Therefore R is
nilpotent because Y is central in G'. Further, R has index 24 x 33 in
G. We first construct, using RS, a presentation for R. We then use TZ to
simplify this presentation. An IMD calculation on the resulting presentation
shows that the torsion invariants of R/R' are 2 , 2 , 2 , 2 , 102 and 37842,
with the last two invariants having prime decompositions 2 x 3 x 17 and
2 x 3 x 7 x 1 7 x 5 3 . Thus, R has non-trivial p-quotients only for the primes
2,3, 7, 17 and 53.

4. We use the presentation for R as input to NQ to construct a power-
commutator presentation for the largest 2-quotient of R. This shows that
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the largest 2-quotient is a 6-generator group having order 27 and nilpotency
class 2. It is easy to show that this group is a central product of three copies
of the quaternion group of order 8. Using NQ, we also establish that for both
of 3 and 17 the largest ^-quotient of R is C2. Hence G{1, 8) has order

211 x 3 5 x 7 x 172x 53.
5. We add the relations en = 1, [e6, a] = 1 and [e6, b] = 1 to our pre-

sentation for G. The resulting presentation defines a group whose elements
can be explicitly computed. It has order 211 x 3 and soluble length 5 . It
is an extension of a central product of three copies of the quaternion group
of order 8 by a non-abelian exponent-3 group of order 27 by C2~x- C%.

The group H = H(l ,8) may be analysed in a similar manner to show
that it has order 215 x 36 x 7 x 172 x 53 and soluble length 5 . Let R be the
normal closure of e3 in H. The NQ calculations on the presentation of R
establish the following:

• the largest 2-quoti
tator subgroup of order 2;

• the largest 3-quotient is an elementary abelian group of order 3 3 ;
• the largest 17-quotient is an elementary abelian group of order 172.
Hence, R has nilpotency class 2 and H has soluble length 5 . Note that

H is another example of a group of deficiency zero having soluble length 5
(see Kenne, 1990).

6. G(6, 8) and H(6, 8)

Campbell et al. (1992) show that G = G(6, 8) is an infinite group, that
it has soluble length 4 or 5, and that the factors of the derived series of N'
are C5, C\ and C^ . We establish that both the soluble length and Hirsch
length of G are 5 .

1. We use IMD to verify that G/G' is C2xC%.
2. We now compute a presentation for G' using RS. An IMD calculation

on the simplified presentation obtained from TZ shows that the torsion in-
variants of G'/G" are 152 and 2280, with prime decompositions 23 x 19
and 23 x 3 x 5 x 19.

3. Let R be the inverse image of C^ in G/Y. Observe that R/ Y is
torsion-free abelian and that R has index 640 = 27 x 5 in N. Since Y is
central in G', it follows that R is nilpotent.

Coset enumeration shows that the normal closure in N of the subgroup
generated by e5 and (ed2)2 is R. We construct, using RRS, a presentation
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for R and simplify it using TZ. The simplified presentation is on 216 gen-
erators with 946 relations of total length 8649. Routine IMD calculations
on this presentation fail: integer overflow occurs because of its size. Hence,
we use modular diagonalisation to show that R/R' is Cl6x Csx C4x C2x
C3 x C,29 x C^ ; so Y/R' is the torsion part.

4. Since R is nilpotent, we use the presentation on 216 generators as
input to NQ to construct a power-commutator presentation for the largest
exponent-7 central class 2 quotient of R. Since this quotient has order 710,
it follows that Y is finite, that it is the torsion subgroup of R, and that the
Hirsch length of G is 5.

5. We construct a power-commutator presentation for the largest exponent-
2 central class 6 quotient of R. This presentation demonstrates that the
2-torsion subgroup of R is C32 x Cl6x C4x C2 and the 2-torsion subgroup
of R' is C2x C2. Since R = YG1" and Y is central in G', it follows that
G"" is non-trivial and therefore the soluble length of G is 5.

6. Let p be an odd prime. Since R/Y = (G1 /Y)", it can be deduced that
R/R"Y is a faithful Zp{G'/R) module. It is straight-forward to check that
each faithful irreducible Zp(G'/R) module M has dimension 5 and that the
wedge product M A M is a sum of two 5-dimensional irreducibles. Since
R11(R')P is a trivial G'/R module, it follows that R' is a 2-group. (We are
indebted to Dr L.G. Kovacs for a helpful discussion of the representation
theory.)

7. Since Y is abelian, we deduce that it is C32 x C16 x C4 x C2 x C3 x C,29 .
It also follows that G"" is C2xC2.

If we wish to establish simply that G is infinite, we can use the stan-
dard approach of finding a subgroup of small index with an infinite abelian
quotient as described by Slattery (1985). An application of the CAYLEY
implementation of the low index subgroup algorithm finds a subgroup of in-
dex 10 whose derived quotient is C2x C4x Cx - for a description of this
algorithm, see Neubiiser (1982, §6).

We can also demonstrate easily that G/ Y has soluble length 4 - we use
RS repeatedly to compute presentations for the terms of the derived series
of G/Y; the presentation obtained for (G/Y)'" is visibly that of C^ .

A similar investigation of H(6, 8) establishes that:
1. The torsion invariants of H'/H" are 2, 152 and 2280, with prime

decompositions 2 , 2 x 19 and 2 x 3 x 5 x l 9 .
2. Let Y be the normal closure of e5 in H and let R be the inverse

image of C^ in H/Y. Modular IMD calculations show that R/R' is C16 x
Cg x C4 x C4 x c] x cf9 x C^ ; so Y/R' is the torsion part.

3. The commutator subgroup of R, or equivalently H"", is C2 X C4 and
the 2-torsion subgroup of R is C32 x C32 x C4 x C4. For each of 3 and 19
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the /^-quotient of R is abelian and has as a torsion subgroup C .

4. Since Y is abelian, we deduce that it is C32 x C32 x C4 x C4 x c\ x C,29.
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