14

Tabular: Probabilistic Inference from the Spreadsheet

Andrew D. Gordon
Microsoft Research and University of Edinburgh
Claudio Russo“

DFINITY, Ziirich
Marcin Szymczak®
RWTH Aachen University
Johannes Borgstrom
Uppsala University
Nicolas Rolland“ and Thore Graepel“
University College London
Daniel Tarlow?

Google Research, Brain Team, Montreal

Abstract: Tabular is a domain-specific language for expressing probabilistic
models of relational data. Tabular has several features that set it apart from other
probabilistic programming languages including: (1) programs and data are stored
as spreadsheet tables; (2) programs consist of probabilistic annotations on the
relational schema of the data; and (3) inference returns estimations of missing
values and latent columns, as well as parameters. Our primary implementation is
for Microsoft Excel and relies on Infer.NET for inference. Still, the language can
be called independently of Excel and can target alternative inference engines.

14.1 Overview

Probabilistic programming languages promise to make machine learning more ac-
cessible by allowing users to write their generative models as computer programs
and providing generic inference engines capable of performing inference on all
valid programs expressible in the given language. However, as most of the cur-
rently existing languages are essentially probabilistic extensions of conventional
programming languages, they are arguably not ideally suited for the job.

For one thing, they are still difficult to use for people who are not professional
programmers. Meanwhile, many people who may want to use probabilistic mod-

4 The work was conducted while the authors were at Microsoft Research
b The work was conducted while the author was at University of Edinburgh and Oxford University

¢ From Foundations of Probabilistic Programming, edited by Gilles Barthe, Joost-Pieter Katoen and Alexandra
Silva published 2020 by Cambridge University Press.

489

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

490 Gordon et al: Tabular: Probabilistic Inference from the Spreadsheet

elling are domain experts, for instance business analysts, who often have limited
programming experience and could find, for instance, systems based on functional
(Goodman et al., 2008; Wood et al., 2014) or logic (Van den Broeck et al., 2010)
programming baffling. Secondly, most existing languages require all the necessary
data to be loaded and placed in the right data structures. This can often be problem-
atic and require a large amount of data pre-processing, which could be a nuisance
even for experienced programmers and statisticians.

The Tabular language, first presented by Gordon et al. (2014b), takes a different
approach. Instead of extending an ordinary programming language with primitives
for sampling and conditioning, Tabular extends schemas of relational databases
with probabilistic model expressions and annotations. This idea is based on the
observation that in model-based Bayesian machine learning, the starting point is
not the model itself, but the dataset to which one wants to fit a model, which has
to be stored in some sort of database — for example a spreadsheet. In Tabular, the
probabilistic model is built on top of the data, and the input database does not need
to be manipulated before being fed to the program.

A key strength of Tabular is that it is easier to use than standard programming
languages, because it does not require the user to write an actual program from
scratch — all that the user has to do to define a model is to annotate a database
schema with probabilistic expressions explaining how they believe the data was
generated and add latent columns for the unknown quantities of interest. Moreover,
Tabular’s design allows it to be integrated with environments such as spreadsheet
applications, that are familiar to users who are not professional programmers.
Indeed, Tabular has been implemented as an Excel plugin and both the model and
the input database are specified as Excel spreadsheets. Inference results are also
saved to a spreadsheet, which allows for easier post-processing and visualisation.
The command-line version of Tabular is open source and the source code is available
athttps://github.com/TabularLang/CoreTabular.

In this chapter, we present a new, substantially enhanced version of Tabular,
which features user-defined functions and queries on inference results. We endow
Tabular with a structural, dependent type system, which helps understand the sample
space of a program and catch common modelling mistakes. We define a reduction
relation reducing Tabular programs with function applications to Core models
containing only simple expressions and corresponding directly to factor graphs. We
also demonstrate by example how these features make Tabular a useful language
for Bayesian modelling.

This chapter is based on Chapter 4 of Szymczak (2018), which is itself an
extended version of Gordon et al. (2015).

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://github.com/TabularLang/CoreTabular
https://doi.org/10.1017/9781108770750.015

14.2 Introduction and Examples 491

14.2 Introduction and Examples

In this section, we introduce Tabular informally, explaining its features by example.

14.2.1 Probabilistic Programming in Tabular

A Tabular program is constructed by extending a database schema with:

o Latent columns representing unknown parameters, not present in the database,
which we want to infer from the data,

o Annotations defining roles of respective columns in the probabilistic model (input
variables, modelled output variables, local variables),

e Model expressions, which express our belief about how the values in the given
column of the database were generated.

In the simplest case, model expressions are ordinary expressions written in a
first-order functional language with random draws. We refer to schemas and tables
containing only such simple expressions as Core schemas and tables. Other kinds of
models include function applications and indexed models, which will be discussed
later.

Let us begin the presentation of Tabular with an example based on one from
Gordon et al. (2014b), which implements the TrueSkill model (Herbrich et al.,
2007) for ranking players in online video games. Suppose we have a database
containing the outcomes of past matches between some players. This database
can have the following schema (where we assume that each table has an implicit,
integer-valued ID column, serving as the primary key of the table):

Name string

Player1 link(Players)
Player2 link(Players)
Win1 bool

where Win1 is true if the match was won by Player 1 and false if Player 2 won the
match (we assume there are no draws). Based on these past results, we want to infer
the relative skills of the players.

According to the TrueSkill model, we quantify the performance of a given player
in a certain match by a numeric value, which is a noisy copy of the player’s skill. We
assume that each match was won by the player with higher performance value. We
can implement this model in Tabular by extending the above schema as follows':

' As explained in Section 14.3, in the formal syntax of Tabular, each column has a global and local name,

because of issues with a-conversion. In the introductory examples in this section, we only give each column
one name, serving both as a global and local identifier, to simplify presentation.

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

492 Gordon et al: Tabular: Probabilistic Inference from the Spreadsheet

Name string!det input
Skill reallrnd output Gaussian(100.0, 100.0)

Player1 link(Players)!det input
Player2 link(Players)!det input

Perf1 real!lrnd output Gaussian(Player1.Skill, 100.0)
Perf2 real!rnd output Gaussian(Player2.Skill, 100.0)
Win1 boollrnd output Perf1 > Perf2

We have added one new column, not present in the database, to the Players
table and two columns to the Matches table. The Players table now has a Skill
attribute. This column is not expected to be present in the input database — its
distribution is to be inferred from the observed data. By assigning the expression
Gaussian(100.0,100.0) to this column, we have defined the prior distribution on
players’ skills to be a Gaussian with mean 100 and variance 100. Similarly, the
values of the Perf1 and Perf2 columns are, in the generative interpretation of the
model, drawn from Gaussians centred at the skills of the corresponding players (the
expression Player1.Skill is a reference to the value of Skill in the row of Players
linked to by Player1, and similarly for Player2.Skill). Finally, the observed Win1
column is assigned the expression Perf1 > Perf2, which expresses the condition
that in every row of the Matches table, Perf1 must be greater than Perf2 if Win1
in this row is true in the database, and not greater than Perf2 if Win1 is false —
otherwise, the values of the parameters would be inconsistent with the observations.

The types in the second schema include det and rnd annotations which specify
whether the data in the given column is deterministic (known in advance) or random
(to be inferred by the inference algorithm). These annotations, which we call spaces,
are used by the type system to catch information flow errors, such as supposedly
deterministic data depending on random variables. Tabular columns can also be in
space qry, which will be discussed later.

To perform inference in the above model, we need to parametrise it on a particular
dataset. In Tabular, like in BUGS (Gilks et al., 1994) and Stan (Carpenter et al.,
2017), input data is decoupled from the program and is loaded by the compiler
from a separate data source. This approach makes it possible to run inference in
the same model with multiple datasets without modifying the model. The TrueSkill
model, as implemented above, was designed to be applied to databases containing
thousands of matches and players, but the following is a valid tiny input database
for this schema:

Players
Y Matches
ID Name .
— ID Playerl Player2 Winl
0 Alice
L 0 O 1 false
! Bob 1 1 2 false
2 "Cynthia"

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

14.2 Introduction and Examples 493

In this example, we have only three players, Alice, Bob and Cynthia, and we
assume that Bob beat Alice in the first match and was beaten by Cynthia in the
second one.

The default inference algorithm of Tabular, Expectation Propagation (Minka,
2001), adds the approximate distributions of unobserved random columns to the
input database. The output database for the above tiny example is as follows:

Players

ID Name Skill

0 "Alice" Gaussian(95.25, 82.28)

1 "Bob" Gaussian(100.0, 70.66)

2 "Cynthia" Gaussian(104.8, 82.28)

Matches

ID P1 P2 Perfl Perf2 Winl
0 0 1 Gaussian(90.49, 129.1) Gaussian(104.8, 123.6) false
1 1 2 Gaussian(95.25, 123.6) Gaussian(109.5, 129.1) false

This matches our intuition that Cynthia, having beaten the winner of the first
match, is most likely to be the best of the three players, and Alice is probably the
weakest.

In addition to the style of inference described above, called query-by-latent-
column, Tabular also supports query-by-missing-value, where the database has
some missing entries for one or many output columns and the goal is to compute
the distributions on the missing values. For example, if we want to predict the
outcome of an upcoming match between Alice and Cynthia, we can extend the
matches table as follows:

Matches
ID Playerl Player2 Winl
0O O 1 false
1 1 2 false
2 0 2 ?

The Tabular inference engine will then compute the distribution of Win1 in the
third column.

Matches
ID P1 P2 Perfl Perf2 Winl
0O O 1 Gaussian(90.49, 129.1) Gaussian(104.8, 123.6) false
1 1 2 Gaussian(95.25, 123.6) Gaussian(109.5, 129.1) false
2 0 2 Gaussian(95.25, 182.3) Gaussian(104.8, 182.3) Bernoulli(0.3092)

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

494 Gordon et al: Tabular: Probabilistic Inference from the Spreadsheet
14.2.2 User-Defined, Dependently-Typed Functions

Tabular supports functions, which are defined in the same way as ordinary tables
and can be used to abstract away arbitrary repeated blocks of code which only
differ by some values used in the model expressions. Functions can help users make
their schemas shorter and more concise. Tabular already comes with a library of
predefined functions, representing, for instance, commonly used conjugate models,
and new functions can be defined by the user.

To illustrate how functions can be used in Tabular, let us consider the well-known
problem of inferring the bias of a coin from the outcomes of coin tosses. Assuming
that each bias (between 0 and 1) is equally likely, this model can be represented in
Tabular as follows:

\Y real'rnd[2] static output Dirichlet[2]([1.0, 1.0])

Flip mod(2)'rnd output Discrete[2](V)
where Dirichlet[2]([1.0, 1.0]) is just the uniform distribution on pairs of two proba-
bilities adding up to 1, and Discrete[2](V) draws O or 1 (representing tails and heads,
respectively) with probability proportional to the corresponding component of V.

This model, in which the parameter to the discrete distribution has a uniform

Dirichlet prior, is an instance of the Conjugate Discrete model. Conjugate Discrete,
which is a building block of many more complex models, is defined in the standard
function library as follows:

N int!det static input

R real!det static input

Vv real!rnd[N] static output Dirichlet[N]([for i < N — R])
ret mod(N)irnd output Discrete[N](V)

The arguments of this function, N and R, denote, respectively, the length of the
parameter vector and the value of each component of the hyperparameter vector
passed to the prior (the higher the value of R, the closer together the components of
the parameter vector are expected to be). This function also demonstrates the use of
dependent types: real!rnd[N] indicates that the given random column is an array of
reals of size determined by the variable N, and mod(N)!rnd denotes a non-negative
random integer smaller than N. It is worth noting that in the definition of CDiscrete
we could alternatively make the entire pseudocount vector passed to Dirichlet[N] an
argument of type real!det[N].

With this function in place, we can rewrite the coin toss model as follows:

Flip mod(2)!rnd output CDiscrete(N=2, R=1.0)

where setting R to 1.0 guarantees that the prior distribution on probabilities V of
heads and tails is uniform.

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

14.2 Introduction and Examples 495

The reduction algorithm presented later in this chapter reduces this table to the
form shown earlier, modulo renaming of column names.

Tabular also supports indexing function applications, which results in turning
static parameters of the model into arrays, indexed by a categorical variable (that
is, a discrete random variable with a finite domain). For example, suppose that in
the above problem we have two coins with different biases, and we always toss one
of them, chosen at random with equal probability. To infer the biases of the coins,
we can adapt the above Tabular program as follows:

CoinUsed mod(2)irnd output Discrete[2]([0.5, 0.5])
Flip intlrnd output CDiscrete(N=2, R=1.0)[CoinUsed < 2]
Now, we have two copies of the bias vector V, one for each coin, and at each row,
the vector indicated by the random variable CoinUsed is used.

14.2.3 Query Variables

Another novel feature of Tabular is the infer operator, which can be used to extract
properties of an inferred distribution, such as its mean (in case of, say, a Gaussian)
or bias (in case of a Bernoulli distribution). These properties can then be used to
compute some pseudo-deterministic data dependent on the inference results.

For instance, in the above biased coin example, we might be interested in extract-
ing the actual bias of the coin, as a numeric value rather than a distribution. Since
the posterior distribution of the bias is a Dirichlet distribution, parametrized by the
“pseudocounts” of the numbers of heads and tails, the bias itself is the count of
heads divided by the sum of the counts. Using the infer operator, we can compute
it as follows:

\Y real'rnd[2] static output Dirichlet[2]([1.0, 1.0])

Flip mod(2)!rnd output Discrete[2](V)

counts reallgry[2] static local infer.Dirichlet[2].pseudocount(V)
Bias reallqry static output counts[1]/(counts[1]+counts[0])

For instance, if we apply this model to a tiny database consisting of three coin
flip outcomes, two of them being heads and one being tails, the inference algorithm
returns the following static quantities:

Coins
Vv counts Bias
Dirichlet(2, 3) [2,3] 0.6

In the expression infer.Dirichlet[2].pseudocount(V), Dirichlet[2] denotes the type
of distribution from which we want to extract a property, pseudocount is the name

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

496 Gordon et al: Tabular: Probabilistic Inference from the Spreadsheet

of the parameter we want to extract (in Tabular, all distributions have named pa-
rameters) and V is the column in which the distribution is defined.

All columns containing calculations dependent on the result of a query are in the
gry space. Columns in this space can only reference random variables via the infer
operator.

After adding the infer operator, we now have three different kinds of columns in
Tabular: deterministic columns, whose values are known before inference; random
columns, whose distributions are to be inferred and may depend on deterministic
columns, and query columns, depending on inferred distributions. The values or
distributions of these columns (in all rows) must be computed in the right order,
for instance, a random column cannot depend on the result of a query. To make
sure that there are no erroneous dependencies in the program, the columns are split
into three spaces: det, rnd and qry; space annotations ensure that the constraints
on dependencies between columns are preserved.

14.2.4 Related Work

Probabilistic programming is becoming an increasingly popular approach to Bayes-
ian inference and many new languages following different paradigms were created
recently. These include functional languages like Fun (Borgstrom et al., 2013),
Church (Goodman et al., 2008), Anglican (Wood et al., 2014), Venture (Mans-
inghka et al., 2014), WebPPL (Goodman and Stuhlmiiller, 2014) and monad-bayes
(Scibior et al., 2015), procedural languages like R2 (Nori et al., 2014), Infer. NET
(Minka et al., 2012) and Stan (Carpenter et al., 2017), logical languages such as
ProbLog (Van den Broeck et al., 2010) and even an implementation of the prob-
abilistic process algebra ProPPA (Georgoulas et al., 2014). Recently, a new class
of probabilistic languages marrying Bayesian modelling with deep neural networks
saw the light of day. These include Pyro (Bingham et al., 2018) and ProbTorch
(Siddharth et al., 2017).

Designing a language involves a trade-off between expressiveness and perfor-
mance. In this respect, probabilistic languages can be roughly divided into two
groups: universal, Turing-complete languages such as R2 and Church and its de-
scendants, which allow creation of arbitrary probabilistic models (including non-
parametric models with unbounded numbers of random variables) but can only use
a limited range of sampling-based inference algorithms, and more restricted lan-
guages like Infer. NET and BUGS (Gilks et al., 1994), in which models correspond
to factor graphs and which can therefore use a wider class of inference algorithms,
including algorithms for factor graphs. Tabular belongs to the second class and uses
Expectation Propagation (Minka, 2001) as its default inference algorithm.

In terms of the paradigm and user interface, the two probabilistic programming

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

14.2 Introduction and Examples 497

packages most related to Tabular are BayesDB (Mansinghka et al., 2015) and Sce-
narios (Wu et al., 2016). BayesDB is a probabilistic package based on relational
database schemas. Its modelling language is a probabilistic extension of SQL,
which is significantly different from the approach taken by Tabular, where models
are written by directly annotating database schemas. Scenarios is a commercial
Excel plugin which allows defining probabilistic models in a spreadsheet environ-
ment. The difference between Scenarios and Tabular is that the former is shallowly
embedded in Excel and defines probabilistic models via special Excel functions,
while Tabular is a standalone probabilistic language which simply uses Excel as a
convenient development environment. Because of its shallow embedding within a
dynamically typed formula language, Scenarios does not have a static type system.

14.2.5 Retrospective and Related Projects

Tabular was first presented by Gordon et al. (2014b) as a language based on database
schemas, with a standalone implementation in the form of a GUI program interfac-
ing directly with a relational database. This initial version of the language did not
support functions — models were either simple expressions or predefined conjugate
models from a small, fixed library. Tabular had a non-dependent type system with-
out spaces, in which the type of a schema was a quintuple of nested record types,
whose components specified the types of hyperparameters, parameters, inputs and
latent and observed variables of the model defined by the table. The semantics of
Tabular was defined by means of translation to Fun (Borgstrom et al., 2013), a first-
order, functional probabilistic programming language. Post-processing of inference
results had to be done outside Tabular.

A revised version of the language, described by Gordon et al. (2015), added
support for user-defined functions and queries, as described earlier in this section.
The original type system was replaced by a simpler one, in which types themselves
have a similar form to Core Tabular tables. The new type system supports basic de-
pendent types and provides space annotations dividing columns into deterministic,
random and query columns. The semantics of the new version of Tabular consists
of a reduction system reducing schemas with functions and indexing to the Core
form and a semantics of Core Tabular models (omitted in this chapter, see the long
version of the aforementioned paper (Gordon et al., 2014a)), defined directly in
terms of measure theory. Reduction to Core form is proven type-sound.

Further improvements to Tabular were presented in the doctoral dissertation of
Szymczak (2018), which introduced double column names to fix a problem with
a-conversion and presented a more rigorous proof of type soundness of schema re-
duction. The dissertation also described a new, arguably more rigorous and elegant,
semantics of Core Tabular models.

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

498 Gordon et al: Tabular: Probabilistic Inference from the Spreadsheet

Fabular, presented by Borgstrom et al. (2016), extends Tabular with hierarchical
linear regression formulas, extending the formula notation used by R packages such
as Imer. Such formulas allow for a concise representation of a wide class of models
and can be used in Tabular like any other model expressions.

Additionally in his Master’s dissertation, Hutchison (2016) presented a generative
grammar allowing dynamic creation of Tabular programs, which could serve as a
basis for an automated model suggestion tool for Tabular. Hence, Tabular was used
as part of a study of the internet-based trade in specimens of endangered species of
plants (Vaglica et al., 2017).

14.3 Syntax of Tabular

Having introduced Tabular informally, we now present the formal syntax of the
language. Since programs and data are decoupled in Tabular, we need to define the
syntax for both Tabular databases and schemas.

14.3.1 Syntax of Databases

A Tabular database is a tuple DB = (J;,, 05), consisting of two maps whose domain
is the set of names of tables in the database. The first map, 6;, = [t; — Tiiel"”],
assigns to each table another map 7; = [¢j = a jf €l.-mi] mapping each column ¢; to
an attribute a;. An attribute a; = {;(V;) consists of a level {; and a value V;, which
can be a scalar s (that is, an integer, a real or a Boolean) or an array of values. The
level of an attribute can be either static, in which case the given column has only
one value accross all rows, or inst, which means that the column has one value
per row. In the latter case, V; is actually an array of values, with one value per
row. Column names c; have the same form as external column names in schemas
(described below), except that they are not allowed to be empty.

The second map, p,, = [t; — sz; ‘€1-""], simply stores the sizes of tables. The
value of each inst-level attribute of table #; must be an array of size sz;.

Any value V; in the database can be nullable, that is, any static attribute can have
an empty value (denoted ?) and in any inst attribute, any number of component
values can be empty. An empty value in a row of an output column means that the
distribution on the given row and column is to be inferred from other data by the
inference algorithm.

Databases, Tables, Attributes, and Values:

Sin 1= [t o 1y 1€1-1] table map
c,0::=b.(...).b, column name
Psz 1= [ti > s7; 1€ table size map

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

14.3 Syntax of Tabular 499

a:=€4V) attribute value: V with level ¢
Vi=2s|[Vo,..., V] nullable value

¢, pc .= static | inst level (static < inst)

7 u=[¢j b a; €T table in database

For example, the input database for the TrueSkill example from Section 14.2.1 can
be written as follows using the formal syntax of databases:

[Players +— [ID — inst([0, 1,2])],
Matches — [ID + inst([0, 1,2]), Player1 — inst([0, 1,0]),
Player2 — inst([1,2,2]), Win1 i inst([0, 0, ?])]
where player names are omitted (they are insignificant for the model, and the formal

syntax of Tabular does not allow strings?) and true and false are represented by 1
and 0, respectively.

14.3.2 Syntax of Core Schemas

We begin by giving the syntax of Core schemas, which have a straightforward
interpretation as factor graphs. We first define the basic building blocks of a Tabular
column.

Index Expressions, Spaces and Dependent Types of Tabular:
I 1

e = index expression
X variable
S scalar constant
sizeof(t) size of a table
S ::= bool | int | real scalar type
spc :=det | rnd | qry space
T,U ::= (S !spc) | (mod(e) ! spc) | T|e] (attribute) type
c,0::=_|b1.(...).b, external column name

space(S ! spc) £ spc space(mod(e) ! spc) £ spc space(T[e]) £ space(T)

An index expression is a constant, a variable (referencing a previous column or
an array index) or a sizeof expression, returning the size of the given table (that is,
sizeof(r) returns py,(¢) if py, is the map of table sizes). A scalar type is one of bool,
int or real. These correspond to scalar types in conventional languages. A space
of a column, being part of its type, can be either det, rnd or qry, depending on

2 The implementation of Tabular does support strings and implicitly converts them to integers

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

500 Gordon et al: Tabular: Probabilistic Inference from the Spreadsheet

whether the column is deterministic, random or at query-level. An attribute type can
be cither a scalar type S with a space, a dependent bounded integer type mod(e),
whose bound is defined by the indexed expression e, with a space, or a recursively
defined array type T[e], where T is an arbitrary type and e an index expression
defining the size of the array. We use link(z) as a shorthand for mod(sizeof(¢)). An
external column name, used to reference a column from another table or to access
a field of a reduced function body, is either empty (denoted by _) or consists of a
sequence of one or more atomic names b;, separated by dots.

The space operator, used in the remainder of this chapter, returns the unique
space annotation nested within the given type.

As an example, consider the type of the Flip column in the Coins table in Sec-
tion 14.2.2, mod(2)!rnd. This is a type of random non-negative integer-valued
expressions bounded by 2 (that is, admitting only values 0 and 1). It is clear by def-
inition of space that space(mod(2)!rnd) = rnd. Moreover, the type of the V column
in CDiscrete in Section 14.2.2, real!rnd[N], is a type of arrays of size N (where
the variable N represents a deterministic non-negative integer), whose elements all
have type real!rnd (that is, are random real-valued expressions). The space of this
type is given by space(real!rnd[N]) = space(real!rnd) = rnd.

Expressions of Tabular:

I
EF = expression

e index expression

g(Ey,...,E,) deterministic primitive g
Dley,...,em|(F1,...,Fy) random draw from distribution D

if £ then Fj else I, if-then-else

[Ey,....Eq] | E[F] array literal, lookup

[forx < e — F] for loop (scope of index x is F)
infer.Dley,...,em].c(E) parameter ¢ of inferred marginal of E
E:tc dereference link E to instance of ¢
t.c dereference static attribute ¢ of ¢

This grammar of expressions, defining models of the particular columns of the
table, is mostly standard for a first-order probabilistic functional language. The ex-
pression Dle,...,e,](F,...,F,) represents a draw from a primitive distribution
D with hyperparameters determined by the index expressions ey, . . ., e, and param-
eters defined by the expressions Fi,. .., F,,. The operator infer.D[e;,. . .,e;].c(E)
returns an approximate value of the parameter ¢ of the posterior distribution of
expression E, expected to be of the form D[ey, .. .,e;]. Access to columns defined
in previous tables is provided via the operators ¢.c and E : t.c, referencing, respec-
tively, the static attribute with global name c of table ¢ and the E-th row of inst-level

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

14.3 Syntax of Tabular 501

attribute with global name c of table . We assume a fixed (but extensible) collection
of distributions and deterministic primitives, such as addition, multiplication and
comparison.

Distribution signatures are parametrized by spc, to distinguish the use of cor-
responding distributions in random models and inside queries. The signatures of
distributions include the following:

Distributions: Dg,. : [x1 : T1,..., %0 : Tpl(c1 : Ur,...,cn 1 Uy) = T

I 1
Bernoulligy, : (bias : real!spc) — bool!rnd

Betay,. :: (a : reallspc,b : real!spc) — real!rnd
Discretey,. : [N : int!det](probs : real!spc[N]) — mod(N)!rnd
Dirichlet,y. : [N : int!det](pseudocount : (real!spc)[N]) — (real!rnd)[N]
Gammay), : (shape : real!spc, scale : real!spc) — real!rnd
Gaussiang,. : (mean : real!spc,variance : real!spc) — real!rnd
VectorGaussiany, :

[N : int!det](mean : (real!spc)[N], covariance : real!spc[N][N]) —

(real!rnd[N])

The names of parameters of distributions are fixed and not a-convertible, as they
can be referenced by name by the infer operator.

Random draws and the infer operator were already used in examples in Sec-
tions 14.2.2 and 14.2.3. For instance, the expression Dirichlet[2]([1.0,1.0]) in the
column V in table Coins is a random draw from the Dirichlet distribution with
the single hyperparameter N (denoting the length of the parameter array and the
output array) set to 2 and the single parameter pseudocount (of type (real!spc)[2])
set to the array [1.0, 1.0]. Meanwhile, Gaussian([100.0, 100.0]) in the Skill column
in table Players is the Gaussian distribution with parameters mean and variance
both set to 100. The list of hyperparameters is empty, because (as is clear from the
signature) the Gaussian distribution admits no hyperparameters.

The infer operator is used in column counts in table Coins in Section 14.2.3.
In the expression infer.Dirichlet[2].pseudocount(V), V is the name of the column
whose posterior distribution we are interested in, Dirichlet[2] is the expected type
and hyperparameter vector of that distribution (which we know because of con-
jugacy) and pseudocount is the name of the parameter of the Dirichlet posterior
distribution in column V whose expected value we want to obtain. In other words,
if the posterior distribution of the column V returned by the inference algorithm is
Dirichlet[2][c1, ¢2], the expression infer.Dirichlet[2].pseudocount(V) returns [cy, ¢2],
which is the value of the pseudocount parameter of Dirichlet[2][c}, c2].

The list of random primitives can be extended by adding multiple signatures
for different parametrisations of the same distribution — for instance, the Gaussian

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

502 Gordon et al: Tabular: Probabilistic Inference from the Spreadsheet

distribution, parametrised above by its mean and variance, can also be parametrised
by mean and precision (inverse of variance). This parametrisation is convenient
when defining the conjugate Gaussian model.

Distributions: Dy,c : [x1 : T1,..., %0 : Tpl(c1 : Ur,...,cn 1 Uy) = T
I 1
GaussianFromMeanAndPrecisiony,, :

(mean : real!spc, prec : real!spc) — reallrnd

In the rest of this chapter, we will abbreviate GaussianFromMeanAndPrecision
as GaussianMP.
The syntax of Core Tabular schemas is as follows:

Core Tabular Schemas:

I

Su=[]|(tp=T)::S (database) schema
To=[]|(crx:TEvizM):: T table (or function) (scope of x is T)
viz ::= input | local | output visibility

M,N =€ | E model expression

A Tabular schema S consists of any number of named fables T, each of which is a
sequence of columns. Every column in Core Tabular has a field name c (also called
a global or external name), an internal name x (also called a local name), a type T
(as defined earlier), a level (static or inst), a visibility (input, output or local) and
a model expression, which is empty for input columns and is a simple expression
E for other types of columns. The local visibility is just like output, except that
local columns are not exported to the type of the schema (as defined by the type
system, described in Section 14.5), and so can be considered local variables. The
default level of a column is inst, and we usually omit the level if it is not static.

Tables and schemas can also be represented in the formal syntax using list
notation. We define [(c1 » xq : T1 € vizg My),...,(cy > xn : Ty €, viz, M,)] and
[t1 = Ty,...,t, = T,] to be syntactic sugar for (¢ > x; : Ty €y vizg My) == ... =
(cnv>xn i Ty €y vizy My) 2 [Jand (¢ = Ty) ... (8, = Ty) =2 [], respectively.

To illustrate the formal syntax of Tabular, let us consider again the simple Coins
table, which was presented in the grid-based form at the beginning of Section 14.2.2.
If we specify the global and local names explicitly, this table has the following form:

VeV real'rnd[2] static output Dirichlet[2]([1.0, 1.0])
Flip> Flip mod(2)Irnd output Discrete[2](V)

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

14.3 Syntax of Tabular 503
In the formal Tabular syntax, this table would be written as follows:

[(V>V : real!rnd|[2] static output Dirichlet[2]([1.0, 1.0]),
(Flip » Flip : mod(2)!rnd inst output Discrete[2](V))]

The schema consisting of just this single table is:

[Coins = [(V >V : real!rnd[2] static output Dirichlet[2]([1.0,1.0]),
(Flip > Flip : mod(2)!rnd inst output Discrete[2](V))]]

In the rest of this chapter, col denotes a single column (¢ > x : T £ viz M) of a
table, where its components are unimportant.

Motivation for double column names In the syntax of the new version of Tab-
ular presented in the paper which was the starting point for this work (Gordon
et al., 2015), each column only has one name. This causes a problem with alpha-
conversion: if a column is visible outside the given table, then its name cannot be
alpha-convertible, since renaming the column would break references to it from
outside the table. On the other hand, alpha-conversion is necessary for the sub-
stitution and function reduction to work properly. To mitigate this issue, we now
follow the standard approach used in module systems, first presented by Harper
and Lillibridge (1994): we give each column two names, a local, alpha-convertible
name, which is only in scope of a given table, and a global, fixed field name, which
can only be used outside the table (or function). In practice, we can assume that the
internal and external name are initially the same.

14.3.3 Syntax of Schemas with Functions and Indexing

Tabular supports two additional kinds of model expressions: function applications
and indexed models.

A function is represented as a Core table whose last column is identified by the
name ret and has visibility output. A function T can be applied to a list of named
arguments R, whose types and number must match the types and number of input
columns in the function table. Note that function arguments are identified by the
field name of the corresponding column. The reduction algorithm (presented in
Section 14.4) reduces a column containing a function application to the body of
the function with all input columns removed and the input variables in subsequent
model expressions replaced by the corresponding arguments.

The output column of a function can be referenced in the “caller” table simply
by the (local) name of the “caller” column. Other columns can be referenced by
means of a new operator e.c, where e is expected to be the local name x of the

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

504 Gordon et al: Tabular: Probabilistic Inference from the Spreadsheet

“caller” column and c is the field name of the referenced column of the function
table (we need to use the field name, because the local name is only in scope inside
the function).

An indexed model M[eingex < esize] represents the model M with all rnd static
attributes turned into arrays of size e,;,. and references to them replaced by array
lookups extracting the element at index e;,gex-

Full Tabular Schemas:

E:=---]ec expression

M,N ::=--- | M[eindex < €size] | TR model expression
R:=[]|(c=e)::R function arguments

Function arguments can also be represented using the standard list notation as
R = (c; = ey,...,cy = e,). The function field reference is only defined to be e.c
rather than x.c in order for substitution to be well-defined. The indexing operator is
only meaningful if it is applied (possibly multiple times) to a function application,
since it has no effect on basic expressions.

In the Coins example in Section 14.2.2, a predefined function (from the standard
library) was referenced in the main table by its name. Indeed, in the implementation,
functions are always defined outside of the main schema and are called by identifiers.
In the formal syntax, however, functions are inlined. For instance, to represent the
function call CDiscrete(N = 2,R = 1.0) formally, we need to substitute CDiscrete
with its body. The resulting function application looks as follows:

[(N> N : int!det static input €),

(R> R : real!det static input ¢),

(V> V : real!rnd[N] static input Dirichlet[N]([for i < N — R)),

(ret > ret : mod(N)!rnd[N] static input Dirichlet[N]([fori < N — R))]
(N=2,R=1)

Free Variables and Core Columns

The free variables fv(T) of a table T are all local variables used in column types
and model expressions which are not bound by column declarations or for-loops.
Formally, the operator fv(T) can be defined inductively in the usual way. Unbound
occurrences of field names are not considered free variables, as they are a separate
syntactic category.

The predicate Core states that the given schema, table or column is in Core form,
as defined earlier.

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

14.4 Reduction to Core Tabular 505
14.4 Reduction to Core Tabular

We now define the reduction relation which reduces arbitrary well-typed Tabular
schemas (with function applications and indexing) to a Core form. Before discussing
the technical details of reduction, we present an example which will guide our
development. This time we make the distinction between local and field names
explicit, to illustrate how substitution and renaming work.

Consider the following function implementing the widely used Conjugate Gaus-
sian model, whose output is drawn from a Gaussian with mean modelled by another
Gaussian and precision (inverse of variance) drawn from a Gamma distribution:

M>M realldet static input

Ps>P realldet static input

Mean > Mean reallrnd static output GaussianMP(M,P)

Prec > Prec reallrnd static output Gamma(1.0, 1.0)

ret > ret reallrnd output GaussianMP(Mean, Prec)

Suppose we want to use this function to model eruptions of the Old Faithful
geyser in the Yellowstone National Park. The eruptions of this geyser, known for its
regularity, can be split into two clusters based on their duration and time elapsed
since the previous eruption: some eruptions are shorter and occur more frequently,
others are longer but one has to wait longer to see them. Given a database consisting
of eruption durations and waiting times (not split into clusters), we want to infer the
means and precisions of the distributions of durations and waiting times in each of
the two clusters. If we simply modelled the duration and waiting time with a call
to CG, we would obtain a single distribution for the mean and precision of each
quantity, but we can turn each Mean and Prec column into an array of size 2 by
combining the function calls with indexing.

cluster > cluster mod(2)lrnd output (CDiscrete(N=2)
duration » duration reallrnd output CG(M=0.0, P=1.0)[cluster<2]
time » time real!rnd output CG(M=60.0, P=1.0)[cluster<2]

14.4.1 Reducing Function Applications

Before we introduce the reduction of indexed models, let us consider a simplified
version of the above model, with just function applications:

duration > duration reallrnd output CG(M=0.0, P=1.0)
time » time reallrnd output CG(M=60.0, P=1.0)

To reduce the duration and time columns to Core form, we must expand the
applications. This is done by just replacing the given column with the body of the
function with the arguments substituted for the input variables. The field name of
the last column, always expected to be the keyword ret, is replaced by the name of

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

506 Gordon et al: Tabular: Probabilistic Inference from the Spreadsheet

the “caller” column, and the field names of previous columns are prefixed with the
field name of the “caller” column. This is done to ensure that field names in the
reduced table are unique, even if the same function is used several times.

Meanwhile, local names can be refreshed (by alpha-conversion), to make sure
they do not clash with variables which are free in the remainder of the “caller”
table or the remaining arguments. References to the columns of the function in the
“caller” table (of the form x.c) are then replaced with the refreshed local column
names.

In the end, the above table reduces to the following form:

duration.Mean > Mean reallrnd static output GaussianMP(0.0,1.0)

duration.Prec » Prec reallrnd static output Gamma(1.0,1.0)

duration » duration reallrnd output GaussianMP(Mean,Prec)
time.Mean > Mean reallrnd static output GaussianMP(60.0,1.0)
time.Prec » Prec reallrnd static output Gamma(1.0,1.0)

time » time reallrnd output GaussianMP(Mean,Prec)

Just like in ordinary languages, variable definitions can be overshadowed by
more closely scoped binders. The variable Mean in the duration column refers to
the definition in the column with external name duration.mean, and Mean in column
time refers to the definition in the column with field name time.Mean, and similarly
with Prec.

Binders and Capture-avoiding Substitutions: T {¢/,}, T/x.¢)

In order to define the reduction rules, we first need two capture-avoiding substitution
operators on tables: T {¢/,}, which replaces free occurrences of the variable x
with the index expression e, and T(Y/;), which replaces function field references
x.c with a single local variable y. These substitutions can be formally defined
inductively, as usual. Here we omit these formal definitions (which can be found
in Szymczak, 2018) and show by example how the second, slightly less standard,
operator works.

Let us consider again the simplified version of the Old Faithful model from the
beginning of this section, but this time using different local variable and field names,
to emphasise the fact that they are not the same thing:

duration>x reallrnd output CG(M=0.0, P=1.0)
time > x’ reallrnd output CG(M=60.0, P=1.0)

Suppose we want to calculate the mean of the posterior distribution of the mean
of duration (using the infer operator, described in 14.2.3). To this end, we need
to add an additional column to the above table, which references the column with
field name Mean in the reduced application of CG in the column duration. As field
names are not binders, we need to use the local name x of the column duration. On
the other hand, as the local names of the columns of CG are not visible outside the

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

14.4 Reduction to Core Tabular 507

function CG itself, we need to access the column Mean of CG by using its field
name. Hence, the reference has the form x.Mean, and the full table is the following:

duration » x reallrnd output CG(M=0.0, P=1.0)
time » x’ reallrnd output CG(M=60.0, P=1.0)

duration_mean>z reallqry output infer.Gaussian.mean(x.Mean)

When the function application in column duration is reduced (as described later),
and the column Mean of the application of CG in duration is turned into a column
with local name y in the main table, we need to substitute references to the (no
longer existing) parameter Mean of the model in column x with the variable y in
the rest of the table by using the operator (¥/y). Applying this substitution to the
last two columns of the above table yields:

time » X’ reallrnd output CG(M=60.0, P=1.0)
duration_mean>z reallqry output infer.Gaussian.mean(y)
One might be concerned that the substitution (¥/;) would not work correctly
if the function application pointed to by x was assigned to another variable z, for
example in a part of a table of the form:

field1 > z reallrnd output x
field2>2" reallrnd output z.c
However, it is impossible to assign a function application to another variable

in Tabular, as it is impossible to reference a function application as a whole. If
a variable x referencing a function application is used on its own (not in a field
reference x.c), it always denotes the last column of the reduced application, not the
application itself. The expression z.c in the above table is not well-typed, as z does
not refer to a function.

Reduction Relation
The reduction is defined by means of the small-step reduction relation, reducing
one column of the function table at a time, being the least relation closed under the
set of rules presented below.

Reduction to Core Tabular:

I 1
T - T table reduction

L]

The judgment T — T’ states that table T reduces to T’ in one step. In the
reduction rules, we normally use o for the (field) name of the “caller” column and
¢ for the name of a column in the function table, to disambiguate between the two.
The reduction system is deterministic and the assumptions guarantee that at most
one rule applies to each table (the same applies to the reduction rules for indexed
models and schemas presented in the following sections).

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

508 Gordon et al: Tabular: Probabilistic Inference from the Spreadsheet

Reduction Rules for Tables: T — T’
I 1

(Rep AppL Outpur) (for Core(T))

y ¢ tv(T’,R)U {x} ¢ # ret

(ovx:Tetviz((cey:T' ¢’ outputE):: T)R) : TV —
(0.coy:T"({EANL)VIZE) 2 (0p x : T LvizTR) - T')

(Rep AppL Locav) (for Core(T))

y ¢ tv(T',R) U {x}

(ovx:TCviz((cey:T" ¢ local E):: T)R) :: T —
(Ley:T" (AL)local E):: (o>x:TLvizTR) . T’

(Rep AppL InpuT) (for Core(T))

(o>x:TClviz(cry:T'¢'inpute)::T(c=e)::R) T —
(o>x: vaizT{e/y} R):: T
(Rep AprrL RET)

(o> x:T Cviz[(ret>y : T’ ¢’ output E)] []) :: T —
(ovx:T"(LANLC)ViZE) :: T’

(RED TABLE RIGHT)

T — T" Core(col)

col : T —col:: T

The (Rep AppL Outpur) rule (in which viz is expected to be local or output)
reduces a single output column of a function by appending it to the main table,
preceded by the “caller” column with the unevaluated part of the application T R
(which will be reduced in the following steps). If the function was called from
a static column, the level of the reduced function column is changed to static.
Similarly, if the function was called from a local column, the visibility of the
reduced column is dropped to local. Because the reduced column is appended to
the main table, it has to be referenced using its internal name (recall that field names
are not binders). Hence, all references to it, of the form x.c, are replaced with its
internal name y. Meanwhile, the global name of the reduced column is prefixed by
the field name of the “caller” column.

To avoid capturing free variables which are not bound by the reduced column in
the original top-level table, y is required not to be free in T’ and R. This is always
possible, because tables are identified up to alpha-conversion of internal column

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

14.4 Reduction to Core Tabular 509

names, so y can be refreshed if needed (formally, the reduction relation is a relation
on alpha-equivalence classes of syntactic terms).

(Rep ArpL Local) is similar, except that we do not need to substitute y for x.c in
T, because the given column is not visible outside the function. The external name
of a reduced column can be empty, because local columns are not exported.

The (REp AppL INPUT) rule removes an input column and replaces all references
to it in the rest of the function with the corresponding argument.

The last column of a function is reduced by (REp AppL RET), which simply
replaces the application of the single ret column to the empty argument list with
the expression from the said column. The level is also changed to static if the ret
column was static. The internal and field names of the top-level column are left
unchanged, and the names of the last column of the function are discarded, because
the last column of a function is always referenced by the name of the “caller” table.

(Rep TaBLE RiGHT) is a congruence rule, allowing us to move to the next column
of the main table if the current first column is already in Core form.

Example of Function Reduction To see how the reduction rules work, let us
consider again the simplified version of the Old Faithful example with the additional
duration_mean column:

duration > x reallrnd output CG(M=0.0, P=1.0)
time > x’ reallrnd output CG(M=60.0, P=1.0)
duration_mean>z reallqry output infer.Gaussian.mean(x.Mean)

The reduction rules reduce the duration column first. In the beginning, the rule
(Rep ArpL InpuT) is applied twice, and reduces the columns M and P of the
function CG in duration, replacing references to M and P in the body of CG with
corresponding arguments. The reduced table has the following form:

duration » x reallrnd output CG’()
time > x’ reallrnd output CG(M=60.0, P=1.0)
duration_mean>z reallqry output infer.Gaussian.mean(x.Mean)

where CG’ is the following partially evaluated function:

Mean > Mean reallrnd static output GaussianMP(0.0,1.0)
Prec > Prec reallrnd static output Gamma(1.0, 1.0)
ret > ret reallrnd output GaussianMP(Mean, Prec)

The next rule to be applied is (REp AppL OuTPUT), Which reduces the first column
Mean of CG’ and replaces references to it, of the form x.Mean, with the local name
of the reduced column (which we can assume is still Mean, as the name does not
conflict with any other variable), in the rest of the top-level table by using the field
substitution operator. The reduced table has the following form:

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

510 Gordon et al: Tabular: Probabilistic Inference from the Spreadsheet

duration.Mean > Mean reallrnd static output GaussianMP(0.0,1.0)

duration > x reallrnd output CG”()
time > X’ reallrnd output CG(M=60.0, P=1.0)
duration_mean » z reallqry output infer.Gaussian.mean(Mean)

where CG’’ is:

Prec> Prec reallrnd static output Gamma(1.0, 1.0)
ret > ret reallrnd output GaussianMP(Mean, Prec)

Note that Mean in CG’’ refers to the column defined outside the function (which
is in scope of CG’’, as functions are assumed to be defined inline, even though the
implementation uses named functions).

The remaining columns of function applications are reduced similarly, except
that the local name Mean in the second application of CG has to be changed by
a-conversion, as Name is free in the last column of the top-level table.

14.4.2 Reducing Indexed Models

In order to reduce a column with an indexed function application, we need to
transform the function into an indexed form before applying it to the arguments. In
the case of the duration column of the original table of the running example, this
transformation needs to turn the expressions in all static rnd columns into arrays
of size 2, with each element modelled by the original expression, and replace all
references to these columns in the rest of the table with array accesses, returning
the component at index cluster.

For instance, applying indexing [cluster < 2] to the function CG yields the
following indexed function

Me> M realldet static input

P>P realldet static input

Mean>Mean reallrnd static output [for _ < 2 — GaussianMP(M,P)]

Prec » Prec reallrnd static output [for _ < 2 —» Gamma(1.0, 1.0)]

ret > ret reallrnd output GaussianMP(Mean|cluster], Prec[cluster])

parametrised on the free variable cluster defined outside the function.
Reducing the application of this function to (M = 0.0,P = 1.0) in the duration
column gives the following table:
duration.Mean » Mean reallrnd[2] static output [for _ < 2 — GaussianMP(0.0,1.0)]

duration.Prec » Prec reallrnd[2] static output [for _ < 2 — Gamma(1.0,1.0)]
duration > duration reallrnd output GaussianMP (Mean[cluster], Prec[cluster)

More generally, table indexing is formalised via the operator index (T, ey, e2),
where T is the table (reduced application) to index, e; and e, are, respectively, the
index variable and the number of clusters and A is the (initially empty) set of static

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

14.4 Reduction to Core Tabular 511

rnd columns, which needs to be available to convert variables into array accesses
correctly.

We disallow indexing tables with qry columns, since substituting a reference
to a query column with an array access with a random index would break the
information flow constraints, so indexed query columns would not have a well-
defined semantics. Below, the predicate NoQry states that a given Core table or
model has no gry-level columns. The requirement that tables with qry columns
cannot be indexed is enforced by the type system, presented in Section 14.5.

The indexing operator makes use of a new capture-avoiding substitution operator:
E[A,e] denotes E with every variable x in the set of variables A (supposed to
contain only static rnd variables) replaced with the array access x[e], as long as the
syntax allows it. For instance, Gaussian(x, y)[{x, y},i] is Gaussian(x[i], y[i]), but
(Discrete[z](y))[{z, y},i] is Discrete[z](y[i]), and not Discrete[z[i]](y[i]), because
hyperparameters of distributions are index expressions, so they cannot be array
accesses. However, we do not need to worry about variables which cannot be
replaced with array accesses, such as z above, as (in non-qry columns of functions)
they are always expected to be deterministic or occur in function field references
of the form x.c, while indexing is only supposed to modify random variables
referencing Core columns. We elide the formal definition of the operator, which
can be found in Szymczak (2018).

The indexing operator is defined inductively below.

Table Indexing: index (T, e1, e2), where NoQry(T)

indexa([], e1,€2) = []
indexs((c > x : T static viz E) :: T, e, e2) £
(cv» x : Tley] static viz [for i < e; — E[A,i]]) :: indexsux}(T, e1,€2)
if viz # input and rnd(7) and x ¢ fv(e;) U fv(ez) U Aandi ¢ fv(E)

indexs((c>x : T £inpute) :: T, e, e0) =
(cex:T ¢inpute)::indexa(T, e, er) if x & fv(e)) Ufv(es) U A

indexs((c>x: T €vizE):: T ey, er) =
(c>x:T tviz E[A,eq]) :: indexa(T, eq,e2)
otherwise if x ¢ fv(e;) U fv(ey) U A.

Unsurprisingly, indexing an empty table returns an empty table. In any static
rnd column, the model expression E is turned into an array of e, elements, each
modelled by E. Since £ may contain references to previous static rnd columns
of the original table, which have been turned into arrays, we must replace these
references (by means of the E[A,i] operator) with array accesses, returning values
at indices corresponding to the positions of the expressions. Before index is applied

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

512 Gordon et al: Tabular: Probabilistic Inference from the Spreadsheet

recursively to the rest of the table, the variable x is added to the set A of rnd static
variables, so that each reference to x in subsequent rnd static and rnd inst columns
would be replaced with an appropriate array access.

Input columns are left unchanged by index, and in inst-level random columns,
references to previous static rnd columns are replaced by array accesses returning
the e; -th component. Note that E[A,] leaves expressions in deterministic columns
unchanged, because all variables in the set A are expected to be random.

With the index operator in place, we can define the reduction relation reducing
indexed models.

Reduction to Core Tabular:
I 1

M- M model reduction
L]

The above judgment, which states that indexed model M reduces to M’ in one
step (that is, that M’ is M with one level of indexing eliminated), is derived by the
following rules:

Reduction Rules for Models: M — M’

I 1
(RED INDEX)

Core(T) NoQry(T)

(T R)[eindex < esize] - (indeX@(Ta €index> esize)) R

(RED INDEX INNER)

(RED INDEX EXPR)
M- M

Ele; < e5i7¢] @ FE
M[eindex < esize] - M,[eindex < esize] [index szze]

Reduction Rules for Tables: T — T’

I
(RED MODEL)
M- M

(cox:TetvizM)::T > (cox:TCvizM’):: T
|

The (Rep INDEX) rule applies the index operator to the function table in an
application, returning a pure function application which will be reduced at table
level. The (Rep INDEX INNER) rule simply allows reducing a model nested in an
indexed expression, in case this model is an indexed model itself. Since simple
expressions have no static parameters of their own, indexing a simple expression
has no effect, so the (REp INDEx ExpPRr) rule just discards the indexing. The (REp
MobEL) rule allows reducing a model (other than a function application) in a column
of a table.

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

14.4 Reduction to Core Tabular 513
14.4.3 Reducing Schemas

Finally, we can define the reduction relation for schemas:

Reduction to Core Tabular:

I
S-S schema reduction
L]

The judgment S — S’ states that the schema S reduces to S’ in one step — that
is, S’ is S with one table reduced to Core form. This judgment is derived by the
following two rules:

Reduction Rules for Schemas: S — S’
I 1
(RED ScHEMA LEFT) (RED ScHEMA Ri1GHT)

T—>T S — S’ Core(T)
t=T)=S->@¢=T)=2S (¢t=T)2S—->@¢=T)::¥

The (REp ScHEMA LEFT) rule reduces the first table, while (RED ScHEMA RIGHT)
proceeds to the following table if the first one has already been fully reduced.
Putting all these rules together, we can finally reduce the Old Faithful model to

Core form:
cluster.V > V reallrnd[2] static output Dirichlet[2]([for i < 2 — 1.0])
cluster > cluster mod(2)'rnd output Discrete[2](V)
duration.Mean » Mean reallrnd[2] static output [for i < 2 — GaussianMP(0.0, 1.0)]
duration.Prec > Prec real!rnd[2] static output [fori < 2 — Gamma(1.0, 1.0)]
duration » duration real!rnd output GaussianMP(Mean|[cluster], Prec[cluster])
time.Mean » Mean reallrnd[2] static output [for i < 2 — GaussianMP(60.0, 1.0)]
time.Prec » Prec real!rnd[2] static output [fori < 2 - Gamma(1.0, 1.0)]
time » time real!rnd output GaussianMP(Mean|[cluster], Prec[cluster])

As noted before, a Tabular model in Core form has a straightforward interpretation
as a factor graph. Assuming that the table faithful has n rows, the reduced Old Faithful
model corresponds to the (directed) factor graph shown in Figure 14.1, in which we
use abbreviated variable names (for example dM for duration.Mean) to make the
presentation cleaner:

The boxes with solid edges are plates, which create multiple copies of given
variables and factors — for instance, we have n values of dM;, one for each i, each
drawn from the same distribution GaussianMP(0.0, 1.0). The boxes with dotted
lines are gates (Minka and Winn, 2009), which select a factor based on the value of
a categorical variable (c; in this case). While the graph above is directed to make the
dependency structure explicit, the arrow heads can be removed to obtain a standard,
undirected factor graph.

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

514 Gordon et al: Tabular: Probabilistic Inference from the Spreadsheet

GaussianMP(0.0, 1.0) Gamma(1.0, 1.0) GaussianMP(60.0, 1.0) Gamma(1.0, 1.0)
|] | | |]

Dirichlet[2]([1.0, 1,0]) i i i

cV

Discretg[2](cV'

Figure 14.1 Reduced Old Faithful model as a factor graph

Once a schema is reduced to Core form, the Tabular backend can perform in-
ference on it using Expectation Propagation or another algorithm provided by
Infer.NET. Figure 14.2 presents the results of inference shown as in the Excel in-
terface and visualised by Excel plots. A new column assignment has been added to
the model — this column uses the infer operator to assign each eruption to the more
likely cluster.

14.5 Type System

Type systems are useful in probabilistic languages because they specify the domain
of each random variable and ensure that each random draw is used where a value
in the given domain is expected. Thus, types guide the modelling process and help
prevent incorrect dependencies between variables.

As seen in examples in the previous sections, Tabular makes use of basic depen-
dent types and determinacy and binding time annotations. All the type constraints
in Tabular are checked statically, which allows some modelling errors to be caught
before the inference procedure is started, thus saving the user time on debugging.

Tabular’s type system ensures that the role of each variable in the program is
immediately clear and checks that each random variable is defined on the right
domain. Dependent types additionally allow checking array sizes and bounds on
categorical variables in functions, even though these may depend on function argu-
ments. This helps to check that functions are indeed correctly defined and make the
right use of their arguments. Moreover, because of space annotations, the compiler

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

14.5 Type System 515

A B © D E F G H |
1 faithful
2 Old Faithful eruption data
3 1 3.6 79
120
4 2 1.8 54 100
5] 3 3.333 74 g; . .w.
o .
6 4 2.283 62 ¢ w0 o o° 'V. o
7 5 4.533 85 s ° B g
8 6 2.883 55 0
9 7 47 88, 20
10 8 3.6 85 0 N
1 9 1.95 51 0 ! ’ ? ¢ ° ¢
12 10 435 85 duration
A B © D E
7 function:CG . E
2 ,';A :2:: } ?:,; :::t:g ::sﬂt - Old Faithful eruption data coloured by cluster
10 Mean real static output GaussianFromMeanAndPrecision(M,P) *
11 Prec real static output GammaFromShapeAndScale(1.0,1.0) 80 -:
12 ret real output i i Prec) . « 20 d
13 £ 60 N .
14 faithful =
15 [cluster mod(2) local CDiscrete(N=2,R=1.0) 0
16 |duration real output CG(M=)[cluster < 2]
17 time real output CG(M=60.0,P=1.0)[cluster < 2]
18 assignment mod(2) local ArgMax(infer.Discrete[2].probs(cluster))
7 | posterior_faithful faithful
8 Dirichlet(98.03 176) -
[0] Gaussian(2.036, 0.0009324) Discrete(1=0.999981673477424
9 [1] Gaussian(4.287, 0.001017) 1 0=1.83265225764259E-05) Gaussian.PointMass(3.6) Gaussian.PointMass(79) 1
[0] Gamma(49.51, 0.2231) Discrete(0=1
10 [1] Gamma(88.49, 0.06344) 2 1=5.99500933746004E-18) Gaussian.PointMass(1.8) Gaussian.PointMass(54) 0
[0] Gaussian(55.97, 0.2679) Discrete(1=0.999217126276896
1 [1] Gaussian(74.65, 0.2673) 3 0=0.000782873723104474) Gaussian.PointMass(3.333) Gaussian.PointMass(74) 1
[0] Gamma(49.51, 0.0005689) Discrete(0=0.999999999918014
12 [1] Gamma(88.49, 0.000177) 4 1=8.19860393142277E-11) Gaussian.PointMass(2.283) Gaussian.PointMass(62) 0
Discrete(1=0.999999994867373
280 272 0=5.13262696023921E-09) Gaussian.PointMass(4.467) Gaussian.PointMass(74) 1

Figure 14.2 Old Faithful inference results in Excel

can split a Tabular program into the probabilistic model and the post-processing
code, and process them at the right time in the pipeline — the user is not required
to define rnd and qry variables in separate blocks. These annotations also disallow
models which the default inference engine cannot handle, such as mixture models
with an random number of components.

In this section, we define the Tabular type system formally and present the type
soundness property of the reduction system shown in Section 14.4 (whose proof
can be found in Szymczak (2018)).

In addition to the column types introduced in Section 14.3, we also give types to
model expressions, tables and schemas. These types define the spaces of input and
output variables of the probabilistic models defined by programs or their parts.

Limitations of the Type System The type system does not enforce conjugacy,
which is required by the default inference engine of Tabular, because we wanted
to keep the developments in this chapter independent of a particular inference
algorithm. Moreover, well-typedness of a Tabular program does not guarantee that
Expectation Propagation inference will always succeed. Lack of conjugacy and
other algorithm-specific issues may result in the inference algorithm failing at

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

516 Gordon et al: Tabular: Probabilistic Inference from the Spreadsheet

runtime, in which case an error message from the inference backend is shown to
the user in the implementation.

14.5.1 Syntax of Tabular Types

To each model and table, we assign a type Q (hereafter called Q-type), which
consists of a list of column names (local and field names), column types, levels and
visibilities (which cannot be local, because local attributes of tables and functions
are not exported to types). A single component of type Q is just a table column
without a model expression. The Q-types used here are akin to right-associating
dependent record types (Pollack, 2002), except that in their inhabitants, the values
of fields may depend on previous fields, like in translucent sums (Harper and
Lillibridge, 1994).

The type Sty of a schema s just a list of table identifiers paired with corresponding
table types. These types are notably simpler than the nested record types used in
the original formulation of Tabular (Gordon et al., 2014b).

We define three predicates on Q-types: fun(Q), which means that the given type
Q is a valid function type, whose last column is marked as the return column,
table(Q), which states that Q has no deterministic static columns and can type a
top-level (i.e. non-function) table, and red(Q), which states that Q is the type of a
reduced function application, having no input columns.

Table and Schema Types:

Q:=[]|(c>x:T¢tviz) : Q table type (scope of x is Q, viz # local)
Sty == (t: Q) :: Sty schema type

fun(Q) iff viz,, = output and c,, = ret

table(Q) iff for each i € 1..n, ¢; = static = rnd(T;) Vv qry(T;)

red(Q) iff table(Q) and for each i € 1..n, viz; = output

The predicate table(Q) ensures that no top-level columns can be referenced in
subsequent column types (because only static det columns can appear in types),
which guarantees that all column types in Core tables (including reduced tables) are
closed, except possibly for table size references. This property is necessary because
columns can be referenced from other tables, and any variables in a type would be
free outside the table in which the corresponding column was defined.

We define fv(Q) to be the set of local variables in column types in Q which are
not bound by column definitions.

Schemas, tables, models and expressions are all typechecked in a given typing
environment I', which is an ordinary typing environment except that it has three
kinds of entries (for variables denoting previous Core columns, for previous tables

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

14.5 Type System 517

and for reduced function applications) and the entries for Core columns include
level annotations as well as column types (recall that column types themselves
contain binding type annotations).

Tabular Typing Environments:

I 1

Fo=2 | Cx:LT)|@r:0) | (Tx: Q) environment

The domain dom(I") of an environment I" is the set of all variables and table
names in the environment:

Below is the list of all judgments of the Tabular type system, which will be
described in the remainder of this section.

Judgments of the Tabular Type System:

I
I'kro environment I' is well-formed

'er in I, type T is well-formed
ePCe: T in I" at level pc, index expression e has type T
reQ in I, table type Q is well-formed
'+ Sty in I', schema type Sty is well-formed
reT<:U inI', T is a subtype of U
P E:T in I" at level pc, expression E has type T
I'tP¢ R:Q — Q' R sends function type Q to model type Q’
CePeM:Q model expression M has model type Q
CPeT:Q table T has type Q
'k S: Sty schema S has type Sty

|

Tabular programs and types are identified up to a-conversion of internal column
names and variables bound by for-loops.

14.5.2 Type Well-formedness and Expression Types

We begin by discussing the well-formedness rules for environments and column and
table types and typing rules for index expressions (which are mutually dependent).
We do not present all the rules in detail to save space.

The judgment I" ¢ holds if the variable names in I" are unique and all (column
and table) types in I" are well-formed. The column type well-formedness judgment
I' + T requires all index expressions in 7" to be deterministic integers well-formed
in I'. For instance, the well-formedness rule for T = Ul[e] has the following form:

(TYPE ARRAY)

CrHU T8¢ int | det

't Ule]

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

518 Gordon et al: Tabular: Probabilistic Inference from the Spreadsheet

The judgment I' +7¢ ¢ : T states that the index expression e has type T in ' and
only depends on data at level up to pc. Recall that static < inst. Typing rules for
constants and table sizes are trivial, but if e is a variable, then it can correspond to
either a variable in I or the last column of a Q-type in I':

Selected Rules for Index Expressions:
I 1

(FuNREFRET)

I'ro r=r,x:0,1”

0 =Q’'@[(ret>y : T { output)] ¢ < pc
+Pex:T

(InpEX VAR) (for € < pc)
F'ro T'=T,x:‘T,

FePex: T

Next, we define well-formedness rules for Q-types and schema types:

Formation Rules for Table and Schema Types: ' Q T+ Sty

(TabLE TyeE []) (TaBLE TyPE INPUT) (TaBLE TyPE OUTPUT)

ko F+T TxTrQ T'vT Tx:“TrQ
¢ ¢ names(Q) ¢ ¢ names(Q)

I+l

I't(cox:Ttinput):: Q T +(cex:T<output):: Q
(ScHeMA TyPe []) (ScHEMA TyPE TABLE)

I'ro I'tQ table(Q) TI.,t:Q¢F Sty

I'k] C'k(¢:Q):: Sty

These rules simply require all column types in a Q-type and all table types in a
schema type to be well-formed (in the environments formed by preceding columns
and tables), all local identifiers to be unique and all field names to be unique within
the Q-types in which they are defined. Tables in a schema must also satisfy the
table predicate.

Every expression in Tabular belongs to one of the three spaces det, rnd and qry,
determined by the expression’s type. We want to allow information flow from det
to rnd space, because it is harmless to use a deterministic value where a value
potentially “tainted” by randomness is expected. Similarly, we want to allow flow
from det to qry. However, since we assume qry columns to be deterministic given
the inferred posterior distributions of rnd columns, we do not allow gqry columns to
reference rnd columns directly — information flow from rnd to qry is only possible
via the infer operator, which references posterior distributions of random variables,
rather than random variables themselves.

We also disallow flows from qry to det and rnd, because we want to ensure that
a run of a Tabular program consists of a single round of inference, determining the
posterior distributions of rnd columns, followed by a single post-processing phase,

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

14.5 Type System 519

which computes the values of qry columns given the (already known) approximate
distributions of rnd columns. Tabular does not support nested inference, where, for
instance, a rnd column used in the second round of inference could depend on a
gry column computed after the first round of inference.

We embed these restrictions in the type system by means of a subtyping relation
on column types. We first define a preorder < on spaces as the least reflexive relation
satisfying det < rnd and det < qry. We also define a (partial) least upper bound
spc V spc’.

Least upper bound: spc V spc’ (if spc < spc’ or spc’ < spc)
I 1
spcV spc =spc detvrnd=rnd detVqry=qry

(The combination rnd V qry is intentionally not defined.)
| |

We can lift the V operation to types in the straightforward way.
We define the subtyping judgment I' + T <: U to hold if and only if both T and U
are well-formed in I', they are of the same form and space(T) < space(U).

Selected Typing Rules for Expressions: I' - E : T
I

(DEREF INST)

I' +7¢ E : link(zt) ! spc
r=r1r.,::01"
0=0'@[(crx:Tinstviz)|@Q"”
CHPCE i t.c: TV spc

(Ranpom) (where o(U) £ U{et/y,} ... {em/x, })

Ding :.[xl T xm Tl(er : Uy, . ooyen i Uy) > T

restatic o o7, Viel.m THCFj:0U;) Vjel.n Tro
{xi,.. L xmp 0 (Uifv(e) =2 x; # xjfori# j

I +P¢ D[el,. . .,em](Fl,. . .,Fn) : O'(T)

(INFER) (Where o (U) £ U{et/y,} ... {em/x,, })

Daqry :_[xl T, X c Tul(er 2 UL .o oyey U > T
restatic o 7. Viel.m TwCE:o) jel.n
{xi,.. o xmp0n(Uitv(e) =2 x; # xjfori#j

I +P¢ infer.Dley,. .. en].c;(E) : o(U;)

(FunREF)

ko r=Ir,x:0,1”
0=0'@[(cry:Tvi)]@Q”

{ < pc c#ret

TP xc: T

(DEREF STATIC)

I'ro r=1r.,t:0,1”

0 =0'@[(cv x : T static viz)|@Q"”
'+Petc: T

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

520 Gordon et al: Tabular: Probabilistic Inference from the Spreadsheet

Above, we present some of the non-standard typing rules for basic model ex-
pressions. Most of them are similar to the typing rules of Fun (Borgstrom et al.,
2013), the language on which the grammar of expressions is based, except that they
also handle spaces. We also need to add rules for dereference operators, function
column accesses and the infer primitive.

The rule (DeREF StaTic) checks that there is an entry for table ¢ in the environment
and that its Q-type has column ¢ with type T. (DEREF INsT) is similar, except that
it typechecks a reference to an inst-level column. The index £ must be an integer
bounded by the size of table ¢. An instance dereference is only deterministic if both
the index and the reference column are deterministic, and a reference to the value of
a deterministic column at a random index (or vice versa) is random (and similarly
for queries), so we need to join the type of the referenced column with the space of
the index.

The (Ranpom) rule requires all hyperparameters ey, . . ., e, of a distribution to
be static and have the right types, as specified by the distribution signature. Since
the types Uy,...,U, of parameters and the output type 7 may depend on these
hyperparameters, we need to substitute their values in these types. This is done by

the o operator. The expressions Fi,. .., F,, defining parameter values must check
against the corresponding types Uy, . . ., U, in the signature of the distribution with
hyperparameter values substituted by o. The requirements that the (a-convertible)
formal hyperparameter names xj, . . ., X, and free variablesin ey, . . . , e,, are disjoint

and that no hyperparameter name appears twice guarantee that the substitution o
is well-defined.

To see how the (Ranpom) rule works, consider the expression Discrete[2](V) in
table Coins in Section 14.2.2. While typechecking the (original, functionless) Coins
table, Discrete[2](V) is typeckecked at level inst in the environment I = V :Static
real!rnd[2]. The signature of the Discrete distribution in space rnd is Discreteynq :
[N : int!det](probs : real!rnd[N]) — mod(N)!rnd. In Discrete[2](V), the value
of the only hyperparameter N is e; = 2, which obviously checks against the type
int!det in the signature. After substituting this value for N in the type of the only
parameter probs, we get real!rnd[2]. We need to check that ' H"St V : real!rnd[2].
This follows instantly from (INDEx VAR), because V has exactly the type
real!rnd[2] in T". Thus, the expression typechecks correctly and the output type,
obtained by substituting 2 for N in mod(N)!rnd, is mod(2)!rnd.

The (INFER) rule has a similar form to (Ranpom), but instead of typing the distri-
bution arguments, it checks whether the type of the expression E defining the distri-
bution of interest (and normally expected to reference a previous column), matches
the output type T in the signature of the distribution D (with hyperparameters
X1,...,Xm again substituted by their values e,,,, . . ., e,,). Asinfer.D[ey,. . ., e,].c;(E)
is supposed to return the expected value of the parameter c; of the posterior dis-

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

14.5 Type System 521

tribution of expression E, the type of infer.Dley,. .., e;].c;(E) is the type of the
argument ¢; in the signature of D, again with the hyperparameter values substituted.

Note that the rule uses the gry version of the signature of D, in which the types
of arguments are in gqry-space. This ensures that the type of a post-inference query
is in gry-space, and thus the query is not part of the probabilistic model.

Let us demonstrate how the rule works by going back to the example in Section
14.2.3. As the table Coins with the additional qry-level columns counts and Bias
is typechecked, the expression infer.Dirichlet[2].pseudocount(V) is typeckeched at
level static in environment I' = V :31% real!rnd[2],Flip :"S' mod(2)!rnd. The
signature of Dirichlet in qry-space is Dirichletqry : [N : int!det|(pseudocount :
(real!qry)[N]) — (real!rnd)[N]. As in the above example for (RANDOM), the value
of the only hyperparameter N, which is 2, must be checked at level static against
the type of N in the signature of Dirichletqry — that is, int!det.

As the posterior distribution of V is expected to be Dirichlet with N = 2, we need
to check that the type of the column referenced by V actually matches the output
type of Dirichlet with the given hyperparameter, which we obtain by substituting
2 for N in (real!rnd)[N]. Looking at the environment I', we immediately see that
[+-static v/ : real!rnd[2] indeed holds.

The parameter of the Dirichlet posterior of V whose expected value the infer
operator is supposed to return is pseudocount, which has type (real!qry)[N] in the
signature. After substituting N by its value, this type becomes (real!qry)[2]. Hence,
this is the type of the entire expression infer.Dirichlet[2].pseudocount(V).

The (FunNREF) rule defines the type of a column access to be the type of the given
column in the type of the reduced table, as long as this column is visible at level pc.

All the other typing rules (including the subsumption rule) are standard.

14.5.3 Model Types

Before we extend the type system to compound models, we define typing rules for
function argument lists. The judgment I' +P¢ R : Q0 — Q’ means that applying a
function of type Q to R at level pc yields a table of type Q’. The typing rules for
arguments are presented below. Recall that in functions called at static level, the
level of every column is reduced to static, hence the need to join ¢ with pc in output

types.

Typing Rules for Arguments: [' +°¢ R : Q — O’
I

(Ara InrUT)
[HPC e T THPC R:Q{¢} — Q'
TP ((c=e)::R):((crx:TLinput):: Q) — Q'

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

522 Gordon et al: Tabular: Probabilistic Inference from the Spreadsheet
(ArG OuTtpUT)

[x:\PCT PR Q — Q' ctret x¢fv(R)

TP R:((c>x:T ¢output) :: Q) > ((c>x : T (£ A pc) output) :: Q)
(ARG RET)

T

I'+P€ R : (ret> x : T £ output) — (ret> x : T (£ A pc) output)

The (Arc InpuT) rule typechecks the argument e, substitutes it for the input
variable x and proceeds with checking the rest of R, without copying the input
column x to the output type. If the column level ¢ is static, e must be a static
expression to be a valid argument, and if pc is static, then e may be referenced in
the subsequent static columns of the reduced table, hence we need to typecheck e
at level £ A pc. The following rule, (ARG OutpuT), just adds x to the environment
(as it may appear in the types of subsequent columns) and proceeds with processing
the rest of Q, copying the current column into the output with updated level.

Finally, (ArG RET) just checks the well-formedness of the type of the output
column and updates its level.

In order to simplify typechecking indexed models, we also define an indexing
operator for Q-types, which changes the types of all non-input static rnd columns
in Q into array types.

Indexing a Table Type: Q|¢]

I 1
A

el = @
((c»x : Tinstviz) :: Q)[e] = (c>x : T instviz) :: (Qle]) if x ¢ fv(e)

((c» x : T static viz) :: Q)[e] £ (c» x : T static viz) :: (Q[e])
if viz = input or det(7T") and x ¢ fv(e)

((c» x : T static viz) :: Q)[e] £ (c» x : T[e] static viz) :: (Q[e])
if viz # input and rnd(T’) and x ¢ fv(e)

We also need to make sure function tables are Core and have no trailing local
and input columns:

Table and Schema Types:
I

fun(T) iff Core(T) and T = T; @[(ret> x : T £ output E)]
L

where @ denotes table concatenation.
The typing rules for (non-simple) models can now be defined as follows:

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

14.5 Type System 523

Typing Rules for Model Expressions: I +°¢ M : O
I

(MobpEL AppL)
I'tP¢T:Q fun(T) THPCR:Q — Q’
F'+PCTR:Q’

(MopEL INDEXED)
C'HPE M Q T FPC ejndex - mod(egze) ! rnd NoQry(M)

I +pe M[eindex < esize] . Q[esize]

The (MopeL AppL) rule typechecks the function table and the argument lists,
returning the output type of the argument typing judgment. Meanwhile, (MoDEL
INDEXED) uses the Q-type indexing to construct the type of an indexed model from
the type of its base model. As stated in Section 14.4, only tables with no qry columns
can be indexed, so we need to ensure that the table nested in M satisfies NoQry.

14.5.4 Table Types

The rules below are used for typechecking both top-level tables and function tables,
which can be called from static columns, so we need to add the pc level to the
typing judgment. To preserve information flow restrictions, a model expression
in a column at level ¢ can only reference variables at level at most £. Similarly,
expressions in a function at level pc cannot use variables at level greater than pc.
Hence, all model expressions are typechecked at level £ A pc.

Tables with Core columns
We start with rules for typechecking Core columns. The operator names(Q), used
below and in the rest of this section, returns the set of global names of all columns

in Q.
Typing Rules for Tables - Core columns: I' +°¢ T : Q
I

(TaBLE []) (TaBLE INPUT)
TFo [,x 7P¢ TP T Q ¢ ¢ names(Q)

CrPE]:[] THPC (crx:T{Linpute)::T:(c>x:T (€A pc)input) :: O

(TaBLE Core OuTPUT)
CHAPCE T T,x P TP T Q ¢ ¢ names(Q)

FHP¢ (crx:TCoutputE):: T:(c>x:T (£ A pc) output) :: Q
(TaBLE Core LocaL) (where x ¢ fv(Q))

CHAPEE T T,x:MPeTPET:Q

I'tP¢ (cex:TflocalE)::T:Q

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

524 Gordon et al: Tabular: Probabilistic Inference from the Spreadsheet

The (TaBLE []) rule is obvious. The (TaBLE INPUT) rule just adds the variable x
to the environment (at level £ A viz) and checks the rest of the table. The (TABLE
Core Outpur) rule checks the model expression E and then typechecks the rest of
the table in the environment extended with x. The type of the current column (with
level joined with pc) is concatenated with the (recursively derived) type of the rest
of the table. (TaBLE Core LocaL) is similar to (TaBLE Core OuTPUT), except that
the type of the current column does not appear in the table type and x cannot be
free in Q (otherwise Q could contain a variable not defined in the environment I" in
the conclusion of the rule).

Example: checking Core Tabular functions To illustrate how the typing rules for
Core tables work, recall the functions CDiscrete from Section 14.2.2 and CGaussian
from Section 14.4. In this and the following examples, we will use the same column-
based notation for Q-types as for Tabular tables.

The function CDiscrete has the following form, with local and field names:

N> N int!det static input

R»> R real!det static input

V>V real!rnd[N] static output Dirichlet[N]([for i < N — R])
ret > ret mod(N)lrnd output Discrete[N](V)

To typecheck CDiscrete in an empty environment at level inst, we first add the
arguments N and R to the environment, by applying (TABLE INPUT).

Now, letT" = N :31at¢ int!det, R :5'%° real !det. Then, by inspecting the signature
of Dirichlet and applying (RaANDOM), we can show that

I +"st Dirichlet[N]([fori < N — R]) : real ! rnd[N]
By applying (RanpoM) again, we get
I,V :St real | rnd[N] -t Discrete[N](V) : mod(N) ! rnd
By (TaBLE Core OuTtpUT), the last column has type
ret > ret mod(N)'rnd output

in the environment T, V :$%8%¢ real ! rnd[N]. Applying (TaBLE CorE OUTPUT) again
adds the column

V > V reallrnd[N] static output

to this type. Finally, by applying (TaBLE INPUT) twice, we get the type of CDiscrete:

N> N int!det static input
R»> R real!det static input
VeV reallrnd[N] static output

ret > ret mod(N)irnd output

Similarly, CG can be shown to have the following type in the empty environment:

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

14.5 Type System 525

MM realldet static input
P>P realldet static input
Mean > Mean reallrnd static output
Prec » Prec reallrnd static output
ret > ret reallrnd output

Example: typing function applications Recall the coin flip example from Sec-
tion 14.2.2, shown here with double column names:
Flip » Flip intlrnd output CDiscrete(N=2, R=1.0)

This example contains a single call to CDiscrete. By the argument typing rules,
we have

@ H"™ (N=2,R=1.0): Qcp — Q¢p
where Q¢ p is the type of CDiscrete, shown above, and Qcp’ is the type of the
reduced function application, having the following form:

VeV reallrnd[2] static output
ret > ret mod(2)lrnd output

By (MopeL AppL), the type of the function application is Q. ,:
@ +"t CDiscrete(N = 2,R = 1.0) : O,

Example: indexing model types In the Old Faithful example, we applied indexing
[cluster < 2] to the application CG(M = 0.0,P = 1.0). It can be easily shown (like
in the example above) that in any environment I, this application has the following

ro.

type Q¢
Mean > Mean reallrnd static output
Prec » Prec reallrnd static output
ret > ret reallrnd output

According to the (MopEL INDEXED) rule, in an environment I such that T 1St
cluster : mod ! rnd, the indexed application CG(M = 0.0,P = 1.0)[cluster < 2] has

the following type:
Mean > Mean reallrnd[2] static output
Prec > Prec reallrnd[2] static output
ret > ret real!rnd output

Full Tabular Tables
To typecheck columns with non-basic models, we need a prefixing operator for
Q-types and two additional rules.

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

526 Gordon et al: Tabular: Probabilistic Inference from the Spreadsheet

Prefixing function type column names: c.Q

c((dex:Ttviz):: Q)= (c.d>x:TCviz)::c.O if d # ret

c.([(retex : T €viz)]) = [(c>x : T € viz)]

c.((dex:TEvig)]) =[(c.d>x:T viz)] if d # ret

Typing Rules for Tables: ' +P¢ T : O
I

(TaBLE OuTPUT)

CHPe M Q. To,x:Q:.+P¢T:Q Q. =Q.@[(ret>y: T ¢’ output)]
names(c.Q.) N names(Q) = &

I'tPC (cox:T output M) :: T : (c.Q.)@Q

(TaBLE LocaAL)
TR M Q. T,x:Q.HP°T:Q Q. =Q.@[(retvy : T ¢ output)]
I'tP¢ (epx:T{local M) ::T:Q

The (TaBLE OutpuT) rule typechecks the model M and then recurses into the
rest of the table with the environment extended with the type Q. of M, assigned to
x. Note that local attributes of M cannot be referenced in T. This is a design choice
— local columns in functions are only meant to be used locally. (TABLE LocaL) is
similar, except it does not export the type of the model.

Example: typing tables with compound models Recall the coin flip model:

Flip > Flip mod(2)irnd output CDiscrete(N=2, R=1.0)
We have already shown that the application CDiscrete(N = 2,R = 1.0) has the
following type:

VeV reallrnd[2] static output
ret > ret mod(2)lrnd output

By (TaBLE OutprurT), the type of the Coins table is:

Flip.V>V reallrnd[2] static output
Flip> Flip mod(2)lrnd output

Similarly, we can show that the Old Faithful model from the beginning of Sec-
tion 14.4.1 has the following type:

cluster.V > V real'rnd[2] static output
cluster > cluster mod(2)irnd output
duration.Mean > Mean real!rnd[2] static output
duration.Prec » Prec real!rnd[2] static output
duration » duration reallrnd output
time.Mean » Mean reallrnd[2] static output
time.Prec » Prec reallrnd[2] static output
time > time real!rnd output

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

14.5 Type System 527

Example: accessing function fields Let us consider once again the simplified
version of the Old Faithful model with an additional column containing a function
field access:

duration > x reallrnd output CG(M=0.0, P=1.0)
time > x’ reallrnd output CG(M=60.0, P=1.0)
duration_mean>z reallqry output infer.Gaussian.mean(x.Mean)

As shown before, each application of CG has the following type Q. ;:

Mean > Mean reallrnd static output
Prec » Prec reallrnd static output
ret > ret reallrnd output

According to the typing rules, if the initial typing environment is empty, the final
column is checked in the environment I' = x : Q. x" : Q- This final column
must be typechecked by the (TaBLE Core OutpuT) rule, which requires that

I" +"! infer.Gaussian.mean(x.Mean) : real ! rnd
By (INFER), this only holds if
I +"st x Mean : real ! rnd

The environment I" can be easily shown to be well-formed. Since x has type O
in the environment, and this Q-type has a column with field name Mean and type
real ! rnd, the above judgment can be derived with (FUNREF).

14.5.5 Schema Types

We round off the description of the type system with the following two self-
explanatory rules for schemas:

Typing Rules for Schemas: I' - S : Sty
I

(ScHeMA []) (ScHEMA TABLE)
TFo st T 0 table(Q) T,t:QFS: Sty

I'r[]:1] F'r(t=T):S:(t:Q):: Sty

Top-level tables in a schema are typechecked at level inst, because they can
define both static and inst-level columns. The table typing judgment only includes
the level parameter because it is also used for typing functions, which can be called
from static columns.

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

528 Gordon et al: Tabular: Probabilistic Inference from the Spreadsheet

14.5.6 Type Soundness and Termination of Reduction

In this section, we present the key property of the reduction system: every well-
typed schema reduces to a Core schema with the same type. To prove the type
soundness property, we need to state and prove three separate propositions: type
preservation, progress and termination of reduction. The proofs of these properties
are mostly standard inductive proofs and are omitted in this chapter. They can be
found in Szymczak (2018).

The type preservation proposition states that if a schema can be reduced, this
reduced schema is well-typed and has the same type as the original schema:

Proposition 14.1 (Type preservation)

(1) TP M :Qand M — M’, thenT +P¢ M’ : Q
() IFT Hrst T Qand T — T/, then T Ft T’ . Q
B) IfT+S:StyandS — S, then T + S’ : Sty.

The progress property states that every well-typed schema which is not in Core
form can be reduced.

Proposition 14.2 (Progress)
(1) IfT +P¢ T : Q then either Core(T) or there is T’ such that T — T’.
(2) If T +P° S : Sty then either Core(S) or there is S’ such that S — S’.

The final property needed for the type soundness theorem is termination of
reduction:

Proposition 14.3 (Termination) There does not exist an infinite chain of reductions
S| —= S = -,

By putting these propositions together, we obtain the key theoretical result of
this chapter, the type soundness theorem (where we write —* for the reflexive and
transitive closure of the reduction relation):

Theorem 14.4 [fO + S : Sty, then S —* S’ for some unique S’ such that Core(S’)
and D+ S’ : Sty.

Proof By Propositions 14.1 and 14.2, we can construct a maximal chain of re-
ductions S — S; — Sy --- such that @ + S; : Sty for all i and either Core(S;) or
S; = S;+1. By Proposition 14.3, we know that this chain must be finite, so we must
have Core(S;) for some S;. The uniqueness of this S; follows from the determinacy
of the reduction rules. m]

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

14.6 Conclusions 529

14.6 Conclusions

We have presented a new, significantly extended version of the Tabular schema-
based probabilistic programming language, with user-defined functions serving as
reusable, modular model components, a primitive for computing quantities depend-
ing on inference results, useful in decision theory, and dependent types for catching
common modelling errors.

We endowed the language with a rigorous metatheory, strengthening its design.
We have defined a system of structural types, in which each table or model type
shows the variables used in the model, their domains, determinacies, numbers of
instances (one or many) and roles they play in the model. We have shown how to
reduce compound models to the Core form, directly corresponding to a factor graph,
by providing a set of reduction rules akin to operational semantics in conventional
languages, and have proven that this operation is type-sound.

One possible direction of future work is adding support for inference in time-
series models. Another possible extension is to allow nested inference Rainforth
(2018); Mantadelis and Janssens (2011) by extending the lattice of spaces, so that the
distributions computed in one run of inference could be queried by the probabilistic
model “active” in the following run. The new lattice would include indexed spaces
of the form rnd; and qry;, where the result of infer applied to a random variable in
rnd; would be in qry; and data in rnd;,; could reference columns in space qry;.

References

Bingham, Eli, Chen, Jonathan P., Jankowiak, Martin, Obermeyer, Fritz, Pradhan,
Neeraj, Karaletsos, Theofanis, Singh, Rohit, Szerlip, Paul, Horsfall, Paul, and
Goodman, Noah D. 2018. Pyro: Deep Universal Probabilistic Programming.
arXiv preprint arXiv:1810.09538.

Borgstrom, Johannes, Gordon, Andrew D., Greenberg, Michael, Margetson, James,
and Gael, Jurgen Van. 2013. Measure Transformer Semantics for Bayesian
Machine Learning. Logical Methods in Computer Science, 9(3). Preliminary
version at ESOP’11.

Borgstrom, Johannes, Gordon, Andrew D., Ouyang, Long, Russo, Claudio, Scibior,
Adam, and Szymczak, Marcin. 2016. Fabular: Regression Formulas As Proba-
bilistic Programming. Pages 271-283 of: Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL °16. New York, NY, USA: ACM.

Carpenter, Bob, Gelman, Andrew, Hoffman, Matthew D., Lee, Daniel, Goodrich,
Ben, Betancourt, Michael, Brubaker, Marcus, Guo, Jigiang, Li, Peter, and
Riddell, Allen. 2017. Stan: A probabilistic programming language. Journal
of Statistical Software, 76(1).

Georgoulas, Anastasis, Hillston, Jane, Milios, Dimitrios, and Sanguinetti, Guido.

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

530 References

2014. Probabilistic Programming Process Algebra. Pages 249-264 of: Quan-
titative Evaluation of Systems - 11th International Conference, QEST 2014,
Florence, Italy, September 8-10, 2014. Proceedings.

Gilks, W R, Thomas, A, and Spiegelhalter, D. J. 1994. A language and program
for complex Bayesian modelling. The Statistician, 43, 169—178.

Goodman, Noah, Mansinghka, Vikash K., Roy, Daniel M., Bonawitz, Keith, and
Tenenbaum, Joshua B. 2008. Church: a language for generative models. Pages
220-229 of: Uncertainty in Artificial Intelligence (UAI’08). AUAI Press.

Goodman, Noah D., and Stuhlmiiller, Andreas. 2014. The Design and Implemen-
tation of Probabilistic Programming Languages. http://dippl.org.

Gordon, Andrew D., Russo, Claudio, Szymczak, Marcin, Borgstrom, Johannes,
Rolland, Nicolas, Graepel, Thore, and Tarlow, Daniel. 2014a. Probabilistic
Programs as Spreadsheet Queries. Tech. rept. MSR—-TR-2014-135. Microsoft
Research.

Gordon, Andrew D., Graepel, Thore, Rolland, Nicolas, Russo, Claudio, Borgstrom,
Johannes, and Guiver, John. 2014b. Tabular: A Schema-driven Probabilistic
Programming Language. Pages 321-334 of: Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’14. New York, NY, USA: ACM.

Gordon, Andrew D., Russo, Claudio V., Szymczak, Marcin, Borgstrom, Johannes,
Rolland, Nicolas, Graepel, Thore, and Tarlow, Daniel. 2015. Probabilistic Pro-
grams as Spreadsheet Queries. Pages 1-25 of: Vitek, Jan (ed), Programming
Languages and Systems (ESOP 2015). Lecture Notes in Computer Science,
vol. 9032. Springer.

Harper, Robert, and Lillibridge, Mark. 1994. A Type-theoretic Approach to Higher-
order Modules with Sharing. Pages 123—-137 of: Proceedings of the 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’94. New York, NY, USA: ACM.

Herbrich, Ralf, Minka, Tom, and Graepel, Thore. 2007. TrueSkill™: A Bayesian
Skill Rating System. Pages 569-576 of: Scholkopf, B., Platt, J. C., and Hoff-
man, T. (eds), Advances in Neural Information Processing Systems 19. MIT
Press.

Hutchison, Dylan. 2016. ModelWizard: Toward Interactive Model Construction.
CoRR, abs/1604.04639.

Mansinghka, Vikash K., Selsam, Daniel, and Perov, Yura N. 2014. Venture: a
higher-order probabilistic programming platform with programmable infer-
ence. CoRR, abs/1404.0099.

Mansinghka, Vikash K., Tibbetts, Richard, Baxter, Jay, Shafto, Patrick, and Eaves,
Baxter. 2015. BayesDB: A probabilistic programming system for querying the
probable implications of data. CoRR, abs/1512.05006.

Mantadelis, Theofrastos, and Janssens, Gerda. 2011. Nesting Probabilistic Infer-
ence. CoRR, abs/1112.3785.

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

http://dippl.org
https://doi.org/10.1017/9781108770750.015

References 531

Minka, T., Winn, J.M., Guiver, J.P., and Knowles, D.A. 2012. Infer.NET 2.5.
Microsoft Research Cambridge. http://research.microsoft.com/infernet.

Minka, Thomas P. 2001. Expectation Propagation for approximate Bayesian in-
ference. Pages 362-369 of: Uncertainty in Artificial Intelligence (UAI’01).
Morgan Kaufmann.

Minka, Tom, and Winn, John. 2009. Gates. Pages 1073—-1080 of: Koller, D., Schu-
urmans, D., Bengio, Y., and Bottou, L. (eds), Advances in Neural Information
Processing Systems 21. Curran Associates, Inc.

Nori, Aditya V., Hur, Chung-Kil, Rajamani, Sriram K., and Samuel, Selva. 2014.
R2: An Efficient MCMC Sampler for Probabilistic Programs. Pages 2476—
2482 of: Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence. AAAT’14. AAAI Press.

Pollack, Robert. 2002. Dependently Typed Records in Type Theory. Formal Aspects
of Computing, 13, 386-402.

Rainforth, Tom. 2018. Nesting Probabilistic Programs. Pages 249-258 of: Glober-
son, Amir, and Silva, Ricardo (eds), Proceedings of the Thirty-Fourth Confer-
ence on Uncertainty in Artificial Intelligence, UAI 2018, Monterey, California,
USA, August 6-10, 2018. AUAI Press.

Scibior, Adam, Ghahramani, Zoubin, and Gordon, Andrew D. 2015. Practical
probabilistic programming with monads. Pages 165-176 of: Lippmeier, Ben
(ed), Proceedings of Haskell 2015. ACM.

Siddharth, N., Paige, Brooks, van de Meent, Jan-Willem, Desmaison, Alban, Good-
man, Noah D., Kohli, Pushmeet, Wood, Frank, and Torr, Philip. 2017. Learning
Disentangled Representations with Semi-Supervised Deep Generative Mod-
els. Pages 5927-5937 of: Guyon, I., Luxburg, U. V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., and Garnett, R. (eds), Advances in Neural
Information Processing Systems 30. Curran Associates, Inc.

Szymczak, Marcin. 2018. Programming Language Semantics as a Foundation for
Bayesian Inference. Ph.D. thesis, University of Edinburgh.

Vaglica, V., Sajeva, M., McGough, H. N., Hutchison, D., Russo, C., Gordon, A. D.,
Ramarosandratana, A. V., Stuppy, W., and Smith, M. J. 2017. Monitoring
internet trade to inform species conservation actions. Endangered Species
Research, 32, 223-235.

Van den Broeck, Guy, Thon, Ingo, van Otterlo, Martijn, and De Raedt, Luc. 2010.
DTProbLog: A Decision-theoretic Probabilistic Prolog. Pages 12171222 of:
Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence.
AAATI’10. AAAI Press.

Wood, Frank, Meent, Jan Willem, and Mansinghka, Vikash. 2014. A New Ap-
proach to Probabilistic Programming Inference. Pages 1024—-1032 of: Kaski,
Samuel, and Corander, Jukka (eds), Proceedings of the Seventeenth Interna-

tional Conference on Artificial Intelligence and Statistics. Proceedings of
Machine Learning Research, vol. 33. Reykjavik, Iceland: PMLR.

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

http://research.microsoft.com/infernet
https://doi.org/10.1017/9781108770750.015

532 References

Wu, Mike, Perov, Yura N., Wood, Frank D., and Yang, Hongseok. 2016. Spreadsheet
Probabilistic Programming. CoRR, abs/1606.04216. (see also the Scenarios
tool at invrea.com).

https://doi.org/10.1017/9781108770750.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.015

