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Abstract. We show that monadic intuitionistic quantifiers admit the following temporal
interpretation: “always in the future” (for ∀) and “sometime in the past” (for ∃). It is well
known that Prior’s intuitionistic modal logic MIPC axiomatizes the monadic fragment of
the intuitionistic predicate logic, and that MIPC is translated fully and faithfully into the
monadic fragment MS4 of the predicate S4 via the Gödel translation. To realize the temporal
interpretation mentioned above, we introduce a new tense extension TS4 of S4 and provide a
full and faithful translation of MIPC into TS4. We compare this new translation of MIPC with
the Gödel translation by showing that both TS4 and MS4 can be translated fully and faithfully
into a tense extension of MS4, which we denote by MS4.t. This is done by utilizing the relational
semantics for these logics. As a result, we arrive at the diagram of full and faithful translations
shown in Figure 1 which is commutative up to logical equivalence. We prove the finite model
property (fmp) for MS4.t using algebraic semantics, and show that the fmp for the other logics
involved can be derived as a consequence of the fullness and faithfulness of the translations
considered.

§1. Introduction. It is well known that, unlike classical quantifiers, the interpreta-
tion of intuitionistic quantifiers is non-symmetric in that ∀xA is true at a world w iff
A is true at every object a in the domain Dv of every world v accessible from w, while
∃xA is true atw iff A is true at some object a in the domainDw ofw. This non-symmetry
is also evident in the Gödel translation of the intuitionistic predicate calculus IQC into
the predicate S4, denoted QS4, since ∀xA is translated as �∀xAt while ∃xA as ∃xAt ,
where At is the translation of A.

Our aim is to provide a more symmetric temporal interpretation of intuitionistic
quantifiers as “always in the future” (for ∀) and “sometime in the past” (for ∃). In this
paper we restrict our attention to monadic quantifiers (that quantify over one fixed
variable), but in Section 7 we discuss the connection to the full predicate case, which
is treated in detail in [4]. One of the main reasons to treat the monadic case separately
is because it gives rise to a new temporal system TS4 (see below).
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Fig. 1. Diagram of translations.

It is well known that the monadic fragment of IQC is axiomatized by Prior’s monadic
intuitionistic propositional calculus MIPC [8, 25]. The monadic fragment of QS4 was
studied by Fischer-Servi [14] who showed that the Gödel translation of IQC into QS4
restricts to the monadic case. We denote the monadic fragment of QS4 by MS4. One
of our main contributions is to introduce a tense counterpart of MS4, denoted by TS4,
and prove that a modification of the Gödel translation embeds MIPC into TS4 fully
and faithfully. This allows us to give the desired temporal interpretation of monadic
intuitionistic quantifiers as “always in the future” (for ∀) and “sometime in the past”
(for ∃).

While MS4 and TS4 are not comparable, we introduce a common extension, which
we denote by MS4.t. The system MS4.t can be thought of as a tense extension of MS4.
We prove that there exist full and faithful translations of MIPC, MS4, and TS4 into
MS4.t, yielding the diagram in Figure 1. The Gödel translation is denoted by ( )t , our
new translation by ( )�, and the three translations into MS4.t by ( )#, ( )�, and ( )†,
respectively.

We prove these results by employing relational semantics. In addition, we utilize
algebraic semantics to prove that MS4.t has the fmp. It is then an easy consequence of
the fullness and faithfulness of the translations considered that the other systems also
have the fmp. That MIPC has the fmp was proved in [7], but the proof contained a gap,
which was corrected in [15, 23]. The fmp for MS4 follows from the results in [17, Sec.
12]. An advantage of our approach is in that it provides a uniform means for proving
the fmp for all four systems in Figure 1.

In [4] we extended the translation of MIPC into MS4.t to the predicate setting.1

We showed that the same interpretation of intuitionistic quantifiers can be realized
via a full and faithful translation of IQC into a version of predicate S4.t that can be
thought of as a predicate analogue of MS4.t. We conclude this paper by comparing the
translations investigated here with those studied in [4].

§2. Logics of interest. In this section we present our four main logics of interest
(see Figure 1). We start by recalling the monadic intuitionistic propositional calculus
MIPC. This system was introduced by Prior [26, p. 38] and it was shown by Bull [8]
that MIPC axiomatizes the monadic fragment of the intuitionistic predicate calculus
IQC.2 For this reason we denote the modalities of MIPC by ∀ and ∃. Let L be

1 While [4] is a sequel to this paper, as it often happens, it appeared in print before this paper.
2 By the monadic fragment of IQC we mean all the theorems of IQC containing one fixed

variable.
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the propositional language and let L∀∃ be the extension of L with two modalities
∀ and ∃.

Definition 2.1. The monadic intuitionistic propositional calculus MIPC is the
intuitionistic modal logic in the propositional modal language L∀∃ containing

1. all theorems of the intuitionistic propositional calculus IPC;
2. the S4-axioms for ∀:

(a) ∀(p ∧ q) ↔ (∀p ∧ ∀q),
(b) ∀p → p,
(c) ∀p → ∀∀p;

3. the S5-axioms for ∃:
(a) ∃(p ∨ q) ↔ (∃p ∨ ∃q),
(b) p → ∃p,
(c) ∃∃p → ∃p,
(d) (∃p ∧ ∃q) → ∃(∃p ∧ q);

4. the axioms connecting ∀ and ∃:
(a) ∃∀p ↔ ∀p,
(b) ∃p ↔ ∀∃p;

and closed under the rules of modus ponens, substitution, and necessitation (ϕ/∀ϕ).

Remark 2.2. There are several equivalent axiomatizations of MIPC (see, e.g.,
[2, Lemma 2]).

We next recall the monadic extension of S4 studied by Fischer-Servi [14] who
showed that it axiomatizes the monadic fragment of the predicate S4. Let L�∀ be
the propositional bimodal language with two modal operators � and ∀. As usual, � is
an abbreviation for ¬�¬ and ∃ is an abbreviation for ¬∀¬.

Definition 2.3. The monadic S4, denoted MS4, is the smallest bimodal logic containing
all theorems of the classical propositional calculus CPC, the S4-axioms for �, the S5-
axioms for ∀, the left commutativity axiom

�∀p → ∀�p,
and closed under modus ponens, substitution, �-necessitation, and ∀-necessitation.

Remark 2.4. Recalling the definition of fusion of two logics (see [16]), MS4 is obtained
from the fusion S4⊗ S5 by adding the left commutativity axiom �∀p → ∀�p which is
the monadic version of the converse Barcan formula. The monadic version of the Barcan
formula is the right commutativity axiom ∀�p → �∀p. Adding it to MS4 yields the
product logic S4× S5; see [16, Chap. 5] for details.

The following lemma will be useful in Section 3.

Lemma 2.5. An equivalent axiomatization of MS4 is obtained by replacing the left
commutativity axiom �∀p → ∀�p by ∃�p → �∃p.

Proof. We show thatMS4 	 ∃�p → �∃p. That ∃�p → �∃p together with the other
axioms of MS4 implies �∀p → ∀�p is proved similarly. Since ∀ is an S5-modality,
�∃p → �∀∃p is a theorem of MS4. By the left commutativity axiom, �∀∃p → ∀�∃p
is also a theorem ofMS4. SoMS4 	 �∃p → ∀�∃p, and henceMS4 	 ∃�∃p → ∃∀�∃p.
But ∃�p → ∃�∃p, ∃∀�∃p → ∀�∃p, and ∀�∃p → �∃p are all theorems of MS4
because ∀ is an S5-modality. Thus, MS4 	 ∃�p → �∃p, concluding the proof.
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To introduce our main tense logic TS4, we first need to recall the tense logic S4.t.
Let LT be the propositional tense language with two modalities [F ] and [P]. As usual,
[F ] is interpreted as “always in the future” and [P] as “always in the past.” We use
the following standard abbreviations: 〈F 〉 for ¬[F ]¬ and 〈P〉 for ¬[P]¬. Then 〈F 〉 is
interpreted as “sometime in the future” and 〈P〉 as “sometime in the past.”

Definition 2.6. Let S4.t be the smallest bimodal logic containing all theorems of the
classical propositional calculus CPC, the S4-axioms for [F ] and [P], the tense axioms

p → [P]〈F 〉p,
p → [F ]〈P〉p,

and closed under modus ponens, substitution, [F ]-necessitation, and [P]-necessitation.

Remark 2.7. The system S4.t is the extension of the least tense logic K.t in which
both tense modalities satisfy the S4-axioms. It was studied by several authors. Esakia
[10] showed that the Gödel translation can be extended to embed the Heyting–Brouwer
logic HB of Rauszer [28] into S4.t fully and faithfully. The language of HB is obtained by
enriching the language of IPC by an additional connective of coimplication, and the logic
HB is the extension of IPC by the axioms for coimplication, which are dual to the axioms
for implication. Wolter [31] extended the celebrated Blok–Esakia theorem to this setting.

We are ready to define TS4 by combining S4 and S4.t. In Section 4 we will translate
MIPC into TS4 fully and faithfully. We will use S4 to translate intuitionistic connectives
and S4.t to translate monadic intuitionistic quantifiers. Let ML be the multimodal
propositional language with three modalities �, [F ], and [P]. We use �, 〈F 〉, and 〈P〉
as usual abbreviations.

Definition 2.8. The logic TS4 is the least multimodal logic containing all theorems of
the classical propositional calculus CPC, the S4-axioms for �, [F ], and [P], the tense
axioms for [F ] and [P], the connecting axioms

�p → 〈F 〉p,
〈F 〉p → �(〈F 〉p ∧ 〈P〉p),

and closed under modus ponens, substitution, and three necessitation rules ( for �, [F ],
and [P]).

Our final logic of interest is the monadic tense logic MS4.t which is obtained by
combining MS4 and S4.t. As we will see, both MS4 and TS4 translate fully and
faithfully into MS4.t. In order to avoid confusion between the tense modalities of
TS4 and MS4.t, we denote the tense modalities of MS4.t by �F and �P . Let LT∀ be
the propositional language with the tense modalities �F and �P , and the monadic
modality ∀.

Definition 2.9. The tense MS4, denoted MS4.t, is the least multimodal logic containing
all theorems of the classical propositional calculus CPC, the S4.t-axioms for �F and �P ,
the S5-axioms for ∀, the left commutativity axiom

�F ∀p → ∀�F p,

and closed under modus ponens, substitution, and the necessitation rules ( for �F , �P ,
and ∀).
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Fig. 2. Condition (O2).

Remark 2.10. We can think of MS4.t as a tense extension of MS4. It is worth stressing
that MS4.t is not the monadic fragment of the standard predicate extension QS4.t of
S4.t. To see this, it is well known that the Barcan formula ∀x�F ϕ → �F ∀xϕ and the
converse Barcan formula �F ∀xϕ → ∀x�F ϕ are both theorems of any tense predicate
logic containing the standard axioms of first-order logic. Therefore, both are theorems of
QS4.t. Thus, the monadic fragment of QS4.t contains both the left commutativity axiom
�F ∀p → ∀�F p and the right commutativity axiom ∀�F p → �F ∀p. On the other hand,
it is easy to see (e.g., using the Kripke semantics for MS4.t which we will define in the next
section) that, whileMS4.t contains the left commutativity axiom, the right commutativity
axiom is not provable in MS4.t.

§3. Relational semantics. In this section we investigate the relational semantics for
MIPC, MS4, TS4, and MS4.t. The relational semantics for MIPC and MS4 have already
been studied in the literature, and the relational semantics for TS4 and MS4.t are
obtained by a straightforward adaptation.

Definition 3.1. Let R be a quasi-order (reflexive and transitive relation) on a set X. As
usual, for x ∈ X , we write

R[x] = {y ∈ X | xRy} and R–1[x] = {y ∈ X | yRx},

and for A ⊆ X , we write

R[A] =
⋃

{R[x] | x ∈ A} and R–1[A] =
⋃

{R–1[x] | x ∈ A}.

We say thatA ⊆ X is an R-upset ifR[A] = A and that it is an R-downset ifR–1[A] = A.

We first describe the relational semantics for MIPC. There are several such (see, e.g.,
[3]), but we concentrate on the one introduced by Ono [23].

Definition 3.2. An MIPC-frame is a triple F = (X,R,Q) where X is a set, R is a partial
order, Q is a quasi-order, and the following two conditions are satisfied:

(O1) R ⊆ Q,
(O2) xQy ⇒ (∃z)(xRz & zEQy) (see Figure 2).

Here EQ is the equivalence relation defined by xEQy iff xQy and yQx.

Remark 3.3. If U is an R-upset of an MIPC-frame F, then Condition (O2) implies
that EQ[U ] = Q[U ]. This motivates our interpretation of ∃ as “sometime in the past.”
Indeed, taking Q[U ] is the standard way to associate an operator on ℘(X ) to the tense
modality “sometime in the past” (see, e.g., [30, p. 151]).
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Fig. 3. Condition (E).

Definition 3.4. A valuation on an MIPC-frame F = (X,R,Q) is a map v associating
an R-upset of F to any propositional letter of L∀∃. The connectives ∧,∨,→,¬ are then
interpreted as in intuitionistic Kripke frames, and ∀,∃ are interpreted as

x �v ∀ϕ iff (∀y ∈ X )(xQy ⇒ y �v ϕ),
x �v ∃ϕ iff (∃y ∈ X )(xEQy & y �v ϕ).

As usual, we say that ϕ is valid in F, and write F � ϕ, if x �v ϕ for every valuation v and
every x ∈ X .

It is well known that MIPC is a canonical logic (see, e.g., [3, Sec. 6]). Thus, we have:

Theorem 3.5. MIPC is a canonical logic, and hence it is sound and complete with respect
to its relational semantics. Therefore,

MIPC 	 ϕ iff F � ϕ for every MIPC-frame F.

Remark 3.6. In addition, MIPC has the fmp [7, 15, 23] and hence is decidable. As we
will see in Section 6, the fmp of MIPC can be derived from the fmp of MS4.t.

The relational semantics for MS4 was introduced by Esakia [12].

Definition 3.7. An MS4-frame is a triple F = (X,R,E) where X is a set, R is a quasi-
order, E is an equivalence relation, and the following commutativity condition is satisfied
(see Figure 3):

(∀x, y, z ∈ X )(xEy & yRz) ⇒ (∃u ∈ X )(xRu & uEz). (E)

Definition 3.8. A valuation on an MS4-frame F = (X,R,E) is a map v associating a
subset of X to each propositional letter of L�∀. The Boolean connectives are interpreted
as usual, and

x �v �ϕ iff (∀y ∈ X )(xRy ⇒ y �v ϕ),
x �v ∀ϕ iff (∀y ∈ X )(xEy ⇒ y �v ϕ).

By Lemma 2.5, in the axiomatization of MS4, the left commutativity axiom �∀p →
∀�p can be replaced by ∃�p → �∃p. Therefore, MS4 can be axiomatized by Sahlqvist
formulas (see, e.g., [5, Sec. 3.6]). Thus, by the Sahlqvist completeness theorem (see, e.g.,
[5, Theorem 4.42]), it is sound and complete with respect to its relational semantics:

Theorem 3.9. MS4 is a Sahlqvist logic, and hence it is sound and complete with respect
to its relational semantics. Therefore,

MS4 	 ϕ iff F � ϕ for every MS4-frame F.

https://doi.org/10.1017/S1755020321000496 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000496


170 GURAM BEZHANISHVILI AND LUCA CARAI

Remark 3.10. In addition, MS4 has the fmp and is decidable. This can be derived from
the results in [17, Sec. 12] (see also [16, Theorems 6.52 and 9.12]). As we will see in
Section 6, the fmp of MS4 can also be derived from the fmp of MS4.t.

We next recall the relational semantics for S4.t.

Definition 3.11. An S4.t-frame is a pair F = (X,Q) where X is a set and Q is a quasi-
order on X.

Remark 3.12. While S4.t-frames coincide with S4-frames, the difference is in the
interpretation of the modalities as we use Q to interpret [F ] and its inverse relationQ˘ to
interpret [P].

Definition 3.13. A valuation on an S4.t-frame F = (X,Q) is a map v associating a
subset of X to each propositional letter of LT . The Boolean connectives are interpreted
as usual, and the tense modalities are interpreted as

x �v [F ]ϕ iff (∀y ∈ X )(xQy ⇒ y �v ϕ),
x �v [P]ϕ iff (∀y ∈ X )(yQx ⇒ y �v ϕ).

Remark 3.14. It is straightforward to see that all the axioms of S4.t are Sahlqvist
formulas. Therefore, S4.t is a Sahlqvist logic, and hence it is sound and complete with
respect to its relational semantics. That S4.t has the fmp follows from [29, pp. 313–314]
(see also [18, p. 44] and Remark 6.18(3)).

We now introduce the relational semantics for TS4.

Definition 3.15. A TS4-frame is a triple F = (X,R,Q) where X is a set and R,Q are
quasi-orders on X satisfying Conditions (O1) and (O2).

It follows that TS4-frames are a version of MIPC-frames, where the relation R is a
quasi-order. We interpret � using R, and [F ], [P] using Q and its inverse Q˘.
Definition 3.16. A valuation on a TS4-frame F = (X,R,Q) is a map v associating a
subset of X to each propositional letter of ML. The Boolean connectives are interpreted
as usual, and the modalities �, [F ], and [P] are interpreted as

x �v �ϕ iff (∀y ∈ X )(xRy ⇒ y �v ϕ),
x �v [F ]ϕ iff (∀y ∈ X )(xQy ⇒ y �v ϕ),
x �v [P]ϕ iff (∀y ∈ X )(yQx ⇒ y �v ϕ).

Consequently,

x �v �ϕ iff (∃y ∈ X )(xRy & y �v ϕ),
x �v 〈F 〉ϕ iff (∃y ∈ X )(xQy & y �v ϕ),
x �v 〈P〉ϕ iff (∃y ∈ X )(yQx & y �v ϕ).

Remark 3.17. It is straightforward to check that if (X,R,Q) is a TS4-frame, then
(X,R,EQ) is an MS4-frame, and that if (X,R,E) is an MS4-frame, then (X,R,QE) is a
TS4-frame, where QE is defined by

xQEy iff (∃z ∈ X )(xRz & zEy).
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If (X,R,Q) is a TS4-frame, by definition we have that

xQy iff (∃z ∈ X )(xRz & zEQy).

Thus,Q = QEQ . On the other hand, there existMS4-frames (X,R,E) such thatE �= EQE
(see [3, p. 24]). Therefore, this correspondence is not a bijection.

Since all TS4-axioms are Sahlqvist formulas, we have:

Theorem 3.18. TS4 is a Sahlqvist logic, and hence it is sound and complete with respect
to its relational semantics. Therefore,

TS4 	 ϕ iff F � ϕ for every TS4-frame F.

Remark 3.19. In Section 6 we will see that TS4 has the fmp and hence is decidable.

Finally, we introduce the relational semantics for MS4.t. As with S4 and S4.t, we
have that MS4.t-frames are simply MS4-frames, the difference is in interpreting tense
modalities.

Definition 3.20. A valuation on an MS4.t-frame F = (X,R,E) is a map v associating
a subset of X to each propositional letter of LT∀. The Boolean connectives are interpreted
as usual, and

F, x �v �F ϕ iff (∀y ∈ X )(xRy ⇒ y �v ϕ),
F, x �v �Pϕ iff (∀y ∈ X )(yRx ⇒ y �v ϕ),
F, x �v ∀ϕ iff (∀y ∈ X )(xEy ⇒ y �v ϕ).

Since both MS4 and S4.t are Sahlqvist logics, so is MS4.t. Thus, we have:

Theorem 3.21. MS4.t is a Sahlqvist logic, and hence it is sound and complete with respect
to its relational semantics. Therefore,

MS4.t 	 ϕ iff F � ϕ for every MS4.t-frame F.

In Section 6 we will prove that MS4.t has the fmp and hence is decidable.

§4. The four translations. In this section we define the translations of Figure 1 and
show that they are full and faithful by using relational semantics. We start by recalling
that the Gödel translation of MIPC into MS4 is defined by

⊥t = ⊥,
pt = �p for each propositional letter p,

(ϕ ∧ �)t = ϕt ∧ �t,
(ϕ ∨ �)t = ϕt ∨ �t,

(ϕ → �)t = �(¬ϕt ∨ �t),
(∀ϕ)t = �∀ϕt,
(∃ϕ)t = ∃ϕt.

Definition 4.1. The translation (–)� : MIPC → TS4 is defined as (–)t on propositional
letters, ⊥, ∧, ∨, and →; and for ∀ and ∃ we set:

(∀ϕ)� = [F ]ϕ�,

(∃ϕ)� = 〈P〉ϕ�.
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Remark 4.2. Thus, (–)� realizes the desired temporal interpretation of the intuitionistic
monadic quantifiers: ∀ as “always in the future” and ∃ as “sometime in the past.”

Definition 4.3. The translation (–)† : TS4 → MS4.t is defined by

p† = p for each propositional letter p,

(ϕ ◦ �)† = ϕ† ◦ �† for ◦ = ∧,∨,
(¬ϕ)† = ¬ϕ†,

(�ϕ)† = �F ϕ
†,

([F ]ϕ)† = �F ∀ϕ†,

([P]ϕ)† = ∀�Pϕ†.

Remark 4.4.

1. The translation (–)† : TS4 → MS4.t is suggested by the correspondence between
TS4-frames and MS4-frames described in Remark 3.17. Each MS4.t-frame F =
(X,R,E) is an MS4-frame, the relation QE on the corresponding TS4-frame is
the composition of R and E, and the inverse relation QĔ is the composition of E
and R˘. Therefore, the modalities [F ] and [P] are translated as �F ∀ and ∀�P ,
respectively. Notice that, since MS4 lacks a modality corresponding to the relation
R˘, we are not able to translate TS4 into MS4.

2. It is natural to consider a modification of (–)† : TS4 → MS4.t where [P] is
translated as �P∀. However, such a modification does not result in a faithful
translation. Nevertheless, as we will see in Section 5, its composition with
(–)� : MIPC → TS4 is full and faithful.

The translation of MS4 into MS4.t reflects that MS4.t is a tense extension of MS4.

Definition 4.5. The translation (–)# : MS4 → MS4.t replaces in each formula ϕ of L�∀
every occurrence of � with �F .

We show that these four translations are full and faithful by using relational
semantics. For this we first need to generalize the well-known notion of the skeleton
of an S4-frame (see, e.g., [9, Sec. 3.9]).

Definition 4.6.

1. If R is a quasi-order on a set X, we define ∼ to be the equivalence relation on X
given by

x ∼ y iff xRy and yRx.

We let X ′ be the set of equivalence classes of ∼, and define R′ on X ′ by

[x]R′[y] iff xRy.

2. Let F = (X,R,E) be an MS4-frame. Recall that QE is defined on X by xQEy iff
(∃z ∈ X )(xRz & zEy) (see Remark 3.17). Define Q′ on X ′ by

[x]Q′[y] iff xQEy.

We call Ft = (X ′, R′, Q′) the skeleton of the MS4-frame F.
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3. Let F = (X,R,Q) be a TS4-frame. Define Q′ on X ′ by

[x]Q′[y] iff xQy.

We call F� = (X ′, R′, Q′) the skeleton of the TS4-frame F.
4. For an MS4.t-frame F = (X,R,E) let F† = (X,R,QE) where QE is defined as in

(2).

Remark 4.7. If a TS4-frame F = (X,R,Q) is such that R is a partial order, then
F is isomorphic to its skeleton F�. However, we cannot always recover an MS4-frame
F = (X,R,E) from its skeleton Ft even if R is a partial order. Indeed, it is not always
the case that E = EQE . Nonetheless, if F is canonical (and in particular finite) and R is
a partial order, then E = EQE ; see [3, Sec. 2] for details.

Proposition 4.8.

1. If F is an MS4-frame, then Ft is an MIPC-frame.
2. If F is a TS4-frame, then F� is an MIPC-frame.
3. If F is an MS4.t-frame, then F† is a TS4-frame.

Proof. (1). It is well known that (X ′, R′) is an intuitionistic Kripke frame. That Q′

is well defined follows from Condition (E). Showing that Q′ is a quasi-order and that
(O1), (O2) hold in Ft is straightforward.

(2). We have that Q′ is well defined on X ′ because R ⊆ Q in F. Showing that Q′ is a
quasi-order and that (O1), (O2) hold in F� is straightforward.

(3). Since MS4.t-frames coincide with MS4-frames, it follows from Remark 3.17 that
F† is a TS4-frame.

It is well known that an S4-frame validates the Gödel translation of an intuitionistic
formula ϕ iff its skeleton validates ϕ (see, e.g., [9, Corollary 3.82]). We will prove in
Proposition 4.11 that analogous results hold for the four translations defined in this
section. For this we need the following technical lemma.

Lemma 4.9. For any formula � of L∀∃, we have

MS4 	 �t → ��t.

Consequently, if F = (X,R,E) is an MS4-frame and v a valuation on F, then the set of
points x ∈ X such that F, x �v �t forms an R-upset of F.

Proof. We prove that MS4 	 �t → ��t by induction on the complexity of �. This
is obvious when � = ⊥. The cases when � is p, ϕ → �, or ∀ϕ follow from the axiom
�ϕ → ��ϕ. We next consider the cases when � is ϕ ∧ � or ϕ ∨ �. Suppose that
the claim is true for ϕ and �, so ϕt → �ϕt and �t → ��t are theorems of MS4.
Then ϕt ∧ �t → �(ϕt ∧ �t) and ϕt ∨ �t → �(ϕt ∨ �t) are also theorems of MS4.
Finally, if � is ∃ϕ and MS4 	 ϕt → �ϕt , then MS4 	 ∃ϕt → ∃�ϕt . Therefore, since
MS4 	 ∃�ϕt → �∃ϕt by Lemma 2.5, we conclude that MS4 	 ∃ϕt → �∃ϕt .

Let F = (X,R,E) be an MS4-frame, v a valuation of F, and x ∈ X . Since MS4 	
�t → ��t , if F, x �v �t , then F, x �v ��t . Therefore, for each y such that xRy we have
F, y �v �t . Thus, {x ∈ X | F, x �v �t} is an R-upset.

The next result generalizes to our setting a well-known correspondence result
[9, Lemma 3.81] between IPC-models and S4-models.
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Proposition 4.10.

1. For each valuation v on an MS4-frame F there is a valuation v′ on Ft such that for
each x ∈ F and L∀∃-formula ϕ, we have

Ft , [x] �v′ ϕ iff F, x �v ϕt.

2. For each valuation v on a TS4-frame F there is a valuation v′ on F� such that for
each x ∈ F and L∀∃-formula ϕ, we have

F�, [x] �v′ ϕ iff F, x �v ϕ�.

3. Each valuation v on an MS4.t-frame F is also a valuation on F† and for each x ∈ F

and ML-formula ϕ, we have

F†, x �v ϕ iff F, x �v ϕ†.

4. Each valuation v on an MS4.t-frame F is also a valuation on F as an MS4-frame
and for each x ∈ F and L�∀-formula ϕ, we have

F, x �v ϕ iff F, x �v ϕ#.

Proof. (1). Define v′ on Ft by v′(p) = {[x] ∈ X ′ | R[x] ⊆ v(p)}. It is easy to see
that v′ is well defined. We show that Ft , [x] �v′ ϕ iff F, x �v ϕt by induction on the
complexity of ϕ. Since v′(p) = {[x] | F, x �v �p}, the claim is obvious when ϕ is a
propositional letter. We prove the claim for ϕ of the form ∀� and ∃� since the other
cases are well known (see, e.g., [9, Lemma 3.81]). Suppose ϕ = ∀�. By the definition
of Q′ and induction hypothesis, we have

Ft , [x] �v′ ∀� iff (∀[y] ∈ X ′)([x]Q′[y] ⇒ Ft , [y] �v′ �)

iff (∀y ∈ X )(xQEy ⇒ Ft , [y] �v′ �)

iff (∀y ∈ X )(xQEy ⇒ F, y �v �t).

On the other hand,

F, x �v (∀�)t iff F, x �v �∀�t

iff (∀z ∈ X )(xRz ⇒ (∀y ∈ X )(zEy ⇒ F, y �v �t))

iff (∀y ∈ X )(xQEy ⇒ F, y �v �t).

Thus, Ft , [x] �v′ ∀� iff F, x �v (∀�)t .
Suppose ϕ = ∃�. As noted in Remark 3.3, Q′ and EQ′ coincide on R′-upsets, and

it is straightforward to see by induction that the set {[y] | Ft , [y] �v′ �} is anR′-upset.
Therefore, by the induction hypothesis,

Ft , [x] �v′ ∃� iff (∃[y] ∈ X ′)([x]EQ′ [y] & Ft , [y] �v′ �)

iff [x] ∈ EQ′ [{[y] | Ft , [y] �v′ �}]

iff [x] ∈ Q′[{[y] | Ft , [y] �v′ �}]

iff x ∈ QE [{y | Ft , [y] �v′ �}]

iff x ∈ QE [{y | F, y �v �t}].

On the other hand, since {y | F, y �v �t} is an R-upset (see Lemma 4.9), and E and
QE coincide on R-upsets, we have
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F, x �v (∃�)t iff F, x �v ∃�t

iff (∃y ∈ X )(xEy & F, y �v �t)
iff x ∈ E[{y | F, y �v �t}]

iff x ∈ QE [{y | F, y �v �t}].

Thus, Ft , [x] �v′ ∃� iff F, x �v (∃�)t .
(2). As in (1) we define v′ by v′(p) = {[x] ∈ X ′ | R[x] ⊆ v(p)}. We show that

F�, [x] �v′ ϕ iff F, x �v ϕ� by induction on the complexity of ϕ. It is sufficient to only
consider the cases when ϕ is of the form ∀� or ∃�. Suppose ϕ = ∀�. Then by the
definition of Q′ and induction hypothesis,

F�, [x] �v′ ∀� iff (∀[y] ∈ X ′)([x]Q′[y] ⇒ F�, [y] �v′ �)

iff (∀y ∈ X )(xQy ⇒ F�, [y] �v′ �)

iff (∀y ∈ X )(xQy ⇒ F, y �v ��)
iff F, x �v [F ]��

iff F, x �v (∀�)�.

Suppose ϕ = ∃�. As noted in Remark 3.3, Q′ and EQ′ coincide on R′-upsets. Since
the set {[y] | F�, [y] �v′ �} is an R′-upset, by the induction hypothesis, we have

F�, [x] �v′ ∃� iff (∃[y] ∈ X ′)([x]EQ′ [y] & F�, [y] �v′ �)

iff [x] ∈ EQ′ [{[y] | F�, [y] �v′ �}]

iff [x] ∈ Q′[{[y] | F�, [y] �v′ �}]

iff x ∈ Q[{y | F�, [y] �v′ �}]

iff x ∈ Q[{y | F, y �v ��}]

iff (∃y ∈ X )(yQx & F, y �v ��)
iff F, x �v 〈P〉��

iff F, x �v (∃�)�.

(3). It is clear that if v is a valuation on F, then v is also a valuation on F†. We show
that F†, x �v ϕ iff F, x �v ϕ† by induction on the complexity of ϕ. The only nontrivial
cases are when ϕ is of the form ��, [F ]�, and [P]�. Suppose ϕ = ��. Then, by the
induction hypothesis,

F†, x �v �� iff (∀y ∈ X )(xRy ⇒ F†, y �v �)

iff (∀y ∈ X )(xRy ⇒ F, y �v �†)

iff F, x �v �F�†

iff F, x �v (��)†.

Suppose ϕ = [F ]�. Then, by the induction hypothesis,

F†, x �v [F ]� iff (∀y ∈ X )(xQEy ⇒ F†, y �v �)

iff (∀z ∈ X )(xRz ⇒ (∀y ∈ X )(zEy ⇒ F†, y �v �))

iff (∀z ∈ X )(xRz ⇒ (∀y ∈ X )(zEy ⇒ F, y �v �†))
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iff (∀z ∈ X )(xRz ⇒ F, z � ∀�†)

iff F, x �v �F ∀�†

iff F, x �v ([F ]�)†.

Suppose ϕ = [P]�. Then, by the induction hypothesis,

F†, x �v [P]� iff (∀y ∈ X )(yQEx ⇒ F†, y �v �)

iff (∀y, z ∈ X )(yRz & zEx ⇒ F†, y �v �)

iff (∀z ∈ X )(zEx ⇒ (∀y ∈ X )(yRz ⇒ F†, y �v �))

iff (∀z ∈ X )(zEx ⇒ (∀y ∈ X )(yRz ⇒ F, y �v �†))

iff (∀z ∈ X )(xEz ⇒ F, z � �P�
†)

iff F, x �v ∀�P�†

iff F, x �v ([P]�)†.

(4). This is an immediate consequence of the definition of (–)# and the relational
semantics for MS4 and MS4.t.

Proposition 4.11.

1. For each MS4-frame F and L∀∃-formula ϕ, we have

Ft � ϕ iff F � ϕt.
2. For each TS4-frame F and L∀∃-formula ϕ, we have

F� � ϕ iff F � ϕ�.
3. For each MS4.t-frame F and ML-formula ϕ, we have

F† � ϕ iff F � ϕ†.

4. For each MS4.t-frame F and L�∀-formula ϕ, we have

F � ϕ iff F � ϕ#.

Proof. We only prove (2) since the proofs of (1), (3), and (4) are similar. If F � ϕ�,
then there is a valuation v on F such that F, x �v ϕ

� for some x ∈ X . By Proposition
4.10(2), v′ is a valuation on F� such that F�, [x] �v′ ϕ. Therefore, F� � ϕ. If F� � ϕ,
then there is a valuation w on F� and [x] ∈ X ′ such that F�, [x] �w ϕ. Let v be the
valuation on F given by v(p) = {x | [x] ∈ w(p)}. Since F� is an MIPC-frame, w(p) is
an R′-upset of F� for each p. So v(p) is an R-upset of F for each p. Therefore, w = v′

because

v′(p) = {[x] ∈ X ′ | R[x] ⊆ v(p)} = {[x] ∈ X ′ | x ∈ v(p)} = w(p).

Thus, F�, [x] �v′ ϕ. By Proposition 4.10(2), F, x �v ϕ
�. Consequently, F � ϕ�.

In order to show that the translations are full, we also need the following result,
which generalizes to our setting a well-known fact that each IPC-frame is the skeleton
of an S4-frame.

Proposition 4.12.

1. For each MIPC-frame G there is an MS4-frame F such that G is isomorphic to Ft .
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2. Each MIPC-frame G is also a TS4-frame and G� is isomorphic to G.
3. For each TS4-frame G there is an MS4.t-frame F such that G = F†.

Proof. (1). Let G = (X,R,Q) be an MIPC-frame. We show that F = (X,R,EQ) is
an MS4-frame. If xEQy and yRz, then by definition of EQ and Condition (O1), xQy
and yQz. Since Q is transitive, xQz. Condition (O2) then implies that there is u ∈ X
with xRu and uEQz. Thus, F is an MS4-frame. Since R is a partial order, it is an
immediate consequence of Definition 4.6(1) that ∼ is the identity relation. It follows
from Condition (O2) that Q = QEQ . Hence, G is isomorphic to Ft .

(2). Let G = (X,R,Q) be an MIPC-frame. It is clear from the definition of TS4-
frames that G is also a TS4-frame. Since R is a partial order, ∼ is the identity relation.
Therefore, G is isomorphic to G�.

(3). Let G = (X,R,Q) be a TS4-frame. As we observed in Remark 3.17, F =
(X,R,EQ) is an MS4-frame, and so an MS4.t-frame. By definition of TS4-frames
we have that Q = QEQ , and hence G = F†.

We are ready to prove the main result of this section that the four translations are
full and faithful. That the Gödel translation of MIPC into MS4 is full and faithful was
first observed by Fischer-Servi [14] using the translations of MIPC and MS4 into IQC
and QS4, respectively, and the predicate version of the Gödel translation. In [15] she
gave a different proof of this result, using that MIPC has the fmp. Our proof utilizes
the relational semantics and generalizes the semantic proof that the Gödel translation
of IPC into S4 is full and faithful (see, e.g., [9, Sec. 3.9]).

Theorem 4.13.

1. The Gödel translation (–)t of MIPC into MS4 is full and faithful; that is,

MIPC 	 ϕ iff MS4 	 ϕt.

2. The translation (–)� of MIPC into TS4 is full and faithful; that is,

MIPC 	 ϕ iff TS4 	 ϕ�.

3. The translation (–)† of TS4 into MS4.t is full and faithful; that is,

TS4 	 ϕ iff MS4.t 	 ϕ†.

4. The translation (–)# of MS4 into MS4.t is full and faithful; that is,

MS4 	 ϕ iff MS4.t 	 ϕ#.

Proof. We prove (2). For faithfulness, suppose that TS4 � ϕ�. By Theorem 3.18,
there is a TS4-frame F such that F � ϕ�. By Propositions 4.8(2) and 4.11(2), F� is an
MIPC-frame and F� � ϕ. Thus, by Theorem 3.5, MIPC � ϕ. For fullness, let MIPC � ϕ.
Then there is an MIPC-frame G such that G � ϕ. By Proposition 4.12(2), there is a
TS4-frame F such that G is isomorphic to F�. Therefore, F� � ϕ. Proposition 4.11(2)
implies that F � ϕ�. Thus, TS4 � ϕ�.

The proofs of (1), (3), and (4) are obtained analogously using Theorems 3.5, 3.9,
3.18, and 3.21, and Propositions 4.8, 4.11, and 4.12.
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§5. Compositions of the translations. In this section we show that the translations
introduced in the previous section form a commutative diagram up to logical
equivalence.

We denote the composition of (–)# and (–)t by (–)t#, and the composition of (–)†

and (–)� by (–)�†. Since we proved that all these four translations are full and faithful,
we also have that (–)t# and (–)�† are full and faithful translations of MIPC into MS4.t.
We have thus obtained the following diagram of full and faithful translations. We next
show that this diagram is commutative up to logical equivalence in MS4.t.

MS4

MIPC MS4.t

TS4

( )#( )t

( )� ( )†

Lemma 5.1. For each formula ϕ of L∀∃, we have

MS4.t 	 ϕt# ↔ �Pϕ
t#.

Proof. By Lemma 4.9 and Theorem 4.13(4), MS4.t 	 ϕt# → �F ϕ
t#. Therefore,

MS4.t 	 �Pϕ
t# → �P�F ϕ

t#. The tense axiom then gives MS4.t 	 �Pϕ
t# → ϕt#.

Thus, MS4.t 	 ϕt# ↔ �Pϕ
t#.

Theorem 5.2. For each L∀∃-formula � we have

MS4.t 	 �t# ↔ ��†.

Proof. The two compositions compare as follows:

⊥t# = ⊥ ⊥�† = ⊥
pt# = �F p p�† = �F p

(ϕ ∧ �)t# = ϕt# ∧ �t# (ϕ ∧ �)�† = ϕ�† ∧ ��†

(ϕ ∨ �)t# = ϕt# ∨ �t# (ϕ ∨ �)�† = ϕ�† ∨ ��†

(ϕ → �)t# = �F (¬ϕt# ∨ �t#) (ϕ → �)�† = �F (¬ϕ�† ∨ ��†)

(∀ϕ)t# = �F ∀ϕt# (∀ϕ)�† = �F ∀ϕ�†

(∃ϕ)t# = ∃ϕt# (∃ϕ)�† = (〈P〉ϕ�)† = (¬[P]¬ϕ�)†

= ¬∀�P¬ϕ�†.

Thus, they are identical except the ∃-clause. Therefore, to prove thatMS4.t 	 �t# ↔ ��†
it is sufficient to prove that MS4.t 	 ϕt# ↔ ϕ�† implies MS4.t 	 ∃ϕt# ↔ ¬∀�P¬ϕ�†.
Since MS4.t 	 ¬∀�P¬ϕ�† ↔ ∃�Pϕ�†, it is enough to prove that MS4.t 	 ∃ϕt# ↔
∃�Pϕ�†. From the assumption MS4.t 	 ϕt# ↔ ϕ�† it follows that MS4.t 	 ∃�Pϕt# ↔
∃�Pϕ�†. By Lemma 5.1, MS4.t 	 ϕt# ↔ �Pϕ

t# and hence MS4.t 	 ∃ϕt# ↔ ∃�Pϕt#.
Thus, MS4.t 	 ∃ϕt# ↔ ∃�Pϕ�†.

As we pointed out in Remark 4.4(2), there is another natural translation of MIPC
into MS4.t.
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Definition 5.3. Let (–)� : MIPC → MS4.t be the translation that differs from (–)t# and
(–)�† only in the ∃-clause:

(∃ϕ)� = �P∃ϕ�.

The translation (–)� provides a temporal interpretation of intuitionistic monadic
quantifiers that is similar to the translation (–)� (see also Section 7).

Theorem 5.4. For each L∀∃-formula � we have

MS4.t 	 �� ↔ �t#.

Consequently, the translation (–)� of MIPC into MS4.t is full and faithful.

Proof. The translations (–)� and (–)t# are identical except the ∃-clause. Therefore,
to prove that MS4.t 	 �� ↔ �t# it is sufficient to prove that MS4.t 	 ϕ� ↔ ϕt# implies
MS4.t 	 �P∃ϕ� ↔ ∃ϕt#. By Lemma 5.1, MS4.t 	 (∃ϕ)t# ↔ �P(∃ϕ)t# which means
MS4.t 	 ∃ϕt# ↔ �P∃ϕt#. From the assumption MS4.t 	 ϕ� ↔ ϕt# it follows that
MS4.t 	 �P∃ϕ� ↔ ∃ϕt#. Since (–)t# is full and faithful, we conclude that (–)� is full
and faithful as well.

As a result, we obtain the following diagram of full and faithful translations that is
commutative up to logical equivalence in MS4.t:

MS4

MIPC MS4.t

TS4

( )#( )t

( )�

( )�

( )†

§6. Finite model property. In this section we give a uniform proof of the fmp for
the four logics studied in this paper. Our strategy is to first establish the fmp for MS4.t
via algebraic methods, and then use the full and faithful translations to conclude that
the other three logics also have the fmp.

The algebraic semantics for MS4.t is given by MS4.t-algebras. To define these
algebras, we first recall the definition of S4-algebras, S5-algebras, and S4.t-algebras,
which provide algebraic semantics for S4, S5, and S4.t, respectively. S4-algebras are
known under various names. They were first introduced by McKinsey and Tarski [22]
under the name of closure algebras. Rasiowa and Sikorski [27] call them topological
Boolean algebras and Blok [6] calls them interior algebras. S5-algebras were first
introduced by Halmos [20] under the name of monadic algebras, and S4.t-algebras
by Esakia [11] under the name of S42-algebras.

Definition 6.1. Let B be a Boolean algebra.

1. A unary function � : B → B is an interior operator on B if

�(a ∧ b) = �a ∧�b, �1 = 1, �a ≤ a, �a ≤ ��a,

for all a, b ∈ B .
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2. An S4-algebra is a pair B = (B,�) where B is a Boolean algebra and � is an
interior operator on B.

3. An S5-algebra is an S4-algebra B = (B,∀) that in addition satisfies a ≤ ∀∃a for
all a ∈ B , where ∃ denotes the dual operator ¬∀¬.

4. An S4.t-algebra is a triple B = (B,�F ,�P) where B is a Boolean algebra and
�F ,�P are interior operators on B such that

a ≤ �P�F a, (PF)

a ≤ �F�Pa, (FP)

for all a ∈ B , where �F = ¬�F¬ and �P = ¬�P¬.

MS4.t-algebras are obtained by combining S4.t-algebras and S5-algebras.

Definition 6.2. An MS4.t-algebra is a tuple B = (B,�F ,�P,∀) where

1. (B,�F ,�P) is an S4.t-algebra,
2. (B,∀) is an S5-algebra,
3. �F ∀a ≤ ∀�F a for each a ∈ B .

Validity of LT∀-formulas in MS4.t-algebras is defined in the usual way (see, e.g., [9,
27]). If a formula ϕ is valid in an MS4.t-algebra B, we write B � ϕ. The standard
Lindenbaum–Tarski construction (see, e.g., [27, Chap. VI]) yields the following:

Theorem 6.3. MS4.t is sound and complete with respect to its algebraic semantics.
Therefore,

MS4.t 	 ϕ iff B � ϕ for every MS4.t-algebra B.

Definition 6.4. Let B = (B,�F ,�P,∀) be an MS4.t-algebra. We define

1. HF := {a ∈ B | �F a = a} to be the set of �F -fixpoints,
2. HP := {a ∈ B | �Pa = a} to be the set of �P-fixpoints,
3. B0 := {a ∈ B | ∀a = a} to be the set of ∀-fixpoints.

Remark 6.5.

1. It is well known (see, e.g., [13, Proposition 2.2.4]) that HF and HP with the
restricted order from B are both Heyting algebras that are bounded sublattices of
B. Moreover, it follows from Definition 6.1(4) that HF coincides with the set of
�P-fixpoints andHP with the set of �F -fixpoints. Furthermore, ¬ mapsHF toHP
and vice versa. Indeed, if a ∈ HF , then a = �F a. By (PF), �Pa = �P�F a ≤ a,
so �Pa = a, and hence �P¬a = ¬�Pa = ¬a. Therefore, ¬a ∈ HP . Similarly, if
a ∈ HP , then ¬a ∈ HF . Thus, ¬ is a dual isomorphism between HF and HP .

2. It is easy to see that B0 is an S4-subalgebra of (B,�F ) because the inequality
�F ∀a ≤ ∀�F a, which corresponds to the left commutativity axiom, is equivalent
to the equality ∀�F ∀a = �F ∀a.

We now prove that MS4.t has the fmp. For this we must show that if MS4.t �	 ϕ, then
ϕ is refuted on a finite MS4.t-algebra.

Definition 6.6. Let B = (B,�F ,�P,∀) be an MS4.t-algebra and S ⊆ B a finite subset.
Then (B,∀) is an S5-algebra. Let (B ′,∀′) be the S5-subalgebra of (B,∀) generated by S.
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It is well known (see [1]) that (B ′,∀′) is finite. Define �′
F and �′

P on B ′ by

�′
F a =

∨
{b ∈ B ′ ∩HF | b ≤ a},

�′
Pa =

∨
{b ∈ B ′ ∩HP | b ≤ a}.

We denote (B ′,�′
F ,�

′
P,∀′) by BS .

Lemma 6.7. BS is an MS4.t-algebra.

Proof. (B ′,∀′) is an S5-algebra by definition. Since (B,�F ) and (B,�P) are both
S4-algebras, a standard argument (see [22, Lemma 4.14]) shows that (B ′,�′

F ) and
(B ′,�′

P) are also S4-algebras. We show that (B ′,�′
F ,�

′
P) is an S4.t-algebra. As noted

in Remark 6.5(1), ¬ is a dual isomorphism between the algebras HF and HP of �F -
fixpoints and �P-fixpoints of B. Therefore,

�′
F a := ¬�′

F¬a = ¬
∨

{b ∈ B ′ ∩HF | b ≤ ¬a}

= ¬
∨

{b ∈ B ′ ∩HF | a ≤ ¬b}

=
∧

{¬b | b ∈ B ′ ∩HF , a ≤ ¬b}

=
∧

{c ∈ B ′ ∩HP | a ≤ c}.

Since this meet is finite and �P commutes with finite meets, we obtain

�P�
′
F a = �P

(∧
{c ∈ B ′ ∩HP | a ≤ c}

)

=
∧

{�Pc | c ∈ B ′ ∩HP, a ≤ c}

=
∧

{c ∈ B ′ ∩HP | a ≤ c}
= �′

F a.

Thus, �′
F a ∈ B ′ ∩HP which yields

�′
P�

′
F a =

∨
{b ∈ B ′ ∩HP | b ≤ �′

F a} = �′
F a.

Similarly, we have that �′
Pa =

∧
{c ∈ B ′ ∩HF | a ≤ c} from which we deduce

that �′
F�

′
Pa = �′

Pa. This implies that a ≤ �′
P�

′
F a and a ≤ �′

F�
′
Pa. Consequently,

(B,�′
F ,�

′
P) is an S4.t-algebra.

It remains to show that �′
F ∀′a ≤ ∀′�′

F a holds in BS . For this it is sufficient to show
that the set B ′

0 := B ′ ∩ B0 of the ∀′-fixpoints of B ′ is an S4-subalgebra of (B ′,�′
F )

because then �′
F ∀′a = ∀′�′

F ∀′a ≤ ∀′�′
F a. Suppose that d ∈ B ′

0. By definition,
�′
F d =

∨
{b ∈ B ′ ∩HF | b ≤ d}. Let b ∈ B ′ ∩HF . It follows from Lemma 2.5 that

∃b = ∃�F b = �F ∃�F b = �F ∃b. Therefore, ∃b ∈ B ′ ∩HF . Moreover, b ≤ ∃b and
b ≤ d imply ∃b ≤ ∃d = d . Thus, �′

F d =
∨
{∃b | b ∈ B ′ ∩HF , b ≤ d}. Since (B ′,∀′)

is an S5-algebra, B ′
0 is the set of ∃′-fixpoints of B ′ and is closed under finite joins.

Consequently, �′
F d ∈ B ′

0.

Theorem 6.8. MS4.t has the fmp.

Proof. By Theorem 6.3, it is sufficient to prove that each LT∀-formula ϕ refuted on
some MS4.t-algebra is also refuted on a finite MS4.t-algebra. Let t(x1, ... , xn) be the
term in the language of MS4.t-algebras that corresponds to ϕ, and suppose there is an
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MS4.t-algebra B = (B,�F ,�P,∀) and a1, ... , an ∈ B such that t(a1, ... , an) �= 1 in B.
Let

S = {t′(a1, ... , an) | t′ is a subterm of t}.
Then S is a finite subset of B. Therefore, by Lemma 6.7, BS = (B ′,�′

F ,�
′
P,∀) is a

finite MS4.t-algebra. It follows from the definition of �′
F that, for each b ∈ B ′, if

�F b ∈ B ′, then �′
F b = �F b. Similarly, if �Pb ∈ B ′, then �′

Pb = �Pb. Thus, for each
subterm t′ of t, the computation of t′ in BS is the same as that in B. Consequently,
t(a1, ... , an) �= 1 in BS , and we have found a finite MS4.t-algebra refuting ϕ.

We conclude this section by showing that the fmp for TS4, MS4, and MIPC can be
obtained as a consequence of Theorem 6.8 via the full and faithful translations into
MS4.t described in Section 4. In order to do so, we state the fmp of MS4.t in terms of
MS4.t-frames thanks to the correspondence between finite MS4.t-algebras and finite
MS4.t-frames. In fact, we will obtain such a correspondence as a consequence of a
representation result for MS4.t-algebras.

Definition 6.9. Let R be a quasi-order on a set X and A ⊆ X . We define

�R(A) = X \R–1[X \ A].

If R˘ is the inverse relation of R, we have

�R˘(A) = X \R[X \ A].

If E is an equivalence relation on X, we use the notation

∀E(A) = X \ E–1[X \ A] = X \ E[X \ A].

Proposition 6.10. For each MS4.t-frame F = (X,R,E) we have that F+ :=
(℘(X ),�R,�R˘,∀E) is an MS4.t-algebra.

Proof. Since R is a quasi-order, so isR˘, and hence (℘(X ),�R) and (℘(X ),�R˘) are

S4-algebras; and since E is an equivalence relation, (℘(X ),∀E) is an S5-algebra (see
[21, Theorem 3.5]). In addition, the commutativity condition yields that �R∀E(A) ≤
∀E�R(A) for each A ∈ ℘(X ). A standard argument (see [21, Theorem 3.6]) gives that
�R and �R˘ satisfy (PF) and (FP). Therefore, F+ is an MS4.t-algebra.

Remark 6.11. If B = F+, then the elements of HF and HP are, respectively, the R-
upsets and R-downsets of F, and the elements of B0 are the E-saturated subsets of F (that
is, unions of E-equivalence classes).

We next prove that each MS4.t-algebra is represented as a subalgebra of F+ for some
MS4.t-frame F.

Definition 6.12. Let B = (B,�F ,�P,∀) be an MS4.t-algebra. The canonical frame of
B is the frame B+ = (XB, RB, EB) where XB is the set of ultrafilters of B, xRBy iff
x ∩HF ⊆ y iff y ∩HP ⊆ x, and xEBy iff x ∩ B0 = y ∩ B0.

Lemma 6.13. If B is an MS4.t-algebra, then B+ is an MS4.t-frame.

Proof. Since (B,�F ) is an S4-algebra, we have that RB is a quasi-order (see [21,
Theorem 3.14]); and since (B,∀) is anS5-algebra,EB is an equivalence relation (see [21,
Theorem 3.18]). It remains to show that Definition 3.7(E) is satisfied. Let x, y, z ∈ XB
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be such that xEBy and yRBz. This means that x ∩ B0 = y ∩ B0 and y ∩HF ⊆ z.
Let F be the filter of B generated by (x ∩HF ) ∪ (z ∩ B0). We show that F is proper.
Otherwise, since x ∩HF and z ∩ B0 are closed under finite meets, there are a ∈ x ∩HF
and b ∈ z ∩ B0 such that a ∧ b = 0. Therefore, a ≤ ¬b. Thus, a = �F a ≤ �F¬b, so
�F¬b ∈ x. Since B0 is an S4-subalgebra of (B,�F ) (see Remark 6.5(2)) and b ∈ B0,
we have �F¬b ∈ B0. This yields �F¬b ∈ x ∩ B0 = y ∩ B0, which implies �F¬b ∈
y ∩HF ⊆ z. Therefore,¬b ∈ z which contradicts b ∈ z. Thus, F is proper, and so there
is an ultrafilter u of B such thatF ⊆ u. Consequently,x ∩HF ⊆ u and z ∩ B0 ⊆ u ∩ B0.
Since z ∩ B0 and u ∩ B0 are both ultrafilters of B0, we conclude that z ∩ B0 = u ∩ B0.
Thus, there is u ∈ XB with xRBu and uEBz.

Definition 6.14. Let B be an MS4.t-algebra. The Stone map � : B → (B+)+ is
defined by

�(a) = {x ∈ XB | a ∈ x}.
It follows from Jónsson-Tarski duality that � is a 1-1 homomorphism of

MS4.t-algebras, and that it is an isomorphism if B is finite. Thus, we obtain the
following representation theorem for MS4.t-algebras.

Theorem 6.15 (Representation theorem). Let B be an MS4.t-algebra.

1. B is isomorphic to a subalgebra of (B+)+.
2. When B is finite, its embedding into (B+)+ is an isomorphism.

Remark 6.16. As usual, to recover the image of the embedding of B into (B+)+ we
need to endowB+ with a Stone topology (see, e.g., [13, Definition 3.3.3]). This leads to the
notion of perfect MS4.t-frames and a duality between the categories of MS4.t-algebras
and perfect MS4.t-frames.

Thanks to the representation theorem, the fmp of MS4.t can be equivalently stated
as follows: if ϕ is not a theorem of MS4.t, then it is refuted in a finite MS4.t-frame. We
now obtain the fmp of TS4, MS4, and MIPC as a consequence of the fmp of MS4.t.

Theorem 6.17.

1. TS4 has the fmp.
2. MS4 has the fmp.
3. MIPC has the fmp.

Proof. (1). Suppose that TS4 � ϕ. By Theorem 4.13(3), MS4.t � ϕ†. Since MS4.t
has the fmp, there is a finite MS4.t-frame F such that F � ϕ†. By Proposition 4.11(3),
F†

� ϕ. We have thus obtained a finite TS4-frame F† refuting ϕ.
(2). Similar to the proof of (1) but uses the translation (–)# : MS4 → MS4.t instead

of (–)†.
(3). Similar to the proof of (1) but uses the composition (–)t# : MIPC → MS4.t

instead of (–)†. Alternatively, we can use the translation (–)�† of MIPC into MS4.t.

Remark 6.18.

1. That MIPC has the fmp was first established by Bull [7] using algebraic semantics.
His proof contained a gap, which was corrected independently by Fischer-Servi
[15] and Ono [23]. A semantic proof is given in [16], which is based on a technique
developed by Grefe [19].
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2. The fmp for MS4 can be derived from the results in [17, Sec. 12] (see also [16,
Theorems 6.52 and 9.12]). The proof given above is more direct.

3. The proof of the fmp for MS4.t contains the proof of the fmp for S4.t, but the latter
is known (see [29, pp. 313–314] or [18, p. 44]). In fact, MS4.t is a conservative
extension of S4.t.

§7. Connection with the full predicate case. In [4] we studied a translation that is
the predicate analogue of the translation (–)� : MIPC → MS4.t. We proved that this
translation embeds IQC fully and faithfully into a weakening of the tense predicate logic
QS4.t. This weakening is necessary since QS4.t proves the Barcan formula for both �F
and �P , so Kripke frames of QS4.t have constant domains, and hence they validate
the translation of the constant domain axiom ∀x(A ∨ B) → (A ∨ ∀xB), where x is not
free in A. Since this is not provable in IQC, the translation cannot be full. Instead we
considered the tense predicate logic Q◦S4.t in which the universal instantiation axiom
∀xA→ A(y/x) is replaced by its weakened version ∀y(∀xA→ A(y/x)). The main
result of [4] proves that IQC translates fully and faithfully into Q◦S4.t (provided the
translation is restricted to sentences).

It is natural to investigate the relationship between MS4.t and predicate extensions
of S4.t. As we already pointed out in Remark 2.10, MS4.t is not the monadic fragment
of QS4.t. In addition, MS4.t cannot be the monadic fragment of Q◦S4.t either since the
formula ∀xA→ A is not in general provable in Q◦S4.t, whereas ∀ϕ → ϕ is provable
in MS4.t. On the other hand, call a formula ϕ (in the language of MS4.t) bounded
if each occurrence of a propositional letter in ϕ is under the scope of ∀. Bounded
formulas play the same role as sentences of Q◦S4.t containing only one fixed variable.
It is quite plausible that for a bounded formula ϕ we have MS4.t 	 ϕ iff Q◦S4.t proves
the translation of ϕ where each occurrence of a propositional letter p is replaced with
the unary predicate P(x) and ∀ is replaced with ∀x (for a similar translation of MIPC
and its extensions into IQC and its extensions, see [24]). If true, this would yield that
the monadic sentences provable in Q◦S4.t are exactly the bounded formulasϕ provable
in MS4.t. It would also yield that restricting the translation IQC → Q◦S4.t of [4] to the
monadic setting gives the translation (–)� : MIPC → MS4.t for bounded formulas.

It is natural to seek an axiomatization of the full monadic fragment of Q◦S4.t. Note
that in this fragment ∀ does not behave like an S5-modality. For example, ∀ϕ → ϕ is
not in general a theorem of this fragment.

Finally, the translation (–)# : MS4 → MS4.t suggests a translation of QS4 into
Q◦S4.t which replaces each occurrence of � with �F . It is easy to see that for sentences
this translation is full and faithful. Composing it with the standard Gödel translation of
IQC into QS4 yields a translation IQC → Q◦S4.t which is different from the translation
of [4]. This translation restricts to the translation (–)t# : MIPC → MS4.t for bounded
formulas. Thus, the upper part of the diagram of Section 4 extends to the predicate
case.

On the other hand, we do not see a natural way to interpret the tense modalities
of TS4 as monadic quantifiers, and hence we cannot think of a natural predicate
logic which could take the role of TS4 in the diagram of Section 4. Thus, the lower
part of the diagram does not seem to have a natural extension to the predicate case.
Nevertheless, we can consider the predicate analogue of the translation (–)�† : MIPC →
MS4.t. Arguing as in Theorems 5.2 and 5.4 yields a translation of IQC into Q◦S4.t that
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is full and faithful on sentences and coincides, up to logical equivalence in Q◦S4.t, with
the other two predicate translations described in this section.

We thus obtain the following diagram in the predicate case which is commutative up
to logical equivalence in Q◦S4.t.

QS4

IQC Q◦S4.t

( )#( )t

( )�†

( )�

Acknowledgments. We would like to thank Ilya Shapirovsky for simplifying the
proofs in Section 3 and for pointing out some references. We would also like to thank
the referee for the comments that have improved the presentation of the paper.

BIBLIOGRAPHY

[1] Bass, H. (1958). Finite monadic algebras. Proceedings of the American
Mathematical Society, 9, 258–268.

[2] Bezhanishvili, G. (1998). Varieties of monadic Heyting algebras. I. Studia
Logica, 61(3), 367–402.

[3] ———. (1999). Varieties of monadic Heyting algebras. II. Duality theory. Studia
Logica, 62(1), 21–48.

[4] Bezhanishvili, G., & Carai, L. (2020). Temporal interpretation of intuition-
istic quantifiers. In Olivetti, N., Verbrugge, R., Negri, S., and Sandu, S.,
editors. Advances in Modal Logic, Vol. 13. London: College Publications,
pp. 95–114.

[5] Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal Logic. Cambridge
Tracts in Theoretical Computer Science, Vol. 53. Cambridge: Cambridge University
Press.

[6] Blok, W. J. (1976). Varieties of Interior Algebras. Ph.D. Thesis, University of
Amsterdam.

[7] Bull, R. A. (1965). A modal extension of intuitionist logic. Notre Dame Journal
of Formal Logic, 6(2), 142–146.

[8] ———. (1966). MIPC as the formalisation of an intuitionist concept of modality.
The Journal of Symbolic Logic, 31(4), 609–616.

[9] Chagrov, A., & Zakharyaschev, M. (1997). Modal Logic. New York: Oxford
University Press.

[10] Esakia, L. (1975). The problem of dualism in the intuitionistic logic and
Browerian lattices. V Inter. Congress of Logic, Methodology and Philosophy of Science,
pp. 7–8.

[11] ———. (1978). Semantical analysis of bimodal (tense) systems.
Logic, Semantics and Methodology. Tbilisi: Metsniereba Press, pp. 87–99
(in Russian).

https://doi.org/10.1017/S1755020321000496 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000496


186 GURAM BEZHANISHVILI AND LUCA CARAI

[12] ———. (1988). Provability logic with quantifier modalities. Intensional Logics
and Logical Structure of Theories. Tbilisi: Metsniereba Press, pp. 4–9 (in Russian).

[13] ———. (2019). Heyting Algebras: Duality Theory. Trends in Logic—Studia
Logica Library, Vol. 50. Cham: Springer. Edited by Guram Bezhanishvili and Wesley
H. Holliday, Translated from the Russian edition by Anton Evseev.

[14] Fischer-Servi, G. (1977). On modal logic with an intuitionistic base. Studia
Logica, 36(3), 141–149.

[15] ———. (1978). The finite model property for MIPQ and some consequences.
Notre Dame Journal of Formal Logic, 19(4), 687–692.

[16] Gabbay, D. M., Kurucz, A., Wolter, F., & Zakharyaschev, M.
(2003). Many-Dimensional Modal Logics: Theory and Applications. Amsterdam:
North-Holland.

[17] Gabbay, D. M., & Shehtman, V. B. (1998). Products of modal logics. I. Logic
Journal of IGPL, 6(1), 73–146.

[18] Goldblatt, R. (1992). Logics of Time and Computation (second edition). CSLI
Lecture Notes, Vol. 7. Stanford: Center for the Study of Language and Information,
Stanford University.

[19] Grefe, C. (1998). Fischer Servi’s intuitionistic modal logic has the finite model
property. In Kracht, M., de Rijke, M., Wansing, H., and Zakharyaschev, M., editors.
Advances in Modal Logic (Berlin, 1996), Vol. 1. CSLI Lecture Notes, 87. Stanford:
CSLI Publications, pp. 85–98.

[20] Halmos, P. R. (1956). Algebraic logic. I. Monadic Boolean algebras. Composi-
tio Mathematica, 12, 217–249.

[21] Jónsson, B., & Tarski, A. (1951). Boolean algebras with operators. I. American
Journal of Mathematics, 73, 891–939.

[22] McKinsey, J. C. C., & Tarski, A. (1944). The algebra of topology. Annals of
Mathematics. Second Series, 45, 141–191.

[23] Ono, H. (1977). On some intuitionistic modal logics. Publications of the
Research Institute for Mathematical Sciences, 13(3), 687–722.

[24] ———. (1987). Some problems in intermediate predicate logics. Reports on
Mathematical Logic, 21, 55–67.

[25] Ono, H., & Suzuki, N.-Y. (1988). Relations between intuitionistic modal
logics and intermediate predicate logics. Reports on Mathematical Logic, 22, 65–87
(1989).

[26] Prior, A. N. (1957). Time and Modality. Oxford: Clarendon Press.
[27] Rasiowa, H., & Sikorski, R. (1963). The Mathematics of Metamathematics.
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