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Abstract

For a prime p, let F̂p be a finitely generated free pro-p-group of rank at least 2. We

show that the second discrete homology group H2(F̂p,Z/p) is an uncountable Z/p-vector
space. This answers a problem of A. K. Bousfield.

1. Introduction

Let p be a prime. For a profinite group G, there is a natural comparison map

Hdisc
2 (G,Z/p)→ Hcont

2 (G,Z/p),
which connects discrete and continuous homology groups of G. Here Hdisc

2 (G,Z/p) = H2(G,
Z/p) is the second homology group of G with Z/p-coefficients, where G is viewed as a discrete
group. The continuous homology Hcont

2 (G,Z/p) can be defined as the inverse limit lim
←−H2(G/U,

Z/p), where U runs over all open normal subgroups of G. The above comparison map Hdisc
2 →

Hcont
2 is the inverse limit of the coinflation maps H2(G,Z/p) → H2(G/U,Z/p) (see [FKRS08,

Theorem 2.1]).
The study of the comparison map for different types of pro-p-groups is a fundamental problem

in the theory of profinite groups (see [FKRS08] for discussion and references). It is well known
that for a finitely generated free pro-p-group F̂p,

Hcont
2 (F̂p,Z/p) = 0.

Bousfield posed the following question in [Bou77, Problem 4.11], (case R = Z/n).

Problem (Bousfield). Does Hdisc
2 (F̂n,Z/n) vanish when F is a finitely generated free group?

Here F̂n is the Z/n-completion of F , which is isomorphic to the product of pro-p-completions
F̂p over prime factors of n (see [Bou77, Proposition 12.3]). That is, the above problem is

completely reduced to the case of homology groups Hdisc
2 (F̂p,Z/p) for primes p and, since

Hcont
2 (F̂p,Z/p) = 0, the problem becomes a question about the non-triviality of the kernel of

the comparison map for F̂p.

In [Bou92], Bousfield proved that, for a finitely generated free pro-p-group F̂p on at least two

generators, the group Hdisc
i (F̂p,Z/p) is uncountable for i = 2 or i = 3, or both. In particular, the

wedge of two circles S1 ∨ S1 is a Z/p-bad space in the Bousfield–Kan sense.
The group Hdisc

2 (F̂p,Z/p) plays a central role in the theory of HZ/p-localizations developed in
[Bou77]. It follows immediately from the definition of HZ/p-localization that, for a free group F ,
Hdisc

2 (F̂p,Z/p) = 0 if and only if F̂p coincides with the HZ/p-localization of F . (From the point
of view of profinite groups the Bousfield problem is also discussed in [Nik11, § 7] by Nikolov and
in [Klo16, § 4] by Klopsch.)

In this paper we answer Bousfield’s problem over Z/p. Our main result is as follows.
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Main Theorem. For a finitely generated free pro-p-group F̂p of rank at least 2, Hdisc
2 (F̂p,Z/p)

is uncountable.

There are two cases in Bousfield’s problem, R = Z/n and R = Q. We give the answer for

the case of R = Z/n. (Recently the authors gave the solution for the R = Q case [IM17], using

completely different methods.)

The proof is organized as follows. In § 2 we consider properties of discrete and continuous

homology of profinite groups. Using a result of Nikolov and Segal [NS07, Theorem 1.4], we show

that for a finitely generated profinite group G and a closed normal subgroup H the cokernels

of the maps Hdisc
2 (G,Z/p)→ Hdisc

2 (G/H,Z/p) and Hcont
2 (G,Z/p)→ Hcont

2 (G/H,Z/p) coincide

(Theorem 2.5):

Hdisc
2 (G,Z/p) //

ϕ

��

Hdisc
2 (G/H,Z/p) //

ϕ

��

Qdisc //

∼=
��

0

Hcont
2 (G,Z/p) // Hcont

2 (G/H,Z/p) // Qcont // 0.

As a corollary we obtain (Corollary 2.6) that, for a finitely generated free pro-p-group F̂p, a

continuous epimorphism π : F̂p � G to a pro-p-group induces the exact sequence

Hdisc
2 (F̂p,Z/p)

π∗−→ Hdisc
2 (G,Z/p) ϕ−→ Hcont

2 (G,Z/p) −→ 0. (1.1)

That is, to prove that, for a free group F , H2(F̂p,Z/p) 6= 0, it is enough to find a discrete

epimorphism F � G such that the comparison map of the second homology groups of the pro-

p-completion of G has a non-zero kernel. Observe that the statements in § 2 significantly use the

theory of profinite groups and there is no direct way to generalize them for pronilpotent groups.

In particular, we do not see how to prove that H2(F̂Z,Z/p) 6= 0, where F̂Z is the pronilpotent

completion of F .

Section 3 follows the ideas of Bousfield from [Bou92]. Consider the ring of formal power

series Z/p[[x]], and the infinite cyclic group C := 〈t〉. We will use the multiplicative notation of

the p-adic integers C ⊗Zp = {tα, α ∈ Zp}. Consider the continuous multiplicative homomorphism

τ : C ⊗Zp→ Z/p[[x]] sending t to 1− x. The main result of § 3 is Proposition 3.3, which claims

that the kernel of the multiplication map

Z/p[[x]]⊗Z/p[C⊗Zp] Z/p[[x]] −→ Z/p[[x]] (1.2)

is uncountable.

Our main example is based on the p-lamplighter group Z/p o Z, a finitely generated but

not finitely presented group, which plays a central role in the theory of metabelian groups.

The homological properties of the p-lamplighter group are considered in [Kro85]. The profinite

completion of the p-lamplighter group is considered in [GK14], where it is shown that it is a

semi-similar group generated by finite automaton. We consider the double lamplighter group,

(Z/p)2 o Z = 〈a, b, c | [b, bai ] = [c, ca
i
] = [b, ca

i
] = bp = cp = 1, i ∈ Z〉.
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Denote by DL the pro-p-completion of the double lamplighter group. It follows from direct

computations of homology groups that there is a diagram (in the above notation)

Z/p[[x]]⊗Z/p[C⊗Zp] Z/p[[x]] //

��
⊕
��

Z/p[[x]]

��

Hdisc
2 (DL,Z/p) // Hcont

2 (DL,Z/p)

where the left vertical arrow is a split monomorphism and the upper horizontal map is the

multiplication map (see proof of Theorem 4.3). This implies that, for the group DL, the

comparison map Hdisc
2 (DL,Z/p)→ Hcont

2 (DL,Z/p) has an uncountable kernel. Since the double

lamplighter group is 3-generated, the sequence (1.1) implies that, for a free group F with at least

three generators, H2(F̂p,Z/p) is uncountable. Finally, we use [Bou92, Lemma 11.2] to get the

same result for a 2-generated free group F .

In [Bou77], Bousfield formulated the following generalization of the above problem for the

class of finitely presented groups (see [Bou77, Problem 4.10], the case R = Z/n). Let G be

a finitely presented group. Is it true that HZ/p-localization of G equals its pro-p-completion

Ĝp? (The problem is formulated for HZ/n-localization, but it is reduced to the case of a

prime n = p.) It follows immediately from the definition of HZ/p-localization that this problem

can be reformulated as follows: is it true that, for a finitely presented group G, the natural

homomorphism H2(G,Z/p) → H2(Ĝp,Z/p)? It is shown in [Bou77] that this is true for the

class of polycyclic groups. The same is true for finitely presented metabelian groups [IM16]. The

main theorem of the present paper implies that, for any finitely presented group P , which maps

epimorphically onto the double lamplighter group, the natural map H2(P,Z/p)→ H2(P̂p,Z/p)
has an uncountable cokernel.

2. Discrete and continuous homology of profinite groups

For a profinite group G and a normal subgroup H, denote by H the closure of H in G in profinite

topology.

Theorem 2.1 [NS07, Theorem 1.4]. Let G be a finitely generated profinite group and H be a

closed normal subgroup of G. Then the subgroup [H,G] is closed in G.

Corollary 2.2. Let G be a finitely generated profinite group and H be a closed normal

subgroup of G. Then the subgroup [H,G] ·Hp is closed in G.

Proof. Consider the abelian profinite group H/[H,G]. Then the p-power map H/[H,G] →

H/[H,G] is continuous and its image is equal to ([H,G]·Hp)/[H,G]. Hence ([H,G]·Hp)/[H,G] is

a closed subgroup of H/[H,G]. Using the fact that the preimage of a closed set under continuous

function is closed, we obtain that [H,G] ·Hp is closed. 2

Observe that, in the proof of Corollary 2.2, [NS07, Theorem 1.4] is not used in full generality.

We only need it in the case of pro-p groups, and in this particular case the proof of this theorem

is quite elementary.
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Lemma 2.3 (mod-p Hopf formula). Let G be a (discrete) group and H be its normal subgroup.
Then there is a natural exact sequence

H2(G,Z/p) −→ H2(G/H,Z/p) −→
H ∩ ([G,G]Gp)

[H,G]Hp
−→ 0.

Proof. This follows from the five-term exact sequence

H2(G,Z/p) −→ H2(G/H,Z/p) −→ H1(H,Z/p)G −→ H1(G,Z/p)
and the equations H1(H,Z/p)G = H/([H,G]Hp) and H1(G,Z/p) = G/([G,G]Gp). 2

Lemma 2.4 (Profinite mod-p Hopf formula). Let G be a profinite group and H be its closed
normal subgroup. Then there is a natural exact sequence

Hcont
2 (G,Z/p) −→ Hcont

2 (G/H,Z/p) −→ H ∩ ([G,G]Gp)

([H,G]Hp)
−→ 0.

Proof. For the sake of simplicity we set H∗(−) = Hdiscr
∗ (−,Z/p) and Hcont

∗ (−) := Hcont
∗ (−,Z/p).

Consider the five-term exact sequence [RZ00, Corollary 7.2.6]

Hcont
2 (G) −→ Hcont

2 (G) −→ Hcont
0 (G,Hcont

1 (H)) −→ Hcont
1 (G).

Continuous homology and cohomology of profinite groups are Pontryagin dual to each other
[RZ00, Proposition 6.3.6]. There are isomorphisms

H1
cont(G) = Hom(G/[G,G]Gp,Z/p) = Hom(G/[G,G]Gp,Q/Z),

where Hom denotes the set of continuous homomorphisms (see [Ser02, I.2.3]). It follows that

Hcont
1 (G) = G/[G,G]Gp. Similarly, Hcont

1 (H) = H/[H,H]Hp. [RZ00, Lemma 6.3.3] implies that

Hcont
0 (G,M) = M/〈m−mg | m ∈M, g ∈ G〉 for any profinite (Z/p[G])∧-module M . Therefore

Hcont
0 (G,Hcont

1 (H)) = H/[H,H]Hp. The assertion follows. 2

We denote by ϕ the comparison map

ϕ : Hdisc
2 (G,Z/p)→ Hcont

2 (G,Z/p).

Theorem 2.5. Let G be a finitely generated profinite group and H a closed normal subgroup
of G. Denote

Qdisc := Coker(H2(G,Z/p)→ H2(G/H,Z/p)),
Qcont := Coker(Hcont

2 (G,Z/p)→ Hcont
2 (G/H,Z/p)).

Then the comparison maps ϕ induce an isomorphism Qdisc ∼= Qcont:

Hdisc
2 (G,Z/p) //

ϕ

��

Hdisc
2 (G/H,Z/p) //

ϕ

��

Qdisc //

∼=
��

0

Hcont
2 (G,Z/p) // Hcont

2 (G/H,Z/p) // Qcont // 0

Proof. This follows from Lemmas 2.3, 2.4 and Corollary 2.2. 2

Corollary 2.6. Let G be a finitely generated pro-p-group and π : F̂p � G be a continuous
epimorphism from the pro-p-completion of a finitely generated free group F . Then the sequence

Hdisc
2 (F̂p,Z/p)

π∗−→ Hdisc
2 (G,Z/p) ϕ−→ Hcont

2 (G,Z/p) −→ 0

is exact.

Proof. This follows from Theorem 2.5 and the fact that Hcont
2 (F̂p,Z/p) = 0. 2
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3. Technical results about the ring of power series Z/p[[x]]

In this section we follow to ideas of Bousfield written in [Bou92, Lemmas 10.6, 10.7]. The goal
of this section is to prove Proposition 3.3.

We use the following notation: C = 〈t〉 is the infinite cyclic group; C ⊗Zp is the group of
p-adic integers written multiplicatively as powers of the generator C ⊗Zp = {tα | α ∈ Zp}; Z/p[[x]]
is the ring of power series; Z/p((x)) is the field of formal Laurent series.

Lemma 3.1. Let A be a subset of Z/p[[x]]. Denote by Ai the image of A in Z/p[x]/(xp
i
). Assume

that

lim
i→∞

|Ai|/ppi = 0.

Then the interior of Z/p[[x]]\A is dense in Z/p[[x]].

Proof. Take any power series f and any its neighbourhood of the form f + (xp
s
). Then for any

i the open set f + (xp
s
) is the disjoint union of smaller open sets

⋃pp
i

t=1 f + ft + (xp
s+i

), where ft

runs over representatives of (xp
s
)/(xp

s+i
). Chose i so that |As+i|/ppi+s

6 p−p
s
. Then |As+i| 6 ppi .

Hence the number of elements in Ai+s is less than the number of open sets f + ft + (xp
s+i

). It

follows that there exists t such that A ∩ (f + ft + (xp
s+i

)) = ∅. The assertion follows. 2

Denote by

τ : C ⊗ Zp→ Z/p[[x]]

the continuous multiplicative homomorphism sending t to 1 − x. It is well defined because
(1− x)p

i
= 1− xpi .

Lemma 3.2. Let K be the subfield of Z/p((x)) generated by the image of τ . Then the degree of
the extension [Z/p((x)) : K] is uncountable.

Proof. Denote the image of the map τ : C ⊗Zp → Z/p[[x]] by A. Let α = (α1, . . . , αn) and
β = (β1, . . . , βn), where α1, . . . , αn, β1, . . . , βn ∈ Z/p, and k > 1. Denote by Aα,β,k the subset of
Z/p[[x]] consisting of elements that can be written in the form

α1a1 + · · ·+ αnan
β1b1 + · · ·+ βnbn

, (3.1)

where a1, . . . , an, b1, . . . , bn ∈ A and β1b1 + · · ·+ βnbn /∈ (xp
k
). Then K ∩Z/p[[x]] =

⋃
α,β,k Aα,β,k.

Fix some α, β, k. Take i > k and consider the images of A and Aα,β,k in Z/p[x]/(xp
i
). Denote

them by Ai and Aiα,β,k. Obviously Ai is the image of the map C/Cp
i
→ Z/p[x]/(xp

i
) that sends t

to 1− x. Then Ai consists of pi elements. Fix some elements ā1, . . . , ān, b̄1, . . . , b̄n ∈ Ai that have
preimages a1, . . . , an, b1, . . . , bn ∈ A such that the ratio (3.1) is in Aα,β,k. For any such preimages
a1, . . . , an, b1, . . . , bn ∈ A the image r̄ of the ratio (3.1) satisfies the equation

r̄ · (β1b̄1 + · · ·+ βnb̄n) = α1ā1 + · · ·+ αnān.

Since β1b̄1 + · · · + βnb̄n /∈ (xp
k
), the annihilator of β1b̄1 + · · · + βnb̄n consists of no more than

pp
k

elements and the equation has no more than pp
k

solutions. Then we have no more than p2in
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variants of collections ā1, . . . , ān, b̄1, . . . , b̄n ∈ Ai, and for any such variant there are no more than
pp

k
variants for the image of the ratio. Therefore

|Aiα,β,k| 6 p2in+p
k
. (3.2)

Take any sequence of elements v1, v2, . . . ∈ Z/p((x)) and prove that
∑∞

m=1Kvm 6= Z/p((x)).
Note that x ∈ K because t 7→ 1 − x. Multiplying the elements v1, v2, v3, . . . by powers of x, we
can assume that v1, v2, . . . ∈ Z/p[[x]]. Fix some α, β, k as above. Set

Aα,β,k,l = Aα,β,k · v1 + · · ·+ Aα,β,k · vl.

Then
∑∞

m=1Kvm =
⋃
α,β,k,l,j Aα,β,k,l ·x−j . Denote by Aiα,β,k,l the image of Aα,β,k,l in Z/p[x]/(xi).

Then (3.2) implies |Aiα,β,k,l| 6 p(2in+p
k)l. Therefore

lim
i→∞

|Aiα,β,k,l|/pp
i

= 0.

By Lemma 3.1 the interior of the complement of Aα,β,k,l is dense in Z/p[[x]]. By the Baire theorem∑∞
m=1Kvm =

⋃
α,β,k,l,j Aα,β,k,l ·x−j has empty interior. In particular,

∑∞
m=1Kvm 6= Z/p((x)). 2

Proposition 3.3. Consider the ring homomorphism Z/p[C ⊗Zp]→ Z/p[[x]] induced by τ . Then
the kernel of the multiplication map

Z/p[[x]]⊗Z/p[C⊗Zp] Z/p[[x]] −→ Z/p[[x]] (3.3)

is uncountable.

Proof. As in Lemma 3.2, we denote by K the subfield of Z/p((x)) generated by the image of
C ⊗Zp. Since t 7→ 1 − x, we have x, x−1 ∈ K. Set R := K ∩ Z/p[[x]]. Note that the image
of Z/p[C ⊗Zp] lies in R. Consider the multiplication map

µ : Z/p[[x]]⊗R K → Z/p((x)).

We claim that this is an isomorphism. Construct the map in the inverse direction

κ : Z/p((x))→ Z/p[[x]]⊗R K

given by

κ

( ∞∑
i=−n

αix
i

)
=
∞∑
i=0

αi+nx
i ⊗ x−n.

Since we have ax⊗ b = a⊗xb, κ does not depend on the choice of n, we just have to chose it big
enough. Using this, we get that κ is well defined. Obviously µκ = id. Chose a⊗ b ∈ Z/p[[x]]⊗RK.
Then b = b1b

−1
2 , where b1, b2 ∈ R. Since b2 is a power series, we can chose n such that b2 = xnb3,

where b3 is a power series with non-trivial constant term. Then b3 is invertible in the ring of power
series and b3, b

−1
3 ∈ R because x ∈ K. Hence a⊗ b = ab−13 b3⊗ b = ab−13 ⊗x−nb1 = ab1b

−1
3 ⊗x−n.

Using this presentation, we see that κµ = id. Therefore

Z/p[[x]]⊗R K ∼= Z/p((x)). (3.4)

Since the image of Z/p[C ⊗Zp] lies in R, the tensor product Z/p[[x]]⊗R Z/p[[x]] is a quotient
of the tensor product Z/p[[x]]⊗Z/p[C⊗Zp] Z/p[[x]] and it is enough to prove that the kernel of

Z/p[[x]]⊗R Z/p[[x]] −→ Z/p[[x]] (3.5)

is uncountable.
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For any ring homomorphism R → S and any R-modules M,N there is an isomorphism

(M ⊗RN)⊗R S = (M ⊗R S)⊗S (N ⊗R S). Using this and the isomorphism (3.4), we obtain that

after application of −⊗RK to (3.5) we have

Z/p((x))⊗K Z/p((x)) −→ Z/p((x)). (3.6)

Assume to the contrary that the kernel of the map (3.5) is countable (countable = countable or

finite). It follows that the linear map (3.6) has countable-dimensional kernel. Finally, note that

the homomorphism

Λ2
KZ/p((x))→ Z/p((x))⊗K Z/p((x))

given by a∧ b 7→ a⊗ b− b⊗ a is a monomorphism, its image lies in the kernel and the dimension

of Λ2
KZ/p((x)) over K is uncountable because [Z/p((x)) : K] is uncountable (Lemma 3.2).

A contradiction follows. 2

4. Double lamplighter pro-p-group

Let A be a finitely generated free abelian group written multiplicatively; Z/p[A] be its group

algebra; I be its augmentation ideal; and M be a Z/p[A]-module. Then denote by M̂ =

lim
←−M/MIi its I-adic completion. We embed A into the pro-p-group A ⊗ Zp. We use the

‘multiplicative’ notation aα := a ⊗ α for a ∈ A and α ∈ Zp. Note that for any a ∈ A the power

ap
i

acts trivially on M/MIp
i

because 1− api = (1− a)p
i ∈ Ipi. Then we can extend the action of

A on M̂ to the action of A⊗ Zp on M̂ in a continuous way.

The proof of the following lemma can be found in [IM16], but we include it here for

completeness.

Lemma 4.1. Let A be a finitely generated free abelian group and M be a finitely generated

Z/p[A]-module. Then

H∗(A,M) ∼= H∗(A, M̂) ∼= H∗(A⊗ Zp, M̂).

Proof. The first isomorphism is proven in [BD75]. Since Z/p[A] in Noetheran, it follows

that Hn(A, M̂) is a finite Z/p-vector space for any n. Prove the second isomorphism. The

action of A⊗Zp on M̂ gives an action of A⊗Zp on H∗(A, M̂) such that A acts trivially on

H∗(A, M̂). Then we have a homomorphism from A⊗Z/p to a finite group of automorphisms of

Hn(A, M̂), whose kernel contains A. Since any subgroup of finite index in A⊗Zp is open (see

[RZ00, Theorem 4.2.2]) andA is dense inA⊗Zp, we obtain that the action ofA⊗Zp onH∗(C, M̂)

is trivial. Note that Zp/Z is a divisible torsion free abelian group, and hence A⊗ (Zp/Z) ∼= Q⊕c,

where c is the continuous cardinal. Then the second page of the spectral sequence of the

short exact sequence A� A⊗Zp � Q⊕c with coefficients in M̂ is Hn(Q⊕c, Hm(A, M̂)), where

Lm := Hm(A, M̂) is a trivial Z/p[Q⊕c]-module. Then by universal coefficient theorem we have

0 −→ Λn(Q⊕c)⊗ Lm −→ Hn(Q⊕c, Lm) −→ Tor(Λn−1(Q⊕c), Lm) −→ 0.

Since Λn(Q⊕c) is torsion free and Lm is a Z/p-vector space, we get Λn(Q⊕c) ⊗ Lm = 0 and

Tor(Λn−1(Q⊕c), Lm) = 0. It follows that Hn(Q⊕c, Lm) = 0 for n > 1 and H0(Q⊕c, Lm) = Lm.

Then the spectral sequence consists of only one column, and hence H∗(A⊗Zp, M̂) = H∗(A, M̂).

2

2201

https://doi.org/10.1112/S0010437X1800739X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1800739X


S. O. Ivanov and R. Mikhailov

Lemma 4.2. Let A be an abelian group, M be a Z[A]-module and σM : M → M be an
automorphism of the underlying abelian group such that σM (ma) = σM (m)a−1 for any m ∈M
and a ∈ A. Then there is an isomorphism

(M ⊗M)A ∼= M ⊗Z[A] M

given by
m⊗m′ ↔ m⊗ σM (m′).

Proof. Consider the isomorphism Φ : M ⊗M →M ⊗M given by Φ(m⊗m′) = m⊗σ(m′). The
group of coinvariants (M ⊗M)A is the quotient of M ⊗M by the subgroup R generated by
elements ma⊗m′a − m⊗m′, where a ∈ A and m,m′ ∈ M . We can write the generators of
R in the following form: ma⊗m′ − m⊗m′a−1. Then Φ(R) is generated by ma⊗σM (m′) −
m⊗σM (m′)a. Using the fact that σM is an automorphism, we can rewrite the generators of R
as follows: ma⊗m′−m⊗m′a. Taking linear combinations of the generators of Φ(R), we obtain
that Φ(R) is generated by elements mλ⊗m′−m⊗m′λ, where λ ∈ Z[A]. Then (M ⊗M)/Φ(R) =
M ⊗Z[A]M . 2

The group C = 〈t〉 acts on Z/p[[x]] by multiplication on 1− x. As above, we can extend the
action of C on Z[[x]] to the action of C ⊗ Zp in a continuous way. The group

Z/p o C = Z/p[C] o C = 〈a, b | [b, bai ] = bp = 1, i ∈ Z〉

is called the lamplighter group. We consider the ‘double version’ of this group, the double
lamplighter group:

(Z/p[C]⊕ Z/p[C]) o C = 〈a, b, c | [b, bai ] = [c, ca
i
] = [b, ca

i
] = bp = cp = 1, i ∈ Z〉.

Its pro-p-completion is equal to the semidirect product

DL = (Z/p[[x]]⊕ Z/p[[x]]) o (C ⊗ Zp),

with the action of C ⊗Zp on Z/p[[x]] described above (see [IM16, Proposition 4.12]). We call the
group DL the double lamplighter pro-p-group.

Theorem 4.3. The kernel of the comparison homomorphism for the double lamplighter pro-p-
group,

ϕ : Hdisc
2 (DL,Z/p) −→ Hcont

2 (DL,Z/p),

is uncountable.

Proof. For the sake of simplicity we set H2(−) = H2(−,Z/p) and Hcont
2 (−) = Hcont

2 (−,Z/p).
Consider the homological spectral sequence E of the short exact sequence Z/p[[x]]2 � DL �
C ⊗Zp. Then the zero line of the second page is trivial: E2

k,0 = Hk(C ⊗Zp) = (ΛkZp)⊗Z/p = 0
for k > 2. Using Lemma 4.1, we obtain Hk(C ⊗Zp,Z/p[[x]]) = Hk(C,Z/p[C]) = 0 for k > 1, and
hence E2

k,1 = 0 for k > 1. It follows that

H2(DL) = E2
0,2. (4.1)

For any Z/p-vector space V , the Künneth formula gives a natural isomorphism

H2(V ⊕ V ) ∼= (V ⊗ V )⊕H2(V )2.
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Then we have a split monomorphism,

(Z/p[[x]]⊗ Z/p[[x]])C⊗Zp � E2
0,2 = H2(DL). (4.2)

It easy to see that the groups DL(i) = ((xi)⊕ (xi))o (C ⊗ piZp) form a fundamental system

of open normal subgroups. Consider the quotients DL(i) = DL/DL(i). Then

Hcont
2 (DL) = lim

←−H2(DL(i)).

The short exact sequence Z/p[[x]]2 � DL � C ⊗ Zp maps onto the short exact sequence

(Z/p[x]/(xi))2 � DL(i) � C/Cp
i
. Consider the morphism of corresponding spectral sequences

E → (i)E. Using (4.1), we obtain

Ker(H2(DL)→ H2(DL(i))) ⊇ Ker(E2
2,0→

(i)E2
2,0).

Similarly to (4.2), we have a split monomorphism

(Z/p[x]/(xi)⊗ Z/p[x]/(xi))C⊗Zp �
(i)E2

2,0.

Then we need to prove that the kernel of the map

(Z/p[[x]]⊗ Z/p[[x]])C⊗Zp −→ lim
←−(Z/p[x]/(xi)⊗ Z/p[x]/(xi))C⊗Zp (4.3)

is uncountable.
Consider the antipod σ : Z/p[C]→ Z/p[C], that is, the ring homomorphism given by σ(tn) =

t−n. The antipod induces a homomorphism σ : Z/p[x]/(xi)→ Z/p[x]/(xi) such that σ(1− x) =
1 + x + x2 + · · · . It induces the continuous homomorphism σ : Z/p[[x]] → Z/p[[x]] such that
σ(x) = −x − x2 − · · · . Moreover, we consider the antipode σ on Z/p[C ⊗ Zp]. Note that the
homomorphisms

Z/p[C]→ Z/p[C ⊗ Zp]→ Z/p[[x]]→ Z/p[x]/(xi)

commute with the antipodes.
By Lemma 4.2 the correspondence a⊗ b↔ a⊗ σ(b) gives isomorphisms

(Z/p[[x]]⊗ Z/p[[x]])C⊗Zp
∼= Z/p[[x]]⊗Z/p[C⊗Zp] Z/p[[x]],

(Z/p[x]/(xi)⊗ Z/p[x]/(xi))C⊗Zp
∼= Z/p[x]/(xi)⊗Z/p[C⊗Zp] Z/p[x]/(xi).

Moreover, since Z/p[C ⊗ Zp]→ Z/p[x]/(xi) is an epimorphism, we obtain

Z/p[x]/(xi)⊗Z/p[C⊗Zp] Z/p[x]/(xi) ∼= Z/p[x]/(xi).

Therefore the homomorphism (4.3) is isomorphic to the multiplication homomorphism

Z/p[[x]]⊗Z/p[C⊗Zp] Z/p[[x]] −→ Z/p[[x]],

whose kernel is uncountable by Proposition 3.3. 2

5. Proof of main theorem

Since the double lamplighter pro-p-group is 3-generated, we have a continuous epimorphism
F̂p � DL, where F is the 3-generated free group. Then the statement of the theorem for the
3-generated free group follows from Proposition 4.3 and Corollary 2.6. Using the fact that the
3-generated free group is a retract of the k-generated free group for k > 3, we obtain the result
for k > 3. The result for the 2-generated free group follows from [Bou92, Lemma 11.2].
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