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DEFINING IDEALS OF BUCHSBAUM SEMIGROUP RINGS

YUUJI KAMOI

Introduction

Let H be a simplicial semigroup. We consider the semigroup ring k[H] and
its defining ideal Iy. For definition see the first paragraph of Section 1.

When dim(k[H]) = 1, the defining ideal Iy of k[H] has been studied by
many authors (e.g. [1], [2], [8], [11], [3]). In this paper, we study the ideal I using
the notion of Gribner bases for arbitrary dimension.

In [9], we gave a condition for k[H] to be Cohen-Macaulay in terms of a Grob-
ner bases of Iy Our aim of this paper is to extend this characterization to the
case of Buchsbaum semigroup rings. We show that the Buchsbaum property of
k[H] is determined by the form of a Grobner bases of I in Theorem 2.6. As a
corollary, we recover a result of [9] in Corollary 2.9. Also we see that if k[H] is a
Buchsbaum ring and not Cohen-Macaulay, then k[H] < ht I, in Corollary 2.10.

We apply these results to determine Buchsbaum semigroup rings of
codimension two. We can show the Grobner bases of I explicitly in Theorem 3.1.

1. Preliminaries
In this section, we give notations and terminologies which we shall use in this

paper.

Let N be the set of nonnegative integers and H be a finitely generated addi-
tive subsemigroup of N”(» > 0) with generators h,,. .., h,,, € H which satisfies
the following conditions:

(H-1) hy,..., h, are Q-linearly independent
(H-2) there exists an integer d > 0 such that dH € X_, Nk,

Let k be a field. We define a homomorphism ¢ of polynomial rings over k as:
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p:S=klX,.... X, Y,....Y,] — klt,...,t]

X, - th 1<i<y
Y, - thr Q<j<w
where we denote t* 1= /' -+ t*" for h = (a,,...,a,) €N

We put k[H] = Im(¢p) and I, = ker(¢). We denote

,=t" 1<i<y
g, =t""A<j<n
m= (x,...,Z, ,...,4,) < k[H].

Note that {z,,..., x,} is a homogeneous system of parameters of k[H] by (H-1) and
(H-2). Hence we have # = dim k[H] and #» = ht I,.

DervitioN 1.1, For a, B € N”, we define

(1) a;, = the i-th coordinate of «

@ aspeaysByforl=i=<n

B a<BsalBfora+

) axtB=(ay By, Am T Bow)-

We denote a monomial of S by X*V? = X0 - X[ nyfw ... yPo for o €
N’, B € N” and the set of all monomials of S by M.

DerviTION 1.2. A total order > on My is called a monomial order on S if it

satisfies the following conditions, for every #, v, w € My,

if u <gv, then uw <gow
if 1 # u, then 1 <;u.

Remark 1.3. It is well known that a monomial order >4 on S satisfies the
following.
(1) If (@, B < (7, & (in N'*"), then X°YV? <, XY’
(2) Every descending sequence of monomials (w.r.t. > ) is stationary. In
particular, any nonempty subset of My has the smallest element.

For 0 # f € S, we denote the maximal term of f w.r.t. < by in(f) and call
it the initial term of f. For a subset F C S, we set

in(F) = {in(f) |0 + f € F}.

https://doi.org/10.1017/50027763000024983 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024983

BUCHSBAUM SEMIGROUP RINGS 117

DerNITION 1.4, Let I be an ideal of S and F be a finite subset of 7\ {0}.

We call F a Grobner bases of I, if (in())) = (in(¥)). A Grobner bases F of I
is called minimal, if in(F) is a minimal basis of (in(1)).

In this case, I is generated by F (cf. [4], [10]).

Throughout this paper, we fix a monomial order <g on S defined as follows.

DerviTioN 1.5. For X°Y? € M, we denote the total degree of (p(XaYB) by
wd(X*Y®). We define

wd(X V") > wd(XY")

or

wd(X*Y*®) = wd(X"Y®) and the first non zero coordinate
of (@, ) — (1, &) (€ Z™™) is a negative.-

Xv'>,xv'e

In this case, the monomial order > g has the following property. If X“y® —
X'Y'e I, and X°y*® >SX7Y6, then @ > 0 implies 7 > 0 since ¢ (X*Y?) =
©(X"Y®). We shall use this fact freely this paper.

Next we define some notation.

NotaTion 1.6. (1) For a subset J of k[H], we put
M) ={xXY € M, | p(X°Y") €]).
(2) For Xyt e My, we put
XY =XV € M| o(X°Y®) = (XY, XY’ >, XY}

Remark 1.7. By definition, we have the following.

(1) For X°Y?, XY’ e M, with X°Y*# X'V’ XY -X'Y'€el, i
and only if X°Y? € Z(X'Y") or X'V’ € Z(X*Y?).

(2) For X°Y® € M,, Z(X°Y®) # ¢ if and only if X*Y? € (in(Iy)).

(3) If X“Y® is the smallest element of (X'Y’) (w.r.t. >), then
SXYH =¢.

4) If (@, B) < (7, 8) (in N'™), then Z(X*Y®) # ¢ implies (X'Y’) # ¢.

(5) If X°Y® — XY’ € I, and J C k[H], then X*Y*® € M()) if and only if
XY’ e M.

(6) For 1 <i<7, X°Y? € M((z)) if and only if there exists X“Y*® —
XX'Y’ e,
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(7) For 1 <i <7 if Y° € M((z), then Z(Y*) # ¢.
We put
R={XY'-XY' e€S|XY’ € Z(X*Y®) and Ged(X°Y®, X"Y°) = 1}.

Then, by Remark 1.7 (1), we have ® C I Furthermore, the following result is
standard (cf. Proposition 1.4 and Proposition 1.5 of [8]).

ProposiTioN 1.8, We have I; = (R) and (in({y)) = (in(R)). Thus we can
choose a Grobner bases of I from R.

2. Buchsbaum property of semigroup rings

In this section, we give a condition for k[H] to be Buchsbaum in terms of a
Grobner bases of Iy,

We recall that a Noetherian local ring (A4, n) is called a Buchsbaum ring, if
1,(A/q) — e (A) is a constant for every parameter ideal q of A.

k[H] is called a Buchsbaum ring, if the local ring k[H] , of k[H] at m is a
Buchsbaum ring. In this case, k[H] satisfies the following conditions: for every
1<:i<j<7y,

(@, .2t 2] = (@, .., 2 :m]
(@, )z 2] = [, ..., ) c )]

where #,,...,n, € N\ {0} (cf. Proposition 1.10 of ch. 1 in [12]).
In [6], S. Goto proved the following criterion for k[H] to be Buchsbaum.

THEOREM 2.1 (Theorem 3.1 in [6]). The following conditions ave equivalent.

(1) k[H] is a Buchsbaum ving.

(2) There exists a simplicial semigroup H’' N such that k[H'] is a
Cohen-Macaulay and mk[H'] < k[H].

(3 For 1<i<vw, [(l,...,x) 221 =[(,...,z2) :m] (ie. K[H] is a
quasi- Buchsbaum ving).

Lemma 2.2. For ', t,..., t € k[H), we have

[, ) '] = é [ : £,
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Proof. 1t is clear that [(#",..., ) : t'] D X°_, [(#*) : t']. We show the con-
verse inclusion.

For f&€ [(£,...,t) : £'], we write f= 2] ¢t*, ¢;#0 and w,€ HQ <
i <m). Then t'f= X7 ¢t € (#,..., ). Since (..., ") is a N'-graded
ideal, "™ € (t",..., ) for every 1 <j<m. Then we have t'* = "™ for
some 1 <7< p and for some # € H. Thus t“ € [(#*): '] and f€ Zh_, [(£) :
t']. 0O

Hence we have the following by Theorem 2.1 and Lemma 2.2.

ProrositioN 2.3.  The following conditions are equivalent.

(1) k[H] is a Buchsbaum ving.

(2) Foreveryl <1 <j<r, [(x,.z) :.rjz] = [(x,-z) :m].

(2) For1<i<j<v7rand u,v € H, if 2h, + v =2h; + u, when HN\ {0})
+ v C H+ 2h, ]

ProposITION 2.4. (Theorem 2.6 in [7]). The following conditions are equivalent.

(1) k[H] is a Cohen-Macaunlay ring.

(2) xy,...,x, are regular sequence of k[ H].

(3) [(@) : 2] = (x) for every 1 < i <j< 7,

(3) Forl<i<j<vrandu,v<E H ifh;+v=nh; +u thenv € H+ h,
[

We define the subsets Ry, #, and F’ of R as:

Ry = (XY= XY’ eq| (Y = ¢}
Fu=1{f€Rylin() =Y’ BENT
F =1{f€ R,|in(f) € (in(F)}.

By Proposition 1.8, Remark 1.7 (3) and (4), it is easy to see that (in(l,)) =
(in(Ry)).

DEFINITION 2.5. A sequence of monomials (Y%,...)Y™) is called a
B-sequence, if it satisfies the following conditions: for every 1 < i # j < 7,

(B-1) Z(Y*) = ¢

B-2) Y € M([(x) : m])
(B-3) Y% & M([(z)) : m])
(B-4) Ged(Y*, Y% =1
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(B-5) X,Y* — X,Y® € I
We denote by 4 the set of all B-sequences and put
G, =X, Y= XY (Y™, YN e, 1<i<j<a.

The main purpose of this section is to prove the following result.

THEOREM 2.6. The following conditions are equivalent.

(1) k[H] is a Buchsbaum ving.

(2) We can choose a Grébner bases of Iy from Fy U Gy (or (in(Iy)) = (in(Fy
Uugo.

To prove our result, we need some lemmas.

LEmMA 2.7.  Suppose that k[H] is a Buchsbaum ring.

(1) FX*Y* € M([(x) : x;]) and oy, = 0, then Y° € M([(x) : z}]).

@) IFY* € MU(x) : z]) and Z(Y®) = ¢, then there exists (Y*,...,Y?) €
Ay such that B = B;.

Proof. (1) This is proved by induction on the degree of X If a = 0, then
there is nothing to prove. If & > 0, then we can find 1 <1< 7, [ # { such that
X% = X,X“. Then we have X*Y* € M([(z)) : x;,]). Since k[H] is Buchsbaum,
() :xx] = [(x):x]. Hence, by the induction hypothesis, we have Y* €
M (z) : z,]).

(2) Since k[H] is Buchsbaum, [(z;) : z;] = [(z,) : m]. Then, by Remark 1.7
(6), we have X, Y* — X X“Y* € I, for 1 <k # i< r If Z(X“Y®) # ¢, then
we can replace Xy P by the smallest element of > (X** Y®¥). Therefore we may
assume 2 (X“Y®) = ¢.If @, > 0, then Y* € M((x))) and, by Remark 1.7 (7),
S(YP # ¢. This contradicts our assumption. Thus a4 = 0. On the other hand,
X*“y* e M([(z,) :z]). By (1), this implies Y* € ([(z,):x]). Then, by
Remark 1.7 (6), there exists X, — X, X"Y’ € I,. Hence we have

XY= X xX%Y% — XX, Y — X X'Y) =X,(Y" - x*"Y’) eI,

and Y? — X"y’ e I, since I, is a prime ideal. By Remark 1.7 (1) and
(Y?) = ¢, we have Y* < X**Y° and, by the definition of the ordering >,
@, + 7= 0. Hence we have X,Y* — X,Y** € [, with Z(Y*) = ¢ for 1 < k # i
<7, We put 8, = B. Then the sequence (Y*,...,¥") satisfies the conditions
(B-1) and (B-2) of Definition 2.5. We show the other conditions are also satisfied.
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(B-5): For every 1 < k < [ < 7, we have the following relation
X, XY —xY" - XX, Y- XY = X,(X,Y* - X, Y*") € I,.

Since I, is a prime ideal, we have X,Y** — X, Y* € I,
(B-3): For some 1<k, [ <7 if Y& M([(z):ml), then there exists
X, Y? — X,X"Y’ € I, Hence we have the relation

XX, Y- XXV - X,XY"-XY"=XY"-XXY €I,

and Y € M([(z]) : 2°1). Since k[H] is Buchsbaum, [(z]) : 271 = [(z]) : z,] and
[(x,): 271 = [(x,) :z]. Then it is easy to see that [(z)) : 7] = z,[(x) : x,] and
thus Y € M((z). Hence, by Remark 1.7 (7), =(Y®) # ¢. This contradicts
condition (B-1). Thus Y™ € M([(z,) : m]).

(B-4): For some 1 < k, [ < 7, if Ged(Y®, Y?) # 1, then we can write

XY —xy"=v'XYy*—-XxyY"» eI,

where Y’ = Ged(Y*, ¥*), 6, =B, — 6 and 6, = B, — 6. Then we have X,¥*
—-XY"el, and Y*eMU(x):z)) =M(x):ml), since k[H] is
Buchsbaum. Since Y’ # 1, we have Y = ¥’** € M((z,)). Then, by (1.7), 7).
> (Y®) # ¢. This is a contradiction. Hence Ged(Y?®, ¥*) =1, O

LEmMA 2.8.  Suppose that (in(I)) = (in(F, U 9p)).

(1) For X°Y? = X'Y° € I, with Z(Y®) = ¢ and X°Y* >, X'Y°, there
exists (Y*',. .. Y?) € Ay such that X°Y® = Xan,YB' for somel < 1 Fj
<r

2) Ry =F U 9,

Proof. (1) Since (in()) = (in(F, U ) and (Y*) = ¢, we have X*Y*
€ (in(9%,) by Remark 1.7 (2) and (4). Thus there exists a B-sequence
(Y*,...,Y") and an element XjYB" — X,Y® €9, such that X“Y” is divisible by
XjYﬁ" If B, <P, then Yie M((x;)) by the condition (B-2). By Remark 1.7 (7),
this contradicts 2 (¥?®) = ¢. Hence we have 8 = 8,

(2) Suppose that By # F" U 9. Then, by Remark 1.3 (2), there exists f=
XV = XY’ € R,\% UY, such that in(f) is smallest element of in(By \ F’
U 9,). Since f€ % and Remark 1.7 (2), we have 2 (Y®) = ¢ and, by (1), there
exists g = X,-YB" — X,Y” € ¢, such that X°Y* = Xanl Y® Thus we have

f—XYg=XX"Y"-X"Y’ €1,
If XX“V? =X"Y’ then X¥ =1, since Ged(X%, X") = 1. Thus f= g € 9.
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This is a contradiction. Hence we have X, X% ¥* # X"Y’. We put
X'Y = GedX,X¥Y® X'Y®) and g’ = X"Y" — XY € I,

where X, X¥ Y% = X**y"™ and X"Y°’ = X"****¥”™ Then either g’ € R, or
— g’ € Ry. Since in(f) >4in(g), g € F U Y, or — g’ € F U G, by the mini-
mality of f We note that 2(¥Y*™) = ¢ and 2(¥Y°) = ¢. This implies that
2" =¢ (=12 and £ g’ €F . Hence we have either g’ € 4, or — g’ €
9, and there exists (Y"',...,Y") € A, such that g = X, Y’ — X, Y for some
1<k#I1<7 Since aj >0, 14 >0 and Ged(X*, X") =1, we have j # k.
Then

Y? =Yy e M([(z) : m]) N M([(z,) : m]).

This contradicts condition (B-3). Hence we have B, = % U ¥, O

Proof of Theorem 2.6. (1)= (2) For f= XY -xv'e Ry, we suppose
that in(f) € (in(%,)). Then @ > 0 and, by the definition of > we can find
1<i<j<r such that f= XXV’ —XX"Y’ Thus X*V’ € M((z):
z,]) by Remark 1.7 (5). Since Ged(X®, X') = 1, we have Y’ e M([(x) 1 x;]) by
(2.7), 1). Then, by Remark 1.7 (2) and (4), (Y = ¢ and, by Lemma 2.7 (2),
there exists (Y®,...,¥") e Ay such that B =P, Thus, XjYB’ — XiYBj €Y,
and in(f) = X“Y* € (in(g,)).

Hence we have (in(Zy)) = (n(F, U 9).

(2)= (1) By Proposition 2.3, it suffices to show that [(z)):z’1 = [(z)) :
m] for 1 < i< j <7 Therefore we suppose that [(x}): z’] # [(x}) : m]. Then
there exists the smallest element X“Y* of M([(z?) : 271\ [(z?) : m]. We note that
@y <1 and Z(Y®) = ¢. By Remark 1.7 (6), there exists X/ XV® — X/ X"y’
€1, If (XY’ # ¢, then we can replace X'Y’ by the smallest element of
2 (X’Y?). Thus we may assume that X (X"Y°) = ¢. Since X*Y* & M((z))), we
have 74 < 1. Now we put

X'V = Ged (XX Y, X/X'Y’) and g = X"V = X"Y" € I

where X/ X*YV® = X*" Y™ and X} X'V’ = X"™Y"™ Then g€ R, or — g
€ R,. But, by Remark 1.7 (4), 2(Y™) = ¢ = 2 (Y™ and, by Remark 1.7 (2),
in(g) & (in(%g)). Then, by Lemma 2.8 (2), we have g € 9, or — g € 9. On
the other hand, f;; > 0 and p, > 0, since 75 <1, ay < 1. Thus we have
X" =X, (resp. X" = X,) and @ =1 (resp. 7, =1). Hence X°Y® € M(z,
[(x,) : m]) € M([(x}) :m]). This is a contradiction. |
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As a consequence of Theorem 2.6, we have the following corollaries.

CoroLLARY 2.9 (Theorem 1.2 in [9])). The followrng conditions ave equivalent.
(1) kLH] is a Cohen-Macaulay ring.
(2) We can take a Grobner bases of I from Fy (or (in(lp)) = (in(F ).

Proof. By Theorem 2.6, we may assume that k[H] is a Buchsbaum ring.

If k[H] is Cohen-Macaulay, then we have [(z) :x,] = (x,) for every 1 <1
# ;<7 Hence, if Y°€ M([(z;) : m]), then S(Y®) # ¢ by Remark 1.7 (7).
Thus 9, =¢ and Ay = ¢ (cf. Definition 2.5). Hence we have (in(lp)) =
(n(Fp).

Conversely, if k[H] is not Cohen-Macaulay, then there exists 1 < i <j <7
such that [(z;) :z;] # (x;) (cf. Proposition 2.4). Since k[H] is a Buchsbaum, we
have [(z) : x,] = [(x) :m] and there exists the smallest element Y? e M((z) :
z2,]1\(z)) (cf. Lemma 2.7 (1)). Then, by Remark 1.7 (2), YP e (in(Z,)) and X,-YB
€ (in(I,)) since ¢ < j. This shows that (in(Z,)) # (in(%,)). 0l

CoroLLARY 2.10. If k[H] is a Buchsbaum ving and not Cohen-Macaulay, then

we have

dim k[H] < htsI, Gi.e. 7 < n).

Proof. Since k[H] is not Cohen-Macaulay, we have 9, # ¢ by Theorem 2.6
and Corollary 2.9. Thus there exists (Y*,...,¥*) € A, We put n, = #{k €
{1,...,7 | B, > 0}). Then, by (B-2) of Definition 2.5, 8; # 0 and n; > 0 for
1 <i<7 Hence < X/_ n, On the other hand, =_ n, < n since Ged(Y**,
Y®) =1 (cf. (B-4) of Definition 2.5), for 1 < k # [ < 7. O

In the following example, we see that there exists a Buchsbaum and not
Cohen-Macaulay semigroup ring k[H] with k[H] = » and ht Iy =#n for 2 <7
<n€eN.

Example 2.11. For 2<7<n€N, we let ay...,a,EN@Pp=n—r+1)
such that @, & 317, Na, and @, + a; € -, Na,, for 1 <j < p.
(eg. (ay...,a,.) =1,a,=max{a EN|a & X! Na}, it r<nora,=

2,a, =1, ifr=mn)

We put hy,...,h,,,, g € N as follows:
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by =y =a,h(D=0G*D) A<i<p
hoey = (a,...,a) 1<j<p-1)
g =(a...,a,)

R =h+g 1<i<n

H =3'Nh cN

H = Zlgjgr or < j<rn NB; T Ng C N
We define

prklX,..., X, Y,... . V1= kM, . 8]
by (X)) =t" QA <i<p), oY) =t"" QA <j< ),
(p,:k[le---er! Zy Yr+1)---y Yn]_)k[t1w~-’tr]

by ¢ (X) =t" A <i<p), ¢g(¥) =t""A<j<p—-1), ¢(2) =1

Then, by Example 2.6 in [9], kK[H'] (= Im ¢’) is a Cohen-Macaulay ring with
Ry = Fyr. Also we have k[H] is a Buchsbaum ring. In fact, by the choice of
Qys. .., a,, (H\{0}) + H' C H. Hence, by Theorem 2.1, k[H] is a Buchsbaum
ring. In this case, it is easy to see that

(1) 4, = ((Y,,..., V)

2) Ry =F, U9, O

3. Codimension two Buchsbaum semigroup rings

In this section we determine simplicial semigroups which defines Buchsbaum
semigroup rings of codimension two. Henceforce we put (ht Iy, =)n = 2.

When k[H] is a Cohen-Macaulay ring, we determined a Grobner bases of I,
explicitly in Summary 2.5 of [9]. Therefore it suffices to consider Buchsbaum and
not Cohen-Macaulay semigroup rings.

Then we have following result.

THEOREM 3.1. The following conditions are equivalent.
(1) k[H] is a Buchsbaum ring and not Cohen- Macaulay.
(2) dim k[H] = 2 and I, has the following minimal basis
Yib,-+1 _ Xlal—XXZaz+lyjb,—1’ Y1Y2 _ Xlaleaz,
ij,-+1 _ Xf1+1X;2_1Kb‘_l, XZiji _ XIXibi
where a,, a,, b, b, € N\ {0}, {i, /} = {1,2}.
(3) kLH] is not Cohen-Macaulay and H is isomorphic to
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< (b, + b, 0,0, b, + by), (@b,— 1, a,b, + 1), (@b, + 1, a,b, — 1) > as semigroup.

To prove our result, we need some preliminaries.
Now, we divide ¥ into the following subsets.

Fo={feF,lin(f) =Y, 0<beN}
F,={feF,lin(f) =Y, 0<cEN)
F,={feF,lin(f) =YY ,0<b,ceN}

Since #; # ¢, there exists the minimal element of in(%#,). We denote the
minimal element of in(%,) (resp. %,, &, by Y;* (resp. Y,?, YY) We call f €
%, (resp. ,, #,) a minimal element of %, (resp. %,, #,), if in(f) = Ylb1 (resp.
Yzbz Ylbsxyzbaz)‘

Lemma 3.2.  Suppose that k[H] is a Buchsbaum ving. Then
(in(F,) = (1", V%, ¥,"1,™).

Proof.  Since (in(%,), in(%,) = (Y, ¥;?), it suffices to show that
in(gg) c (I/lbl’ Yzbz, Ylb:il}/zbn)'

Therefore, we assume that there exists an element f= Ylszb' — X% e %, such
that Y'Y, & (Y, Y,2, YY), (Note that b < by, b’ < b,.)

Let f, = Y,b'““YZb” — X% €%, be a minimal element of %, Then, by our
assumption, we have either by, > b, by, < b or by < b, by, > V.

If by > b and by, < b’, then we have a relation

gi= Y1b31—bf__ Yzb’—b32f3 _ X%Yzbl—b” . XaYIbal—b e 1,

bg1—b

Since ¥, ¥, " & (in(%,)) and Theorem 2.6, we have in(g) € (in(¥,)).

If in(g) = XY, ™" then there exists Xy’ — XY €9, such that
XY, ™" is divided by X,Y;".

Since Y, € M([(z;) :m]) € M([(x) :y,]), we have Y e (in(F,)) by
Remark 1.7 (2) and (7). Thus ¥, """ € (in(%,)) and & — by, + 1 = b,. Since
by, > 0, this contradicts that (0" — by, +1 <)b” < b,. Similarly, if in(g) =
XY’ then this contradicts that b < by,

When by, < b and by, > b, it is the same way as above. ]

CoroLLARY 3.3 (Theorem 2.3 in [9]). The following conditions are equivalent.
(1) k[H] is a Cohen-Macaunlay ving of codimension two.
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(2) Iy is generated by at most three elements.

Proof. 1f k[H] is Cohen-Macaulay, then (in([,)) is minimally generated by
at most three elements by Corollary 2.9 and Lemma 3.2. Namely, a number of
minimal Grobner bases of Iy, is at most three. Hence p(I,) < 3.

The converse follows from Theorem 4.4 in [5). ]

Now, we denote the smallest element of X(Y*) (resp. X(Y,9),
YY) by XUV (resp. X2V, X9, We put

=Y = XY, e,
= Yzb2 - Xazylcz €7,
fs — Y’1b31Y2b31 — X% e 9'3.

Remark 3.4. Since Z(X“Y,) = ¢ (resp. 2(X™Y?)), we have ¢, <b,
(resp. ¢, < by).

LemMa 3.5. If k[HI is a Buchsbaum rving and not Cohen-Macaunlay, then
dim(k[H)) = 2 and 9, = X,V — X, Y™ where (i, 7} = {1,2).

Proof. By Corollary 2.10, we have already dim(k[H]) = 2. Also, by
Theorem 2.6 and Definition 2.5, there exists XZde’ - X, Y € 9, with d, < b,,
d, < b, Since Y""' € (in(%,)), d, +1 = b,. Thus d, + 1 = b,. Similarly, we
have d, + 1 = b,

But, by (B-2) and (B-3) of Definition 2.5, if (¥;"™', ¥;"™") € 4, then (¥""},
YY) & Ay Hence we have 9, = {X,¥;""" — X,Y™"} where {i, 7} = {1,2). O

LeMMA 3.6. For {z, j} = {1,2}, if theve exists an element of the form
XY - Xy e,
Jor some d,, d,, e,, e, > 0, then there does not exist an element of the form
Xty - xtyfi e,
for any ds, d, e, e¢; > 0.
Proof. Suppose that there exist X;ZYie‘ — de‘Y,e’ € I, and de;Yje; — de;Y,-e’{

€ [, for some d,, d,, d}, d, e,, e, e, e5 > 0.
If ¢, = ¢, then we can find an element X, ¥, — X/ Y/ € I such that
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0<p,9,0=¢q,q and g < ¢}, g = ¢, (mod ¢)) in the following manner.
We write e; = me; + #, where 0 <m and 0 < 7 < ¢/ and put g’ = deije" -
XY For every 0 <1< m, we construct g, = X,;>"'2y "% — Xf‘+ld‘)’,e’_e’ S

I, as follows.

_ byvre; dyys¢e;
* g, = XY, X'y
* Assume that g,,...,g, are constructed for 0 < [ < m. Then we have
dj dy+ldy v, e~ (1+1)e]
X'g + X,y g’
d]  yrdatldyyrei—le] di+1d]y,e;—1e) dy+ldyy,rei—(U+1)¢ /v dyv 0 dy <,
:XII(XZZ ZY,e' et__Xll 1yje; e,) +X22 2Yie: e‘(XZZYj!-—XIIYi’)

_ ydytU+Ddyyre—UtDeyre _ yrdi+U+1d) v e—le
= X; Y, Y® — X Y e I,

By our assumptions (H-1) and (H-2), we have ¢; < ¢; — le] and

. ydytU+Ddyy e~ U+De,  yrdi+U+Dd] v e,—U+De
i1 = Xz Yix ‘ Xl Y; € IH‘

In particular, we have g,, = deﬁmdz’Yf - delmdi Y,efme; € .

Similarly, if ¢, < ¢/, then we can find an element X, Y]q' - X7 Y € I, such
that 0 <p,p’, 0<g¢q, ¢ and ¢’ < e, ¢ = ¢, (mode,).

Thus, by the Euclidean algorithm, we can reduce to the case ¢; = 0 or e; = 0.
But, by (H-1) and (H-2), X;* — X*Y” € I, and XY — X2 € I, for d,, d,, d,
d; > 0. This is a contradiction. Ll

Proof of Theorem 3.1. (1)=> (2). By Lemma 3.5, we have dim(k[H]) = 2 and
9y = XY - X7
where {7, 7} = {1,2}. We put & = b, — 1, b; = b, — 1. Then, by Theorem 2.6
and Lemma 3.2, we have following Grobner bases of I,
fo= VXX € 7
f =T - XX €7,
fi = YRyE—XPXE e,
g =XY'—Xxv" €9,
Since Y € M([(x) : m]) < M([(z) : y,]), Y'Y, € (in(#,)). Namely, Y=Y ®
divides Y;"¥,. Thus by, = 1. Similarly, by, = 1. Hence we have f,= Y,¥, —

XX,
We consider the following relation
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X,f — Yg= X, Y)Y, — X0 XY € I,

Since ¢; < b/ + 1 (cf. Remark 3.4), X,Y"™9Y, — XM X" € I,. If a;, = 0, this
contradicts our assumptions (H-1) and (H-2). Thus g’ = Yb‘ c’Y X 1Xa’f'1
€ [ By b;>0,Y, €(Gn(f)) = (YbH) and b] — ¢; > 0. Thus we have

bj—c;—1 b—c,—1 =1y @+l
g _ Y: —Ci— f — XlaleazYi: =1 __ Xlan Xz";z‘*' 1= IH'

Then, by (H-1) and (H-2) yimoml - xaTia gt & 1opy (YY) = g,
Hence Y™™ — X770 x4 = 0 anq 4 =a +1l,a,=a,—1,¢;=b,—
1. Then we have f; = Yb+1 X"‘HXaz Y

Similarly, f, = Y”“ XXy

Now I is generated by f;, f,, fi, & Thus, by Corollary 3.3, u(I,) = 4 and
{f, o, f5, & is a minimal basis of I

(2)= (3). Suppose that dim(k[H]) = 2 and, after the permutation of vari-
ables, I, is minimally generated by

f1 — Yb+1 Xal 2-t-lyzc—l
f,= Y2c+1 Xlal+1X22 1Y1b-1
=YY, - X! ‘sz”’
c
g=XY, —X\Y,.
Then, by Corollary 3.3, k[H] is not Cohen-Macaulay.
We verify the second assertion. For H = X;_, Nh,, we put

hy = (dy, 0), by = 0, dy), hy = (dy, dyy), hy = (dyy, dy).

Since f,;, g € I, we have hy + h, = a,h, + a,h, and h, + ch, = hy + bh, Thus
d,;, = ad;, — d,; for t = 1,2 and

bd,, = cd,, — d,
bdy, = cd,, + d,.

Solving these equations, we have

d
dn =37, @
d
dy, = —b+2c (a,ce +1)

d,

du=gf¢

(a,b+ 1)

d,
d, = ﬂ_ (a,b — D).
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We define Q-isomorphism 7 : Q@ — Q% by T(p, ) = (b + ¢) (di di>.
Then we have b

H=TH) =<b+c¢ 0,0, b+0), (ac—1,a,c+1), (ab+1,ab—1)».
(3)= (1). By the form of H, there exist elements

= Ylb+1 . Xlal—1Xzaz+1YZc—1
= Yzc+1 _ X1a1+1Xzaz—1Y1b—l
fi= 1Y, — X"X,*

g£= XZY; - XIYIb

of I.

Ciam. R, \ %, = {g}.

Since k[H] is not Cohen-Macaulay, B, \ %, # ¢ (cf. Corollary 2.9). Thus
L:=R,\%, U {g} is not empty, if Ry \F, * {g}.

If there exists g” € L, then, by Lemma 3.6, we can write g’ = X;ZY;2 —
XY where 0<d,, d, ¢, ¢, Since Y, ¥y € (in(Ip) and Y, Y2 &
(in(I)), ¢, < b and ¢, < ¢. Then we have

Yzc—ezg, _ dez—lg — )(1leel()(zdz—lylb—e1 _ del_ly;_ez) = IH-

Hence we have g, := X;7'Y,™ — X'V, ™ € I,,. Note that g, # 0 (since g’ # g).
Then, by (H-1) and (H-2), either b —¢, > 0 or ¢ — ¢, > 0.
If b — e, > 0, then we have

4y yrdg=lysb=2e; , _ 2dy-lysb=2 vr6, _ y21—1ysc—e,
Xi'g — XY, =X XY, PE

Since d,, d, > 0, we have 2d, — 1 and 2d, — 1 > 0. Also, by (H-1) and (H-2),
¢, < c¢— e Thus 0+ X 'Y/ — X'y, e I,. But this contradicts
Lemma 3.6.

If ¢ — ¢, > 0, we have a contradiction in the same way as above. Hence R, =
F, U {gh.

The proof of Claim is completed.

By Theorem 2.6 and Claim, it suffices to show that (Y}, ¥y) € Ag. Since we
have relations f,, f,, f, € Iy (Y], ¥y) satisfies condition (B-2). Also it is clear that
(Ylb, Y;) satisfies conditions (B-1), (B-4) and (B-5). Then we have only to prove
that (Y, Y5) satisfies condition (B-3).

If ¥ € M([(z) : m]) € M([(z) : z,]), then we have X, Y, — X" X,*Y,"Y,*
€ I, with Z(Y,*Yy® = ¢ and d, > 0. Since 2(¥,) = ¢, d, = 0 and, by (H-1)
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and (H-2), ¢, < b. Then we have XY, — X*'Y;2 € I,. But, by Lemma 3.6, this
is a contradiction. Hence we have Y & M([(z,) : m]). Similarly, ¥y & M([(z,) :
m]). U]

ExampLE 3.7. Let 0 < a < b < ¢ € N. We consider the following simplicial
semigroup

H={(,0), 0,0, (c—5b,0b), (c—a,a).

and the semigroup ring k[H] = k[t;, £, t;'t;, t; “£;].

In [3], H. Bresinsky, P. Schenzel and W. Vogel discussed arithmetical
Buchsbaum curves in P} and showed that k[H] is a Buchsbaum ring and not
Cohen-Macaulay if and only if

H={(dm, 0), (0, 4m), Cm—1,2m+ 1), Cm+ 1, 2m — 1))

for some m > 0 (cf. Theorem 3 in [3]).

We can verify this fact as follows.

By Theorem 3.1, if k[H] is a Buchsbaum ring and not Cohen-Macaulay, then
I, has the following minimal basis

f= Ylb1+1 _ Xlal—lXZaﬁIYsz—l
fz — Y2b2+l _ X1a1+1X2az—1 Ylbl—l
fy = 1Y, — XX,
g£= Xzyzbz - X1Y1blr
where a,, a,, b, b, € N\ {0}. In this case, these are homogeneous polynomials
with respect to the total degree. Then we have @, = a, = 1, b, = b, and

H={(@2b,0), 0,2b), b, —1,b +1), (b +1, 5 — 1)>.

If b, =2m+ 1 (m = 0), then ¥ — X"X]"*' € I,. This contradicts that
{f,, fo» fs» &} is a Grobner bases of I (cf. proof of Theorem 3.1). Hence we have
b, = 2m (m > 0) and

H={4m,0), 0,4m), Cm—1,2m+ 1), Cm+ 1, 2m — 1)>.
Also I is generated by

fl — le2m+1 _ XZYZZm—l
fz — Y12m+1 _ XIYZZm—l
L=1Y, — XX,

g£= X2Y22m - lelzm-
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Conversely, for H = {(4m, 0), (0, 4m), @m — 1,2m + 1), @m + 1, 2m
— 1)), it is easy to see that k[H] is not Cohen-Macaulay (cf. Theorem 3.8 in [9]).
Hence, by Theorem 3.1 (3), k[H] is a Buchsbaum ring. ]
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