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FACTORIZATION IN THE INVERTIBLE GROUP
OF A C*-ALGEBRA

MICHAEL J. LEEN

ABSTRACT.  In this paper we consider the following problem: Given a unital C*-
algebra A and a collection of elements Sin the identity component of the invertible
group of A, denoted invg(A), characterize the group of finite products of elements of S
The particular C*-algebras studied in this paper are either unital purely infinite simple
or of the form (A ® K)*, where A is any C*-algebra and K is the compact operators
on an infinite dimensional separable Hilbert space. The types of elements used in the
factorizations are unipotents (1+ nilpotent), positive invertibles and symmetries (s =
1). First we determine the groups of finite products for each collection of elementsin
(A® K)*. Then we give upper bounds on the number of factors needed in these cases.
The main result, which usesresults for (A® K)*, isthat for A unital purely infinite and
simple, invg(A) is generated by each of these collections of elements.

0. Introduction. In this paper we consider the following problem: Given a unital
C*-algebra A and a collection of elements Sin the identity component of the invertible
group of A, denoted invg(A), or in Ug(A) the identity component of the unitary group,
characterize the set of finite products of elements of S. The C*-algebras considered in
this paper are of the form (A ® K)*, where K is the compact operators on an infinite
dimensional separable Hilbert space and A is any C*-algebra, and unital purely infinite
simple C*-algebras.

It iswell known that for any unital Banach algebrainvg(A) is equal to the set of finite
products of exponentialsof elements of A. For the C*-algebras mentioned above we will
characterize the groups of finite products generated by unipotents, positive invertibles,
selfadjoint invertibles, symmetries and *-symmetries. A unipotent element has the form
1 + awith a nilpotent. Symmetries are elements that satisfy s> = 1. A *-symmetry is a
selfadjoint unitary.

The survey article [12] contains many similar factorization problemsin My, then x n
matrices with entriesin the complex numbers C, and L(H), the bounded operators on an
infinite dimensional separableHilbert spaceH. (In[12] symmetriesarecalled involutions
and *-symmetries are called symmetries.) For many elementsi it is easy to see that the
set of finite products will not equal invp(A). For example, if X € M, is a product of
unipotents, it must have determinant equal to 1; the determinant condition is sufficient
aswell. However, in L(H) many elements besides exponentials generateinv(L(H)), the
invertible group. Included inthislist are unipotents, positiveinvertibles, and symmetries.
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Although factorization problems have been studied extensively in My, and L(H), not
much el se has been done until recently. In [6] delaHarpe and Skandalis consider factor-
ization by commutators of elementsin both invg(A) and Ug(A), i.e., elements of the form
aba~'b~! withaand b € invo(A) and Ug(A) respectively for (A® K)*, unital purely infi-
nitesimple C*-algebraand simple AF-algebras. For A = C(X)®M,, where X isacompact
metric space, Phillips [10] characterized the group of finite productsfor the types of ele-
ments mentioned above aswell as quasiunipotents (1+ quasinilpotent), accretives (a+a*
is positive invertible), and positive stable elements (sp(a) C {A € C : Re()) > 0}). (It
should be noted that this definition of accretive differs from definitions used elsewhere.
See the comments before and after Lemma4.1 of [10].) It turns out (Theorem 4.5 (1) of
[10]) that for any C*-algebra A the accretive elements generate invg(A) and the unitary
accretives generate Ug(A). Since accretive elements are positive stable (Corollary 4.3 of
[10Q]), positive stable elements also generate invy(A).

This paper is organized as follows. Section 1 contains the characterization of the
groups of finite products generated by unipotents, podtive invertibles, and selfadjoint
invertibles in (A ® K)*. Modulo an obvious scalar factor given by the unitization, we
show that each element of invo(A ® K)* isafinite product of unipotents, positive invert-
ibles, or selfadjoint invertibles. We give a partial answer for symmetries: the group of
finite productsis characterized in K*. Upper bounds on the length of the factorizationsin
(A®K)* aregivenin Section 2. In Section 3 we apply the resultsfor (A® K)* established
in Section 1 to factorization problemsin a unital purely infinite simple C*-algebra A. We
show that all the sets of elements mentioned above are generatorsfor invg(A).

Theresultsin this paper comefrom the author’sdoctoral dissertation at the University
of Oregon under the direction of Professor N. Christopher Phillips. | would like to thank
Chris for his help and encouragement throughout the project. | am also grateful to the
referee for number of useful suggestions.

1. Stable C*-Algebras. A C*-algebraAisstableif A® K = A. In this section we
will characterize the groups of finite products generated by unipotent elements, positive
invertibles, selfadjoint invertibles, symmetries and *-symmetriesin (A @ K)*. Let  be
the canonical projection from the unitization of a C*-algebra onto C.

THEOREM 1.1. Let A be any C*-algebra. The set of finite products of unipotentsin
(A@K)*isequal to {x € invo((A®@ K)*) : m(x) = 1}.

An important techniquein many proofsin this paper will be replacing an x ininvg(A)
by an element that commuteswith a projection. The next two lemmas allow usto do this
in the proof of Theorem 1.1.

LEMMA 1.2. Let eand f be idempotents in a unital Banach algebra A such that
lle—f|| <1.

(1) Thereare unipotentsw and v such that ewv = wvf.

(2) Iflisanideal inAande—f & I, thentheunipotentsin (1) satisyw—1, v—1 € I.
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(3) If ||le—f|| < &, then the unipotentsin (1) satisfy

ee +|elDlle
1] < =(c + el e and|jv— ] < < 1DIIE
PrROOF. (1) Putw=1—(1—e€)feandv = 1+€‘f(1—€‘)(1—(e—f)z)_l.Sinceeis

idempotent, ((e — l)fe)2 = 0. Thusw is unipotent. To see that v is unipotent, one need
only observethat both e and f commute with 1 — (e — )2.
To prove that ewv = wvf it sufficesto show that

ew (1—(e—f)?) =wf (1—(e—f)).

Theleft-hand sideis ef . We get ef for right-hand side sincef commuteswith 1— (e—f)2.

(2) Using the definition of w and f? = f, we have

w—1=(e—f)fe
Similarly, for v we have
v—1l=ef(f —e)1—(e—1)?) .

Sincee—f € | itfollowsthatw—1andv— lareinl.

(3) Forw— 1, wehave

llw —1[| < [le—fF[[ |[f[| [lel] < (= +[lel])lell,

and for v — 1, we have
e +|lelDlle]]

1—e2 7
This completes the proof of the lemma. ]

LEMMA 1.3. Let Abea unital C*-algebra. Let x € A satisfy |[x — 1|| < %. If pis
a projection in A, then there are unipotents w and v in A such that wvxp = pwvx and
[[wvx — 1| < 1. Furthermore, if wvx is a product of unipotents, then sois x.

-1
[Iv—2ll < lle—fIlIf[[ llell [I(1—(e—)?) "Il <

PROOF.  Suppose||x — 1|| < %. Let p beaprojectionin A. Then
. : o k- 1
1opl < - H<2x—1 <22 T« =
et = Bl < o — pl I < 2ix— 1] | < 2T < 5

Since xpx~! and p are idempotents, by Lemma 1.2 (1) there are unipotents w and v such
that wvxpx 1 = pwv, i.e. WvXp = pwX.
To show |jwvx — 1|| < 1, first notice that by Lemma 1.2 (3), with ¢ = &, we have

1 1
—1|< = —1 < =.
w—1]| < 55 and |v—1]| < 15
So
w— 1| < [l +wv—1] < [1w] V] ix— 2]+ V] lw=1]]+[lv=1] < 1

Thelast statement is obvious. This completesthe proof. ]
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LEMMA 1.4. LetBbeaC*-algebra, andlet c € invo(B*) withc— 1 € B.
(1) Then 8 c91 is a product of 3 unipotentsin (MZ(B))+ and the order of nilpo-

tency of each factor is 2.
(2) Letc, € B, withc,—1 € Bfor all n > 1. Suppose||c, — 1|| — 0asn — oo. If

chn O . (10
0 c;l) given by (1), then ||Yn; (0 1)}

PrROOF. (1) Itiseasy to check that each term in the following factorization is unipo-
tentin (M2(B)) " and that the order of nilpotency of each term is 2.

c 0) (1 c—1\(2-ct! ¢cl-1 1 0
0 ct) (o 1 1-ct ¢! 1-c 1)

(2) If |lcan — 1| < &, then

— 0.

Vn,i isafactor of (

llen — 1| £
—|lea =1 " 1+e

llen™ =2 < Ml I len = 2] < 7

The result follows by considering the factorization in the proof of (1). This completes
the proof of the lemma. ]
Now we proceed with the proof of Theorem 1.1.

PrROOF (THEOREM 1.1). Supposex € invo((A® K)+) and 7(x) = 1. We need to
show that X is a product of unipotents. Choose pg € L(H) suchthat pp ~ 1 — pg ~ 1.
Thenp=1®@p e MA®K)andp~1—p~ 1.

Sinceinvg(A ® K)* is connected we may assumethat ||x — 1|| < . (If not, connect
x to 1 by a continuous path c.. If y; and y, are on a where ||y; — y,|| < = and y; is
a product of unipotents, then so is y».) By Lemma 1.3 there are unipotents v and w in
M(A ® K) such that pwwx = wvxp. It follows from Lemma 1.2 (2) that w and v are in
(A®@K)*.

By Lemma 1.3, replacing x by wvx, we can assume x commuteswith p and ||[x—1|| <
1. Identify (A ® K)* with Ma(p(A ® K)p)+. Under this isomorphism

(5 2)-(5 1) (o 2)

We must factor both terms as products of unipotents. Since both pg and 1 — pg were
chosen to have infinite rank, the factorization of each term is similar. The details are
given only for thefirst term.

As 1 — pg hasinfinite rank we can find projections gz, s, ... € L(H) suchthat 1 —
Po = T2,00 Gk ~ Po for al k, and the gi’s are pairwise orthogonal. Let p1 = p
and px = 1 ® k. Let wi be an isometry such that ww; = py. Identify (A @ K)* with
(A@ K @K)" usingthemap ¢: (A® K @ K)* =A@ K, defined by y © &j — wiyw'.

Combining this isomorphism with (A ® K)* 2 [Mz(p(A ® K)p)]+ we get

(g (1)) — diag(y, 1,1,...).
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Factor as follows (see the proof of Proposition 7.1 of [5])

3,y 3 YA,y yE L yE YL L)
1
8

1
2

diag(y, 1,1,...) = diag(y,y 2,y
(1) CdiagLyt vyt y iy hy

IS
<
v

where yii%f occurs 2" times on the diagonal . Each term on the right-hand side of (1) can
be factored further; the first term as

= 1 p—

diag(y?,y %,1,y,ys,ys,y8,y ¢,
@) -diag(y?, 1,y%,y3,y8,y8,y5,1,1,1,1,y

ool

and the second as

(3) diag(Ly?,yi,y i,y 4, 1,1,y ..) - diag(L yF,y4, 1,1,y 5,y 4, yE, ).

Notice that each term in (2) and (3) isin (A@ K @ K)* since ||y*# —1|| — 0asn — oo.
We factor thefirst term of (2), call it «. The factorization of the other termsis similar.
Now o has diagonal entries of the form diag(an, oy 1, 1), where

an = diaglyz@T,...,yz@ 1) € My 1(A® K)*.

By Lemma 1.4 (1) diag(am, o1, 1) can be factored as a product of unipotents in
Ms.1(A ® K)*. Thus o can be factored as a product of three unipotent infinite block
diagonal matrices. It follows from Lemma 1.4 (2) that each factor isin (A® K @ K)™.
This completes the proof of the theorem. ]

THEOREM 1.5. Let A beany C*-algebra. The set of finite products of positive invert-
iblesin (A ® K)* is equal to {x € invo((A@ K)*) : n(x) € (0,00)}.

The proof of Theorem 1.5 uses matrix factorization techniques similar to those in the
proof of Theorem 1.1. The following lemmas allow usto factor certain types of matrices
as products of positive invertibles. The proofs of both lemmas make extensive use of
Proposition 1.4.5 of [7].

LEMMA 1.6. Let Bbeaunital C*-algebra, and let | beanideal in B.
(1) Ifb € B, then é ?)
(2) Suppose b, € B and ||by|| — 0. If v, is one of the three positive invertible

1 b . 10
factors of (O 1”) given by (1), then || vni — (0 1) || — 0.

(3) If b € 1, then the three positive invertible factors of (Cl) ?) given by (1) arein
Ma(1)*.
PROOF. (1) Letty = b*h. Thenthereexistss € Bsuchthatb = S(tg)#. Putt = (t)3.

Then 1 b 1 0 1 1 0)\(1
(0 1):(0 (1+t)*1)(0 i)(o 1+t)(0 _13)

is a product of 3 positive invertible elements of M, (B).
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(1 0 1 s\(1 O 1 s\"|[(1 —s\"(1 -s

“lo @+ty*)|\lo 1)\0 1+t)\0 1 0 1 0 1)

(2) Chooses, € Basin the proof of (1) suchthat by, = sty and ||sa|| < ||ta]]- If Vni
is one of the factors of (1 b”) given by (1), then

0 1
10
’\/n'i a (0 1) |—) O.

(3) Supposeb € I. Let sandt be asin the proof of (1). Thens € |. Hence the three

positive invertible elements in the factorization of ((1) tl)) arein My(1)*. ]

LEMMA 1.7. Let B be anonunital C*-algebra.

(1) Supposey € B* withy — 1 € B. Then diag(y,y %, 1) and diag(y, 1,y ') are
products of 24 positive invertible elements of M3(B)*.

(2) Supposey;, € B withy,—1 € B,and||y,—1|| — 0.1f7,; isoneof the positivein-
vertiblefactorsof diag(yn, y; %, 1) or diag(yn, 1, y; 1), then || vni —diag(L, 1, 1)|| —
0.

PROOF. (1) Lett = ((y* — 1y'(y"* — 1))*. Then there is an s € B such that
y~1 = 1+t Noticethat 1+ tsisinvertiblewith (1 +ts) ™t = 1 —t(1+st)is=1—tys.
Factor diag(y,y?, 1) asfollows

/1 0 0
0 yt? 0 ) .

(v 0, 0y yo 0
0yt o): 01 o0 )
\o 0 1/ \o o 1+ts/\0 0 (1+t92

Thefirst termis factored as

/1 0 vys {1 00 (l 0 -s (1 0 o0
) 010)010)010)010),
\oo 1/\=to1/\oo 1/\ty o1
and the second as
{1 0 o {1 00 {1 00 {1 0 o0
() 0 1 0) 01 s) 01 0) 01 —ys).
\o -ty 1/\o 0o 1/\o t 1/\0o 0 1

Sincesandtarein Band Bisanideal in B* each of the eight factors aboveisin M3(B)™.
Use Lemma 1.6 to write each of the eight factors as products of three positive invertible
elements of M3(B)*.

For diag(y, 1,y 1) the argument is similar.

(Y 0 o (Y 0 0 /1 0 0
01 o): 0 1+ts o) 0 (L+t9? o).
ooyt \o o 1/\o o yt
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0

0)

1
and the second as

1 0 O 1 00
o2 (oo

Thefirst termis factored as

(07 S)Ki

\o o 1/\o0

or o
cor

|
oo
oo
~————

=

/é??)

\o 0 1

/1 0 O
0 1 0).
\0 —-ys 1

(2) We consider the case diag(yn, Y51, 1). The argument for diag(yn, 1,y;?) is the
same. Lett, = (Y, 1 —1)(y,1— 1)*. Chooses, sothat y, 1 — 1 = syt and |[so|| < ||ta]]. If
|lyn—1|| — 0, then the off diagonal terms of the eight unipotent factors of diag(yn, Y, 1)
given by () and (xx) in the proof of (1) go to zero. So by Lemma 1.6 (2), if vnj isa
positiveinvertible factor of diag(yn, y; 1, 1), then||vn; — diag(1, 1, 1)|| — O. This proves
the lemma. ]

PROOF (THEOREM 1.5). It sufficesto assumethat w(x) = 1and ||x—1|| < 1. Choose
aprojection p € M(A ® K) asin the proof of Theorem 1.1 suchthatp~ 1—p~ land
|A—p)(x—1)(1—p)|| < 1. Then (1—p)x(1—p) isinvertiblein [(1—p)(A® K)(l—p)r.
Identify (A ® K)* with [Ma(p(A @ K)p)]+. Under this isomorphism

(G a)-(o 1)(C a)la 1)

whereb; = bd™1, a; = a—bd~'c, andc; = d~*c. By Lemma2.3 of [2], a; isinvertible,

andbg, ¢, a1 —1,d— 1 € p(A® K)p. Lemma 1.6 allows usto factor both (é t,’ll) and

(cl Cl)) as products of three positive invertible elements of [Ma(p(A @ K)p)]+.
1

To factor (%1 g) we follow the proof of Theorem 1.1 and reduce the problem to

factoring o and o, . To factor o = diag(ag, o1, 1, a2, 051, 1, ... ) we must fit together
the factors of diag(an, o 2, 1) for each n, given by Lemma 1.7 (1), to form an element
of (A ® K @ K)*. For example, the first unipotent factor given by (x) in the proof of
Lemma 1.7 (1) will be

w(E3)61T)-)

where a;1 — 1 = t,s, asin the proof of Lemma 1.7 (2). Call this factor 3. According to
the proof of Lemma 1.7 (2), if ||an — 1|| — O, then ||t|| — 0 and ||s,|| — O. Therefore
pgisin(A® K@ K)".

By Lemmal.6, 8 isaproduct of positiveinvertibles. Letb, = ans,. Putw, = (bnb;‘,)%.
Asin the proof of Lemma 1.6 (1), choose z, so that b, = w,z,. The positive invertible
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factors of 3 have the following form:

Nl 0 0 /1 0 0
dea((0 1 o ) 01 o ))
Wo o @a+w)t/ \o 0 (@+wy)?
10 z\/10 0 10 z\*
diag//mé)/m 0 )/01 5) )
00 1/\0 0 1+w/\0 0 1

and

/(1 0 —z *(l 0 —z (l 0 —2» *(1 0 —»

dag{ |0 1 0) 01 O),Ol O) 01 O),...).
Woo 1/%00 1/ \0o0 1/ 00 1

Since ||bn|| — 0, each of these factorsisin (A ® K @ K)*. So 3 isaproduct of positive

invertible elements of (A ® K @ K)*. Similarly the other factors of diag(an, o 2, 1) will
form elements of (A @ K ® K)* which are products of positive invertibles. ]

COROLLARY 1.8. Let A be any C*-algebra. The set of finite products of selfadjoint
invertibles of (A ® K)* isequal to {x € invo((A® K)*) : m(x) € (—00,00)}.

When one considersfactorization problemsin a particular C*-algebraone might won-
der if the different factorizations have similar behavior. For example, in M, al of the sets
of finite productsfor elements considered in this paper are characterized by adeterminant
condition and are closed in inv(M,). Such is not the casefor (A ® K)™.

ExAMPLE1.9. Inany C*-algebraA asymmetry shastheforms = 2e— 1, whereeis
an idempotent. If s € K*, it iseasy to seethat either eor 1 — eisin K. In K idempotents
are finite rank since they are the identity on their range. Let F denote the finite rank
operators. Suppose x € K* is a product of symmetries. Since F isan idea in K, x has
theform f + 1 with f finite rank. Now supposethat f is afinite rank operator. Choose a
basissothat f isin My,. By Theorem 3.6 of [13], if det(f + 1,) = 1 thenf + 1, isafinite
product of symmetriesin M. Putf + 1, = Hikzls, where s isasymmetry in M;,. Note
that 5 @ lisasymmetry in K*. It follows that the set of finite products of symmetriesin
K* isnot closed in inv(K™*).

A *-symmetry hasthe form 2p — 1 with p aprojection. Argue as aboveto seethat the
group of finite products of *-symmetriesis not closed in Ug(K™).

2. Upper Boundsfor Factorizations. A companion problem to the factorization
resultsis to find an upper bound on the length of the factorization. Thishas been donein
several casesfor exponentials. Seethe survey article [11]. For several types of elements,
including unipotents, positive invertibles and selfadjoint invertibles, Phillips showed in
[10] that there is no upper bound on the lengths of the factorizationsin C(X) ® M,, where
Xisthe Hilbert Cube [0, 1]N. The purpose of this chapter is to establish upper boundsfor
the length of factorization by unipotents, positive invertibles, and selfadjoint invertibles
in stable C*-algebra. These bounds are not known to be best possible.
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In [6] (Theorem 7.4) de laHarpe and Skandalis gave this upper bound result for com-
mutators: if Aisastable C*-algebraand x € invo(A") with 7(x) = 1, then x isthe product
of at most 6 commutators of elements of invg(A). Many ideas for this section were in-
spired by Lemma 7.3 and Theorem 7.4 of [6] and their proofs.

LEMMA 2.1. Let A beanonunital C*-algebra, and let x3, X, ..., X, beinvertiblein
A XoXn—1 - - - X = 1, thenx = diag(xg, X2, ..., %n, 1, ..., 1) isa product of threeterms

10 1 t). +
oftheform(S 1) (0 1) in [MZn(A)} .
PROOF.  See the proof of Lemma 7.3 of [6]. In order to prove that x is a product of
three commutators they first show that x is a product of three such factors.

THEOREM 2.2. Let A be a stable C*-algebra. If x € invo(A*) with m(x) = 1, then x
is the product of at most 10 unipotent elements of A*.

Proor. Wefollow the proof of Theorem 7.4 of [6]. Let x € invo(A*) with m(x) = 1.
There exists aprojection p € M(A) suchthatp~1—p~ land
IA-Px—-DA—-p)I <1

Therefore (1—p)x(1—p) isinvertiblein [(1—p)A(L—p)| . Identify A* with [Ma(pAp)|".
Under this isomorphism

@ (e a)=lo D)% a)(a 3)

wherea; = a— bd~1c,b; = bd~! and ¢; = d~'c. Notethat a; isinvertiblein (pAp)* by
Lemma 2.3 of [2]. Chooses,t € pAp sothat d = 1+ st. Then

N O R (A [}

Thefirst factor on the right-hand side of (2) is

(0 P& D6 V) aier 1)

Substituting in (1) we get

R [ER T [ T [T

Now

("0 Ve 1) = (egeways 1) (0™ 1)

If weput x; = (1 +tS)ay, then

(o )6 JENEDEIEE )
DG IE DG Y

3)
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Next we want to show that )(()1 (1) is a product of unipotents. Since x; is in

invo(pAp)* with x; — 1 € pAp and pAp is stable, Theorem 1.1 allows us to write
x; = I, &, where the & are unipotent in (pAp)* fori = 1,...,n. Writing 1 — p as
the sum of 2n — 1 orthogonal projections all equivalent to p we now identify A* with
[MZH(pAp)T. Under the isomorphisms

[Ma(pAp) | = A" 2 [Man(pAp) |

we get
(’8 2) — diage, 1, ..., 1).
Now
(4)  diag(xq,1,...,1) = diag(as, @y, ..., an, 1n) diag(if[zai,agl, aaph ).

Since each g is unipotent, the first term of the right-hand side of (4) is unipotent.
By Lemma 2.1 the second factor in (4) is a product of three terms of the form

1 0\(1 t). e (% 0 .
(s 1) (0 1) in [Mzn(pAp) | .Thlsglv&s(o 1) as the product of seven unipo-

tents and hence x as the product of 11.
To get the desired number 10, let y = diag(as, a2, . . ., a,) and notice that in the fac-
torization of the second term of (4), given in the previous paragraph, the first factor has

the form (é 2) Put w = sy~ 1; then

(6 2)(52)=(w (s 3)

Finally notice that the fourth factor in (3) hastheform (i 2) in [Mz(pAp)]+. Weclaim

that in the identification with [MZn(pAp)]+ this term becomes a lower triangular matrix

with 1’s on the diagonal, call it «. To verify the claim, consider the isomorphisms
[Ma(pAp)|" = A" 2 [Man(pAp)|".

Putp; = pand1—p = 2", pi. Let v be a partial isometry such that viv, = p; and

VKV = Pk. Let v be the partial isometry such that vi'v = p and w* = 1 — p. Using the

V's, the isomorphisms above give

1 0 2n

( . 1) — (1+V2) — (\f;(l + VZ)VJ)i,j:r

Now z € pAp, vk = WViVk and the p’'s are orthogonal. So, if i = 1 orj # 1, then
vivzy; = Vi(1 — p)vzpy; = vipi(1 — p)vzppevi = O.

Therefore (v; (1 + vz)vj)iz?: . = Lo+ (vivan)?;, and o hasthe form as claimed. But then

o (vlv 2) is also lower triangular with diagonal 1's, hence unipotent. This rearrange-
ment gives x as the product of ten unipotents. ]

By modifying the above proof slightly we can get upper boundsfor the factorization
by positive invertibles and self adjoint invertiblesin a stable C*-algebra A.
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THEOREM 2.3. Let Abeastable C*-algebra. If x € invg(A*) and 7(x) > O, then xis
the product of at most 31 positive invertible elements.

PROOF. Supposex € invp(A*). Sincex = a+ A1 = (A"*a+ 1)\1, wherea € Aand
A € C, and A1 is positive and invertible we can assumethat x = a + 1.
Arguing asin the previous proof

W (o 1) (F 2o )5 2[5 3)

in[M2(pAp)|", wherex; € invo(pAp)*. Writex; = TI7_, &, wherea; ispositiveinvertible
for eachi. Passing to [Mgn(pAp)]Jr, and putting z = diag(xy, 1, . .., 1), we get

n
2) z= diag(ay, @, ..., an, lo)diag(]] &, &%, ..., ;% 1n).
i=2

Since each g; is positive invertible, the first factor is positive and invertible. Put y =
diag(ag, ay, . - ., an). Applying Lemma 2.1 to the second term of (2) yields

= DEDE NG DEDE

in [MZn(pAp)r. Combining (1) and (2), x is the product of 10 terms of the form ( (1) i)

or ( : 2) andonepositiveinvertible. By Lemma1.6 (1) eachterm of theform ( Cl) 1)

X

or ( i 2 isaproduct of three positive invertible elements. Therefore x is the product

of 31 positive invertible elements. ]
COROLLARY 2.4. LetAbeastable C*-algebra. If x € invg(A*) and m(X) € (—o0, )
then x is the product of at most 31 selfadjoint invertible elements.

3. Purely Infinite C*-Algebras. In this chapter we apply the factorization results
established in section 1 for stable C*-algebrasto factorization problemsin the invertible
group of a unital purely infinite simple C*-algebra. A C*-algebra A is purely infinite if
for al x > 0 the hereditary subalgebraxAx contains an infinite projection.

It turns out that the set of finite products of any of the classes of elements considered
above (commutators, unipotents, positive invertibles, selfadjoint invertibles, and sym-
metries), as well as others, is al of invg(A). These results are due in part to the the fact
that apurely infinite simple C*-algebra A containsa (* -isomorphic) copy of A® K asthe
following lemma (Lemma 2.3 of [5]) shows.

LEMMA 3.1. Let p bea projectionin a unital C*-algebra Awithp ~ 1 and {e;} a
system of matrix units for K. Thereisa homomorphism ¢: (1— p)A(1—p)® K — Asuch
that ¢(x ® ey1) = x, for x € (1 — pA(L — p).

A fact that will be used often in the proofs in this chapter is Proposition 2.2 of [3]: A
unital purely infinite simple C*-algebra A contains two orthogonal projections p and q
suchthatp~ g~ 1inA
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THEOREM 3.2. Let A be a unital purely infinite simple C*-algebra. Then invg(A) is
the set of finite products of unipotent elements of A.

PROOF.  Supposex € invg(A). Choose orthogonal projections p and g in A such that
p ~ g~ 1 Asin the proof of Theorem 1.1, we may assumethat ||x — 1|| < x. Then
by Lemma 1.3 we may assume that xp = px and ||[x — 1|| < 1. With respect to the
decomposition1 = p @ (1 — p) write

X= (pép 1Ep) (3 (1—p)g(l—p))

Call thefirst factor on the right-hand side x; and the second x,. Each must be factored as
aproduct of unipotents.

Wehavex; — 1 € pAp. Use Lemma 3.1 to choose a homomorphism ¢: ((1 — AL —
q)®K)+ — A.Sincep < 1—qwehave¢((x—1)@ey ) = x—1.Now ((x—1)@en)+1 €
invo((A ® K)") and by Theorem 1.1 it is a product of unipotentsin (A @ K)*. Thusxis
aproduct of unipotentsin A.

For the second factor, sincex; — 1 € (1 — p)A(1 — p) we can replace (1 — q)A(1 — q)
by (1 — p)A(1 — p) in the above argument. ]

THEOREM 3.3. Let A be a unital purely infinite simple C*-algebra. Then invg(A) is
the set of finite products of positive invertible elements of A.

Given a projection pin A and x € invg(A), the next lemma will allow us to employ
our usual tactic of replacing x by an element that commutes p.

LEMMA 3.4. If pand g are projectionsin a unital C*-algebra Awith ||p—q|| < 1,
then there are positive invertible elements ay, a;, a3, a4, as, ag € A so that

p(nf[lan) — (rﬁlan)q-

PrROOF. Replacing e by p and f by g, let w and v be the unipotents defined in
Lemmal.2 (1). We claim that

@ v= (Vi) ) (Ve+ V)L 3p)
and
@ W= (1~ 2w ) () o+ D).

Since the right hand side of both (1) and (2) is a product of three positive invertibles,
one need only check the claimed equalities. Recall from the proof of Lemma 1.2 (1) that
v=1+pq(l— p)(l —(p— q)z)f1 andw = 1 — (1 — p)gp, and that pg(1 — p) commutes
with (1 —(p— q)z)_l, which gives vp = p. The calculations are straightforward using
these facts. ]
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PrROOF (THEOREM 3.3). Supposex € invp(A). Let u be the unitary part of the polar
decomposition of x. It sufficesto show that u is aproduct of positiveinvertibles. Choose
orthogonal projectionsp and q in A such that p ~ q ~ 1. It suffices to assume that
|lu— 1| < 3 and so ||upu* — p|| < 1. Since upu* is a projection apply Lemma 3.4 to
find positive invertible elements ay, az, a3, a4, as, ag € A so that

o{[Lan)u= ([T 2w

By the proof of Lemma3.4,T18_, a, = wv, wherew and v areasin Lemma 1.3. Therefore
if [Ju—1|| < %, thenby Lemma 1.3
6
(T 0 )u—1/| = [[wu—1]| < 1.
n=1

Replacing u by (T18_; an)u, wemay assumeup = puand |[u—1|| < 1. (However, umight
no longer be unitary.) Proceed now asin the proof of Theorem 3.2 and use Theorem 1.5
to factor u as a product of positive invertibles. ]

So far in this chapter our proofs have relied on the factorization results for (A @ K)*.
Recall that in Chapter 1 it was shown that factorization by symmetriesin K* does not
turn out as nicely asthe factorization by commutators, unipotents or positive invertibles.
However, in unital purely infinite simple C*-algebras the difficulties present in the (A ®
K)* case can be overcome.

THEOREM 3.5. Let A be a unital purely infinite simple C*-algebra. The set of finite
products of symmetriesin Aisinvy(A).

PROOF. Suppose a € invg(A). Let p be anontrivial projection in A. Choosev € A
suchthat vi'v = pand w* < pand put p; = p — w*.

First we show that without loss of generality we can assume a commuteswith p;. By
Lemma4.2 (1) of [8] thereis an e such that for any idempotent e € Alif ||p1 —€|| < ¢
then there isa symmetry s € A so that py = ses. It sufficesto assume [|a — 1|| < 5.
Then ||p1 — ama™?|| < e and, since ap;a~? is an idempotent, there exists asymmetry s
such that pysa = sap;. Replacing a by sa, we may assume ap; = p;a.

Write a in matrix form with respect to the decomposition 1 = p; @ (1 — p1),

a— ( p1ap: 0 )
0 (A-plal—py))°
Letx=piap; andd = (1 — pr)a(l — pa).
X 0
0 1-p
Choose a projection qg € Asuchthat 1 — p; ~ go < p:. Let h be a partial isome-
try such that h*h = 1 — p; and hh* = qo. We have (o + 1 — p)A(Qo + 1 — py) &

Mz((1— pr)A(1— p1)). We can factor ( g dgl) € M2((1— p2)A(1— py)) asaproduct

Now we show that it suffices to assume a = and X € invo(p1ApL).

of symmetries as follows

HORER ]
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Under the isomorphism
d O d O
(O dfl) H((;) dfl) € (Go+1—p)A(do+1—p1),

do

where dg = hdh*. Let zg = ( 0

symmetriesin A.

Now
az— (X O)(Pi=CG+do 0 _ (% O
o d 0 dal) o 1)’

anda,z € invg(A). Soaz € invo(A). Since K1 (A) = inv(A) /invo(A) (Theorem 1.9 of [4]),

Xo isininvg(p1Apy). Therefore, replacing aby az, we may assumethata = ( é 1 0 o )
— M

dgl) and z = p; — Qo + 2. Then z is a product of

and x € invo(p1Ap1).
Choose aprojection qin A sothat p ~ q < 1 — p and then choose aprojectionr in A
sothat g ~r < 1—p—q.Letvs and v, be partial isometries which satisfy

VIVi =P, ViV] =, VoVo =, andVovp =T,

Let vz = vivi. Thenvivs = r and vav; = p.

Letw = vi + Vv, + wsa. In order to build the first of three copies of p;Ap; ® K in
(p+g+nA(p+q+r) wedefineaninfinite collection of projectionsusing w and p;. Let
Pk = Wp_aW, for k > 2, and we = W< tpy. Then wwi = px and wiwi = pg, and
the py’s are orthogonal equivalent projections which satisfy psn—2 < p, pan-1 < ¢ and
pan < r,forn>1.

Define x:p1Ap1 @ K — (p+q+ 1A +q+r) by y ® 6 — wyw;. Extend x to
(P AP @ K)" by 11— p+q+r.

Next we produce two other copies of plApl @Kin(p+qg+r)A(p+q+r). For each
n choose orthogonal equivalent projections {e3n ,1j=1,...,4"1} suchthat ps,—» ~

ee,n—z
gt
Pan—2 = Z]_ eg%_z-
=

Thenputed) , = w(el)_,)w anded) = (eg%fl)v\f*, for eachnandj, and order thee!’s
asfollows: €, &V, &V, &7, ..., &, e, . ... Usethe partial isometrieswhichimplement
the equwalences Pan_p ~ egr)1 5 and Pan_2 ~ pl to define partlal isometriesrY) _, so that
r(Jr)1 (9 =m and (r3n—2) 9, = el andputrd | = rd w and rd =
3n JW*. Then usether! r ’’sto define ¢1: (p1APL @ K)* — (p+q+ AP +q+r).

Similarly choose orthogonal equivalent projections {fi(”} suchthat p; = fl(l) and

2.40-1)

P3n-1 = Z f3n 11
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forn > 1. Thenput £ = w(fQ)_ )w* andf{,, = w(f{))w", for any nandj. Order the
fsasfollows:

S A S O A TS A AT (LN A

Using the partial isometrieswhichimplement f 9 ~ £ = p;, define ¢,: (p1APL@K)* —
(p+q+nA(p+qg+r).
Now we turn to the factorization of a. Letro = 1 — (p+q+r). By the definition of ¢;
we have
¢i(diag(x, 1,1,...)) = ¢i(diag(x — p1,0,0,...) +1)
=X—pr+tp+q+r
=a—To,

fori = 1,2. If a—rg isaproduct of symmetriesin (p+qg+r)A(p+qg+r),thenaisa
product of symmetriesin A.
Recall from the proof of Theorem 1.1 that

1

diag(x, 1,1,...) = diag(x?,x 2,1, X%, X5, ¢, X
Cdiag(x?, 1,x %, x3,x, xb, x#,1,1,1,1,x°¢,...)
-diag(1,xF, X3, x4, x7%,1,1,X%, ..
-diag(1, x*, x#,1,1,x %, x "1, X, ..

Call the factors by, by, bs, and b, respectively. We must factor each b; as a product of
symmetries. For the factorizations of bs and by replace ¢; by ¢, in the following ar-
gument. The factorization for b, is similar to that of b;. We check the details only for
b;.

The set of bounded sequencesof the product I1;2; M3 (M- (p1Apy) ) isaC*-algebra
when given the norm ||an|| = supy||aq||- If welet x, be the diagonal 4"~ x 4"~1 matrix
with all diagonal entries equal to xz-z:%, then

by = (diag(xe, x; 4, 1), diag(e, %, %, 1), ..., diag(n, X, -, 1), ... ),

iSinTIY, Mg(M4n71(pllAp1)) since ||, — 1|| — 0, ask — oo.
Put g = \I\f§n72<egr)172)W3n_2. Then ¢ ~ p; for al j and Zj"fll g = p1- Sowe can
define an isomorphism between M1 (p1Ap1) and p1Aps. Let @, be the extension of this

isomorphism to the 3 x 3 matrices over these algebras and define

s
s

® =[] @5 : [] Ms(Mg1(p1Ap1)) — [T Ma(prApy).
n=1

1 1

>
Il
>
Il

Since @, is an isomorphism and ||x, — 1|| — 0, ask — oo it follows that

[|n(diag(xn, x;*, 1) — 1|| — O.
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Put diag(cn, €y %, 1) = Py (diag(xn, ;% 1)). Then
¢ = diag(cy,c; % 1,661, 1,¢3, ..

isin (ptApL ® K)*, and x(c) isin (p+ g+ )A(p+q+r).
By the definitions of y and ¢1,

X(O) = (3 Wac-2lG = PWac o *+ W 1(6 " — POWay ) + (P +1)

and
oo A1 1 : : -1 i
61(b1) = 35 (3 T 20T — porgy, + 10T —purdly ) + (p+a+)
n=1"j=

Using these definitions one can check that x(¢) = ¢1(b) and so it suffices to show that
x(c) isaproduct of symmetriesin (p+q+r)A(p+q+r).
Fork = 1,2 or 3, let u, = W< 1p. Then

b, ifk=1
Uil = p(WH)<w1p = p and uu, = W tppw)<t = { q ifk=2,
r, ifk=3

and we have an isomorphism (p + g+ r)A(p + q + r) — Ms(pAp) defined by
X — (U X2y

The image of x(c) under this isomorphism has the form diag(a, a2, p) in M3(pAp).
To see this first note that if y € pAp theny — diag(y,0,0). If z € gAq then z —
diag(0, uszu,, 0). Now for every k > 1,

Wa—2(Ck — PUW5_, € PAp and wa_1(C* — P1)Wy,_1 € GAG.

Also uswa o = pw*w*3p; = pw*~2p; = wy,_1. So under theisomorphism x (c) maps

to
( (Zﬁil Wak—2(Ck — pl)Wék_z) +p 0 0
0 (Zﬁil Wak—2(Ct — pl)Wék_z) +p O

Call thismatrix 3. Let
a= (Z Way_2(Ck — pl)V\fgkfz) +p.
k=1

Then
at= (kZ Wa2(Cict — PL)Wa_) +P-
=1
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(2 0 0\ (0 «0)0p o
g={0 ot o): alOO)pOO>.
\o o p/ Vo o p/looop

Each term on the right hand side is a symmetry in M3z(p1Ap;). So a — rg is a product
of symmetriesin (p+qg+r)A(p+q+r). Thusais aproduct of symmetriesin A. This
completesthe proof of the theorem. ]

Before summarizing the unital case let us say a few words about the nonunital case.
The next theorem, due to Zhang, allows usto apply the results of Section2to Aif Aisa
nonunital o-unital purely infinite simple C*-algebra.

PROPOSITION 3.6. (THEOREM 1.2(1) OF [14]). If Aisac-unital purely infinite simple
C*-algebrathen either Aisunital or Ais stable.

We return now to the unital case. The next two theorems summarize the known results
for generators of invg(A) and Ug(A).

THEOREM 3.7. Let A be a unital purely infinite simple C*-algebra. The following
sets are generatorsfor invg(A).

(1) Exponentials.

(2) Unipotents.

(3) Quasiunipotents.

(4) Positive invertibles.

(5) Selfadjoint invertibles.

(6) Symmetries.

(7) Commutators of elements of invy(A).

(8) Accretive elements.

(9) Positive stable elements.

PrOOF. (1) Thisiswell known and true evenif A is aBanach algebra. See Propo-
sition 3.4.3 of [1].

(2) and (3) Theorem 1.1.

(4) and (5) Theorem 1.2.

(6) and (7) Theorems2.1 and 7.4 of [6].

(8) and (9) Theorem 4.5 (1) of [10]. ]

THEOREM 3.8. Let A be a unital purely infinite simple C*-algebra. The following
sets are generatorsfor Ug(A).

(1) Exponentials of skew adjoint elements.

(2) Commutators of elements of Ug(A).

(3) *-symmetries.

(4) Accretive unitaries.

PrROOF. (1) Thisistrue for any C*-algebra. See Proposition 3.4.5 of [1].
(2) Proposition 7.7 of [5].
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(3) Usethe proof of Theorem 2.1. Replace Lemma 2.3 by Lemma 1.3 (1) of [8]. If
a € Up(A) then

( 0O o O
al 00
0O 0 p
isa*-symmetry as « isS now unitary.
(4) Theorem4.5 (1) of [10]. L]
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