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ABSTRACT

This paper investigates some models in which non-negative observations from
a Poisson or generalised Poisson distribution are possibly damaged according
to a binomial or quasi-binomial law. The latter case is appropriate when the
observations are over-dispersed. Although the extent of the damage is not
known, it is assumed that the event of whether or not damage occurred is dis-
cernible. The models are particularly suited for certain applications involving
accident counts when evidence of certain accidents may be observed even though
the accidents themselves may go unreported. Given the number of observed
accidents and knowledge as to whether or not some additional accidents have
gone unreported, these models may be used to make inferences concerning the
actual number of unreported and total number of accidents in the current period,
and the numbers of reported, unreported, and/or total accidents in a future
period. The models are applied to a real data set giving reported and unreported
patient accidents in a large hospital. Both maximum likelihood and Bayesian
estimation methods are presented and discussed.

KEYWORDS

Accidents, Bayesian, damage, Markov chain Monte Carlo, generalised Poisson,
quasi-binomial, survival distribution, unreported.

1. INTRODUCTION

Let X be a non-negative integer-valued random variable, with probability mass
function (pmf) Pr(X = x) This random variable is said to be damaged if X =
Y + Z, where Z is a non-negative integer-valued unobservable random vari-
able representing the amount of damage and Y is the observable part of X .
An example commonly used to illustrate this particular situation concerns the
number of eggs laid by an insect. Let X denote the total number of such eggs.
By the time the eggs are counted it is possible that some of the eggs may be
lost or destroyed, so that only the total number of intact and undamaged eggs
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is recorded. If this total is denoted asY, then it is reasonable to callY the undam-
aged part of X and X – Y = Z the damaged part of X. Many other natural
phenomena fit this model framework. For example, insect damage to seeds in
plants could result in a known and observed number of undamaged seeds and
an unknown number of lost or destroyed seeds. In this paper, the particular
interest is on the total number of accidents X when the number of accidents
may be decomposed into reported accidents Y and unreported accidents Z
(e.g., automobile guardrail collisions that are reported to the police, and those
that are not).

Damage models of the sort described in this paper may be of value to an
insurer whenever it appears that some accidents are going unreported. For
example, consider an aging oil refinery. Many small fires and breakdowns may
be going unreported, in order to avoid unnecessary attention from government
agencies and environmental protection groups. The insurer may be primarily
interested in the number of reported accidents in future periods that will result
in insurance claims. If some accidents are going unreported, evidence of this
fact is available (either directly or from secondary sources such as a trade union
or employee association’s newsletter), and some knowledge of the reporting
mechanism (i.e., the survival distribution as it is defined in the next paragraph)
can be introduced into the modelling framework (particularly but not neces-
sarily through a Bayesian analysis), then better estimates of future reported
accident counts should result. Unreported accidents may also suggest an accu-
mulation of unsafe working practices, and an accumulation of unsafe working
practices may lead to more numerous (and possibly more serious) reported
accidents in future periods. This would appear to be knowledge that an insurer
should want to include in its loss prediction models.

Suppose X = Y + Z as before. Given X = x, the conditional distribution
Pr(Y = y | X = x) is known as the survival distribution in the damage model
literature. Given the survival distribution, under what circumstances will it
characterize the distribution of X, and vice versa? A number of papers have
investigated this problem, many of which are referenced in Rao and Shanbhag
(1982). In particular, Rao and Rubin (1964) proved that when the survival dis-
tribution Pr(Y = y|X = x) is binomial (x,f) (i.e., so that every component of X
is independently and equally likely to be undamaged with fixed probability f),
the random variable Y is such that

Pr(Y = y) = Pr(Y = y |X =Y ) = Pr(Y = y|X > Y ) (1.1)

(NB, the conditional distribution of Y, given no damage, is the same as the mar-
ginal distribution of the undamaged part Y of X) if and only if X has a Poisson
distribution. Furthermore, if X is a Poisson random variable with parameter q,
then Y and Z are Poisson variables with parameters fq and (1 – f)q, respec-
tively, and Y and Z are also independent (Krishnaji, 1974). Srivastava and Sri-
vastava (1970) proved that if X has a Poisson distribution and if (1.1) is satisfied,
then the survival distribution must be binomial.
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Charnet and Gokhale (2004) consider the situation in which X is Poisson
with parameter q, with a binomial (x,f) survival distribution determining the
number of these observations Y that are undamaged, and Z denoting the
remainder (i.e., the number of damaged observations). Charnet and Gokhale
(2004, page 261) further suppose that whenever an observation of Y is made
on the (possibly damaged) random variable X, it is possible to identify whether
some damage has occurred, although not the actual amount of said damage.
The indicator random variable D is now introduced and defined to take on the
value 1 if damage is observed to have taken place, and 0 otherwise. Observe
that the event [D = 0] is equivalent to the event [Z = 0], and [D = 1] is equiva-
lent to [Z > 0]. From the earlier discussion, it follows that Y and D are inde-
pendent with

y
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for y = 0,1,2,…, and 

Pr(D = 0) = Pr(Z = 0) = e– (1 – f)q,

Pr(D = 1) = Pr(Z > 0) = 1 – e– (1 – f)q.

Hence,

Pr(Y = y, D = d ) = e–fq
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where y and d are the sample means of the yi and di values, for i = 1, 2, …, n,
respectively. Hence, the likelihood equations are given by
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These likelihood equations can be solved explicitly and the resulting maximum
likelihood estimators are

q = y – ln(1 – d ) (1.2)
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(1.3)

Charnet and Gokhale (2004) study the properties and behaviour of these maxi-
mum likelihood estimators. They illustrate their results using a data set of
reported monthly accident counts for an energy company in Sao Paulo, Brazil,
artificially adjusted in order to simulate unreported accidents.

This paper will introduce a more general case of the damage model described
above for use when the counts have unequal exposures associated with them,
introduce an alternative damage model based on a generalised Poisson distri-
bution and a quasi-binomial distribution that may be more appropriate when
the counts are overdispersed, and consider how to implement the maximum
likelihood estimation and the Bayesian analysis of these models. Given the num-
ber of observed accidents and knowledge as to whether or not some additional
accidents have gone unreported, these models may be used to make inferences
concerning the actual number of unreported and total number of accidents in
the current period, and the numbers of reported, unreported, and/or total acci-
dents in a future period. The results are illustrated using a real data set describ-
ing reported and unreported patient accidents in a large acute study hospital.
Henceforth, at least for the most part, this paper will discuss these damage mod-
els in the context of reported and unreported accidents. However, it should be
understood that the models are more generally applicable.

2. THE CASE OF UNEQUAL EXPOSURES

The case of unequal exposures is easily addressed. Let the total number of
accidents X have a Poisson distribution with mean wq. The parameter q is the
mean accident rate per unit of exposure and w denotes the units of exposure
associated with X (e.g., number of employees, number of hours worked, paid
premium, etc.). Suppose that X = Y + Z, with Y and Z denoting the number
of reported and unreported accidents, respectively. Assume that a particular
accident is independently and equally likely to be reported with fixed probabil-
ity f so that the survival distribution Pr(Y = y|X = x) is binomial (x,f). From
the discussion in the previous section, it follows that Y and Z are Poisson vari-
ables with parameters wfq and w (1 – f)q, respectively, and Y and Z are also
independent.

Suppose that whenever an observation of Y is made on X, it is possible to
identify whether some accidents have gone unreported. The actual number of
unreported accidents is not known. Let the indicator random variable D take on
the value 1 if an unreported accident is observed to have taken place, and 0
otherwise. The event [D = 0] is equivalent to the event [Z = 0], and [D = 1] is
equivalent to [Z > 0]. It follows that Y and D are independent. Further,
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for y = 0, 1, 2, …, and d = 0, 1.
Based on a random sample (yi, di), i = 1, 2, …, n, with associated exposures
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The solution to these equations defines the maximum likelihood estimators q
and f. It is evident that they reduce to (1.2) and (1.3) in the special case that
wi = 1, for i = 1,2, …, n.

It should be noted that when all of the di values are equal to 0, i.e., when
no accidents go unreported, the maximum likelihood estimate of f is one, and
the maximum likelihood estimate of q is the same as if we had observed a sam-
ple of the random variable X, i.e., q = x /w (cf. Charnet and Gokhale, 2004).

3. THE GENERALISED POISSON AND QUASI-BINOMIAL DISTRIBUTIONS

The model described in the previous sections assumes a Poisson distribution
for the total number of accidents X, and a binomial survival distribution for
Y given X = x. The Poisson distribution has its theoretical mean equal to its
variance, and may not be appropriate if the sample variance of the observations
greatly exceeds the sample mean (i.e., if the data is over-dispersed). It is well
known that many real life data sets are over-dispersed and many of the discrete
distributions used for accident counts and insurance claim frequencies share
this property (e.g., see Klugman, Panjer, and Willmot, 2004). The generalised
Poisson (also known as the Lagrangian Poisson) distribution (GPD) is an over-
dispersed generalisation of the basic Poisson model that has found application
in many different contexts (Consul, 1989), including those involving accident
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counts and insurance claim frequencies as in Ambagaspitiya (1998), Amba-
gaspitiya and Balakrishnan (1994), Famoye, Wulu, and Singh (2004), Ntzoufras,
Katsis, and Karlis (2005), Scollnik (1995a, 1998), and Vernic (1997, 2000).

The GPD is a two-parameter discrete distribution with its pmf given by

Pr(X = x) = q (q + xl)x – 1

!y
e xq l- -

, (3.1)

for x = 0, 1, 2, …, and zero otherwise, with q > 0 and 0 ≤ l < 1 (Consul, 1989).
This distribution is such that

E X l
q

1=
-

] g and 3aV r X
l

q
1

=
-

]
]

g
g

,

so its variance is always larger than or equal to its mean. The GPD reduces to
the standard Poisson distribution with mean q when l = 0. Some authors allow
l < 0 in order to permit cases in which the variance is smaller than the mean
(e.g., Ambagaspitiya and Balakrishnan, 1994; Famoye and Consul, 1995; Ver-
nic, 1997). In this case, the support of X will need to be truncated and, strictly
speaking, the pmf rescaled (cf. Consul and Shoukri, 1985; Consul and Famoye,
1989). It should be noted that the expressions given above for the mean and
variance, along with virtually all of the other theoretical results that have been
obtained for the GPD, are only valid when 0 ≤ l< 1, although this has not always
been made clear in the literature (e.g., Alzaid and Al-Osh, 1993; Famoye and
Consul, 1995). Henze and Klar (1995, page 1877) and Scollnik (1998, page 137)
discuss this issue in more detail. In this paper, it will be assumed that 0 ≤ l < 1.

Consul (1975a, 1975b, 1989) developed a number of characterizations of the
GPD in the context of a damage model. Several of these involve a quasi-bino-
mial distribution (QBD) (Consul and Mittal, 1975; Consul, 1989; cf. Consul,
1974). The QBD in question is a discrete distribution with its pmf given by

,Pr X x
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for x = 0, 1, …, n, and zero otherwise, with 0 ≤ f ≤ 1, and 0 ≤ z ≤ 1. This reduces
to the binomial pmf when z = 0. To be very precise on this matter, (3.2) is the
pmf associated with a QBD of type II (Consul and Mittal, 1975; Consul, 1989,
pages 27-28). The mean of this distribution is nf. Although a simple expres-
sion for its variance does not exist, it is simple enough to calculate given the
finite support and discrete nature of this distribution. This distribution will
have positive or negative extra-binomial variation depending upon the values
of f and z. Also, note that Consul and Mittal (1975, page 71) have derived a
complicated formula, along with upper and lower bounds, for the variance.

Assume the same set-up for the damage model as before. That is, let X be a
non-negative integer-valued random with X =Y + Z, where Z is a non-negative
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integer-valued unobservable random variable representing the amount of damage
and Y is the observable part of X. If the survival distribution Pr(Y = y|X = x)
is a QBD with pmf

,Pr Y y X x
x
y x x

y
x
x y

z
f f

z
f z

z
f z

1
1

1 1
1y x y1 1

= = =
+

-

+
+

+

- + -- - -

^ c
^

d
^ ^

dh m
h

n
h h

n (3.3)

for y = 0, 1, …, x, and zero otherwise, with 0 ≤ f ≤ 1, and 0 ≤ z ≤ 1, then the ran-
dom variable Y is such that

Pr(Y = y) Pr(Y = y |X =Y ) Pr(Y = y | X >Y ) (3.4)

if and only if X has a GPD with parameters q and l = zq, that is,

Pr(X = x) = q (q + xzq )x – 1

!y
e xq z- - q

,

for x = 0, 1, 2, …, and zero otherwise, with q > 0 and 0 ≤ zq < 1 (Consul, 1975a;
Consul, 1989). Furthermore, if X has a GPD with parameters q and zq, then Y
has a GPD with parameters fq and zq, Z has a GPD with parameters (1 – f)q
and zq, and Y and Z are independent (Consul 1975a). Finally, if X has a GPD
with parameters q and zq and condition (3.4) is satisfied, then the survival dis-
tribution must be a QBD (Consul 1975a; Consul 1989).

4. THE NATURE OF REPORTED AND UNREPORTED ACCIDENTS

AND THE QBD

It goes without saying that not all accidents are reported. For example, con-
sider the case of traffic accidents. Morocoima-Black, Chavarra, and Cruse
(2001) note that not all traffic accidents are reported to police. In particular,
they observe that many jurisdictions have thresholds of property damage below
which crashes are not investigated. In other instances, motorists may not report
crashes for fear of increased insurance rates. Also, crashes on private property
may go unreported. There are many other reasons why accidents, traffic-related
or otherwise, may go unreported. It may be that an individual experiencing
an accident may not know to whom the accident should be reported. Or the
individual may not even realise that such an accident should be reported in the
first place.

A binomial survival distribution for the number of reported accidents
assumes that each accident is independently and equally likely to be reported.
However, this is often not the nature of the reporting process for accidents.
For example, various safety incentive programs, or schemes, have been identified
by which employers may attempt to hide their safety problems in order to reduce
costs and escape the notice of regulatory authorities. One such program is a
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safety bingo or raffle that awards prizes to employees, but only employees with
no reported accidents are allowed to participate in the prize drawing. Another
scheme goes by the name of ‘‘Safety Monopoly’’. In this, management assigns
workers to teams and then each week each team advances one step towards win-
ning prize money. But if one member on a team reports an accident or injury,
then the entire team is penalized for that week by not moving ahead a step.
Schemes such as these may contravene the assumptions underlying a binomial
survival distribution for reported accidents.

It has been argued that living beings and leaders of groups of living beings
may target a certain number of successful events, act and plan their efforts
accordingly, and consequently adjust the probability of success proportionately
to the number of successes aimed at (Consul, 1975a, page 556). Safety incentive
programs of the sort described in the paragraph above could be an example
of this sort of behaviour, as they may encourage groups to target zero reported
accidents. On the other hand, one can imagine scenarios in which groups of
workers are encouraged by their union or workers association to fully report
all accidents; otherwise, unsafe workplace conditions may go unidentified and
unremedied. Consul (1975a, pages 555-556) notes that the GPD and QBD
share a property in that the probability of success of an event varies propor-
tionately to the number of successes targeted, as evidenced by (3.1) and (3.3).
For this reason, it is useful to explore a damage model based on the GPD and
QBD in the accident reporting context. Of course, it is also advantageous that
the GPD permits over-dispersion, and that the QBD permits positive or nega-
tive extra-binomial variation, as mentioned previously.

5. AN OVERDISPERSED GENERALISED POISSON DAMAGE MODEL

Based on the discussion in the sections above, it is theoretically legitimate and
contextually reasonable for us to base a damage model for reported and unre-
ported accidents on the GPD, with a QBD survival distribution. Taking this
to be the case, suppose the total number of accidents in a period associated
with one unit of exposure has a GPD with parameters q, q > 0, and l, 0 ≤ l < 1.
If X denotes the number of accidents in a period associated with w units of
exposure, then X has a GPD with parameters wq and l, based on the convolu-
tion property of the GPD (Consul, 1989, page 14). As before, let X = Y + Z,
withY and Z denoting the number of reported and unreported accidents, respec-
tively. Under the assumed damage model, the random variable Y has a GPD
with parameters wfq and l , Z has a GPD with parameters w (1 – f)q and l,
and Y and Z are independent. Also, the survival distribution Pr(Y = y|X = x) is
a QBD with parameters f and z and pmf as given by (3.3) (NB, l = zq as before).

Once again, assume that it is possible to identify whether some accidents
have gone unreported whenever an observation of Y is made on X. The actual
number of unreported accidents is not known. Let the indicator random vari-
able D take on the value 1 if an unreported accident is observed to have taken
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place, and 0 otherwise. The event [D = 0] is equivalent to the event [Z = 0],
and [D = 1] is equivalent to [Z > 0]. It follows that the random variables Y and
D are independent. Further,

Pr(Y = y, D = d ) = wfq (wfq + yl )y – 1

!y
e w yfq l- -

(5.1)
≈ (1 – e– w (1 – f)q )d (e– w (1 – f)q )1 – d,

for y = 0, 1, 2, …, and d = 0, 1.

5.1. Maximum likelihood estimates

Based on a random sample (yi, di), i = 1, 2, …, n, with associated exposures wi,
i = 1, 2, …, n, the log-likelihood function L is given by
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where y is the sample mean of the yi values, for i = 1, 2, …, n, and w =
i 1=

/ni

n

w!

is the average exposure. The resulting likelihood equations are not readily simpli-
fied and cannot be explicitly solved. However, the maximum likelihood esti-
mates, their standard errors, and confidence intervals for the model parame-
ters f, q, and l may be obtained through direct numerical means. Klugman,
Panjer, and Willmot (2004, Sections 12.2 and 12.3, and Appendix F) describe
some numerical approaches used in maximum likelihood estimation. The nec-
essary values may also be obtained with the assistance of standard statistical
software such as the ‘stats4’ or ‘Bhat’ packages of functions for use in R. (R is
a language and environment for statistical computing and graphics. See www.
r-project.org and cran.r-project.org for the R software and related information,
including downloadable manuals. In particular, see the manual by Venables,
Smith, and the R Development Core Team (2005) for an introduction to R.)

5.2. Bayesian approach

A Bayesian method of statistical inference interprets all unknown model para-
meters as random variables in their own right. Depending upon one’s point of
view, this interpretation may be an honest one or it may be more akin to an
operational assumption. In either case, the mathematics of the analysis remain
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the same. A Bayesian analysis determines the conditional distribution of any
unknown model parameters and/or future observations, given the observed data
and the available prior knowledge. The Bayesian approach has been recom-
mended by many authors for a number of reasons. It facilitates common-sense
interpretations of statistical conclusions such as confidence intervals on para-
meters and P-values, and may improve on the properties of classical estima-
tors in terms of the precision of estimates (Gelman, Carlin, Stern, and Rubin,
2004, page 3; Congdon, 2001, pages 1-2). Bayesian methods automatically deal
with nuisance parameters (i.e., parameters in the model that are not of inter-
est), unlike frequentist methods. By its nature, Bayesian statistics is predictive
and automatically incorporates parameter uncertainty into the predictions;
again, unlike conventional frequentist procedures. For more information on
these latter points, refer to Bolstad (2004, page 7).

Makov, Smith, and Liu (1996) observed that ‘statistical methods with a
Bayesian flavour, in particular credibility theory, have long been used in the
insurance industry as part of the process of estimating risks and setting premi-
ums’. In recent years, many authors have used Bayesian methods to implement
actuarial models. Examples of this include Cairns (2000), Ntzoufras and Della-
portas (2002), Ntzoufras, Katsis, and Karlis (2005), Rosenberg and Young (1999),
Scollnik (1998, 2001), and Verrall (2004). Makov (2001), and the discussants
of his paper, detail many other applications of Bayesian methods in actuarial
science.

If a Bayesian analysis of our damage model is sought, then a prior distri-
bution must be set forth for the unknown parameters in the model. However,
rather than expressing the prior distribution in terms of q, l, and f, it may be
more convenient to elicit and describe the prior in terms of easily interpretable
functions of these parameters instead. For example, let

m = E (Y ) = l
fq

1 -
, (5.2)

d =
a
E

r
l1

1
2=

-Y
YV

]

]

]g

g

g
, (5.3)

and

j = Pr(Z = 0) = e– (1 – f)q . (5.4)

Observe that m > 0, d > 0, and 0 ≤ j ≤ 1. Here, m is the mean number of reported
accidents, d is the index of dispersion (i.e., the ratio of the variance to the mean)
associated with the number of reported accidents, and j is the probability of
there being zero unreported accidents, all assuming one unit of exposure, and
given the model parameters. Bearing in mind that q > 0, 0 ≤ l < 1, and 0 ≤ f ≤ 1,
the inverse relations are given by

lnq
d

m
j= - ^ h,
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l
d

1 1
= - ,

and

ln
f

m d j
m

=
- ^ h

.

Presumably, an experienced practitioner familiar with the context of the prob-
lem under investigation will be able to describe one or more of the parameters
m, d, and j in terms of a moderately informative prior distribution on the basis
of his or her past experience. If not, it may be possible to obtain prior infor-
mation on the basis of a pilot study or an industry wide survey, depending on
the nature of the particular problem at hand. As m is a positive parameter, it
might be assigned a gamma prior distribution. As the parameter j represents
a probability, it might be assigned a beta distribution. The parameters for these
prior distributions should be set in accordance with the prior information that
is available. If significant prior information is simply not available, then rela-
tively spread out versions of these distributions might be adopted in the same
manner as in many of the default examples provided with the WinBUGS soft-
ware (see below). Specifically, m might be assigned a gamma(0.01, 0.01) prior,
and n might be assigned a beta(1, 1) (i.e., uniform) prior. Note, Scollnik (1995b)
previously examined a variety of priors for use with d in the context of the GPD.
If the prior is expressed in terms of m, d, and j, then

, , , , , ,
, ,

p pq l f m d j
q l f
m d j

2

2
=^ ^

^

^
h h

h

h
,

where

4, ,
, , e

q l f
m d j

l
q
1

2 ( )f q1

2

2
=

-

- -

^

^

]h

h

g
.

When l = 0 (i.e., in the case of the standard Poisson damage model), the cor-
responding result is

, , ,
,

p pq f m j
q f
m j

2

2
=^ ^

^

^
h h

h

h
,

where

,
,

e
q f
m j

q ( )f q1

2

2
=

- -

^

^

h

h
.

The Bayesian analysis may be implemented using a Markov chain Monte
Carlo (MCMC) method as described in Gelman et alia (2004). The Bayesian
numerical example described in the next section was implemented using the
software package WinBUGS (Spiegelhalter, Thomas, Best, and Gilks, 1996;
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Spiegelhalter, Thomas, Best, and Lunn, 2004). WinBUGS is a program for
implementing the Bayesian analysis of complex statistical using MCMC tech-
niques. See www.mrc-bsu.cam.ac.uk/bugs and mathstat.helsinki.fi/openbugs
for the WinBUGS software and related information, including on-line manuals.
Scollnik (2001) describes the use of the WinBUGS software in extensive detail,
in the particular context of actuarial modelling. WinBUGS is also described,
and illustrated with many examples, in the texts by Gelman et alia (2004), and
Congdon (2001, 2003).

6. NUMERICAL ILLUSTRATION: ACCIDENTS TO PATIENTS IN HOSPITAL

Sutton, Standen, and Wallace (1994) investigated the incidence of reported
and unreported patient accidents in a large acute study hospital. Data was col-
lected over three widely spaced study days, in the form of a 10-ward sample.
The reported and unreported accident counts are reported in Table 1, along
with the occupied bed days (OBD) of the study patients. The OBD divided by
1000 serves as the measure of exposure.

In order to illustrate the models developed in this paper, we will ignore the
actual observed number of unreported accidents appearing in the fifth column
when fitting the models and only make use of the fact whether or not unreported
accidents were observed to have taken place. It is important to bear the above
in mind throughout the discussion below. This data set is particularly useful
from an illustrative perspective as the actual observed unreported accident
counts can be used to monitor the predictive performance of the models. How-
ever, Sutton et alia (1994, page 48) suggested that the actual observed count
of 26 unreported accidents was likely to have been an underestimate of the ‘true’
frequency of unreported patient accidents, and suggested no less than seven
reasons why this should be the case. Some of these reasons hold out the pos-
sibility that the numbers of unreported accidents could be vastly understated.
For example, unreported accident patients were often multiple accident patients.
If a patient had several falls before a doctor’s examination, one report form
was made to cover the entire lot so that the second and subsequent falls had
no accident report forms at all. For this reason and others, the actual numbers
of unreported accidents may greatly exceed those given in Table 1.

6.1. A maximum likelihood based analysis

To begin with, we apply the basic Poisson damage model (2.1) to the data in
Table 1 in the manner described in the paragraph above. The resulting maxi-
mum likelihood estimates (and their estimated standard errors) are q = 12.014
(2.028) and f = 0.687 (0.099). The 95% confidence intervals for q and f are
(8.720, 17.227) and (0.479, 0.851), respectively. The maximum value of the log-
likelihood is L* = – 38.121. Next, we apply the generalised Poisson damage model
(5.1) to the same data. The maximum likelihood estimates (and their estimated
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standard errors) are q = 7.185 (2.014), l = 0.585 (0.152), and f = 0.477 (0.138).
The 95% confidence intervals for q, l, and f are (4.030, 12.411), (0.302, 0.901),
and (0.231, 0.731), respectively. The maximum value of the log-likelihood is
L* = – 29.170. (All of these estimates, standard errors, confidence intervals and
log-likelihood values were obtained numerically in R, making use of the ‘stats4’
package of functions mentioned earlier.) Note that the value of Akaike’s infor-
mation criterion, equal to – 2L* + 2* (number of parameters), is 80.243 for the
basic Poisson damage model and 64.338 for the generalised Poisson damage
model, thus strongly suggesting that the latter is the preferred model.

Conditional on the maximum likelihood estimates, we can examine the
fitted Poisson and generalized Poisson distributions for the number of reported,
unreported, and total accidents in all wards, assuming 5935 OBD of study
patients as in Table 1. (NB, we proceed on the basis of ‘all wards’ summaries
for clarity and brevity of presentation. The overall results and conclusions are
unchanged if we examine the results on a ward by ward basis.) Summary mea-
sures for the number of reported, unreported, and total accidents under both
fitted models are reported in Table 2. The probability plots for the fitted mod-
els appear in Figures 1 and 2. At first blush it may appear that the generalised
Poisson model vastly overstates the possible number of unreported accidents,
given that only 26 unreported accidents appear in Table 1. However, recall
from the earlier discussion that the observed count of 26 unreported accidents
is very possibly a gross undercount. With this in mind, it appears more likely
that the basic Poisson model is understating the possible number of unreported
accidents. Thus, it is reassuring that Akaike’s information criterion recom-
mended the generalised Poisson damage model over the basic Poisson damage
model.
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TABLE 1

DATA ON REPORTED AND UNREPORTED PATIENT ACCIDENTS

Ward number OBD study Number of Unreported Number of
number patients reported accidents accidents unreported accidents

1 1661 8 Yes 11
2 410 10 Yes 6
3 515 2 Yes 3
4 421 0 Yes 2
5 577 6 Yes 1
6 321 8 Yes 1
7 730 12 Yes 1
8 668 3 Yes 1
9 532 0 No 0
10 100 0 No 0

Total 5935 49 26
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Maximum likelihood estimates are equivalent to the Bayesian posterior
modes that result under locally uniform prior distributions. Hence, the fitted
distributions in Table 2 and Figures 1 and 2 are the same as the Bayesian predictive
distributions for the number of reported, unreported, and total accidents,
conditional on the posterior modes under these flat noninformative priors.
We will now consider a Bayesian analysis making use of more informative
prior distributions.

6.2. A Bayesian analysis

The following illustrative Bayesian analysis of the data will assume that the
parameters m, d, and j, as defined by (5.2), (5.3), and (5.4), respectively, are all
a priori independent. The parameter m is assigned a gamma prior distribution
with mean of 10 and standard deviation equal to 5. The prior distribution for
the parameter j is taken to be beta, with mean of 0.25 and standard deviation
equal to 0.2. These two prior distributions are mildly informative, but they still
assign significant prior probability to a wide collection of possible values for
the parameters m and j. Following Scollnik (1995b), the random quantity d – 1
is assigned an exponential prior distribution with a rate of 0.5 in the case of the
generalised Poisson damage model (5.1). Of course, the parameter d is simply
set equal to 1 (i.e., l = 0) in the case of the basic Poisson damage model (2.1).

The Bayesian analysis was implemented using MCMC in WinBUGS, and
the corresponding WinBUGS code is provided in the Appendix. The analysis
was run twice, once for the basic Poisson damage model (2.1), and again for
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TABLE 2

ACCIDENT COUNTS FOR THE BASIC AND GENERALISED POISSON DAMAGE MODELS

FITTED BY MAXIMUM LIKELIHOOD

Accidents Summaries for the basic Poisson model

(all wards) Mean SD 2.5% Median 97.5%

Reported 48.99 7.0 36 49 63
Unreported 22.32 4.72 14 22 32

Total 71.3 8.45 55 71 88

Accidents Summaries for the generalised Poisson model

(all wards) Mean SD 2.5% Median 97.5%

Reported 49.01 16.87 22 47 87
Unreported 53.74 17.66 25 52 94

Total 102.76 24.43 61 101 156
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FIGURE 1. Probability functions for the number of reported, unreported, and total accidents
according to the basic Poisson model fitted by maximum likelihood.
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Figure 2. Probability functions for the number of reported, unreported, and total accidents according to
the generalised Poisson model fitted by maximum likelihood.

9130-06_Astin_36/2_07  06-12-2006  13:51  Pagina 478

https://doi.org/10.2143/AST.36.2.2017930 Published online by Cambridge University Press

https://doi.org/10.2143/AST.36.2.2017930


the generalised Poisson damage model (5.1). The MCMC simulations were
monitored for convergence using methods described in Gelman et alia (2004).
We also monitored the Gelman-Rubin convergence statistic, as modified by
Brooks and Gelman (1998), that is implemented in WinBUGS. Convergence
diagnostics in CODA (Convergence Diagnostics and Output Analysis) were
also monitored, and no problems with convergence were identified. (CODA is
a suite of functions which can be used to analyze the output from WinBUGS.
An implementation of CODA is available for use with R, and is available from
the BUGS websites mentioned earlier in this paper, or from www-fis.iarc.fr/coda.)
In all cases, the results were checked using a number of different initial conditions.
Scollnik (2001) extensively details the process of running a model in WinBUGS,
monitoring its output, assessing convergence of the simulation, and discusses
CODA and the alternative Bayesian Output Analysis Program (BOA) (www.
public-health.uiowa.edu/boa) in more depth. Scollnik (2001) may be referenced
for more information on these various topics.

Our final inferences are based on four independent chains of simulated
values, run for 50,000 iterations apiece, following 10,000 burn-in iterations.
Estimated posterior summary statistics (i.e., posterior mean, standard deviation,
and 2.5%, 50%, and 97.5% percentiles) for the model parameters are reported
in Table 3. The Deviance Information Criterion (DIC), a combined measure
of model complexity and fit, was also monitored (Spiegelhalter et alia, 2002).
The DIC is 80.819 for the basic Poisson damage model, and is 63.964 for the
generalised Poisson damage models. The WinBUGS User manual states that
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TABLE 3

ESTIMATED POSTERIOR SUMMARY STATISTICS FOR THE BASIC AND GENERALISED

POISSON DAMAGE MODELS

Parameter
Estimates for the basic Poisson model

Mean SD 2.5% Median 97.5%

q 10.26 1.242 7.975 10.21 12.85
f 0.8146 0.0418 0.7245 0.8178 0.8873
m 8.368 1.156 6.262 8.315 10.79
j 0.1656 0.0703 0.0543 0.157 0.3254

Parameter
Estimates for the generalised Poisson model

Mean SD 2.5% Median 97.5%

q 5.849 1.178 3.788 5.767 8.382
l 0.5116 0.0991 0.2999 0.5189 0.684
f 0.669 0.0808 0.4948 0.6753 0.8087
m 8.208 2.063 4.715 8.016 12.82
d 4.759 2.083 2.04 4.321 10.02
j 0.1658 0.0709 0.0538 0.1569 0.3262

9130-06_Astin_36/2_07  06-12-2006  13:51  Pagina 479

https://doi.org/10.2143/AST.36.2.2017930 Published online by Cambridge University Press

https://doi.org/10.2143/AST.36.2.2017930


‘‘the model with the smallest DIC is estimated to be the model that would best
predict a replicate dataset of the same structure as that currently observed’’.
Hence, these results suggest that the generalised Poisson damage model (i.e.,
with l > 0) is to be preferred over the basic Poisson damage model in this par-
ticular case.

In addition to the posterior inferences for the model parameters described
above, some posterior predictive inferences were also implemented. In partic-
ular, posterior predictive draws (as discussed in Gelman et alia, 2004) were
obtained for the reported, unreported, and total accidents counts, asuming
5935 total OBD of study patients as in Table 1. Summary statistics are reported
in Table 4, and the posterior predictive plots appear in Figures 3 and 4. Recall that
there were originally 49 reported and 26 unreported accidents. From Table 4
and Figures 3 and 4, it is apparent that the actual observed count of 49 reported
accidents looks to be plausible under both the basic and generalised Poisson
models. However, the actual observed count of 26 unreported accidents only
appears to be plausible under the generalised Poisson model. Observe that
the 95% predictive probability interval for the number of unreported accidents
under the generalised Poisson model is (6,58), suggesting that a number higher
than 26 unreported accidents would still be plausible under this model. Under
the basic Poisson model, the 95% predictive probability interval for the num-
ber of unreported accidents is (4, 21). Again, we recall Sutton et alia’s (1994,
page 48) suggestion that the actual observed count of 26 unreported accidents
was likely to have been an underestimate of the ‘true’ frequency of unreported
patient accidents. All in all, we must conclude that the generalised Poisson
model outperforms the basic Poisson model when both are applied to the
patient accident data under consideration.
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TABLE 4

ESTIMATED PREDICTIVE ACCIDENT COUNTS FOR THE BASIC AND GENERALISED

POISSON DAMAGE MODELS

Accidents Estimates for the basic Poisson model

(all wards) Mean SD 2.5% Median 97.5%

Reported 49.67 9.847 32 49 70
Unreported 11.24 4.327 4 11 21

Total 60.92 10.76 41 60 83

Accidents Estimates for the generalised Poisson model

(all wards) Mean SD 2.5% Median 97.5%

Reported 48.82 19.8 18 46 95
Unreported 23.99 13.65 6 21 58

Total 72.81 24.84 35 69 132
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FIGURE 3. Bayesian predictive distribution for the number of reported, unreported and
total accidents according to the basic Poisson model.
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FIGURE 4. Bayesian predictive distribution for the number of reported, unreported and
total accidents according to the generalised Poisson model.
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Earlier, we suggested that an experienced practitioner familiar with the con-
text of the accident reporting problem under study should be able to describe
one or more of the parameters m, d, and j in terms of a moderately informa-
tive prior. The informative priors used in our illustrative Bayesian analysis were
selected with this in mind. However, the analysis was also repeated using less
informative priors. In the various cases we studied, the generalised Poisson dam-
age model consistently won out.

7. CONCLUDING REMARKS

Readers requiring assistance with the maximum likelihood estimation or with
the WinBUGS code described in this paper are encouraged to contact the author.
Note that the WinBUGS code is available at a website listed in the Appendix.

As previously mentioned, Scollnik (2001) is an excellent resource for those
new to WinBUGS. For those requiring additional background information on
Bayesian methods in general, the books by Gelman, Carlin, Stern, and Rubin
(2004), and Congdon (2001, 2003) are all highly recommended. These books
also emphasise the use of WinBUGS for Bayesian modelling. Klugman, Panjer,
and Willmot (2004, Section 12.4) discuss Bayesian methods in the context of
various actuarial loss models.

Incidentally, the result that the random variables Y and Z are independent,
given the underlying model parameters as in Section 1 and 3, may be surprising
and unintuitive, but this is a consequence of the very reasonable assumptions
of the binomial (or quasi-binomial) survival distribution in conjunction with
the Poisson (or generalised Poisson) distribution for the total number of counts.
That these sensible assumptions lead to the independence of Y and Z, given
the model parameters, is one of the interesting features of the damage models
described in this paper. (NB, it should be observed that the Bayesian posterior
predictive distributions of future Y and Z values given the observed data will
not generally be independent.) If these assumptions really do not appear to be
reasonable in the context of a particular problem, then the damage models
described in this paper may not be appropriate. Poisson and generalised Poisson
models incorporating a reporting mechanism that leads to dependent random
variables Y and Z might serve as the focus of a future paper.
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APPENDIX

WINBUGS CODE FOR THE DAMAGE MODELS

The following code is available at

www.math.ucalgary.ca/~scollnik/abcd/damage

# Data
list(N = 10, upper.limit = 200,

y = c(8, 10, 2, 0, 6, 8, 12, 3, 0, 0),
d = c(1, 1, 1, 1, 1, 1, 1, 1, 0, 0),
w = c(1.661, 0.410, 0.515, 0.421, 0.577,

0.321, 0.730, 0.668, 0.532, 0.100)

)

# Initial values

list(mu = 5, deltaminus1 = 1, eta = 0.2)
list(mu = 5, deltaminus1 = 3, eta = 0.4)
list(mu = 10, deltaminus1 = 2, eta = 0.4)
list(mu = 15, deltaminus1 = 0.5, eta = 0.6)

# Main model code

model
{

### Likelihood function:

for(i in 1 : N) {
zero[i] <- 0
zero[i] ~ dpois(negloglik[i])

negloglik[i] <- (
- log(w[i] * theta * phi)
- (y[i] - 1) * log(w[i] * theta * phi + y[i] * lambda)
+ w[i] * theta * phi
+ y[i] * lambda
+ loggam(y[i] + 1)
- d[i] * log(1 - exp(- w[i] * theta * (1 - phi)))
+ (1 - d[i]) * w[i] * theta * (1 - phi)

)
}

### Define parameter relations:

theta <- mu / sqrt(delta) - log(eta)
lambda <- 1 - 1 / sqrt(delta)
phi <- mu / (mu - sqrt(delta) * log(eta))
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### Prior on (mu, delta, eta):

mu ~ dgamma(mu.a, mu.b)
mu.mean <- 10
mu.var <- 25
mu.a <- mu.mean * mu.b
mu.b <- mu.mean / mu.var

# Assign delta <- 1 for the standard Poisson model.
delta <- deltaminus1 + 1
deltaminus1 ~ dexp(deltaparm)
deltaparm <- 0.5
# The parameter deltaparm could be stochastic rather than fixed.
# deltaparm ~ dexp(0.05)

eta ~ dbeta(4.4375, 13.3125) # mean = 0.25, sd = 0.1, var = 0.01

### This code defines the predictive draws x.pred, y.pred,
and z.pred:

w.sum <- sum(w[1:N])
x.pred <- y.pred + z.pred

y.pred <- y.pred.tmp - 1
y.pred.tmp ~ dcat(y.pred.probs[1:upper.limit])

for(j in 1 : (upper.limit-1)) {
y.pred.probs[j] <- w.sum * theta * phi *
exp(yprobstmp[j]) yprobstmp[j] <- (

((j -1) - 1) * log(w.sum * theta * phi + (j -1) * lambda)
- w.sum * theta * phi - (j -1) * lambda
- loggam((j -1) + 1)

)
}
y.pred.probs[upper.limit] <- 1 - sum(y.pred.probs[1:(upper.limit-
1)])
z.pred <- z.pred.tmp - 1
z.pred.tmp ~ dcat(z.pred.probs[1:upper.limit])

for(j in 1 : (upper.limit-1)) {
z.pred.probs[j] <- w.sum * theta * (1 - phi) *
exp(zprobstmp[j]) zprobstmp[j] <- (

((j -1) - 1) * log(w.sum * theta * (1 - phi) + (j -1)
* lambda)
- w.sum * theta * (1 - phi) - (j -1) * lambda
- loggam((j -1) + 1)

)
}
z.pred.probs[upper.limit] <- 1 -
sum(z.pred.probs[1:(upper.limit-1)])
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