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Total and static temperature statistics in
compressible turbulent plane channel flow
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The paper studies the statistics of total and static temperature (total ht and static h
enthalpy) in compressible turbulent plane channel flow using direct numerical simulations
(DNS) data covering the range of centreline Mach numbers 0.3 � M̄CLx � 2.5 and
Huang–Coleman–Bradshaw friction Reynolds numbers 100 � Reτ� � 1000. For this class
of very-cold-wall flows, the DNS data for correlation coefficients and joint probability
density functions (p.d.f.s) show that h′

t is invariably very strongly correlated with the
streamwise velocity fluctuation u′, in contrast to static temperature (static enthalpy h′)
whose correlation with u′ weakens rapidly with increasing wall distance. We study various
correlations and joint p.d.f.s of h′

t and h′ in relation to the fluctuating velocity field,
including the turbulent Prandtl number PrT , and discuss the predictions of Reynolds
analogy. The scaling of the mean enthalpy and the fluctuating enthalpy variance and fluxes
with respect to inner and outer velocity scales is investigated. The complex behaviour and
scaling of different terms in the transport equations for the enthalpy variance and fluxes
are discussed.

Key words: turbulent boundary layers, compressible turbulence, turbulent convection

1. Introduction

Numerous direct numerical simulations (DNS) studies of compressible wall turbulence,
in both channels (Coleman, Kim & Moser 1995; Foysi, Sarkar & Friedrich 2004;
Modesti & Pirozzoli 2016; Yao & Hussain 2020) and boundary layers (Duan, Beekman
& Martín 2011; Pirozzoli & Bernardini 2013; Zhang, Duan & Choudhari 2018) have
provided data for turbulent correlations that are difficult to measure with accuracy near
the wall (Smits & Dussauge 2006), and in the case of correlations between higher-order
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derivatives (Gerolymos & Vallet 2014; Suman & Girimaji 2013) are impossible to obtain
experimentally. It is somehow surprising that relatively little has been reported on total
temperature T ′

t (total enthalpy h′
t) correlations with the fluctuating velocity field u′

i. The
aim of this paper is the systematic study of h′

t statistics in compressible turbulent plane
channel (TPC) flow using DNS data.

Independently of the particular bivariate thermodynamics model used for the equation
of state, total and static enthalpy are related by

ht := h + 1
2 uiui =⇒

{
h̄t = h̄ + 1

2 ūiūi + 1
2 u′

iu
′
i,

h′
t = h′ + ūiu′

i + 1
2

(
u′

iu
′
i − u′

iu
′
i

)
,

(1.1a)

readily implying relations for variances and fluxes

h′
tu′

i = h′u′
i + ūju′

ju
′
i +

3oMs︷ ︸︸ ︷
1
2 u′

ju
′
ju

′
i, (1.1b)

h′2 = h′2
t + ūiūju′

iu
′
j − 2h′

tu′
iūi −

(
h′

tu′
iu

′
i − ūiu′

iu
′
ju

′
j

)
︸ ︷︷ ︸

3oMs

+ 1
4

(
u′

iu
′
iu

′
ju

′
j − u′

iu
′
i u′

ju
′
j

)
︸ ︷︷ ︸

4oMs

, (1.1c)

= h′2
t − ūiūju′

iu
′
j − 2h′u′

iūi −
(

h′u′
iu

′
i + ūiu′

iu
′
ju

′
j

)
︸ ︷︷ ︸

3oMs

− 1
4

(
u′

iu
′
iu

′
ju

′
j − u′

iu
′
i u′

ju
′
j

)
︸ ︷︷ ︸

4oMs

, (1.1d)

where h is the static enthalpy, and ui ∈ {u, v, w} are the velocity components in a Cartesian
reference frame xi ∈ {x, y, z}. The usual notations (·) = (·) + (·)′ = (̃·) + (·)′′ are adopted
for Reynolds or Favre averages and fluctuations, and Einstein’s summation convention
of repeated indices is applied. The presence of the fluctuation of turbulence kinetic
energy 1

2 (u′
iu

′
i)

′ := 1
2 u′

iu
′
i − 1

2 u′
iu

′
i in the expression for h′

t in (1.1a) introduces higher-order
moments (HoMs): 3-order moments (3oMs) for the fluxes (1.1b) and also 4-order moments
(4oMs) for the variances (1.1c). The implication of (1.1) is that total h′

t statistics cannot
be reconstructed with DNS accuracy from static h′ statistics unless all HoMs are also
acquired. It is more practical to sample h′

t statistics directly.
In the classic paper on the strong Reynolds analogy (SRA), Morkovin (1962) identified

the assumption of negligible root mean square (r.m.s.) h′
trms

as the major structural default
of the approximation (Gaviglio 1987), in disagreement with measurements (Kistler 1959).
Available data (Guarini et al. 2000; Shahab et al. 2011) show that for an adiabatic wall
(T̄w � Tr, where Tr is the adiabatic wall recovery temperature), h′

trms
/h′

rms = O(1) in
a large part of the layer. As the wall temperature cools down from the adiabatic wall
temperature Tr (it is more precise and Mach-independent to say as the non-dimensional
wall flux gradient [dūh̄]w/ūδ , where ūδ is the mean velocity at the wall layer edge,
increases) the ratio h′

trms
/h′

rms increases relative to the adiabatic level (Debiève et al. 1997,
figure 11, p. 56). Turbulent boundary layer (TBL) DNS data (Shahab et al. 2011, figure 15,
p. 387) for adiabatic (T̄w = Tr) and isothermal (T̄w = T̄δ = 0.67Tr) walls shows that there
is a very important decrease of h′

rms with wall cooling, rather than a strong increase
of h′

trms
. The wall is even cooler for compressible TPC flow, the ratio Tr/T̄w increasing

very strongly with centreline Mach number M̄CLx (Gerolymos & Vallet 2023, figure 6,
p. A19-15), inducing a slight increase of the ratio h′

trms
/h′

rms (Huang, Coleman & Bradshaw
1995).
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In contrast to this relatively small volume of data for h′
t statistics, there is a very large

volume of data for the turbulent Prandtl number PrT , both experimental (Meier & Rotta
1971; Bagheri, Strataridakis & White 1992; Wardana, Ueda & Mizomoto 1995) and DNS
(Coleman et al. 1995; Guarini et al. 2000; Bernardini & Pirozzoli 2011; Duan et al. 2011;
Shahab et al. 2011; Zhang, Duan & Choudhari 2017; Huang, Duan & Choudhari 2022).
These data, covering a wide range of Mach numbers and wall temperature conditions (from
very cold to very hot walls) in TBLs and TPCs, indicate that PrT diminishes from a value
∼1 in the buffer layer to a value ∼0.7 in the wake region, showing little sensitivity to the
flow conditions. They also show that the wall-normal flux (h′v′ or ρh′′v′′) is systematically
opposed to the temperature gradient dyT̄ , whereas the streamwise flux (h′u′ or ρh′′u′′)
is systematically of the same sign as the temperature gradient dyT̄ (Shahab et al. 2011,
figure 17, p. 388). The data also agree that the absolute value of the streamwise flux
correlation coefficient |ch′u′ | drops from values near ∼0.9 close to the wall to lower values
�0.5 at δ (Guarini et al. 2000; Bernardini & Pirozzoli 2011; Huang et al. 2022).

These data contradict the SRA, which postulates (Morkovin 1962; Gaviglio 1987; Huang
et al. 1995) an instantaneous relation h′ ∝ u′ ⇒ |ch′u′ | = 1, independently of the particular
proportionality function. Regarding this proportionality function, the most successful
choice is due to Huang et al. (1995), with the sgn(dūh̄) fix of Guarini et al. (2000) allowing
the accommodation of both cold and hot walls. Gaviglio (1987, (27), p. 915) remarks
that truncating to 2-order moments (2oMs), the relations (1.1) imply in parallel flow that

h′2
t � h′2 + ū2u′2 + 2ū u′

rms ch′u′ , and show how the value of the correlation coefficient
ch′u′ (which, as discussed above, admits large variations) impacts the ratio h′

trms
/h′

rms
(Gaviglio 1987, figure 3, p. 916). This relation also implies that when |ch′u′ | � 1, whether
h′

trms
/h′

rms � 1 is decided by sgn(ch′u′). However, the departure of |ch′u′ | from unity
observed in the data can be incorporated only in a correlation-based Reynolds analogy
that does not postulate an instantaneous relation between h′ and u′, but uses relations
and approximations for correlations and correlation coefficients instead. Decomposing the
instantaneous h′ into a correlated (with u′) and an uncorrelated part (Zhang et al. 2014)
does not solve the problem as it requires further assumptions on the uncorrelated part.

To obtain less cold wall conditions while maintaining the computationally advantageous
streamwise invariance of the flow, some authors include an artificial heat-sink source term
in the energy equation (Coleman et al. 1995; Yu, Xu & Pirozzoli 2020; Modesti et al. 2022)
or apply different upper/lower wall temperatures (Morinishi, Tamano & Nakabayashi
2004; Lusher & Coleman 2022). In the present work, we concentrate on canonical TPC
flows (Coleman et al. 1995) between symmetric isothermal walls (Song et al. 2022).

The DNS database (Gerolymos & Vallet 2023) used to acquire h′ statistics and h′
t

statistics in compressible TPC flow is described in § 2. In § 3, we discuss the effect of
frictional heating on the mean flow and compare with other DNS data available in the
literature. In § 4, we study the (Reτ�, M̄CLx) dependence of the profiles of variances (§ 4.3),
correlation coefficients (§ 4.4) and joint probability density functions (p.d.f.s) with the
streamwise velocity (§ 4.5). The data can be analysed (§ 4.3) in terms of the correlation
coefficients for h′

t and h′ transport (§ 4.1) and of the turbulent Prandtl number (§ 4.2).
In § 5.1, we investigate the accuracy of the SRA for the class of canonical TPC flows
studied, and discuss its inherent limitations (§ 5.2). For the canonical TPC flows studied,
the very strong (h′

t, u′) correlation revealed by the DNS data (§ 4.4) can be exploited to
close the truncated to 2oMs relations, and develop correlations specific to this class of

978 A25-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
34

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1034


G.A. Gerolymos and I. Vallet

very-cold-wall flows (§ 5.2). In § 6, we study briefly the transport equations for the variance
and fluxes of h′, and discuss their scaling with (Reτ�, M̄CLx). Finally, in § 7, we summarise
the conclusions of the present work and discuss possible perspectives for the extension of
a correlation-based Reynolds analogy approach to general parallel flows.

2. DNS data

The DNS code (Gerolymos, Sénéchal & Vallet 2009, 2010) used to acquire the data solves
the compressible Navier–Stokes equations with perfect gas constant cp thermodynamics,
for which the fluctuations of enthalpy h′ are proportional to the fluctuations of temperature
T ′:

p = ρRgT,

cp = γ

γ − 1
Rg

⎫⎬⎭ =⇒
{

h′ = cp T ′,
a = √γ RgT,

(2.1)

where Rg = 287.04 m2 s−2 K−1 is the gas constant for air, γ = 1.4 is the isentropic
exponent for air, cp is the heat capacity at constant pressure, p is the pressure, ρ is the
density, T is the temperature, and a is the sound velocity. Linear molecular constitutive
relations are used for the viscous stresses and heat fluxes, with μb = 0 bulk viscosity,
and Sutherland laws for the dynamic viscosity μ(T) and the heat conductivity λ(T)

(Gerolymos 1990).
Following Coleman et al. (1995), the TPC flow computations apply constant wall

temperature Tw = const. for all t, and bulk density ρB := (
∫∫∫

𝔙 ρ dx dy dz)/ |𝔙| = const.
for all t (Gerolymos et al. 2010, (47), p. 791), and adjust the body acceleration fVx at every
subiteration to obtain at statistical convergence of the computations a target bulk mass flow
(Gerolymos et al. 2010, (48), p. 791), which as ρB is constant is tantamount to applying a
target-mass-averaged bulk velocity uB = (ρu)B/ρB (table 1).

Although the above conditions fix for each computation the target bulk Mach number
MBw and bulk Reynolds number ReBw (table 1), these parameters were chosen carefully
during the construction of the database (Gerolymos & Vallet 2023) to obtain systematic
variation of the Huang–Coleman–Bradshaw (HCB) friction Reynolds number Reτ�

(Huang et al. 1995) and the streamwise centreline Mach number M̄CLx :

M̄CLx :=
(

uCL

aCL

)
, 0.3 � M̄CLx � 2.49,

Reτ� := ρ̄CL

μ̄CL

√
τ̄w

ρ̄CL
δ, 100 � Reτ� � 1000,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.2)

instead, as these parameters (2.2) are more generally relevant, especially with regard
to TBLs. The computational box size was Lx × Ly × Lz = 8πδ × 2δ × 4πδ, where
{x, y, z} are the {streamwise, wall-normal, spanwise} Cartesian coordinates (the lower
wall is located at y = 0) with corresponding velocity components {u, v, w}. Details on
computational resolution and statistics sampling frequency and interval were reported in
Gerolymos & Vallet (2023, table 1, p. A19-8). Results with the DNS solver used (statistics
for moments of order 2 and 3, budgets for Reynolds stresses and their dissipation tensor,
spectra) have been validated systematically by comparison with other available DNS data
(Gerolymos et al. 2010; Gerolymos, Sénéchal & Vallet 2013; Gerolymos & Vallet 2016).
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ũ C

L
)ρ

u/
ρ

u C
L

dy
is

th
e

m
om

en
tu

m
th

ic
kn

es
s;

Re
B

w
:=

ρ
B

u B
δ/

μ̄
w

is
th

e
bu

lk
R

ey
no

ld
s

nu
m

be
r;

M
B

w
:=

u B
/
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The present data on mean and fluctuating temperature are in very good agreement with
available data in the databases of Modesti & Pirozzoli (2016) and Yao & Hussain (2020).
The consistency of the statistical convergence of the computations is examined and
compared with other DNS data in § 3.3. Relevant h′

t statistics and p.d.f.s were acquired
directly, with sampling at every computational time step. All moments present in the
exact relations (1.1) were also acquired, and the budgets of (1.1) were checked to verify
convergence of the statistics.

Following (Huang et al. 1995), inner scaling was based on the system of units defined
by

(·)� − units : {τ̄w, ρ̄( y), μ̄( y)}, (2.3)

following accepted practice in compressible wall turbulence (Trettel & Larsson 2016), and
were plotted against

y� :=
ρ̄( y)
√

τ̄w

ρ̄( y)
y

μ̄( y)
. (2.4)

It should be stressed here that when presenting terms including derivatives in (·)� units,
there is no transformation of the variables implied or used, but simply the term is made
non-dimensional in (·)� units.

3. Frictional heating and mean enthalpy

Before analysing the h′
t and h′ correlations, it is useful to identify the parameters

characterising the thermal turbulence structure (§ 3.1) and to verify the consistency and
accuracy of the computations (§ 3.3).

3.1. Frictional heating

The mean flow equations in the case of steady (∂t(·) = 0) streamwise-invariant (∂x(·) = 0)
compressible TPC (∂z(·) = 0) flow between two isothermal walls and equation of state
(2.1) read (Huang et al. 1995; Gerolymos & Vallet 2014)

ρv = ρ̄ṽ = 0, (3.1a)

d
dy

(
−ρu′′v′′ + τ̄xy

)
+ ρfVx = 0 =⇒ ρBf̄Vx = τ̄w

δ
, (3.1b)

d
dy

(
−ρv′′h′′

t + uiτiy − q̄y

)
+ ρufVx = 0 =⇒ ρBuB f̄Vx = − q̄w

δ
, (3.1c)

d
dy

(
−ρv′′h′′ − q̄y

)
+ Dp

Dt
+ τijSij = 0

(3.2)=⇒ q̄w = −
∫ δ

0

(
τijSij − pΘ

)
dy, (3.1d)

for the continuity (3.1a), streamwise (x direction) momentum (3.1b), total energy (3.1c),
and static enthalpy (3.1d), respectively. The relations implied in (3.1b) and (3.1c) are
obtained readily by integration across the channel (Huang et al. 1995), using the fact
that the body acceleration fVx does not vary in space but only in time, and for (3.1c)
that ρB = const. for all t. They are satisfied upon statistical convergence of the averages.
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)
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(

(

Figure 1. (a) Budgets of the static enthalpy (temperature) (3.1d), in (·)� units, plotted against y�

(log scale), with an outer region zoom plotted against y/δ (linear), at (Reτ� , M̄CLx ) = (965, 1.51).
(b) Frictional heat generation term τijSij

�
for varying 0.32 ≤ M̄CLx ≤ 2.49 at nearly constant

Reτ� ∈ {110, 340, 1000}, from the present DNS database (table 1).

To obtain the integral relation implied in (3.1d), we also used the flow symmetries to
simplify the substantial derivative Dtp:

Dp
Dt

[∂t(·)=0]= uj
∂p
∂xj

= ∂

∂xj

(
puj
)− pΘ

[∂x(·)=∂z(·)=0]= d
dy

( pv) − pΘ, (3.2)

where Θ := ∂xjuj is the dilatation, Sij is the rate of deformation, and τij is the viscous
stress. This identifies τijSij ≫

∣∣pΘ
∣∣ as the heat production mechanism, as is also seen

in the budgets (figure 1a) of the static enthalpy equation (3.1d). Near the wall ( y� � 5),
τijSij = τ̄ijS̄ij + τ ′

ijS
′
ij is balanced principally by molecular heat conduction −dyq̄y. Notice

that at constant Reτ� , near the wall ( y� � 10), the heat production term follows (·)� scaling
with varying Mach number (figure 1b), i.e. τijSij

�
:= τijSij/(τ̄

2
w/μ̄( y)) depends essentially

on Reτ� and much less on M̄CLx . Above the buffer layer ( y� � 60), and up to the centreline,
there is essentially a balance between heat production by the fluctuating field τ ′

ijS
′
ij and

turbulent mixing −dy(ρv′′h′′) (figure 1a), whereas the pressure term Dtp is negligible
everywhere. Turbulent mixing −dy(ρv′′h′′) changes sign at y�

� 25, opposing molecular
heat conduction and enhancing heating in the near-wall region (figure 1a).

3.2. The h̄(ū) relation
Usually, mean thermal field relations, for attached wall turbulent flows (Zhang et al.
2014, 2017, 2018; Song et al. 2022), TPCs or TBLs, are presented in terms of temperature
ratio T̄( y)/T̄δ , which of course depends strongly on the Mach number M̄δ . This
representation misses the point that working instead in terms of non-dimensional enthalpy
differences (figure 2), in the TPC case (h̄ − h̄w)/(1

2 ū2
CL), absorbs the largest part of the
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Figure 2. Non-dimensional mean enthalpy rise (h̄ − h̄w)/( 1
2 ū2

CL) plotted against the non-dimensional velocity
ū/ūCL, for (a,c,e,g) varying HCB Reynolds numbers 97 ≤ Reτ� ≤ 985 at nearly constant centreline Mach
numbers M̄CLx ∈ {0.33, 0.80, 1.50, 2.00}, and (b,d, f,h) varying Mach numbers 0.32 ≤ M̄CLx ≤ 2.49 at nearly
constant Reτ� ∈ {100, 110, 250, 340}, from the present DNS database (table 1).
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Mach dependence, results at nearly constant Reτ� (figures 2b,d, f,h) showing quite weak
M̄CLx dependence, while results at nearly constant M̄CLx (figures 2a,c,e,g) show noticeable
Reτ� dependence, which is discussed further in § 3.3.

It is generally verified that a quadratic polynomial of streamwise velocity ū that satisfies
the wall heat flux (dūT̄)|w and the wall and centreline values of temperature fits reasonably
well the DNS data for attached wall turbulent flows (Zhang et al. 2017, 2018; Song et al.
2022). Using enthalpies instead, it is straightforward to show that the unique one-sided
Hermitian quadratic polynomial (Stoer & Bulirsch 1993, p. 53) that satisfies wall and
centreline values and wall flux reads

h̄ − h̄w

ū2
CL

�
1

ūCL

dh̄
dū

∣∣∣∣
w

ū
ūCL

+
(

h̄CL − h̄w

ū2
CL

− 1
ūCL

dh̄
dū

∣∣∣∣
w

)(
ū

ūCL

)2

+ approximation error,

(3.3)

and this is precisely the polynomial for the non-dimensional temperature obtained using
physical Reynolds analogy arguments by Zhang et al. (2014). Therefore, to the order of
the approximation error, the mean enthalpy field depends on two parameters, namely
the non-dimensional wall heat flux (dūh̄)|w/ūCL and the wall-to-centreline enthalpy
rise −rh := (h̄CL − h̄w)/(1

2 ū2
CL), which in adiabatic wall flows should correspond to

the adiabatic recovery factor rf . The DNS data (table 1) show clearly that both these
parameters depend principally on Reτ� and only weakly on M̄CLx . It will be seen that
all of the flows in the database have very similar turbulence structure (§ 4), therefore they
should be characterised not by temperature ratios like T̄CL/T̄w, which depend very strongly
on M̄CLx , but by −rh instead.

3.3. Consistency check and comparison with available data
Notice that combining the integral relations for x momentum (3.1b) and total energy (3.1c)
readily relates the wall heat flux q̄w and the wall shear stress τ̄w by the exact relation
(Huang et al. 1995; Song et al. 2022)

(3.1b), (3.1c) =⇒ q̄w

τ̄w
= −uB

(3.4b)=⇒ 1
ūCL

dh̄
dū

∣∣∣∣
w

� Prw
uB

ūCL
, (3.4a)

where we used

− q̄w

τ̄w
�

λ̄w
dT̄
dy

∣∣∣∣
w

μ̄w
dū
dy

∣∣∣∣
w

�

λ̄w
dh̄
dy

∣∣∣∣
w

μ̄wc̄pw

dū
dy

∣∣∣∣
w

�
1

Prw

dh̄
dū

∣∣∣∣
w

. (3.4b)

In the case of strictly isothermal walls (Tw = const.) used in the present computations,
there are no fluctuations of the molecular transport coefficients or heat capacity at the
wall, so (3.4b) is exact, and so is the final relation in (3.4a).

Checking whether the DNS results satisfy the exact relation (3.4a) is a good test
in assessing proper convergence of the computations (and statistics) regarding the
thermal field. The integral relation (3.1d) for the wall heat flux shows that q̄w is
affected by the integration of τijSij across the entire channel, and explains the observed
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0.81 ± 0.02
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1.63
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1.92
2.00 ± 0.02
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M̄CLx

Figure 3. Consistency diagnostic of the present DNS computations (table 1) by verification of the exact (at
statistical convergence) relation q̄w = −uBτ̄w (see (3.4a)) obtained from the integration of the mean momentum
and energy equations across the channel (Huang et al. 1995; Song et al. 2022), which also provides the heat
flux parameter in the quadratic approximation of the h̄(ū) relation (3.3).

slow convergence of centreline temperature T̄CL, especially with increasing Reynolds
number. The present DNS data satisfy the exact relation (3.4a) with accuracy better than
0.25 % ≡ 2.5 � (figure 3).

Regarding the prediction of the centreline-to-wall temperature ratio T̄CL/T̄w (figure 4a),
the present data (table 1) are in very good agreement with the DNS data of Modesti &
Pirozzoli (2016) and Yao & Hussain (2020) (Pr = 0.72), and of Trettel & Larsson (2016),
indicating that it increases approximately as

T̄
T̄w

� 1 + (0.17 ± 0.005)M2
Bw

. (3.5)

The small variation of the coefficient in the correlation (3.5) determines the limits of the
envelope of the data. These variations in the MBw dependence around the average curve
actually reveal the Re influence on T̄CL/T̄w.

Song et al. (2022, (14), p. 6) developed the alternative correlation

T̄
T̄w

� 1 + 1.034 Prw
ūCL

uB
M2

Bw
⇐⇒ h̄CL − h̄w

1
2 ū2

CL

� 1.034 Prw
uB

ūCL
(3.6)

that was rewritten here as (3.6) in terms of the enthalpy rise parameter
−rh := (h̄CL − h̄w)/(1

2 ū2
CL), showing clearly that rh in the correlation of Song et al. (2022)

depends not on MBw , but on uB/ūCL instead, which is tantamount to including a Re effect
because of the strong sensitivity of the ratio uB/ūCL on Reτ� , especially in this relatively
low Reτ� � 1482 range (table 1). Closer examination of the data (figure 4b) reveals that
there still exists a slight M̄CLx sensitivity. The value of the ratio uB/ūCL used in (3.6)
was calculated carefully by integrating (table 1) the density and mass flux profiles in
the databases of Modesti & Pirozzoli (2016) and Yao & Hussain (2020), and is slightly
different to the values tabulated in Song et al. (2022).

The empirical correlation coefficient 1.034 in (3.6) is probably a little too high at the
lower Re (lower uB/ūCL) range (figure 4b). The data of Yao & Hussain (2020) at the
higher Reτ� � 1000 (uB/ūCL � 0.88) indicate (figure 4b) not only a steepening of the
slope but also a crossing between the M̄CLx � 1.46 and M̄CLx � 0.87 curves, which was not
observed in the present database. This highlights the need for higher Re data to fill the gap
with incompressible DNS data, which are currently at Reτw � 10 000 (Hoyas et al. 2022),
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Figure 4. (a) Centreline-to-wall temperature ratio versus MBw and (b) non-dimensional enthalpy difference
(h̄CL − h̄w)/( 1

2 Prw ū2
CL) versus uB/ūCL, for the present DNS data (table 1) and other available DNS data

of Modesti & Pirozzoli (2016), Trettel & Larsson (2016) and Yao & Hussain (2020) (respectively denoted
MP (2016), TL (2016), YH (2020)), covering the ranges 0.32 ≤ M̄CLx ≤ 2.49 and 97 ≤ Reτ� ≤ 1482, and
comparison with the correlation envelope (3.5) in (a) and the correlation (3.6) of Song et al. (2022) in (b).

tenfold higher than the compressible databases (Modesti & Pirozzoli 2016; Trettel &
Larsson 2016; Yao & Hussain 2020; Gerolymos & Vallet 2014, 2023).

4. The h′
t and h′ statistics

DNS data (Huang et al. 1995) show that TPC flow without any artificial source term in the
energy equation (Yu et al. 2020) is a very-cold-wall (VCW) flow, in the sense that

VCW:
dT̄
dy

> 0
(2.1)=⇒ dh̄

dy
> 0 =⇒ dh̄

dū
> 0 =⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h′u′ > 0,

h′v′ < 0,

h′
tu′ > 0,

h′
tv

′ < 0,

∀ y ∈ ]0, δ[, (4.1)
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where the usual attached flow change of variables y = y(ū), based on the monotonicity of
ū( y), was made. This relation (4.1) will be used to define VCW conditions, characteristic
of the flows investigated in the paper.

For this class of flows, h′
trms

> h′
rms (§ 4.3), in contrast to adiabatic or isothermal wall

conditions (Shahab et al. 2011). The study of correlation coefficients (§ 4.4) and joint
p.d.f.s (§ 4.5) reveals a very strong positive correlation between h′

t and u′ for all y, also
verified for higher-order statistics.

We note

(·)′rms :=
√

(·)′2, (4.2a)

c(·)′[·]′ := (·)′[·]′√
(·)′2
√

[·]′2
≡ (·)′[·]′

(·)′rms [·]′rms
∈ [−1, 1], (4.2b)

i.e. the r.m.s. of (·)′ and the correlation coefficient (CC) between the fluctuations of two
flow quantities [·]′ and (·)′.

4.1. Exact and truncated relations in nearly parallel flow
The general expressions (1.1), under the simplification of parallel (v̄ = 0) or nearly
parallel (|v̄| ≪ ū) two-dimensional (w̄ = 0) flow lead to the usual shear flow Reynolds
analogies (Huang et al. 1995), i.e. the evaluation of thermal (h′) correlations from velocity
correlations and the mean velocity and enthalpy profiles.

The TPC flow is almost exactly parallel in the mean (ṽ = 0 ⇒ v̄ = v′′ ≪ ū ∀y > 0),
so the exact relations for h′

t and its correlations simplify to the parallel flow relations

h̄t = h̄ + 1
2 ū2 + 1

2 u′
ju

′
j, (4.3a)

h′
t = h′ + ū u′ + 1

2

(
u′

ju
′
j − u′

ju
′
j

)
, (4.3b)

h′
tu′ = h′u′ + ū u′2 + 1

2 u′
ju

′
ju

′, (4.3c)

h′
tv

′ = h′v′ + ū u′v′ + 1
2 u′

ju
′
jv

′, (4.3d)

h′2 = h′2
t + u′2 ū2 − 2h′

tu′ū −
(

h′
tu′

ju
′
j − ūu′

ju
′
ju

′
)

+ 1
4

(
u′

iu
′
iu

′
ju

′
j − u′

iu
′
i u′

ju
′
j

)
, (4.3e)

= h′2
t − u′2 ū2 − 2h′u′ū −

(
h′u′

ju
′
j + ūu′

ju
′
ju

′
)

− 1
4

(
u′

iu
′
iu

′
ju

′
j − u′

iu
′
i u′

ju
′
j

)
. (4.3f )

As usual, these relations can be simplified further by omitting HoMs, to write
approximately

h̄t � h̄ + 1
2 ū2 + HoMs (4.4)

for the mean flow, and

h′
tu′ � h′u′ + ū u′2 + HoMs, (4.5a)

h′
tv

′ � h′v′ + ū u′v′ + HoMs, (4.5b)

h′2 � h′2
t + u′2 ū2 − 2h′

tu′ū + HoMs, (4.5c)

h′2
t � h′2 + u′2 ū2 + 2h′u′ū + HoMs, (4.5d)
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for 2oMs. In the following, we will refer to relations (4.5) and to relations that are derived
directly from these as truncated-to-2oMs. The HoMs are not always negligibly small,
especially near the peaks of the correlation profiles, and also near the centreline (wake
region), but (4.4) does remain a satisfactory working approximation to analyse relations
between fluctuation amplitudes and CCs, and is the starting point for the development of
Reynolds analogies. Introducing CCs

ch′u′ := h′u′

h′
rms u′

rms
, ch′

tu′ := h′
tu′

h′
trms u′

rms
, (4.6a)

ch′v′ := h′v′

h′
rms v′

rms
, ch′

tv
′ := h′

tv
′

h′
trms v′

rms
, cu′v′ := u′v′

u′
rms v′

rms
(4.6b)

to replace the corresponding correlations, we may rewrite the working relations (4.5) as

(4.5a) ⇐⇒ ch′
tu′ h′

trms
� ch′u′ h′

rms + ū u′
rms, (4.7a)

(4.5b) ⇐⇒ ch′
tv

′ h′
trms

� ch′v′ h′
rms + cu′v′ ū u′

rms, (4.7b)

(4.5c) ⇐⇒ h′2 � h′2
t + u′2 ū2 − 2ch′

tu′ h′
trms

ū u′
rms, (4.7c)

(4.5d) ⇐⇒ h′2
t � h′2 + u′2 ū2 + 2ch′u′ h′

rms ū u′
rms. (4.7d)

These relations readily provide a weak Reynolds analogy, based on CCs (Gaviglio 1987).
Notice that (4.7c) was reported in Gaviglio (1987, (27), p. 915). The truncated-to-2oMs
relations (4.7c) and (4.7d) are not strictly equivalent, because the HoMs neglected in each
of them are different.

4.2. Wall-normal transport and turbulent Prandtl numbers

In nearly parallel flow, the ratio h′v′/u′v′, between wall-normal transport of temperature
and streamwise velocity, is related directly to the turbulent Prandtl number

PrT := ρu′′v′′

ρh′′v′′

dh̃
dy
dũ
dy

= ũ′′v′′

h̃′′v′′

dh̃
dy
dũ
dy

. (4.8)

Except in the near-wall region ( y� � 10), there is little influence of M̄CLx on PrT

(figure 5), data for varying M̄CLx at nearly constant Reτ� practically collapsing on a
single curve, against both inner-scaled y� (figures 5c,g,k,o) and outer-scaled y/δ wall
distance (figures 5d,h,l, p). In contrast, Reτ� has a strong influence on PrT . At Reτ� � 1000
(M̄CLx ∈ {0.81, 1.51}), as the log region emerges in the mean velocity profile (Krogstad &
Torbergsen 2000; Lee & Moser 2015; Hoyas et al. 2022), the PrT( y/δ) profile changes
substantially in the range 0.2δ � y � 0.5δ, compared to lower-Re data (figures 5 f, j).
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Figure 5. Turbulent Prandtl number PrT (4.8), plotted against inner-scaled ( y�, log scale) and outer-scaled
( y/δ, linear) wall distance, for varying HCB Reynolds numbers 97 ≤ Reτ� ≤ 985 at nearly constant centreline
Mach numbers M̄CLx ∈ {0.33, 0.80, 1.50, 2.00}, and for varying 0.32 ≤ M̄CLx ≤ 2.49 at nearly constant
Reτ� ∈ {100, 110, 250, 340}, from the present DNS database (table 1).
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Total and static temperature in very-cold-wall turbulence

For Reτ� � 250, the outer part of the flow seems to follow a consistent outer law

Reτ� � 250 =⇒
⎧⎨⎩PrT � 0.9 − 0.32

(y
δ

)2
, 0.5δ � y � 0.8δ,

PrT � 0.7, 0.8δ � y,
(4.9)

similar to the relation proposed (from limited data and based on indirect assessment) by
Rotta (1964); the present DNS data (figures 5b, f, j,n) suggest a different constant, 0.32,
in lieu of 0.4 in Rotta (1964). For the higher Reτ� � 1000, as the buffer region shrinks
closer to the wall in the outer-scaled y/δ profiles (figures 5 f, j), the data nearer to the wall
(0.2δ � y � 0.5δ) are slightly lower than (4.9). Additional DNS data at higher Reτ� are
needed to determine the asymptotic high-Re form of the outer law, eventually modifying
both constants in (4.9) to fit a larger y/δ range. The buffer region seems to follow an
inner-scaled profile (figures 5a,e,i,m), but higher Reτ� data are required to ascertain the
high-Re asymptotics of the peak observed at 40 � y� � 45 and of the valley observed at
17 � y� � 23 (figures 5a,e,i,m). Finally in the near-wall region ( y� � 10), PrT shows a
complex dependence on both Reτ� and M̄CLx (figure 5).

In lieu of the above usual definition based on Favre averages (4.8), it is the ratio of
Reynolds-averaged transport that appears in (4.7b), i.e.

Prh′ := u′v′

h′v′

dh̄
dy
dū
dy

≡ u′v′

h′v′
dh̄
dū

, (4.10)

where the attached flow transformation y = y(ū) was used. Generally, Prh′ differs very
little from PrT (figure 6), even for the highest available M̄CLx = 2.49 (figure 6 f ), and
this is true for the entire database. Very small differences are observed only around the
buffer-region valley (figure 6) which occurs close to the peak of the streamwise Reynolds
stress ρu′′u′′.

Introducing CCs (4.6b) in the definition of Prh′ (4.10) yields readily an exact expression
for h′

rms,

h′
rms

(4.6b), (4.10)=
∣∣∣∣cu′v′

ch′v′

1
Prh′

dh̄
dū

∣∣∣∣ u′
rms, (4.11a)

which, combined with the truncated-to-2oMs wall-normal transport relation (4.7b), yields
an approximate expression for h′

trms
,

h′
trms

(4.5b), (4.10)
�

∣∣∣∣∣cu′v′

ch′
tv

′

(
1

Prh′

dh̄
dū

+ ū
)∣∣∣∣∣ u′

rms + HoMs, (4.11b)

which forms a weak Reynolds analogy, based on the knowledge of the ratios of the
wall-normal transport CCs (cu′v′/ch′v′ , cu′v′/ch′

tv
′) and of the Prandtl number Prh′ .

4.3. Fluctuation intensities
Outer-scaling h′

trms
or h′

rms by ū2
CL is very successful in accounting for M̄CLx effects

(figures 7d,h,l, p), collapsing data for varying M̄CLx at nearly constant Reτ� , except for
the near-wall ( y� � 20) region (figures 7c,g,k,o).
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Figure 6. Comparison of turbulent Prandtl numbers PrT (4.8) using Favre averages, and Prh′ (4.10) using
Reynolds averages, plotted against inner-scaled wall distance y� (log scale), for selected flows in the database
(table 1), covering the ranges 113 ≤ Reτ� ≤ 985 and 0.35 ≤ M̄CLx ≤ 2.49.

On the other hand, there are important differences in Reτ� scaling between h′
trms

and h′
rms.

The peak of h′
rms/ū2

CL reaches an asymptotic level, confirmed by the highest Reτ� � 1000
(M̄CLx ∈ {0.81, 1.51}) data (figures 7e,i). In contrast, the peak of h′

trms
/ū2

CL decreases
with increasing Reτ� , suggesting a different inner scaling for h′

trms
(figures 7e,i). The

most important difference is observed for the higher available Reτ� � 1000 data, where
h′

trms
starts forming a plateau in the range 100 � y� � 400 (figures 7e,i), suggesting an

asymptotic high-Re form. The centreline intensity of h′
trms

/ū2
CL also seems to reach an

asymptotic level ∼0.04. In contrast, h′
rms does not follow this trend, but instead decays

continuously from peak to centreline (figures 7b, f, j,n), to much lower levels than h′
trms

. As
a consequence, the ratio h′

trms
/h′

rms = T ′
trms

/T ′
rms increases from 1 at the wall (where ui = 0

by the no-slip condition) to quite high values at the centreline (figure 8). The h′
trms

/h′
rms

data at nearly constant Reτ� (figures 8d,h,l, p) show very weak M̄CLx influence, in contrast
with data at nearly constant M̄CLx (figures 8b, f, j,n), which show, in the outer part of the
flow ( y � 1

2δ), noticeable increase of the ratio h′
trms

/h′
rms with increasing Reτ� .

The ratio h′
trms

/h′
rms is a structure parameter of the turbulent flow that can be expressed

in terms of correlation coefficients by (4.7). Squaring (4.7a) relating the streamwise fluxes
(4.5a) yields

(4.7a) =⇒ 2ch′u′ h′
rms ū u′

rms + u′2 ū2
� c2

h′
tu′ h′2

t − c2
h′u′ h′2, (4.12)

978 A25-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
34

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1034


Total and static temperature in very-cold-wall turbulence

0

0.02

0.04

0.06

0.08

0.10

0.12

0

0.02

0.04

0.06

0.08

0.10

0.12

0

0.02

0.04

0.06

0.08

0.10

0.12

0

0.02

0.04

0.06

0.08

0.10

0.12

0

0.02

0.04

0.06

0.08

0.10

0.12

0

0.02

0.04

0.06

0.08

0.10

0.12

0

0.02

0.04

0.06

0.08

0.10

0.12

0

0.02

0.04

0.06

0.08

0.10

0.12

0

0.02

0.04

0.06

0.08

0.10

0.12

0

0.02

0.04

0.06

0.08

0.10

0.12

0

0.02

0.04

0.06

0.08

0.10

0.12

0

0.02

0.04

0.06

0.08

0.10

0.12

0

0.02

0.04

0.06

0.08

0.10

0.12

0

0.02

0.04

0.06

0.08

0.10

0.12

0

0.02

0.04

0.06

0.08

0.10

0.12

0

0.02

0.04

0.06

0.08

0.10

0.12

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

102 ± 5

113 ± 1

139 ± 5

151 ± 1

ū2
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CL
,

h′
trms h′

rms

ū2
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CL
,

h′
trms h′

rms

ū2
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CL
,

h′
trms h′

rms

ū2
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Figure 7. Root mean square fluctuation intensities of total h′
trms

and static h′
rms enthalpy, scaled by ū2

CL, plotted
against inner-scaled ( y�, log scale) and outer-scaled ( y/δ, linear) wall distance, for varying HCB Reynolds
numbers 97 ≤ Reτ� ≤ 985 at nearly constant centreline Mach numbers M̄CLx ∈ {0.33, 0.80, 1.50, 2.00}, and
for varying 0.32 ≤ M̄CLx ≤ 2.49 at nearly constant Reτ� ∈ {100, 110, 250, 340}, from the present DNS database
(table 1).
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Figure 8. Ratio of total-to-static enthalpy (temperature) fluctuation intensities h′
trms

/h′
rms = T ′

trms
/T ′

rms, plotted
against inner-scaled ( y�, log scale) and outer-scaled ( y/δ, linear) wall distance, for varying HCB Reynolds
numbers 97 ≤ Reτ� ≤ 985 at nearly constant centreline Mach numbers M̄CLx ∈ {0.33, 0.80, 1.50, 2.00}, and
for varying 0.32 ≤ M̄CLx ≤ 2.49 at nearly constant Reτ� ∈ {100, 110, 250, 340}, from the present DNS database
(table 1).
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and replacing (4.7d) in (4.12) yields

(4.7d), (4.7a), (4.12) =⇒ (1 − c2
h′u′)h′2 � (1 − c2

h′
tu′) h′2

t =⇒ h′
trms

h′
rms

�

√√√√1 − c2
h′u′

1 − c2
h′

tu′
.

(4.13)

The only approximation in (4.13) comes from neglecting HoMs in (4.3) to obtain (4.7).
By (4.13), for this particular class of VCW flows (4.1), the observed large values of the
h′

trms
/h′

rms ratio (figure 8) imply that c2
h′

tu′ is much closer to 1 than c2
h′u′ , i.e. that in VCW

turbulence, ht′ is expected to be correlated very strongly with u′. This is in contrast with
adiabatic wall flows (Zhang et al. 2014), where h′ is correlated very strongly with u′, and
the ratio h′

trms
/h′

rms is small. This analysis suggests examining the CCs of static and total
enthalpy–transport in order to gain further insight into the turbulence structure of the flow
(§ 4.4).

4.4. Correlation coefficients
Certainly the most important result observed in the DNS data is that h′

t is very strongly
correlated with u′ (figure 9), for all (Reτ�, M̄CLx) in the database (table 1) everywhere
in the channel (for all y). This result is specific to the VCW condition of the TPC flows
studied in this work, and does not apply to adiabatic wall turbulence. In the wake region
(figures 9a,e,i,m), the CC ch′

tu′ (4.6) is very close to 1 (ch′
tu′ � 0.997), with slightly lower,

Reτ�-dependent, but still extremely close to 1, values at the wall (ch′
tu′ � 0.98 for all

Reτ�). The very strong (h′
t, u′) correlation is further confirmed by the close similarity of

the profiles of the CCs (4.6) ch′
tv

′ and cu′v′ (figures 9b, f, j,n), whose ratio is invariably
very close to 1 (cu′v′/ch′

tv
′ ∼ 1 ± 4 % for all y� � 5), except closer to the wall (y� � 5)

where slightly higher values are observed (not plotted). Similarly to the outer-scaled
fluctuation levels h′

trms
/ū2

CL and h′
rms/ū2

CL (figures 7c,g,k,o), ch′
tu′ (figures 9c,g,k,o) and the

ratio cu′v′/ch′
tv

′ (figures 9d,h,l, p) show little sensitivity to M̄CLx , at constant Reτ� , except
in the near-wall region (y� � 10) for M̄CLx � 2.

The fact that the deviation of the ratio cu′v′/ch′
tv

′ (figures 9b, f, j,n) from unity is larger
than that of the CC ch′

tu′ (figures 9a,e,i,m) highlights the existence of an uncorrelated
(with u′) part of h′

t, which correlates differently with v′. Experience with the analysis of
thermodynamic fluctuations in compressible turbulence (Gerolymos & Vallet 2018) shows
that assuming CCs strictly = ±1 always leads to singular behaviour. The small deviations
of ch′

tu′ and cu′v′/ch′
tv

′ from unity are essential in (4.13) and other truncated-to-2oMs
relations (4.7), (4.11b), as these would be reduced to SRA relations by setting these
coefficients equal to exactly 1 (§ 5.2).

In contrast to h′
t (figure 9), h′ is not correlated in any particular way to u′ (figure 10),

ch′u′ decreasing from ∼1 at the wall to small values (∼0.2) at the centreline, while the
ratio cu′v′/ch′v′ = cu′v′/cT ′v′ increases significantly from ∼1 near the wall to ∼1.45 at
the centreline. Both ch′u′ and the ratio cu′v′/ch′v′ vary with (Reτ�, M̄CLx). Therefore, weak
Reynolds analogies specific to the class of flows studied in the paper (see (4.1)) could be
constructed based on h′

t correlations, rather than on direct instantaneous h′ analogies as in
the SRA (Huang et al. 1995).
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Figure 9. The CC ch′
tu′ of streamwise h′

t transport and ratio of CCs cu′v′/ch′
tv

′ of wall-normal
transport of momentum and total enthalpy, plotted against inner-scaled (y�, log scale) wall
distance, for varying HCB Reynolds numbers 97 ≤ Reτ� ≤ 985 at nearly constant centreline Mach
numbers M̄CLx ∈ {0.33, 0.80, 1.50, 2.00}, and for varying 0.32 ≤ M̄CLx ≤ 2.49 at nearly constant
Reτ� ∈ {100, 110, 250, 340}, from the present DNS database (table 1).
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Figure 10. The CC ch′u′ of streamwise h′ transport and ratio of CCs cu′v′/ch′v′ of wall-normal transport
of momentum and static enthalpy, plotted against outer-scaled (y/δ, linear) wall distance, for varying HCB
Reynolds numbers 97 ≤ Reτ� ≤ 985 at centreline Mach numbers M̄CLx ∈ {0.33, 0.80, 1.50, 2.00}, and for
varying 0.32 ≤ M̄CLx ≤ 2.49 at nearly constant Reτ� ∈ {100, 110, 250, 340}, from the present DNS database
(table 1).
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4.5. Joint p.d.f.s
Further insight into the very strong correlation between h′

t and u′ (figure 9) is gained
by examining the joint p.d.f. fh′

tu′ and comparing it with the joint p.d.f. fh′u′ between h′

and u′ (figure 11), whose correlation diminishes significantly moving away from the wall
(figure 10). Those p.d.f. bins for which no hits were recorded were left blank, highlighting
the extreme events boundaries.

The CCs can be calculated by integration of these joint p.d.f.s:

ch′
tu′

(4.2a)=
∫ h′

tmax

h′
tmin

∫ u′
max

u′
min

h′
tu

′ fh′
tu′(h′

t, u′) d
(

h′
t

h′
trms

)
d
(

u′

u′
rms

)
, (4.14a)

ch′u′
(4.2a)=

∫ h′
max

h′
min

∫ u′
max

u′
min

h′u′ fh′u′(h′, u′) d
(

h′

h′
rms

)
d
(

u′

u′
rms

)
. (4.14b)

The joint p.d.f. fh′
tu′ (figures 11a,e,i,m,q) shows that all (u′, h′

t) events are very tightly
clustered along the diagonal of the positive (u′h′

t > 0) quadrants, a level of very small
probability fh′

tu′ = 10−4 being reached at distances (
∣∣u′∣∣ < 1

2 u′
rms,
∣∣h′

t
∣∣ < 1

2 h′
trms

) from
the diagonal (figures 11a,e,i,m,q). Furthermore, except very near the wall (y� < 15,
figure 11a), no events are observed at distances greater than (u′

rms, h′
trms

) from the
diagonal, these distances shrinking when moving away from the wall (figures 11e,i,m,q).
Since events in the negative (u′h′

t < 0) quadrants occur only very close to the centre
(u′, h′

t) = (0, 0), the integrand h′
tu

′ fh′
tu′(h′

t, u′) for the evaluation of ch′
tu′ in (4.14a) shows

two positive peaks elongated along the diagonal, one in each of the positive (u′h′
t > 0)

quadrants (figures 11c,g,k,o,s). Notice that very near the wall (y�
� 1, figure 11c), rare

events appear much further above the diagonal, albeit with very low probability of
occurrence (figure 11a). In the near-wall and buffer regions (figures 11a,e), off-diagonal
(u′, h′

t) events have slightly higher probability fh′
tu′ than further away from the wall

(figures 11m,q), leading to the observed (figure 9) slightly higher deviation of ch′
tu′ from

unity.
Very near the wall (y�

� 1, figure 11), where (u2)′ � h′ ⇒ h′
t � h′ by (4.3e), the

joint p.d.f.s fh′
tu′ and fh′u′ are very similar (figures 11a,b). However, moving away from

the wall, fh′u′ spreads away from the diagonal, the more so with increasing distance
from the wall (figures 11 f, j,n,r). As a result, events in the negative (u′h′ < 0) quadrants
occur with increasing probability (figures 11d,h,l, p,t), contributing negatively to the
integrand h′u′ fh′u′(h′, u′) for the evaluation of ch′u′ in (4.14b), and causing the progressive
decorrelation between h′ and u′ (figure 10) with increasing distance from the wall.

It should be noted that this very strong (u′, h′
t) correlation is specific to the class of

VCW flows studied. Scatter plots in TBL studies with adiabatic and progressively colder
walls (Hadjadj et al. 2015, figure 21, p. 435) show clearly that as the wall gets hotter
towards adiabatic, the (u′, h′

t) events scatter progressively further and further away from
the diagonal, reducing the CC.

5. Successes and limitations of the SRA

Weak Reynolds analogy forms use CCs to obtain quite accurate relations between turbulent
moments (4.7), (4.13). Ultimately, both h′

trms
and h′

rms are proportional to u′
rms (4.11),
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Figure 11. Joint p.d.f.s (log10) of streamwise velocity u′ and enthalpy (total h′
t and static h′) fluctuations

and integrands for the calculation of the CCs ch′
tu′ (4.14a) and ch′u′ (4.14b), plotted against the standardised

variables (u′/u′
rms, h′

t/h′
trms

, h′/h′
rms), at different inner-scaled wall distances y� ∈ {1, 15, 30, 100, δ�}, at

(Reτ� , M̄CLx ) = (965, 1.51), from the present DNS database (table 1).
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but with proportionality coefficients that are functions of CCs of velocity and enthalpy
transport. The SRAs postulate instead some direct instantaneous proportionality between
h′ and u′ (§ 5.1). Although the SRA is generally successful in predicting h′

rms, it may be
less successful in predicting h′

trms
for less-cold-wall flows, or the ratio h′

trms
/h′

rms, especially
in the outer part of the flow. This drawback can be traced to the inherent error in the
prediction of CCs by the SRA that can be corrected only by using weak Reynolds analogy
approaches (§ 5.2).

5.1. HCB-SRA
The SRA proposed by Huang et al. (1995, (4.8)–(4.10), p. 208) reads

T ′ ū
T̄ (γ − 1) M̄2 u′

∣∣∣∣
SRA

�
1

Prh′

dT̄
dy

dT̄t

dy
− dT̄

dy

(2.1), (4.4)=⇒ h′|SRA �
1

Prh′

dh̄
dū

u′, (5.1)

which is essentially the relation given in Huang et al. (1995, (4.9), p. 208). It is
straightforward, from this basic instantaneous HCB-SRA (5.1), to calculate variances and
correlations

DNS data: {ū, u′
rms, u′v′, h̄(ū), Prh′ }, (5.2a)

h′|SRA = 1
Prh′

dh̄
dū

u′ =⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h′
rms|SRA =

∣∣∣∣ 1
Prh′

dh̄
dū

∣∣∣∣ u′
rms,

h′
trms

|SRA =
∣∣∣∣( 1

Prh′

dh̄
dū

+ ū
)∣∣∣∣ u′

rms,

h′u′|SRA = h′
rms|SRA u′

rms =⇒ |ch′u′ |SRA = 1,

h′
tu′|SRA = h′

trms
|SRA u′

rms =⇒
∣∣∣ch′

tu′
∣∣∣
SRA

= 1,

h′v′|SRA = 1
Prh′

dh̄
dū

u′v′ =⇒ |ch′v′ |SRA = |cu′v′ |,

h′
tv

′|SRA =
(

1
Prh′

dh̄
dū

+ ū
)

u′v′ =⇒
∣∣∣ch′

tv
′
∣∣∣
SRA

= |cu′v′ |,
(5.2b)

where the truncated expression (4.3b) ⇒ h′
t � h′ + ū u′ was used.

This HCB-SRA (Huang et al. 1995) was developed precisely using data for the class
of VCW flows studied in the paper, and relations (5.2b) perform reasonably well, for
each individual moment (figure 12). Probably the most inaccurate prediction is that of
the streamwise flux h′u′. At low Reτ� � 180 (figures 12c,d,o, p), the SRA prediction of
h′u′ is reasonably accurate, both at nearly incompressible M̄CLx = 0.35 (figures 12c,d)
and at high supersonic M̄CLx = 2.49 (figures 12o, p). However, at higher Reτ� = 342
(figures 12k,l), the agreement of SRA with DNS deteriorates, regarding both the near-wall
peak (figure 12k) and the outer part of the flow (figure 12l), and is even worse at
higher Reτ� = 965 (figures 12g,h). Recalling that by construction, SRA has the structural
deficiency |ch′u′ |SRA = 1, these discrepancies can be explained by the actual behaviour
of ch′u′ in this VCW flow, which is practically M̄CLx-independent at constant Reτ�
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ū2
CL ū2
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Figure 12. Comparison of DNS data with the predictions HCB–SRA (5.2), for h′
trms

, h′
rms, h′u′, plotted against

inner-scaled (y�, log scale) and outer-scaled (y/δ, linear) wall distance, for selected flows in the database
(table 1), covering the ranges 113 ≤ Reτ� ≤ 965 and 0.35 ≤ M̄CLx ≤ 2.49.

(figures 10c,g,k,o). With increasing Reτ� (figures 10a,e,i,m), ch′u′ takes progressively lower
values in the outer part of the flow, and although the centreline value seems to stabilise
around 0.2 (figures 10e,i), the outer region penetrates closer to the wall with increasing
Reτ� , thus spreading the discrepancy in the SRA prediction to a larger part of the flow
(figures 12g,h,k,l).
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Regarding fluctuation intensities h′
trms

and h′
rms, the accuracy of the SRA does not depend

in any particular way on either Reτ� or M̄CLx , both near the wall (figures 12a,e,i,m) and
in the outer part of the flow (figures 12b, f, j,n). Generally, for y � 0.1δ, h′

trms
is slightly

overpredicted and h′
rms is slightly underpredicted by the SRA (figures 12b, f, j,n).

5.2. Limitations of the SRA
Although the discrepancies in the individual predictions of h′

trms
and h′

rms seem small
(figure 12), their cumulative effect induces substantial error in the prediction of the ratio
h′

trms
/h′

rms, which is evaluated readily from (5.2b) as

h′
trms

h′
rms

∣∣∣∣
SRA

=
1

Prh′

dh̄
dū

+ ū

1
Prh′

dh̄
dū

= 1 +
[

1
Prh′

1
ū

dh̄
dū

]−1

, (5.3)

i.e. increases linearly with the inverse of the non-dimensional quantity (related to the h̄(ū)

relation)

1
Prh′

1
ū

dh̄
dū

= 1
Prh′

1
ū

dh̄
dy
dū
dy

(2.1)= 1
Prh′

1
ū

c̄p
dT̄
dy

dū
dy

= 1
Prh′

μ̄c̄p

λ̄

λ̄
dT̄
dy

ūμ̄
dū
dy

�
Pr

Prh′

−q̄y

ūτ̄xy
, (5.4)

where Pr := μcp/λ is the molecular Prandtl number, qy is the wall-normal component
of the molecular heat flux, and τxy is the molecular shear stress. The approximation in
(5.4) comes from neglecting the fluctuation of the molecular transport coefficients in
q̄y = −λdyT = −λ̄dyT̄ − λ′dyT ′, τ̄xy = μdyu = μ̄dyū + μ′dyu′ and Pr � μ̄c̄p/λ̄.

Notice that for the flows studied (table 1), 1/[dūh̄/(ū/Prh′)] is 0 at the wall,
reaching high Re-dependent values at the centreline region (figure 13a). The HCB-SRA
predicts (see (5.3)) that h′

trms
/h′

rms increases linearly with the non-dimensional parameter
1/[dūh̄/(ū/Prh′)] in (5.4), in contrast with DNS data, which show a bounded increase
(figure 13b). This is a general structural deficiency of SRA approaches. Notice first that
(4.13) provides no information because SRA assumptions lead to |ch′

tu′ | = |ch′u′ | = 1 in
(5.2b). The origin of the problem can be traced by using the truncated-to-2oMs relations
(4.7) to express the ratio h′

trms
/h′

rms as a function of the non-dimensional parameter
[dūh̄/(ū/Prh′)] and appropriate CCs. As for the class of the VCW flows considered, ch′

tu′
and cu′v′/ch′

tv
′ show little variation (figure 9), except that in the immediate vicinity of the

wall, it is practical to use relations involving these CCs. Combining (4.7c) and (4.11) leads,
after simple calculations, to the generally valid truncated-to-2oMs relation

h′
trms

h′
rms

(4.7c), (4.11)
�

1√√√√√√1 + 1[
cu′v′

ch′
tv

′

(
1

Prh′

1
ū

dh̄
dū

+ 1
)]2 − 2ch′

tu′∣∣∣∣∣cu′v′

ch′
tv

′

(
1

Prh′

1
ū

dh̄
dū

+ 1
)∣∣∣∣∣

, (5.5)

showing that the dependence of the ratio h′
trms

/h′
rms on the non-dimensional parameter

[dūh̄/(ū/Prh′)] is much more complex than the SRA predicts, and depends on the CCs
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Figure 13. Comparison (b) of DNS data with the predictions of the ratio h′
trms

/h′
rms by HCB-SRA (5.3) and by

the VCW correlation (5.6) as a function of the non-dimensional parameter 1/[dūh̄/(ū/Prh′ )] (5.4), and DNS
profiles (a) of this parameter against ū/ūCL; all available DNS data (table 1) in the ranges 97 ≤ Reτ� ≤ 985
and 0.32 ≤ M̄CLx ≤ 2.49 are plotted.

{ch′
tu′, cu′v′/ch′

tv
′ }. The fundamental structural default of the SRA is that it invariably

predicts |ch′u′ |SRA = |ch′
tu′ |SRA = |cu′v′/ch′v′ |SRA = 1 (see (5.2b)) because of the postulated

instantaneous strict proportionality h′ ∝ u for all t. Notice that using these SRA values in
(5.5) reverts readily to (5.3).

For the particular VCW class of flows studied in the paper, DNS data suggest
average values (ch′

tu′)VCW � 0.997 (figures 9a,e,i,m) and (cu′v′/ch′
tv

′)VCW � 0.97
(figures 9b, f, j,n), leading to the specific correlation for these VCW flows

h′
trms

h′
rms

∣∣∣∣
VCW

�
1√√√√√1 + 1[

0.97
(

1
Prh′

1
ū

dh̄
dū

+ 1
)]2 − 2 × 0.997∣∣∣∣0.97

(
1

Prh′

1
ū

dh̄
dū

+ 1
)∣∣∣∣

, (5.6)

which corrects quite satisfactorily the SRA prediction, giving close agreement with DNS
data (figure 13b). Of course, correlation (5.6) is limited to the present class of flows
(table 1) and is not applicable to flows with different enthalpy rise (equivalently wall heat
flux) conditions, for which the general relation (5.5) applies. Finally, it is significant to
notice how strong is the effect of the very small departures of (ch′

tu′)VCW , (cu′v′/ch′
tv

′)VCW
from unity in (5.6).

6. Transport equations of fluctuating enthalpy variance and fluxes

In addition to the structural difficulties of the SRA (§ 5.2), the DNS results revealed a
complex dependence of PrT (4.8), in the near-wall y� � 10 region, with respect to both
Reτ� (figures 5a,e,i,m) and M̄CLx (figures 5c,g,k,o). We examine the transport equations
for ρh′′2 and ρh′′u′′

i to gain insight into the mechanisms behind this near-wall behaviour.
Under equation of state (2.1), the equations for static enthalpy or temperature are the

same to a factor cp (Gerolymos & Vallet 2014, (2.4e), (2.4f), p. 709). The transport

978 A25-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
34

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1034


G.A. Gerolymos and I. Vallet

equation for the fluctuating enthalpy variance reads (Gerolymos & Vallet 2014)

∂ρh′′2

∂t
+ ∂ρh′′2 ũ


∂x
︸ ︷︷ ︸
C

(ρh′′2)

(TPC)= 0

= − ∂

∂x


(
ρh′′2u′′


 + 2 h′q′



)
︸ ︷︷ ︸

d
(ρh′′2)

−2 ρu′′

h′′ ∂ h̃

∂x


+ 2
(

h′τ ′
m
 S̄m
 + h′S′

m
 τ̄m


)
︸ ︷︷ ︸

P
(ρh′′2)

−
(

−2 q′



∂h′

∂x


)
︸ ︷︷ ︸

ρ̄ε
(ρh′′2)

+ 2 h′′
(

Dp
Dt

+ τm
Sm
 − ∂ q̄


∂x


)
︸ ︷︷ ︸

K
(ρh′′2)

+ 2 h′τ ′
m
S′

m
︸ ︷︷ ︸
Ξ

(ρh′′2)

+ 2 h′
(

Dp
Dt

)′

︸ ︷︷ ︸
Υ

(ρh′′2)

,

(6.1a)

where C(ρh′′2) represents convection by the mean flow (= 0 in TPC flow), d(ρh′′2)
represents turbulent and molecular diffusion, P(ρh′′2) represents production by mean flow
gradients, ε(ρh′′2) > 0 represents destruction by molecular heat conductivity, K(ρh′′2) are
direct compressibility (density fluctuation) effects, Ξ(ρh′′2) are triple correlations which
together with the corresponding terms in P(ρh′′2) sum up to 2 h′τm
Sm
, and Υ(ρh′′2)
represents coupling with (Dtp)′ which was identified by Le Ribault & Friedrich (1997)
as a compressibility effect in line with (3.2). The influence of K(ρh′′2) or Υ(ρh′′2) in
the budgets of (6.1a) is negligibly small (figure 14a). Very close to the wall (y� � 1),
the budgets of (6.1a) are a balance between diffusion d(ρh′′2) (essentially molecular
−2dy h′q′

y) and destruction −ρε(ρh′′2) (figure 14a). In the outer part of the flow (y � 0.7δ),
P(ρh′′2) + Ξ(ρh′′2) cancel out so that the remaining budgets are a balance between diffusion

d(ρh′′2) (essentially turbulent −dy ρh′′2v′′) and destruction −ρε(ρh′′2) (figure 14a). In the
near-wall region (4 � y� � 100), production P(ρh′′2) + Ξ(ρh′′2) is important and balances
diffusion and destruction d(ρh′′2) − ρε(ρh′′2) (figure 14a).

The transport equations for the fluxes ρh′′u′′
i ,

∂ρh′′u′′
i

∂t
+ ∂ρh′′u′′

i ũ


∂x
︸ ︷︷ ︸
C(ρh′′u′′

i )

= −∂ρh′′u′′
i u′′




∂x


+ ∂h′τ ′
i


∂x


− ∂

∂x


(
u′

iq
′



)
︸ ︷︷ ︸

d(ρh′′u′′
i )
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Figure 14. Budgets, at (Reτ� , M̄CLx ) = (965, 1.51), of the transport equations (6.1a) and (6.1b), for (a) ρh′′2,
(b) ρh′′u′′ and (c) ρh′′v′′, in (·)� units, plotted against y� (log scale), with wall-zoom (against y�, linear) and
centreline-zoom (against y/δ, linear), from the present DNS database (table 1).

−ρu′′

h′′ ∂ ũi

∂x


− ρu′′
i u′′




∂ h̃
∂x


+
(

u′
iτ

′
m
 S̄m
 + u′

iS
′
m
 τ̄m


)
︸ ︷︷ ︸

P(ρh′′u′′
i )

−
(

−q′



∂u′
i

∂x


+ τ ′
i


∂h′

∂x


)
︸ ︷︷ ︸

ρ̄ε(ρh′′u′′
i )

+ u′′
i

(
Dp
Dt

+ τm
Sm
 − ∂ q̄


∂x


)
+ h′′

(
− ∂ p̄

∂xi
+ ∂τ̄i


∂x


)
︸ ︷︷ ︸

K(ρh′′u′′
i )

+ u′
iτ

′
m
S′

m
︸ ︷︷ ︸
Ξ(ρh′′u′′

i )

− h′ ∂p′

∂xi︸ ︷︷ ︸
Π(ρh′′u′′

i )

+ρh′′f ′′
Vi

+ u′
i

(
Dp
Dt

)′

︸ ︷︷ ︸
Υ(ρh′′u′′

i )

, (6.1b)

in addition to the mechanisms identified in the transport of ρh′′2 (6.1a), contain the
pressure-scrambling term Π(ρh′′u′′

i ) (Le Ribault & Friedrich 1997), and in the case of the

streamwise flux, the term ρh′′f ′′
Vx

, which is negligibly small everywhere in the channel
(figure 14b). Notice that for TPC flow,

P(ρh′′u′′) + Ξ(ρh′′u′′)
(TPC)= −ρh′′v′′ dũ

dy
− ρu′′v′′ dh̃

dy
+ u′τm
Sm
, (6.1c)

so PrT in (4.8) is precisely the ratio of the production of the streamwise flux ρh′′u′′ from
the enthalpy gradient on its production from shear, offering an alternative interpretation
of PrT , and highlighting the connection between the streamwise ρh′′u′′ and wall-normal
ρh′′v′′ fluxes.

In the near-wall region (y� � 100), the same remarks apply to the budgets of the
streamwise flux ρh′′u′′ (figure 14b) as for those of the variance ρh′′2 (figure 14a), with
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Figure 15. Influence of Mach number M̄CLx ∈ {0.80, 1.51, 1.98}, at nearly constant Reτ� � 341 ± 1, on
various terms in the budgets of the transport equation for the enthalpy variance ρh′′2 (6.1a), from the present
DNS database (table 1), in (·)� units, plotted against y� (log scale), illustrating both (a,b) complex non-(·)�
scaling for some terms, and (c) (·)� scaling for others.

the significant difference that the pressure-scrambling term Π(ρh′′u′′) is comparable to
the sum of the others, d(ρh′′u′′) + P(ρh′′u′′) + Ξ(ρh′′u′′) − ρ̄ε(ρh′′u′′), and therefore has a
significant influence on the budgets (figure 14b). In the outer part of the flow (y � 0.7δ),
destruction of the streamwise flux −ρ̄ε(ρh′′u′′) is negligibly small, and, as production
P(ρh′′u′′) diminishes to 0 approaching the centreline, the budgets are essentially a balance of
the positive contribution of turbulent diffusion (−dy ρh′′u′′v′′) and remaining production
d(ρh′′u′′) + P(ρh′′u′′), with the negative contributions of the pressure terms and the triple
correlations, Ξ(ρh′′u′′) + Π(ρh′′u′′) + Υ(ρh′′u′′) (figure 14b), highlighting the importance of
the pressure terms almost everywhere (y� � 10).

The budgets of (6.1b) for the wall-normal flux (VCW ⇒ ρh′′v′′ < 0 so that negative
terms in the budgets count as gain) are completely different, dominated by the positive
(loss) pressure-scrambling term Π(ρh′′v′′) that opposes the negative (gain) production
P(ρh′′v′′), and is the largest term in the outer part of the flow (figure 14c). Notice that
Π(ρh′′v′′) is of the same order of magnitude as its streamwise counterpart Π(ρh′′u′′)
everywhere, and the orders of magnitude of different mechanisms in the centreline region
(y � 0.7δ) are comparable for both components of ρh′′u′′

i (figures 14b,c).
Examination of various terms in the budgets of ρ̄h′′2 (6.1a) at nearly constant

Reτ� � 341 ± 1 shows that only turbulent diffusion −dy(ρh′′2v′′) follows (·)� scaling with
varying M̄CLx ∈ {0.80, 1.51, 1.98} (figure 15c). Both molecular diffusion −2[dy(h′q′)]�
and destruction −[ρ̄ε(ρh′′2)]

�, in (·)� units, show substantial near-wall (y� � 10) variation
with M̄CLx (figure 15b), and the same applies to the two different mechanisms of the sum

P(ρh′′2) + Ξ(ρh′′2)
(TPC)= −2 ρh′′v′′ dh̃

dy
+ 2 h′τm
Sm
, (6.1d)

with distinct variation of the peak of −2[dy(ρh′′v′′dyh̃)]� occurring at y�
� 10 (figure 15a)

and that of 2[h′τm
Sm
]� occurring much closer to the wall, at y�
� 4 (figure 15a). This

behaviour contrasts with that of [τm
Sm
]�, which does follow (·)� scaling near the wall, at
constant Reτ� (figure 1b).
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The strong near-wall M̄CLx effect on several (figures 15a,b) but not all (figure 15c) of the
terms in (6.1a) is related to the complex scaling behaviour of the fluxes (figure 16). Recall
first that h′

rms scales quite well with ū2
CL, both near the wall against y� (figures 7c,g,k,o), and

in the entire channel against y/δ (figures 7d,h,l, p). The fluxes h′u′
i can scale with the inner

uτ� := √
(τ̄w/ρ̄( y)), outer ūCL, or some mixed inner/outer velocity scale. The inner-scaled

wall-normal flux h′v′ � := h′v′/u3
τ� , at constant Reτ� , practically collapses on a single

curve with varying M̄CLx (figures 16d,h,l, p), showing a general validity of (·)� scaling
for wall-normal transport, as it obviously also applies to ρh′′2v′′ (figure 15c), and it is well
known that it applies to ρu′′v′′ � ≡ ρu′′v′′ + (van Driest 1951; Trettel & Larsson 2016).
However, the value of the h′v′ � peak varies very strongly with Reτ� (figures 16d,h,l, p), and,
although not plotted, continues to increase (in absolute value) for Reτ� � 1000. It appears
that outer-scaling the wall-normal flux h′v′/ū3

CL (figures 16b, f, j,n) behaves much better
with respect to an asymptotic high-Re trend in the near-wall region (y� � y�

PEAK(h′v′)
).

Notice that, similar to ρu′′v′′ � ≡ ρu′′v′′ +, y�
PEAK(h′v′)

varies strongly with Reτ� . On the

other hand, the streamwise flux seems to follow mixed scaling h′u′/(ū2
CL uτ�), regarding

both the M̄CLx effect (figures 16c,g,k,o) and the Reτ� effect (figures 16a,e,i,m). Considering
Favre-averaged fluxes ρh′′u′′

i (not shown) yields exactly the same conclusions as those
obtained for the Reynolds-averaged fluxes h′u′

i (figure 16), in line with the close agreement
between PrT (4.8) using Favre averages and Prh′ (4.10) using Reynolds averages (figure 6).

7. Conclusions

Thermal turbulence structure of TPC flow depends very little on M̄CLx . Therefore, the
centreline-to-wall temperature ratio T̄CL/T̄w, which depends very strongly on M̄CLx ,
is not appropriate to parametrise the thermal turbulence structure. In contrast the
non-dimensional enthalpy rise (h̄CL − h̄w)/(1

2 ū2
CL) is very weakly dependent on M̄CLx

and is probably a much better choice, in line with the relative M̄CLx-independence of the
non-dimensional (h̄(ū) − h̄w)/(1

2 ū2
CL) relation.

The DNS data for the total and static enthalpy variances and correlations, for turbulent
plane channel flow in the ranges 100 � Reτ� � 1000 and 0.3 ≤ M̄CLx ≤ 2.5, indicate the
following.

(i) Joint p.d.f.s of (u′, h′
t) show a very strong correlation, with events tightly clustered

along the diagonal of the positive quadrants, everywhere in the channel, verified by
the correlation coefficient (CC) ch′

tu′ and by the ratio of wall-normal transport CCs
cu′v′/ch′

tv
′ , both of which are very close to 1.

(ii) In contrast, for the class of very-cold-wall (VCW) flows studied, static enthalpy
fluctuations h′ are not well correlated with u′, the CC ch′u′ rapidly decreasing with
increasing wall distance, as more and more events in the joint p.d.f.s of (u′, h′) occur
away from the diagonal of the positive quadrants.

(iii) Outside the very-near-wall region (y� � 20), at nearly constant Reτ� , the quantities
h′

trms
/ū2

CL, h′
rms/ū2

CL, ch′
tu′, cu′v′/ch′

tv
′, PrT show little sensitivity to M̄CLx , also

implying that ū2
CL is the correct outer scaling for both h′

trms
and h′

rms.
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Figure 16. Fluxes h′u′ (mixed scaled by ū2
CL uτ� ) and h′v′ (both inner-scaled by u3

τ� and outer-scaled
by ū3

CL) for turbulent h′-transport, for varying HCB Reynolds numbers 97 ≤ Reτ� ≤ 985 at centreline
Mach numbers M̄CLx ∈ {0.33, 0.80, 1.50, 2.00}, and for varying 0.32 ≤ M̄CLx ≤ 2.49 at nearly constant
Reτ� ∈ {100, 110, 250, 340}, from the present DNS database (table 1).
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(iv) At constant Reτ� , the inner-scaled wall-normal flux h′v′ � = h′v′/u3
τ� is practically

independent of M̄CLx everywhere in the channel, whereas the streamwise flux follows
mixed scaling h′u′/(ū2

CL uτ�).
(v) The higher Reτ� � 1000 data suggest an outer law ( y/δ)2 decay for PrT (which also

fits lower Reτ� � 250 data), highlighting at the same time the need for higher-Reτ�

data to elucidate the high-Re asymptotics.

The HCB–SRA predicts reasonably well h′
trms

, h′
rms, h′u′ for the class of flows studied,

but predicts incorrectly unbounded increase of the ratio h′
trms

/h′
rms in the wake region, with

increasing Reτ� . This deficiency can be corrected only using a weak Reynolds analogy,
i.e. the exact truncated-to-2oMs relation. For all of the flows considered in the present
database, appropriate constant values of ch′

tu′, cu′v′/ch′
tv

′ provide a simple correlation that
fits well the DNS data, but remains specific to the class of VCW flows.

The study of transport equations for the enthalpy variance ρh′′2 and fluxes ρh′′u′′
i is

probably the only way to analyse the observed strong and complex dependence of PrT on
both Reτ� and M̄CLx in the near-wall region (y� � 15). With the exception of turbulent
diffusion which, in (·)� units, is practically M̄CLx-independent, all of the other terms in the
budgets of the transport equation for ρh′′2 show strong M̄CLx-dependence in the near-wall
region. It is believed that further study of the budgets of these transport equations will
provide insight into the complexity of the very-near-wall flow.

Detailed data of the various moments, correlations and p.d.f.s studied in the paper, for
flows with different non-dimensional enthalpy rise (h̄CL − h̄w)/(1

2 ū2
CL), are necessary to

parametrise the findings of this work for general compressible wall turbulence. Another
important perspective is obtaining DNS data of compressible wall turbulence at higher
Re, this being a global need, as currently available Reynolds numbers in the literature lag
by almost one decade incompressible flow DNS.
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