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Abstract

Let ϕ1, . . . ,ϕr ∈ Z[z1, . . . zk] be integral linear combinations of elementary symmetric polynomials
with deg(ϕj) = kj (1 ≤ j ≤ r), where 1 ≤ k1 < k2 < · · · < kr = k. Subject to the condition k1 + · · · + kr ≥
1
2 k(k − 1) + 2, we show that there is a paucity of nondiagonal solutions to the Diophantine system
ϕj(x) = ϕj(y) (1 ≤ j ≤ r).
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1. Introduction

Our focus in this paper is on systems of simultaneous Diophantine equations defined
by symmetric polynomials. Let ϕ1, . . . ,ϕr ∈ Z[z1, . . . , zk] be symmetric polynomials
with deg(ϕj) = kj (1 ≤ j ≤ r), so that, for any permutation π of {1, 2, . . . , k}, one has

ϕj(xπ1, . . . , xπk) = ϕj(x1, . . . , xk) (1 ≤ j ≤ r).

Given any such permutation π, the system of Diophantine equations

ϕj(x1, . . . , xk) = ϕj(y1, . . . , yk) (1 ≤ j ≤ r) (1.1)

plainly has the trivial solutions obtained by putting yi = xπi (1 ≤ i ≤ k). Denoting by
Tk(X) the number of these trivial solutions with 1 ≤ xi, yi ≤ X (1 ≤ i ≤ k), one is led to
the question of whether there is a paucity of nondiagonal solutions. Thus, fixing k and
ϕ and writing Nk(X;ϕ) for the number of solutions of the system (1.1) in this range,
one may ask whether as X → ∞, one has

Nk(X;ϕ) = Tk(X) + o(Tk(X)),

or equivalently, whether Nk(X;ϕ) = k! Xk + o(Xk). This question has been examined
extensively in the diagonal case where the polynomials under consideration take the
shape ϕj(x) = xkj

1 + · · · + xkj

k , as can be surmised from the references cited in this

The author’s work is supported by NSF grants DMS-2001549 and DMS-1854398.
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

29

https://doi.org/10.1017/S000497272200096X Published online by Cambridge University Press

http://dx.doi.org/10.1017/S000497272200096X
https://orcid.org/0000-0002-8781-4706
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S000497272200096X&domain=pdf
https://doi.org/10.1017/S000497272200096X


30 T. D. Wooley [2]

paper. Relatively little consideration has been afforded to more general symmetric
polynomials. It transpires that by adapting a strategy applied previously in a special
case of Vinogradov’s mean value theorem (see [17]), we are able to settle this paucity
problem for numerous systems of the type (1.1) in a particularly strong form.

Further notation is required to describe our conclusions. Define the elementary
symmetric polynomials σj(z) ∈ Z[z1, . . . , zk] for j ≥ 0 by means of the generating
function identity

k∑
j=0

σj(z)tk−j =

k∏
i=1

(t + zi). (1.2)

We restrict attention primarily to symmetric polynomials of the shape

ϕj(z) =
k∑

l=1

ajlσl(z) (1 ≤ j ≤ r), (1.3)

with fixed coefficients ajl ∈ Z for 1 ≤ j ≤ r and 1 ≤ l ≤ k. By taking appropriate
integral linear combinations of the polynomials ϕ1, . . . ,ϕr, it is evident that in our
investigations concerning Nk(X;ϕ), we may suppose that deg(ϕj) = kj (1 ≤ j ≤ r),
where the exponents kj satisfy the condition

1 ≤ k1 < k2 < · · · < kr = k. (1.4)

This can be seen by applying elementary row operations on the reversed r × k matrix of
coefficients A = (aj,k−l+1), reducing to an equivalent system having the same number of
solutions, in which the new coefficient matrix A′ has upper triangular form and r′ ≤ r
nonvanishing rows.

A simple paucity result is provided by our first theorem. It is useful here and
elsewhere to introduce the auxiliary quantity

w(ϕ) = 1
2 k(k + 1) − k1 − k2 − · · · − kr. (1.5)

Here and throughout this paper, implicit constants in the notations of Landau and
Vinogradov may depend on ε, k and the coefficients of ϕ.

THEOREM 1.1. Let ϕ1, . . . ,ϕr be symmetric polynomials of the shape (1.3), having
respective degrees k1, . . . , kr satisfying (1.4). Then, for each ε > 0,

Nk(X;ϕ) = Tk(X) + O(Xw(ϕ)+1+ε).

In particular, when k1 + · · · + kr ≥ 1
2 k(k − 1) + 2, one has

Nk(X;ϕ) = k! Xk + O(Xk−1+ε).

A specialisation of the system (1.1) illustrates the kind of results made available
by Theorem 1.1. Fix a choice of coefficients ajl ∈ Z for 1 ≤ l ≤ k − r and k − r + 1 ≤
j ≤ k, and denote by Mk,r(X; a) the number of integral solutions of the simultaneous
equations
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σj(x) +
k−r∑
l=1

ajlσl(x) = σj(y) +
k−r∑
l=1

ajlσl(y) (k − r + 1 ≤ j ≤ k), (1.6)

in variables x = (x1, . . . , xk) and y = (y1, . . . , yk) with 1 ≤ xi, yi ≤ X.

COROLLARY 1.2. Suppose that k, r ∈ N and (k − r)(k − r + 1) < 2k − 2. Then there is
a paucity of nondiagonal solutions in the system of equations (1.6). In particular, for
each ε > 0, one has

Mk,r(X; a) = Tk(X) + O(X
1
2 (k−r)(k−r+1)+1+ε).

Results analogous to those of Theorem 1.1 and Corollary 1.2 for diagonal Diophan-
tine systems involving r equations are almost always limited to systems possessing
only r + 1 pairs of variables, and these we now describe. In the case r = 1, Hooley
applied sieve methods to investigate the equation

xk
1 + xk

2 = yk
1 + yk

2,

with k ≥ 3, and ultimately established the paucity of nondiagonal solutions with a
power saving (see [9, 10]). Strong conclusions have been derived when k = 3 by
Heath-Brown [8] using ideas based on quadratic forms, enhancing earlier work of the
author that extends from cubes to general cubic polynomials [20]. When r = 2, k1 < k2
and k2 ≥ 3, the paucity of nondiagonal solutions has been established for the pair of
simultaneous equations

xk1
1 + xk1

2 + xk1
3 = yk1

1 + yk1
2 + yk1

3

xk2
1 + xk2

2 + xk2
3 = yk2

1 + yk2
2 + yk2

3

⎫⎪⎪⎬⎪⎪⎭ .

Sharp results are available in the case (k1, k2) = (1, 3) (see [16]), with nontrivial
conclusions available for the exponent pair (1, k) when k ≥ 3 (see [5, 14]). The cases
(2, 3) and (2, 4) were tackled successfully via affine slicing methods (see [15, 19]),
with the remaining cases of this type covered by Salberger [12] using variants of the
determinant method. Most other examples in which it is known that there is a paucity
of nondiagonal solutions are closely related to the Vinogradov system of equations

x j
1 + · · · + x j

r+1 = y j
1 + · · · + y j

r+1 (1 ≤ j ≤ r).

The paucity problem has been solved here by Vaughan and the author [17], with similar
conclusions when the equation of degree r is replaced by one of degree r + 1. Recent
work [21] shows that the missing equation of degree r in this last result can be replaced
by one of degree r − d, provided that d is not too large. Meanwhile, when the exponents
kj satisfy (1.4), results falling just short of paucity have been obtained in general for
systems of the shape

xkj

1 + · · · + xkj

r+1 = y
kj

1 + · · · + y
kj

r+1 (1 ≤ j ≤ r),
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(see [11, 18]). In the special case k = (1, 3, . . . , 2r − 1), Brüdern and Robert [2] have
even established the desired paucity result. We should note also that the existence of
nondiagonal solutions, often exhibited by remarkable parametric formulae, has long
been the subject of investigation, as recorded in Gloden’s book [4], with notable recent
contributions by Choudhry [3].

Taking k large and r = k − �
√

2k
 + 1, we see that (1.6) constitutes a Diophantine
system of r equations in k = r +

√
2r + O(1) pairs of variables having a paucity of

nondiagonal solutions. Corollary 1.2 therefore exhibits a large class of Diophantine
systems in which the barrier described in the previous paragraph is emphatically
surmounted. There are two exceptions to the rule noted in that paragraph. First,
Salberger and the author [13, Corollary 1.4 and Theorem 5.2] have established the
paucity of nondiagonal solutions in situations where the underlying equations have
very large degree in terms of the number of variables. Second, work of Bourgain et al.
[1, Theorem 26] and Heap et al. [7, Theorem 1.2] examines systems of equations
determined by relations of divisor type having the shape

(x1 + θ)(x2 + θ) · · · (xk + θ) = (y1 + θ)(y2 + θ) · · · (yk + θ), (1.7)

in which θ ∈ C is algebraic of degree d over Q. When d ≤ k, this relation generates
d independent symmetric Diophantine equations, and it is shown that the number of
integral solutions of (1.7) with 1 ≤ xi, yi ≤ X is asymptotically Tk(X) + O(Xk−d+1+ε).
In particular, when d = 2, we obtain a pair of simultaneous Diophantine equations in
k variables having a paucity of nondiagonal solutions. For example, when k = 4 and
θ =
√
−1, we obtain the system

x1x2x3x4−x1x2 − x2x3 − x3x4 − x4x1 − x2x4 − x1x3

= y1y2y3y4 − y1y2 − y2y3 − y3y4 − y4y1 − y2y4 − y1y3

x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2 − x1 − x2 − x3 − x4

= y1y2y3 + y2y3y4 + y3y4y1 + y4y1y2 − y1 − y2 − y3 − y4

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
having 4! X4 + O(X3+ε) integral solutions with 1 ≤ xi, yi ≤ X.

We have avoided discussion of systems (1.1) containing the equation

x1x2 · · · xk = y1y2 · · · yk. (1.8)

Here, when r ≥ 2, one may parametrise the solutions of (1.8) in the shape

x1 = α1α2 · · ·αk, x2 = β1β2 · · · βk, . . . , xk = ω1ω2 · · ·ωk,
y1 = α1β1 · · ·ω1, y2 = α2β2 · · ·ω2, . . . , yk = αkβk · · ·ωk,

to provide a paucity result by simple elimination. The reader will find all of the ideas
necessary to complete this elementary exercise in [16].

This paper is organised as follows. In Section 2 we derive a multiplicative relation
among the variables x, y of the system (1.1). This may be applied to obtain Theorem 1.1
and Corollary 1.2. The polynomials ϕj(z) that are the subject of Theorem 1.1 are inte-
gral linear combinations of the elementary symmetric polynomials σ1(z), . . . ,σk(z).
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In Section 3 we examine the extent to which our methods are applicable when the
polynomials ϕj(z) are permitted to depend nonlinearly on σ1(z), . . . ,σk(z).

Our basic parameter is X, a sufficiently large positive number. Whenever ε appears
in a statement, either implicitly or explicitly, we assert that the statement holds for each
ε > 0. We make frequent use of vector notation in the form x = (x1, . . . , xk). Here, the
dimension k will be evident to the reader from the ambient context.

2. Multiplicative relations from symmetric polynomials

Our initial objective in this section is to obtain a multiplicative relation between the
variables underlying the system (1.1). Let ϕ1, . . . ,ϕr be polynomials of the shape (1.3),
having respective degrees k1, . . . , kr satisfying (1.4). We define the complementary set
of exponents R = R(ϕ) by putting

R(ϕ) = {1, . . . , k} \ {k1, . . . , kr}. (2.1)

The counting function Nk(X;ϕ) remains unchanged when we replace the polynomials
ϕj (1 ≤ j ≤ r) by any collection of linearly independent integral linear combinations,
and thus we may suppose that these polynomials take the shape

ϕj(z) = ajσkj (z) −
∑

1≤l<kj
l∈R

bjlσl(z) (1 ≤ j ≤ r), (2.2)

where aj ∈ Z \ {0} and bjl ∈ Z.
Given a solution x, y of the system (1.1) counted by Nk(X;ϕ), we define the integers

hl = hl(x, y) for l ∈ R by putting

hl(x, y) = σl(x) − σl(y). (2.3)

Thus, since 1 ≤ xi, yi ≤ X (1 ≤ i ≤ k), one has |hl(x, y)| ≤ 2kXl (l ∈ R). By making use
of relations (2.2) and (2.3), the system (1.1) becomes

aj(σkj (x) − σkj (y)) =
∑

1≤l<kj
l∈R

bjlhl (1 ≤ j ≤ r). (2.4)

Then, by wielding (1.2) in combination with (2.3) and (2.4), we obtain
k∏

i=1

(t + xi) −
k∏

i=1

(t + yi) =
k∑

m=0

tk−m(σm(x) − σm(y))

=
∑
m∈R

hmtk−m +

r∑
j=1

a−1
j tk−kj

∑
1≤l<kj

l∈R

bjlhl. (2.5)

Put A = a1a2 · · · ar and cj = A/aj (1 ≤ j ≤ r). Also, define

ψl(t) = Atk−l +
∑

1≤j≤r
kj>l

cjbjltk−kj (l ∈ R),
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and then set

Ψ(t; h) =
∑
l∈R

hlψl(t). (2.6)

Notice here that the polynomial Ψ(t; h) has integral coefficients and degree at most
k − 1 with respect to t. Moreover, it follows from (2.5) that

A
( k∏

i=1

(t + xi) −
k∏

i=1

(t + yi)
)
= Ψ(t; h). (2.7)

We may now record the multiplicative relation employed in our proof of
Theorem 1.1. Suppose that x, y is an integral solution of the system (1.1), where
ϕ1, . . . ,ϕr are symmetric polynomials as described above. Then, with

hl = σl(x) − σl(y) (l ∈ R),

we deduce by substituting t = −yj into (2.7) that

A
k∏

i=1

(xi − yj) = Ψ(−yj; h) (1 ≤ j ≤ k). (2.8)

PROOF OF THEOREM 1.1. Divide the solutions of the system (1.1) with 1 ≤ xi, yi ≤ X
into two types. A solution x, y will be called potentially diagonal when {x1, . . . , xk} =
{y1, . . . , yk}, and nondiagonal when, for some index j with 1 ≤ j ≤ k, one has either
yj � {x1, . . . , xk} or xj � {y1, . . . , yk}.

We first consider potentially diagonal solutions x, y. Suppose, if possible, that x, y
satisfies the condition that the polynomial Ψ(t; h) defined in (2.6) is identically zero as
a polynomial in t. Since A � 0, it follows from (2.7) that

k∏
i=1

(t + xi) =
k∏

i=1

(t + yi).

The roots of the polynomials on the left- and right-hand sides here must be identical,
and so too must be their respective multiplicities. Thus (x1, . . . , xk) is a permutation
of (y1, . . . , yk), and it follows that the number of solutions x, y of this type counted by
Nk(X;ϕ) is precisely Tk(X).

Suppose next that x, y is a potentially diagonal solution with Ψ(t; h) not identically
zero, where h is defined via (2.3). In this situation, there are distinct integers
w1, . . . , ws, for some integer s with 1 ≤ s ≤ k, such that

{x1, . . . , xk} = {y1, . . . , yk} = {w1, . . . , ws}. (2.9)

Consider any tuple of integers h with |hl| ≤ 2kXl (l ∈ R) for which the polynomial
Ψ(t; h) is not identically zero. This polynomial has degree at most k − 1, and hence
there is an integer ξ with 1 ≤ ξ ≤ k for which the integer Θ = Ψ(ξ; h) is nonzero.
We see from (2.7) that (ξ + w1) · · · (ξ + ws) divides Θ. Thus, an elementary divisor
function estimate (see, for example, [6, Theorem 317]) shows the number of possible
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choices for ξ + w1, . . . , ξ + ws to be at most
∑

d1,...,ds∈N
d1···ds |Θ

1 ≤
(∑

d|Θ
1
)s
= d(|Θ|)s � |Θ|ε.

Since one has Θ = O(Xk), we see that there are at most O(Xε) possible choices for
ξ + w1, . . . , ξ + ws, and hence also for w1, . . . , ws. From here, relation (2.9) implies
that, for these fixed choices of h, the number of possible choices for x and y is also
O(Xε). On recalling (1.5), we discern that the total number of choices for the tuple
h with |hl| ≤ 2kXl (l ∈ R) is O(Xw(ϕ)). Let T∗k (X;ϕ) denote the number of potentially
diagonal solutions x, y not counted by Tk(X). For each of the O(Xw(ϕ)) choices for h
associated with these solutions, we have shown that there are O(Xε) solutions x, y,
whence

T∗k (X;ϕ) � Xw(ϕ)+ε. (2.10)

Finally, suppose that x, y is a nondiagonal solution of the system (1.1). By invoking
symmetry (twice), we may suppose that yk � {x1, . . . , xk}, whence (2.8) shows the
integer Θ = Ψ(−yk; h) to be nonzero. There are O(Xw(ϕ)) possible choices for h and
O(X) possible choices for yk corresponding to this situation. Fixing any one such, and
noting that Θ = O(Xk), an elementary divisor function estimate again shows that there
are O(Xε) possible choices for x1 − yk, . . . , xk − yk satisfying (2.8). Fix any one such
choice for these divisors. Since yk is already fixed, it follows that x1, . . . , xk are likewise
fixed.

It remains to determine y1, . . . , yk−1. Since the tuple h has already been fixed and
Ψ(t; h) has degree at most k − 1 with respect to t, the polynomial

A
k∏

i=1

(xi − t) − Ψ(−t; h)

has degree k with respect to t, and has all of its coefficients already fixed. It therefore
follows from (2.8) that there are at most k choices for each of the variables y1, . . . , yk−1.
Let T†k (X;ϕ) denote the number of nondiagonal solutions x, y counted by Nk(X;ϕ).
Then we may conclude that

T†k (X;ϕ) � Xw(ϕ)+1+ε. (2.11)

On recalling our opening discussion together with the estimates (2.10) and (2.11),
we arrive at the upper bound

Nk(X;ϕ) − Tk(X) = T∗k (X;ϕ) + T†k (X;ϕ) � Xw(ϕ)+1+ε. (2.12)

This delivers the first conclusion of Theorem 1.1. On recalling the definition (1.5) of
w(ϕ), it follows that when k1 + · · · + kr ≥ 1

2 k(k − 1) + 2, one has w(ϕ) ≤ k − 2, and thus
the second conclusion of Theorem 1.1 is immediate from (2.12) and the asymptotic
formula Tk(X) = k! Xk + O(Xk−1). �
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PROOF OF COROLLARY 1.2. Write

ϕj(z) = σj(z1, . . . , zk) +
k−r∑
l=1

ajlσl(z1, . . . , zk) (k − r + 1 ≤ j ≤ k).

Then we see that the system (1.6) is comprised of symmetric polynomials having
degrees k − r + 1, . . . , k. For this system, it follows from (1.5) that

w(ϕ) = 1
2 k(k + 1) −

k∑
j=k−r+1

j = 1
2 (k − r)(k − r + 1).

We therefore deduce from Theorem 1.1 that

Mk,r(X; a) = Nk(X;ϕ) = Tk(X) + O(X
1
2 (k−r)(k−r+1)+1+ε),

and so there is a paucity of nondiagonal solutions in the system (1.6) provided that
(k − r)(k − r + 1) < 2k − 2. This completes the proof of the corollary. �

3. Nonlinear variants

The system of Diophantine equations (1.1) underlying Theorem 1.1 and Corollary
1.2 possesses features inherently linear in nature. Indeed, as is evident from the
discussion initiating Section 2, we are able to restrict attention to integral linear
combinations of elementary symmetric polynomials of the shape (2.2). This is a
convenient but not essential simplification, as we now explain.

We first describe the symmetric polynomials presently in our field of view. Recall
the exponents k1, . . . , kr satisfying (1.4), the complementary set of exponentsR = R(ϕ)
defined in (2.1), and the definition (1.5) of w(ϕ). Putting R = card(R), we label the
elements of R so that R = {l1, . . . , lR}. We consider symmetric polynomials in the
variables z = (z1, . . . , zk) of the shape

ϕj(z) = ajσkj (z) − Υj(σl1 (z), . . . ,σlR (z)) (1 ≤ j ≤ r), (3.1)

where aj ∈ Z \ {0} and Υj ∈ Z[s1, . . . , sR].

THEOREM 3.1. Let ϕ1, . . . ,ϕr be symmetric polynomials of the shape (3.1) with
respective degrees k1, . . . , kr satisfying (1.4). Then

Nk(X;ϕ) = Tk(X) + O(X2w(ϕ)+1+ε).

In particular, when k1 + · · · + kr ≥ 1
2 k2 + 1, one has

Nk(X;ϕ) = k! Xk + O(Xk−1+ε).

A specialisation again makes for accessible conclusions. Fix the polynomials Υj ∈
Z[s1, . . . , sR] for k − r + 1 ≤ j ≤ k, and denote by Lk,r(X;Υ) the number of solutions of
the simultaneous equations
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σj(x) + Υj(σ1(x), . . . ,σk−r(x)) = σj(y) + Υj(σ1(y), . . . ,σk−r(y)) (k − r + 1 ≤ j ≤ k),
(3.2)

in variables x = (x1, . . . , xk) and y = (y1, . . . , yk) with 1 ≤ xi, yi ≤ X.

COROLLARY 3.2. Suppose that k, r ∈ N satisfy (k − r)(k − r + 1) < k − 1. Then there
is a paucity of nondiagonal solutions in the system (3.2). In particular,

Lk,r(X;Υ) = Tk(X) + O(X(k−r)(k−r+1)+1+ε).

PROOF OF THEOREM 3.1. Our present strategy is very similar to that wrought against
Theorem 1.1. Given a solution x, y of the system (1.1) counted by Nk(X;ϕ), define
hm(z) = σlm (z) for z ∈ {x, y} and 1 ≤ m ≤ R. In view of (3.1), the system (1.1) now
becomes

aj(σkj (x) − σkj (y)) = Υj(h(x)) − Υj(h(y)) (1 ≤ j ≤ r). (3.3)

In the present nonlinear scenario there may be some index j for which the integer on
the right-hand side of (3.3) is not equal toΥj(h(x) − h(y)). The argument here therefore
contains extra complications, with weaker quantitative conclusions than Theorem 1.1.

Put A = a1a2 · · · ar and cj = A/aj (1 ≤ j ≤ r). Then, by applying the identity (1.2)
together with (3.3), we obtain for 1 ≤ j ≤ r the relation

A
( k∏

i=1

(t + xi) −
k∏

i=1

(t + yi)
)
= Ψ(t; h) − Ψ(t; g), (3.4)

where h = (h1(x), . . . , hR(x)), g = (h1(y), . . . , hR(y)), and we write

Ψ(t; e) = A
∑
m∈R

emtk−m +

r∑
j=1

cjtk−kjΥj(e).

If x, y is a solution of (1.1) counted by Nk(X;ϕ), then, with hm = σlm (x) and gm = σlm (y)
for 1 ≤ m ≤ R, we deduce by setting t = −yj in (3.4) that

A
k∏

i=1

(xi − yj) = Ψ(−yj; h) − Ψ(−yj; g) (1 ≤ j ≤ k). (3.5)

We now follow the path already trodden in the proof of Theorem 1.1 presented
in Section 2. Suppose first that x, y is a potentially diagonal solution. When the
polynomial Ψ(−t; h) − Ψ(−t; g) is identically zero, we find that x, y is counted by
Tk(X). Meanwhile, when instead this polynomial is not identically zero, a divisor
function argument shows that for each fixed choice of h and g, there are O(Xε)
possible choices for x and y. We have |hm(x)| ≤ 2kXlm and |hm(y)| ≤ 2kXlm , so the
total number of choices for (h1, . . . , hR) and (g1, . . . , gR) is O(X2w(ϕ)), where w(ϕ) is
defined by (1.5). Thus, the total number of potentially diagonal solutions is equal to
Tk(X) + O(X2w(ϕ)+ε).

Suppose next that x, y is a nondiagonal solution of the system (1.1). By sym-
metry, we may again suppose that yk � {x1, . . . , xk}, and (3.5) shows that the integer
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Θ = Ψ(−yj; h) − Ψ(−yj; g) is nonzero. There are O(X2w(ϕ)) possible choices for h and
g, and O(X) possible choices for yk in this scenario. Fix any one such choice and note
from (3.5) that Θ = O(Xk). An elementary divisor function estimate shows there to be
O(Xε) choices for x1 − yk, . . . , xk − yk satisfying (3.5). Fixing any one such choice fixes
the integers x1, . . . , xk. An argument essentially identical to that applied in the proof
of Theorem 1.1 shows from here that there are O(1) possible choices for y1, . . . , yk−1.
Hence, the number of nondiagonal solutions of the system (1.1) is O(X2w(ϕ)+1+ε).

Combining the two contributions to Nk(X;ϕ) that we have obtained yields

Nk(X;ϕ) − Tk(X) � X2w(ϕ)+1+ε,

confirming the first conclusion of Theorem 3.1. The definition (1.5) of w(ϕ), more-
over, implies that when k1 + · · · + kr ≥ 1

2 k2 + 1, one has 2w(ϕ) ≤ k − 2. The second
conclusion of Theorem 3.1 therefore follows directly from the first. �

PROOF OF COROLLARY 3.2. When k − r + 1 ≤ j ≤ k, write

ϕj(z) = σj(z1, . . . , zk) + Υj(σ1(z1, . . . , zk), . . . ,σk−r(z1, . . . , zk)).

Then we see from (1.5) that the system (3.2) is comprised of symmetric polynomials
with w(ϕ) = 1

2 (k − r)(k − r + 1). Theorem 3.1 therefore shows that

Lk,r(X;Υ) = Nk(X;ϕ) = Tk(X) + O(X(k−r)(k−r+1)+1+ε),

and provided that (k − r)(k − r + 1) < k − 1, there is a paucity of nondiagonal solutions
in the system (3.2). This completes the proof of the corollary. �
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