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HECKE GROUPS AND CONTINUED FRACTIONS

DAVID ROSEN AND THOMAS A. SCHMIDT

The Hecke groups

\ , = 2 cos — , g ^ 3 in Z,
1

are Fuchsian groups of the first kind. In an interesting analogy to the use of
ordinary continued fractions to study the geodesies of the modular surface, the
A-continued fractions (AF) introduced by the first author can be used to study
those on the surfaces determined by the Gq. In this paper we focus on periodic
continued fractions, corresponding to closed geodesies, and prove that the period
of the AF for periodic y/5/C has nearly the form of the classical case. From
this, we give: (1) a necessary and sufficient condition for y/D/C to be periodic;
(2) examples of elements of Q(A,) which also have such periodic expansions; (3)
a discussion of solutions to Pell's equation in quadratic extensions of the Q(A4);
and (4) Legendre's constant of diophantine approximation for the Gq, that is, 7 ,
such that I a - £ | < fq/Q

3 implies that P/Q of "reduced finite AF form" is a
convergent of real a ^ Gq(oo).

1. INTRODUCTION

A new class of continued fractions was introduced by the first-named author in
[15], as a technique for studying the Hecke groups, Gq. Recall that

are Fuchsian groups of the first kind. The Gq act upon the Poincare upper half-plane,
i j , via fractional linear transformations. When q = 3, <?j is the full modular group
and in what follows, we restrict to q > 3, referring to q = 3 as the classical case.

The link between continued fractions and the geometry of surfaces has arisen in-
dependently several times in this century. The connection between regular continued
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460 D. Rosen and T. Schmidt [2]

fractions and the modular surface S = Gs\$j was first noted by L. Ford [7]. It was
E. Artin who exploited the connection to produce the first striking result: almost all
geodesies on 5 are quasi-ergodic; that is, pass near every point in every direction [3].
This led to a very fruitful line of inquiry as much stronger ergodicity pertains in much
more general settings [10]. Contemporaneous with Artin, J. Nielsen and M. Morse de-
veloped a symbolic dynamics of geodesies that, in principal, could be used to study the
geodesies. For S this symbolic dynamics amounts to the regular continued fractions
[19]. Ergodic theorists have found this connection to be an effective way of studying
the iteration of the continued fraction transformation as viewed as a map of the unit
interval to itself [1, 2]. As well, physicists have utilised this connection to construct
physical systems with chaotic trajectory behaviour [8]. However, <S is the only non-
compact surface for which all of the above is explicitly understood. We expect that
the Gq in conjuction with the aforementioned class of continued fractions will provide
a whole new family of such examples.

The geometrical aspects of the continued fractions for the Gq were first utilised
by Lehner [12], to investigate Diophantine approximation by the Hecke groups. He
found the Hurwitz numbers of the groups with even q and gave a good bound on those
corresponding to odd q. Haas and Series [9] followed with further investigations of the
Markov spectra, using hyperbolic geometric techniques. Sheingorn [20] has emphasised
the simplicity of these continued fractions for hyperbolic geometric computations.

It is a general phenomenon, also remarked upon by Artin, that closed geodesies
of a surface correspond to periodic continued fractions. Furthermore, the set of closed
geodesies is basic to the dynamics of the surface, as evidenced in the Selberg trace
formula. Periodic continued fractions being quadratic in nature, we lay the foundation
for the study of the set of closed geodesies of the Hecke triangle surfaces by identifying
the set of the periodic y/D/C.

Such periodic values are related to Pell equations. In the case of Gj, a single
solution to P2 — DQ2 = 1 is necessary and sufficient to ensure the periodicity of \fD.

(P DQ\
This can be shown as in [21], where one forms the matrix I j and proceeds

to conclude the periodicity. However, for q > 3, the existence of a solution, although
necessary, is not sufficient for periodicity. By [17], the elements of Gq are comprised of
numerators and denominators of consecutive convergents. For the traditional period-
icity argument to be successful, one needs a solution to the Pell equation with DQ/P
and P/Q being consecutive convergents. Significant complications are caused by the
units and class group of Q(Ag). Indeed, this is the case throughout the study of these
continued fractions. We sketch the effects in this instance. If some P/Q is a cusp,
that is, an image of infinity under the action of the group, then the continued fraction
algorithm uniquely determines a convergent Pn/Qn as defined in our equations (1.3) of
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P/Q such that P/Q = Pn/Qn • A priori, with relatively prime P and Q and unique
factorisation in the ring of integers, one knows only that Pn — uP and Qn = uQ for
some unit u. (There are many of these: Q(Ag) is a totally real field of degree <f>(2q)/2
over Q, where 0 is Euler's ^-function; it thus has a unit group of Z rank <f>(2q)/2 — 1.)
Of course, one cannot say even this much if there is not unique factorisation. In all
cases, a solution to the Pell equation may be transformed into convergents which no
longer satisfy the equation.

A periodic \[T) does give a solution to a Pell equation. Analogously to the im-

portant use of the classical continued fraction to find the fundamental unit of a real

quadratic extension of Q, one finds a non-trivial unit in Q( A,, \T5\ . As mentioned in

Section 4, there can be no more than a single infinite cyclic group of units which can

arise from the convergents.

The main result of our paper is on the form of the expansion of a periodic yfD/G.
Knowledge of the shape of such a period leads us to: (1) a necessary and sufficient
condition for y/D/C to be periodic; (2) the fact that elements of Q(A,) can have
such periodic expansions; (3) a discussion of solutions to Pell's equation in quadratic
extensions of the Q(A,); and (4) the Legendre constant of diophantine approximation
for the Gq.

Numerical examples lead us to conjecture that many quadratics over Q(A9) do not
have periodic expansions. We furthermore conjecture that this is also true for certain
elements of Q(A9) which are not cusps. (We add: This is true and a discussion thereof,
based upon our Theorem 3.2, will appear in a forthcoming joint paper of the second-
named author with M. Sheingorn. Other recent results include the use by the second-
named author [18] of the fractions to obtain results on the rational period functions,
which are related to the Eichler cohomology, for the Gq. In this last reference there is
also a treatment of the metrical properties of the interval map induced by the continued
fractions for q = 4.) There was an intense study of the cusps of the Gq initiated by
the first-named author [16] and furthered by the German school of Leutbecher et al.:
[14, 5]. However there is a paucity of cases in which one knows the exact cusp set of a
given Gq. It may very well be that a study based upon the periodic values, which are
the hyperbolic fixed points of the group, as well as upon a judicious selection of elliptic
fixed points as in [20], could give a technique for a satisfactory determination of the
cusps, the fixed points of the parabolics.

1.2 NOTATION

For notational simplicity, we often write A for A,. We call our continued fractions
A-fractions, denoted \F. They arise from a nearest-integer algorithm [15]; every a 6 R
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can be represented as

(1.2) a -r0X-\ ——;—/ r =(r0A,e1/r1A,e2/r2A,...),

where ro £ Z and rj £ Z + for i > 0 and d = ±1.

We recall that the convergents Pn/Qn obtained by truncating the XF of a after
n steps satisfy:

(1.3) Pn = rnAPn_i + enPn-2, Qn = rnXQn-! + enQn_2; n > 1;

and the determinant relation

(1.4) PnQn-l ~ QnPn-l = ( - l ) ""^

In all that follows, we shall assume that the XF considered are in their unique
reduced form, as denned in [15, p.555]. We recall that the definition of reduced XF
restricts the appearance of the sequences B(h), where h — [q — 3/2J and for any

natural number s, B(s) = I A, —I/A,..., —I/A I .
I ' : '/

*-i times

2. PERIODIC \fD/C

We let C and D be elements of Z[A9] such that D is square-free up to units. Let
the purely periodic XF

P - (r.+1X,e.+2/r.+2,• • • ,en/rnX,e//3).

We write

\r0 A, ei / n A,..., e./r.X, e.+i/rt+1X,..., en/rnX; ej

for the periodic XF

a = (r0X,e1/r1X,... ,e./r.X,e.+1/P).

The acyclic part of a is then (roA,ei/riA,... ,e$/r,X,e,+i).

The next few results follow work in the classical case, as in [6]; however there are
interesting difficulties in the present setting.
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LEMMA 2 . 1 . It a = VD/C is greater than 2/A,, then XF(a) is not purely

periodic.

PROOF: I f a = f'-oA,e1/r1A, . . . ,en/rnA;eJ,let pn/qn = (r0A,ei/riA,... ,en/rn\).

Thus,

a = (foA,ei/riA,...,en/rnX,e/a)

(21) _ apn + epn-i

«9n + etfn-i

From this,

(2.2) a2qn + (cqn-1-pn)a-epn-1=0.

Since a £ Q(A,), but a2 G Q(Ag), it follows that

(2.3) e<?n-i-Pn=0, a
2 = e ^ - .

Thus, e = 1, pn = gn_! , and a2 = pn-\lqn. But, qn ̂  gin_i, hence

(2.4) a^P^zl = P^zi.
9n-l Pn

Asnorj = 0, equation (1.3) gives pn/pn_i = (rnAjEn/i-n-i,... ,£i/roX). From our use
of the nearest-integer algorithm, pn/pn_i ^ A,/2. Thus, a2 ^ 2/A?. Since 2/A9 > 1,
a < 2/A? and hence does not meet our hypotheses. u

PROPOSITION 2 . 2 . If a = s/D/C is greater than 2/A, and has a periodic

XF, then this XF has no more than one acyclic term.

PROOF: We suppose that

(2.5) ot= (r0X,e1/riX,...,e,/r,X,e.+i/r.+1X,...,en/rnX;e),

with the period of a not representable as beginning at Tj, j ^ s.

Let Pj/Qj be the convergents of a and /3 = (r,+iX,... ,£n/i'nX;£j.

Then,

(2.6) a = 0P'+
0q. + e.+iq.-i

Pqn+eqn-i'
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Eliminating /3, one obtains

(2.7) (-e.+iqnq,-i +eq.qn-i)a
2

+ (ePn-iP» - C+iP.-iPn) = 0

Again, a ^ Q(A9). Hence,

£,+i(qnps-i + qs-iPn) - e {q,pn-i + qn-ip.) = 0,

From the first of these equations, e = ea+i. The second can then be expressed as

Pn-lP«-l fPslP.-l -Pn/Pn-l\ _ a2

9n-l9«-l \ 9n/?n-l ~ 9»/9»-l /

Clearly, the second factor in the left hand side of equation (2.9) must be positive.
For ease of notation, when u < t, we define

(2.10) /*,„ :- (7-t_1A,et_1/T-t_2A, ...,ev/ruX).

Since a > A/2 implies that all r< are non-zero, pn/Pn-i = rr»A + en//n,o and
similarly for p,/p4_i. Also, qn/qn-i = rn\ + en//n,i and similarly for q,/q,-i. Thus
the second factor of (2.9) gives

(2.11) -l(rn-r» + (e/fn,0-e/f.,0)]
K ' (rn - T.)\ + (en//Bli - e.//#,i)

Since e = e,.(-i, if r, were equal to rn, the period of a would begin at r,, contrary
to our assumption. Thus, r, ^ rn. Furthermore, l//t,u ^ 2/A whenever t > u. Thus,
if \r, — rn | ^ 2, then

(2.12) |(rB - r.)A| > 2A ̂  4/A ^ |l/ /4 , t t ± l// t , )U| .

In this case, inequality (2.11) is not satisfied. Hence, we consider the case of
\r. -rn\ = 1. If e, = en, then |e n / / n , 0 -e./f.,o\ ^ 2/A, ^ A,, thus inequality (2.11)
would not hold. Furthermore,

(2.13) rn - T. = e. = - e n ,

or again, inequality (2.11) is not satisfied.
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In order to complete the proof of our Proposition, we show that inequality (2.11)
is never satisfied. In fact, we shall show that l/ft,u + l/ft',u' < A? whenever t ^ t',
XqF(a) has more than max{i, t '} terms, etEti = — 1 , and a > 2/A.

When q is even, a > 2/A implies that ft,u > B[h + 1) = 2/A,. Therefore,

(2.14) l / / t ) U + l/ft,y < A, (9 even).

For q odd, we note that for XF(a) to be reduced and £tEti = —1, not both /t)U

and /t;) t l can begin (B(h), — 1/2A, — 1/B(h),... ) , let us say that / t i ) t l does not.

We now treat the cases of h ^ 2 and h = 1 separately. For the former,

ft,u >f:= (B{h), -1 /2A, -1/B(h), -1 /2A, -1/B{h - 1); - l )
(2-15) \ '

ft',u > f •= \B{h),-1/2A,-1/B(h - 1), -1/2A; - l ) .

Let /? = (2A, -1/B(h), -1 /2A, -1/B(fe - 1); - l ) . Thus, 1 / / ' = 2A - /3 and

/ = (B(h), —1/13). In [13], (3.16) defining /3 has a typographical error of a missing - 1

at the end of its period, but (3.26) correctly shows that f) satisfies

(2.16) - / 3 2 + (3A - 2)/3 - 2A2 + 2A + 1 = 0.

We evaluate / as follows. Since 1/(A — 1) = B(h), which equals A — 1/B(h — 1), is
palindromic in its XF form,

(2.17) B{h) = y , B(h-l) = j , Y = (\-1)X, Z = {X2-X-1)X.

Thus, for arbitrary <j> — ±1 and w £ R + we can evaluate

We note that since X\ - As - 1 = 0, (2.18) also holds true when h = 1.

Applying the above to the case at hand, we find that

1 _ Q 3 ( A - 1 ) - ( A 2 - A - 1 ) )

/ 09 - (A - 1)),
and thus

/ 9 1 Q , 1 , 1 _ - /32 + (4A - 2)/? - 3A2 + 3A + 1
( 9) 7 + ? - / J ( A I ) '
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which by equation (2.14) becomes

(2.20) 7 + T=x-

Hence, I/ft, u + l//t',« < \ > an (l w e n a v e proved our Proposition for the case of h ^ 2.

When h — 1 and q — 5, we must replace (2.15) by

(2-21)
ft',u > f •= ( A . - l ^ A , -

The analogue of 0 is 7 := ^2A,-1/A,-1/2A;-l) , so that 1 / / = 7/(7A - 1) and

1/ / ' = 2 A - 7 . Thus,

(11K 1 1 _ - A 7
2 + ( 2 A 2 + 2 ) 7 - 2 A

^ • ^ J / + / ' A 7 - l

Let Pi/Qi be the convergents of 7 , so that 7 = (7P2 — Pi)/{lQ2 — Qi)- Using
A2 — A — 1 = 0, one now finds

(2.23) (2A + l ) 7
2 - (5A

that is, -A3
7

2 + (5A + 4)7 - A3 = 0, and we have

/ / ' A2(A7 - 1 ) •

We have proven our Proposition. D

3. PERIODIC y/D/C CONTINUED

We now find the exact form of the period for periodic \fD/C. As our examples will
indicate, this includes possibilities which do not occur for the classical simple continued
fractions. This discrepancy is due to the fact that a XF in reverse order may not be
reduced.

THEOREM 3 . 1 . If a — \fD/C is greater than 2/\q and has a periodic XF, then

VD/C= (r0A,£i/riA)...,en/rnA;e1),
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where (rnX,en/rn-i,... ,e2/riX) = {2r0X,£1/r1X,... ,en_i/rn_iA).

PROOF: By Lemma 2.1 and Proposition 2.1,

^ , ...,en/rnA;eiJ

(3-1) / / i \ \
= ( TO A, d /r i A,.. . , en/rnX, +1/1 a r ^ ) J •

This gives

a = (l/a-ro\)pn+Pn-1

( l / a - r 0 A ) g n + gn_i.

Hence, since a is not in Q(A9),

j qn~r0X qn-i-pn-i = 0

I - A - a2 — 0

Therefore,

(3.4)
a2 =

Prom the first of these equations,

(3.5) (rnA, £„/»•„_! A, . . . ,e2/riA) = (2r0A,ei/riA,.. . ,en_i/rn_iA).

Thus, our Theorem is proved. U

Examples of the above include the classical form of the period ending with rn — 2ro
and the initial section of the period being palindromic. In the XF setting, the e< are
also to be considered in the palindrome.

EXAMPLE 3.1. Let 9 = 5 and a = \ /6 . One finds

y/6 = (2A5, - I /As, -1/2A,, -1/2A,, -1/2A,, - I /A , , -1/4A,; - l ) .

A different phenomenon arises when a truncated XF of a in reverse order is not
reduced.
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EXAMPLE 3.2. Consider q = 6 and a = \/7, so that

N / 7 = (2A 6 , - l /A 6 , - l /A 6 ) l /3A 6 ;- l ) .

Here r0A6 + P2/Q2 = (4A6,-1/A6,-1/A6) - 7A6/2. The other side of equation
(3.5) is Q3/Q2 = (3A6,1/A6,-1/A6) = 7A6/2.

Since reduced XF are unique, these "non-classical" periods are due to conditions
defining reduced which are not symmetric with respect to reverse order. Indeed, the
only manner in which these periods can arise is for A/2 to be surrounded by oppposite
signs in XF(a).

In the following, we shall need the

DEFINITION: We say that P/Q £ <Q(A,) is in reduced finite XF form if XF(P/Q)
is of finite length and P and Q are exactly the numerator and denominator of the
ultimate convergent of P/Q.

THEOREM 3 . 2 . If a = y/D/C is greater than 2/Xq, then XF(a) is periodic if
/ i/x a?y\

and only if there exist x > y non-zero in Z[A] such thai I £ (? , , for v = ±1 .
\vy x )\y x )

PROOF: Suppose that a is periodic, so that XF(a) has the form of Theorem 3.1.
Now define j3 — (roX,ei/riX,..., £n/(Tn — ro)A), as well as Pn/Qn = P• We have

Pn-i = Qn and

a = (r0X,e1/r1X,... ,en/(rn -

( l /a)Pn + P n - 1

(3-6) (l/«)Qn + Qn-l
(l/a)Pn + Qn

One solves to find Pn = o?Qn-i. By [17, Theorem 2], ( n"1 n ) 6 Gq, for

i/ = ± 1 . Furthermore, Qn ^ Qn-i, therefore, x > y.

In the other direction, suppose that ( ) e Go. From [17, Theorem 2],
\uy x )

both a2y/x and z/y are in reduced finite XF form and are the consecutive convergents
of some real 0. As Qn ^ Qn-i, x > y implies that a choice of a2y/x = Pn/Qn forces
x/y = Pn-i/Qn-i. We note that then Pn/Qn-i = «2 •

Since Pn_i = Qn, one has Pn/Pn_i = Pn/Qn, hence if
p
-^ =(R0X,e1/R1X,...,en/RnX),
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(3.7) (RnX^JRn-i,... ,£i/.RoA) - (RoX,d/fliA,... .en

Now letting

(d.8)
= (Ro^et/RiX,.. .,en/Rn, +1/(1/0).

we find £2 = Pn/Qn-i = «2 • Hence, a equals £, and is periodic. 0

EXAMPLE 3.3. We note that a might actually be in Q(A,) and have the above form.
In particular, let q — 6 and take a = 7. One finds

(3.9) 7=(4A6)1/8A,;+1).

COROLLARY 3 . 1 . If a = VD/C is greater than 2/A,, then \F(a) is non-

periodic if and only if G(a,x,y) = ( I ) ,Gq) is non-Fuchsian for all x,
\\vy x ) I

PROOF: By Beardon [4, Theorem 11.3.3], a Hecke group is never a proper subgroup
of a Fuchsian group. U

Let Ui(D) be the group of all units of the field Q(\q)(\/D) with relative norm

to Q(A,) being 1. We shall denote elements of U^D) by x + \fDy.

COROLLARY 3 . 2 . For D greater than 2/A9 and square-free up to units in Z[At],
tie maxima/ subgroup of Ui(D) having every Dy/x of reduced finite XF form with
x/y its penultimate convergent is at most infinite cyclic.

PROOF: Since x2 = 1 + Dy2 ,

(3.10) trace I* Dy)=2x>2.
\y x )

Thus, each such matrix is hyperbolic. Furthermore, each such fixes both y/D and
—S/D under the usual Mobius action. However, Lehner [11, p.15] shows that a Fuchsian
group has at most one cyclic subgroup of hyperbolic elements fixing the same point.

The map $ from Ui(D) to 51(2,R),

is an injective homomorphism. Therefore, our Corollary is proved. Q

Of course, Ui(D) exactly corresponds to the solution set of the Pell's equation

(3.12) x2 - Dy2 = 1, with x,y € Z[AJ.

Thus, when XF(y/D~) is periodic, one finds one "Z's" worth of solutions to Pell's

equation as convergents.
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4. THE LEGENDRE CONSTANT OF DIOPHANTINE APPROXIMATION

From the above, we see that when yfD is periodic, there is a proper subgroup of

the units of Q(X)(y/Dj found as convergents to XF(-\/DJ . On the other hand, every

x + \fDy in Ui(D) allows one to satisfy:

(4.1)
y

< l/2y2.

Thus [12, Theorem 3] seems to be false. Indeed, in [13], there is a correction to [12]
which amounts to considering only x/y in reduced finite XF form. A correct version
of the theorem follows.

THEOREM 4 . 1 . Let a G R \ G,(oo) and P/Q be in reduced finite XF form. Let

\a-P/Q\<l/lqQ
2, where 7 , = «

6A2+8

Tien P/Q is a convergent of the reduced XF(a) .

PROOF: We follow Lehner's adaptation of Hardy and Wright's classical proof, mak-
ing the corrections necessary to avoid certain errors. Write

(4.2)

We have:

(4.3)

£0
Q2>= Tv> where 0 < 0 < I/7,, e = ±1

P/Q =

Call the convergents Pi/Qi] thus P/Q = Pn-i/Qn-i- Define en by e =
M - l ) " " 1 and u> by a = (Pn_l W + eBPB_a)/(Q»_iw + enQn-2).

As in Lehner, (e9/Q2) = a - P/(? leads to 0 = Qn_i/(Qn-iw + en<9n_2) and
w - (Qn-i - 6enQn-2)/(9Qn-i) > 0.

We expand w in a reduced XF:

(4.4)

and consider

(4.5)

w = (rnA,£n+1/rn+iA,...)

('•oA,ei/r1A,...,en_i/rn_1A,en/u;)

, . . . ,en-i/rn_iA,en/rnA,en+i/rn+1A,.

https://doi.org/10.1017/S0004972700012120 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700012120


[13] Hecke groups and continued fractions 471

We obtain 0 = (Pn-jw + e n P n - 2 ) / (Q n _iu; + enQn-2). Therefore, p = a . If /? is
reduced or if /? reduces to a form which continues to have P/Q as a convergent, then
we are done.

We consider the expansion of /? vis-a-via the defining Properties 1-5 of [15, p.555].
The pieces for this representation coming from P/Q and from u> are each separately
reduced. Thus, we determine when their concatenation introduces an inadmissible
sequence.

We first show that our hypotheses imply that if en = — 1, then the expansion for
u> cannot begin with both rn = 1 and en+i = — 1. As in the above example, we find
that

(«) I—| Q2 =

If w had its expansion beginning as above, then A > u> > A/2. But each A < 2.
Thus 7 g > 2 > A > w - Qn-2/Qn-i. If Qn-ilQn-i > w, then Qn-a/Qn-i ~ *> <
1 — w ^ 1 — A/2 < 1. Thus we have our claim.

An argument almost identical to that above shows that if XF(P/Q) ends with
B[j), for j maximal, en is —1 and u> begins with rn = 1, then \u — P/Q\ Q2 > 1/2.
Since Properties 1 and 2 ensure that P/Q ends with at most a B(h) if q is odd or a
B(h + 1) if q is even, the above says that no B(h + 1) for q odd nor B(h + 2) for q
even is formed. This then guarantees that /3 satisfies Property 1 when q is odd.

When q is even, the only remaining possibility for f3 not to satisfy Property 1 is
if P/Q ends with B(h + 1) and tn = —1. Since only Properties 1 and 5 refer to even
q, and Property 5 only to finite XF, we finish the proof for these q by considering this
last case.

Property 5 implies that P/Q = ( . . . ,e/r\,+l/B(h + 1)). Recall from [15, p.554]
that

(4.7) ( . . . , e / r X , +1/B(h + 1 ) , - 1 / s X , . . . )

Note that truncating both sides of this equation after the indicated B(h + 1) gives
the same value. From this, if /3 is as above, with s ^ 2, then /3 reduces to a /3'
which still has P/Q as a convergent. If however, w — (2A, —1/B(h), —1/tX, •••), then
/?' = {...,e/{r + l)X,-l/B(h+l),+l/X,-l/B{h),-l/tX,...) is not reduced. One
has /?' = /?" , where

(4.8) /3" : = ( . . . , e / ( r + 1)A, -l/B(h), -1/2A, -1/B(h + 1), - l / ( i - 1)A,. . . ) ,
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which no longer has P/Q as a convergent. We note that this process can continue to
/3"' , /3^4\ et cetera if t = 2 and one has (—1/B(h), — 1/...) in the succeeding posi-
tion. However, /?("> will differ from /3" only after the (... ,e/(r + 1)A, -\/B{k), -1/2A)
block. Similar comments apply when t — 1.

We now bound \a — P/Q\ Q2 under the hypothesis of q even, P/Q —
(...,e/r\,+l/B(h + l)), and w = (2\,-l/B(h),-l/£), with £ > 0, \F(£) of infi-
nite length:

(4.9) u> < (2X,-1/B{h)) =\+B(h + l) =

(4.10) 9^zL = {B{h + 1), +l/rA,e) < (B(h + 1),
n-2

Since B(h + 1) = 2/A, reasoning similar to that surrounding equation (2.18) gives

(4-11) (2?(fc+l),+l/(2/A)) = ^ ± i .

Hence,

(4.12) w - —— < 7, , q even .
Vn-l

We remark that our bounds in (4.9) and (4.10) are sharp.
We now consider q to be odd. Our claim just before equation (4.6) shows that if

XF(P/Q) does not end with B(h), then f3 has no conflict with Properties 1 or 2 of the
definition of reduced. The same is true with respect to Property 3. Properties 4 and
5 refer to finite expansions and hence are trivially satisfied by /3. All five properties
being satisfied, we conclude that /3 is indeed in reduced form.

From the above statements, we know that the only manner in which /3 can be
non-reduced is when P/Q ends with B(h) and /3 does not satisfy Property 3. If
P/Q ends with ( . . . , B(h), —1/2A, —1/B(h)) and /3 is non-reduced with u not starting
(2A, -1/B(h),...), then by [15, p.554], /3 can be reduced in such a way that P/Q
remains a convergent.

We are left with the case of: /3 = (... ,e/B(h), -1 /w) , where u> =
(2\,-l/B(h),-l/£), for ( > 0. A sharp upper bound for w is 2A - l/B(h). This
bound is A + l, by [15, p.556]. Now, Qn-i/Qn-2 = (B(h),e/ ... ,e2 /nA). If e = - l ,
then B(h) > Qn-i/Qn-2, from which our bound follows easily. If e = + 1 , then a
sharp upper bound is (B(h), l/(2/A)) ^ Qn-i/Qn-2 • From equation (2.18),

(4-13) \
A2 - A + 2

~ A 3 - A2 + A -

https://doi.org/10.1017/S0004972700012120 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700012120


[15] Hecke groups and continued fractions 473

Hence,

(4.14)
A3 - A2 + A - 2 Qn_2

A + 1 rs ;——^— > w -A2 - A + 2 Qn-l

This now simplifies to give our j q . U

We give examples which truly require 7 , instead of 2 as the constant of Diophantine
approximation.

EXAMPLE 4.1 . Let 9 = 5 and consider

(4.15) £ = (2A,

Let w = (2A, -1/A, -1/%/lT) and

(4.16)
«Q 4 - Qz

Since the unique reduced \F(P/Q) does not appear in this reduced \F expansion of

a, P/Q is not a convergent of a. Now,

(4.17) 2.49187
19A +14

8A + 5
(8A + 5)2 = 0 . 4 9 . . . .

Of course, 1/75 = 0.45. . . is less than the above.

EXAMPLE 4.2. Let q — 6 and consider

(4.18) - = (2A,1/A,-1/A,1/A,-1/A) =
PA

£

(4.19)

Then

(4.20)

Let w= (2A, -1/A, -1/ - /10) and

' 4 - ^ / o l

4.19628
17V1

49 = 0.49.

On the other hand, I/76 = 0.466... , which is less than the above. a
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