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Abstract. An associative ring with unity is called clean if every element is the
sum of an idempotent and a unit; if this representation is unique for every element,
we call the ring uniquely clean. These rings represent a natural generalization of the
Boolean rings in that a ring is uniquely clean if and only if it is Boolean modulo
the Jacobson radical and idempotents lift uniquely modulo the radical. We also show
that every image of a uniquely clean ring is uniquely clean, and construct several
noncommutative examples.
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1. Introduction. An element a in a ring R is called clean if a is the sum of an
idempotent and a unit in R, and R is called a clean ring if every element is clean. It
is known 4, Proposition 1.8 that clean rings are exchange rings (see Warfield 6) and
that the two concepts are equivalent for rings with all idempotents central. Moreover
Camillo and Yu have shown that every unit regular ring is clean 2, Theorem 5, and
that the clean rings with no infinite orthogonal families of idempotents are precisely
the semiperfect rings 2, Theorem 9.

In this paper we investigate the uniquely clean rings in which each element has a
unique representation as the sum of an idempotent and a unit, and find that these rings
are closely related to the Boolean rings. In fact, we prove the following results.

THEOREM. A local ring R is uniquely clean if and only if R/J(R) ∼= �2.

THEOREM. A ring R is uniquely clean if and only if R/J(R) is Boolean and
idempotents lift uniquely modulo J(R). In particular R is Boolean if and only if R is
uniquely clean and J(R) = 0.

THEOREM. Every image of a uniquely clean ring is again uniquely clean.

We also use ideal extensions to construct several examples of uniquely clean
rings, some of which are not commutative.

Throughout this paper all rings are associative with unity (unless otherwise noted)
and all modules are unitary. We denote the group of units of the ring R by U = U(R),
the center by C(R), and the Jacobson radical by J = J(R), and we write I � R to
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indicate that I is an ideal (right and left) of R. The ring of integers is denoted by �,

and we write Mn(R) and Tn(R) for the rings of all (respectively, all upper triangular)
n × n matrices over the ring R.

2. Examples and basic properties. An element a in a ring R is called uniquely
clean if a = e + u where e2 = e and u ∈ U, and this representation is unique. A ring R
is called a uniquely clean ring if every element is uniquely clean.

EXAMPLE 1. Central idempotents and central nilpotents are uniquely clean in any
ring.

Proof. If e2 = e we have e = (1 − e) + (2e − 1). Suppose that e = f + u, f 2 = f,
u ∈ U. If eu = ue we obtain f + u = ( f + u)2 = f + 2f u + u2, so u = 1 − 2f. Hence
f = 1 − e, as required.

If a is nilpotent we have a = 1 + (a − 1). Suppose an = 0 and a = e + u, e2 = e,
u ∈ U. If au = ua, the binomial theorem gives 0 = (e + u)n = e + ( n

1 )eu + ( n
2 )eu2 +

· · · + ( n
n−1 )eun−1 + un. Hence un ∈ eR, so e = 1 as required. �

COROLLARY 2. Every Boolean ring is uniquely clean.

Note that in the proof of Example 1 it is only required that e and a commute with
the unit u. On the other hand, something is needed because

[
1 0
0 0

]
=

[
0 0
0 1

]
+

[
1 0
0 −1

]
=

[
0 1
0 1

]
+

[
1 −1
0 −1

]
,

[
0 1
0 0

]
=

[
1 0
0 1

]
+

[−1 1
0 −1

]
=

[
1 0
1 0

]
+

[−1 1
−1 0

]
.

A routine elementary argument establishes the following result.

EXAMPLE 3. A direct product �iRi of rings is uniquely clean if and only if each Ri

is uniquely clean.

We are going to give examples of noncommutative uniquely clean rings, and the
following result will be needed.

LEMMA 4. Every idempotent in a uniquely clean ring is central.

Proof. Let e2 = e ∈ R. If r ∈ R, then e + (er − ere) is an idempotent. Hence
1 + (er − ere) is a unit, so the fact that [e + (er − ere)] + 1 = e + [1 + (er − ere)] implies
that e + (er − ere) = e because R is uniquely clean. It follows that er = ere, and
similarly re = ere. �

In particular, no matrix ring Mn(R), and no triangular matrix ring Tn(R), is
uniquely clean if n ≥ 2.

Example 3 and Lemma 4 give immediately the following result.

COROLLARY 5. If R is a uniquely clean ring and e2 = e ∈ R, then eRe is uniquely
clean.

COROLLARY 6. Every uniquely clean ring R is directly finite (ab = 1 implies ba = 1).

Proof. If ab = 1, then ba is a (central) idempotent, so ba = ba(ab) = a(ba)b = 1. �
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To exhibit noncommutative examples of uniquely clean rings, we need the following
construction. Let R be a ring and let RVR be an R-R-bimodule which is a general ring
(possibly with no unity) in which (vw)r = v(wr), (vr)w = v(rw) and (rv)w = r(vw)
hold for all v,w ∈ V and r ∈ R. Then the ideal-extension I(R; V ) of R by V is defined
to be the additive abelian group I(R; V ) = R ⊕ V with multiplication (r, v)(s, w) =
(rs, rw + vs + vw). Note that if S is a ring and S = R ⊕ A, where R is a subring and
A � S, then S ∼= I(R; A).

PROPOSITION 7. An ideal-extension S = I(R; V ) is uniquely clean if the following
conditions are satisfied:

(a) R is uniquely clean;
(b) if e2 = e ∈ R then ev = ve for all v ∈ V ;
(c) if v ∈ V then v + w + vw = 0 for some w ∈ V.

Furthermore, conditions (a), (b) and (c) are necessary if S is uniquely clean and V contains
no nonzero idempotents.

Proof. Assume that (a), (b) and (c) are satisfied. Let s = (r, v) ∈ S and (by (a))
write r = e + u, e2 = e ∈ R, u ∈ U(R). Then s = (e, 0) + (u, v) so S is clean because
(u, v) ∈ U(S) [in fact (u, v) = (u, 0)(1, u−1v), and (1, u−1v) = (1, 0) + (0, u−1v) ∈ U(S)
because (0, V ) ⊆ J(S) by (c)]. Now suppose that (e, x) + (u, v) = (e′, x′) + (u′, v′) in S
where (e, x) and (e′, x′) are idempotents and (u, v) and (u′, v′) are units. Then e + u =
e′ + u′ in R where e and e′ are idempotents and u and u′ are units, so (e, x) = (e′, x′) by
the following result.

Claim. If (e, x)2 = (e, x) ∈ S then e2 = e and x = 0.

Proof. (e, x)2 = (e, x) gives e2 = e and x = 2ex + x2 using (b). Then multiplying
by e gives ex + ex2 = 0, and multiplying by x gives x2 = 2ex2 + x3. Hence adding this
latter equation to x = 2ex + x2 yields x = x3, and so x2 is an idempotent in V. By
(c) −x2 + y + (−x2)y = 0, for some y ∈ V, so that x2 + w = x2w where w = −y.

Multiplying by x2 yields x2 = 0, whence x = x3 = 0, proving the Claim.
On the other hand, suppose that S is uniquely clean and V contains no nonzero

idempotents. It is routine to see that (a) holds. If e2 = e ∈ R then (e, 0) is an idempotent
in S and so is central (Lemma 4). In particular (e, 0) commutes with (0, v) for every
v ∈ V, and (b) follows. Finally, given v ∈ V write (1, v) = (e, x) + (u, z) where (e, x) is
an idempotent and (u, z) is a unit. Then 1 = e + u in R so e = 0 by (a). This implies
that x2 = x ∈ V, so x = 0 by hypothesis. Hence (1, v) is a unit in S and (c) follows
where (1, v)−1 = (a, w), a ∈ R, w ∈ V. �

It is worth noting that it is not necessary for V to contain no nonzero idempotent
for I(R; V ) to be uniquely clean in Proposition 7. In fact, the ring I(�2; �2) ∼= �2 × �2

is uniquely clean.
We can now give some noncommutative examples of uniquely clean rings.

EXAMPLE 8. Let R be uniquely clean and let S = {[aij] ∈ Tn(R) | a11 = · · · = ann}.
Then S is uniquely clean and is noncommutative if n ≥ 3.

Proof. Take V = {[aij] ∈ Tn(R) | a11 = · · · = ann = 0}. Then S ∼= I(R; V ). Apply
Proposition 7. (a) is clear; (b) holds because idempotents in R are central and the
idempotents in S are diagonal matrices (by a routine, diagonal by diagonal
computation), and (c) follows because V ⊆ J(S). �
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If R is a ring and α : R → R is a ring endomorphism, let R[[x, α]] denote the
ring of skew formal power series over R; that is all formal power series in x with
coefficients from R with multiplication defined by xr = α(r)x for all r ∈ R. In particular,
R[[x]] = R[[x, 1R]] is the ring of formal power series over R.

EXAMPLE 9. If R is a ring and α : R → R is a ring endomorphism, then R[[x, α]] is
uniquely clean if and only if R is uniquely clean and e = α(e) for all e2 = e ∈ R.

Proof. We have R[[x, α]] ∼= I(R; (x)) where (x) is the ideal generated by x. If I(R; (x))
is uniquely clean then R is uniquely clean by Proposition 7, and e = α(e) because
ex = xe = α(e)x. Conversely, condition (a) in Proposition 7 clearly holds, and (c) holds
because (x) ⊆ J(R[[x, α]]). To prove (b), observe that αk(e) is an idempotent for each
k ≥ 1, so our hypothesis gives e = α(e) = α2(e). Continuing in this way we find that
e = αk(e) for each k ≥ 1. Since e is central in R, it follows that e(axk) = (axk)e for all
a ∈ R and all k ≥ 1, so ev = ve for all v ∈ (x). �

Taking α = 1R in Example 9 gives our next result.

COROLLARY 10. If R is a ring, then the ring R[[x]] of formal power series is uniquely
clean if and only if R is uniquely clean.

EXAMPLE 11. Let R = �4 × �4 and define α : R → R by α(a, b) = (b, a). Then R
is uniquely clean but R[[x, α]] is not uniquely clean.

It is clear that the center C(R) of every uniquely clean ring R is again uniquely
clean. However, in contrast to the Boolean rings, subrings of uniquely clean rings need
not inherit the property.

EXAMPLE 12. If R is any uniquely clean ring, the power series ring R[[x]] is uniquely
clean but its subring R[x] is not uniquely clean.

Proof. R[[x]] is uniquely clean by Corollary 10; the rest follows from the following
result. �

PROPOSITION 13. The polynomial ring R[x] is never clean if R 	= 0.

Proof. We show that x is not clean in R[x]. Suppose that x = e + u where e is
an idempotent and u ∈ U(R[x]). If e = e0 + e1x + · · · and u = u0 + u1x + · · · then
e0 = −u0 is both a unit and an idempotent in R, so e0 = 1. If e 	= 1 then e has the form
e = 1 + xmg where m ≥ 1 and g = a + bx + · · · where a 	= 0. Comparing coefficients of
xm in e2 = e gives 2a = a, a contradiction. Hence e = 1, so 1 − x = −u is a unit in R[x].
But if (1 − x)−1 = a0 + a1x + · · · + anxn then a0 = 1, a1 − a0 = 0, · · · , an − an−1 = 0,

an = 0, a contradiction. �

3. Structure theorems. We begin with a characterization of the local uniquely
clean rings. The following fact about clean rings will be needed and has some interest
in itself.

LEMMA 14. A ring R 	= 0 is local if and only if it is clean and 0 and 1 are the only
idempotents in R.

Proof. If R is local and a ∈ R then a is clean. If a ∈ J we have a = 1 + (1 − a),
while if a /∈ J then a = 0 + a since a is a unit. Hence R is clean. Conversely, given
the conditions, let a /∈ J. Then 1 − ar is a nonunit for some r ∈ R, so 1 − ar = 0 + u
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UNIQUELY CLEAN RINGS 231

is impossible for any unit u. Hence 1 − ar = 1 + u by hypothesis, and it follows that
av = 1 for some v ∈ R. Similarly wa = 1 for w ∈ R, so a is a unit. This proves that R
is local. �

THEOREM 15. The following are equivalent for a ring R 	= 0:
(1) R is local and uniquely clean;
(2) R is uniquely clean and the only idempotents in R are 0 and 1;
(3) R/J ∼= �2.

Proof. (1)⇒(2) is clear.
(2)⇒(3). If ā 	= 0̄ in R̄ = R/J, we show that ā = 1̄. If not then both a and 1 − a are

units because R is local by Lemma 14. Hence 0 + (1 − a) = 1 + (−a), which implies
that 0 = 1 because R is uniquely clean, a contradiction.

(3)⇒(1). R is local by (3), and so is clean by Lemma 14. Suppose that e + u = f + v

where e2 = e, f 2 = f, u−1 ∈ R and v−1 ∈ R. If e 	= f then, as 0 and 1 are the only idem-
potents in R, we may assume e = 0 and f = 1. It follows that both u and 1 − u are
units in R. But R/J ∼= �2 so this means ū = 1̄ = 1̄ + ū in R/J, a contradiction. �

REMARK. The proof of (2)⇒(3) in Theorem 15 shows that if R is a uniquely clean
ring and a ∈ R, then a and 1 − a cannot both be units.

COROLLARY 16. A ring R is uniquely clean and contains no infinite orthogonal set of
idempotents if and only if R ∼= R1 × · · · × Rn for some n ≥ 1 where Ri/J(Ri) ∼= �2 for
each i.

Proof. If R is uniquely clean with no infinite orthogonal set of idempotents
then R ∼= R1 × · · · × Rn where each Ri is indecomposable and uniquely clean. Since
idempotents in Ri are central, Ri/J(Ri) ∼= �2 by Theorem 15. The converse follows
from Example 3 and Theorem 15. �

The following observation will be needed several times. It follows from 4,
Propositions 1.8 and 1.9, but we include a compact, direct proof for completeness.
We say that idempotents lift modulo an ideal I of a ring R if whenever a2 − a ∈ I there
exists e2 = e ∈ R such that e − a ∈ R. In this case we say that e lifts a.

LEMMA 17. Let R be a clean ring.
(1) Idempotents lift modulo every ideal I of R.
(2) If T � J is a right (or left) ideal of R there exists 0 	= e2 = e ∈ T.

Proof. Let a ∈ R, and write a = e + u, where e2 = e and u ∈ U. Then

[a − u(1 − e)u−1]u = eu + ue + u2 − u = a2 − a. (∗)

(1) If a2 − a ∈ I then (∗) shows that a lifts to u(1 − e)u−1 and so idempotents lift
modulo I.

(2) Suppose T � J is a right ideal containing no nonzero idempotent. If a ∈ T and
a = e + u as above, then (∗) gives u(1 − e)u−1 = a − (a2 − a)u−1 ∈ T. Hence e = 1 so
1 − a = −u is a unit. Thus T ⊆ J, a contradiction. A similar argument works if T is a
left ideal. �

Returning to uniquely clean rings, we prove the following result.

LEMMA 18. If R is a uniquely clean ring then R/J has characteristic 2.
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Proof. We must show that 2 = 1 + 1 is in J. If 2 /∈ J there exists 0 	= e2 = e ∈ 2R
by Lemma 17. Hence e = 2b, where b ∈ R. We may assume that eb = b = be. Then
u = (1 − e) − 2e is a unit with inverse (1 − e) − b. Hence

(1 − e) + (1 − 2e) = 1 + u

shows that 1 − e = 1 by hypothesis, a contradiction. �
THEOREM 19. The following are equivalent for a ring R:

(1) R is uniquely clean and J = 0;
(2) R is clean, char(R) = 2 and 1 is the only unit in R;
(3) R is Boolean;
(4) R is (von Neumann) regular and uniquely clean.

Proof. (3)⇒(4) by Corollary 2; (4)⇒(1) is clear; and (2)⇒(3) because if a = e + u
in R where e2 = e and u ∈ U, then a = 1 + e = 1 − e is an idempotent.

(1)⇒(2). Given (1), char(R) = 2 by Lemma 18. Let u ∈ U and suppose that u 	= 1.

By Lemma 17 let 0 	= e2 = e ∈ (1 − u)R, say e = (1 − u)r, r ∈ R. Since e is central by
Lemma 4, it follows that e(1 − u)e is a unit in eRe by Corollaries 5 and 6. But then
0 + e(1 − u)e = e − eue where eue is a unit in eRe, so 0 = e, again by Corollary 5, a
contradiction. Hence u = 1, proving (2). �

If I � R we say that idempotents lift uniquely modulo I if whenever a2 − a ∈ I, there
exists a unique idempotent e ∈ R such that e − a ∈ I. Note that this condition implies
that if e − f ∈ I, e2 = e, f 2 = f, then e = f (since e and f both lift f ); in particular 0
is the only idempotent in I. Hence, in a clean ring the unique lifting condition implies
that I ⊆ J by Lemma 17.

THEOREM 20. The following are equivalent for a ring R:
(1) R is uniquely clean;
(2) R/J is Boolean and idempotents lift uniquely modulo J;
(3) R/J is Boolean, idempotents lift modulo J and idempotents in R are central;
(4) for all a ∈ R there exists a unique idempotent e ∈ R such that e − a ∈ J.

Proof. (1)⇒(2). Given (1), idempotents lift modulo J by Lemma 17. Suppose
that a2 − a ∈ J, e − a ∈ J, f − a ∈ J, where e2 = e, f 2 = f. Then (1 − e) − [1 − (e − a)]
= −a = (1 − f ) − [1 − ( f − a)] so e = f by the uniqueness. Hence idempotents lift
uniquely modulo J, and it remains (by Theorem 19) to show that R̄ = R/J is uniquely
clean. Certainly R̄ is clean. Suppose ā = a + J has two representations ā = ē + ū =
f̄ + v̄ where ē2 = ē, f̄ 2 = f̄ , and ū, v̄ ∈ U(R̄). We may assume that e2 = e and f 2 = f
by Lemma 17, and that u and v are units. Write x = a − e − u and y = a − f − v. Then
x, y ∈ J and e + (u + x) = a = f + (v + y) so, as u + x and v + y are units, we obtain
e = f. Hence ē = f̄ , as required.

(2)⇒(3). If e2 = e ∈ R and r ∈ R then e and e + (er − ere) are both idempotents
in R lifting e, so er − ere = 0 by (2). Hence er = ere; a similar argument shows that
re = ere. This proves (3).

(3)⇒(4). Given a ∈ R an idempotent e with e − a ∈ J exists by (3); we must prove
uniqueness. If f − a ∈ J, f 2 = f, then e − f ∈ J, so e(1 − f ) = (e − f )(1 − f ) ∈ J. But
e(1 − f ) is an idempotent (since e f = f e) and it follows that e = e f. Considering
(1 − e)f shows that f = e f too, proving (4).
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(4)⇒(1). If a ∈ R apply (4) to −a to get e2 = e such that e + a ∈ J. Hence the fact
that a = (1 − e) + [−1 + (e + a)] shows that R is clean. Finally, suppose that a = f + u,

f 2 = f, u ∈ U(R). Then (1 − f ) − a = (1 − 2f ) − u ∈ J because 1 + J is the only unit
in R/J by (4). Hence the uniqueness in (4) shows that 1 − f (and hence f ) is uniquely
determined by a. This proves (1). �

In Theorem 20, the hypotheses that idempotents lift uniquely in (2), and that
idempotents commute in (3), cannot be dropped.

EXAMPLE 21. Let R = [ �2 �2
0 �2

]. Then R/J ∼= �2 ⊕ �2 is Boolean and idempotents
lift modulo J, but R is not uniquely clean by Lemma 4.

Let R be a commutative uniquely clean ring. In 1 the authors ask whether R/M ∼=
�2 for every maximal ideal M of R. The answer is affirmative by the following theorem
and the fact that �2 is the only uniquely clean division ring (Theorem 15).

THEOREM 22. Every factor ring of a uniquely clean ring is again uniquely clean.

Proof. If R is uniquely clean and I � R, write R̄ = R/I. We have (J + I)/I ⊆ J(R̄),
so R̄/J(R̄) is an image of R/J, and so is Boolean by Theorem 20. Since R̄ is clean,
idempotents lift modulo J(R̄) by Lemma 17, so it remains to show that they lift
uniquely. Hence let ā2 − ā ∈ J(R̄) and suppose that ē2 = ē and f̄ 2 = f̄ are such that
ē − ā and f̄ − ā are in J(R̄). As R is clean, idempotents lift modulo I by Lemma 17 so we
may assume that e2 = e and f 2 = f. Hence e and f are central in R, whence ē and f̄ are
central in R̄. But then ē(1̄ − f̄ ) is an idempotent and ē(1̄ − f̄ ) = (ē − f̄ )(1̄ − f̄ ) ∈ J(R̄),
so ē = ēf̄ . Similarly f̄ = f̄ ē and it follows that ē = f̄ . This completes the proof. �

In fact we have the following result for maximal one-sided ideals. A ring R is called
left quasi-duo (respectively right quasi-duo) if every maximal left (right) ideal of R is an
ideal.

PROPOSITION 23. Every uniquely clean ring is left and right quasi-duo.

Proof. Let M be a maximal left ideal in a uniquely clean ring R. Since R̄ = R/J is
Boolean we have R̄/M̄ ∼= �2. But then the R-module R/M ∼= R̄/M̄ has two elements, so
R = M ∪ (1 + M). Now let m ∈ M and r ∈ R; we must show that mr ∈ M. This is clear
if r ∈ M; otherwise r = 1 + m1, m1 ∈ M, so mr = m + mm1 ∈ M, as required. �

Note that a clean, left and right quasi-duo ring need not be uniquely clean. Indeed,
if F is a field and R = {[ a b

0 a ] | a, b ∈ F} then R is a clean, commutative (and local) ring,

but it is not uniquely clean if F � �2.

If R is a ring and G is a group, let RG denote the group ring.

PROPOSITION 24. Let Cn denote the cyclic group of order n.

(1) If R is a commutative uniquely clean ring, then RC2k is uniquely clean for all
k ≥ 0.

(2) If n ≥ 3 is odd and R is a Boolean ring, then RCn is clean, but not uniquely clean.

Proof. (1). It is routine to verify that RC2k ∼= (RCk)C2, so it suffices to show that
if RC2 is uniquely clean. We show first that RC2 is clean. Write C2 = {1, g}, let x =
a + bg ∈ RC2, and write a2 − b2 = e + u, e2 = e, u−1 ∈ R. Then x = e + ((a − e) + bg)
and, since v = (a − e)2 − b2 = u + 2e(1 − a) is a unit in R (by Lemma 18), we have
((a − e) + bg)−1 = v−1((a − e) − bg). Hence RC2 is clean.
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To check uniqueness, let x = f + z where f 2 = f ∈ RC2 and z−1 ∈ RC2. If f =
r + sg then r2 + s2 = r and 2rs = s, so s = 0 (as 2 ∈ J(R)). Hence f 2 = f = r ∈ R. Now
let z = p + qg, so that a = f + p and b = q. Then a + b = f + (p + q), and p + q is
a unit in R because p + qg 
→ p + q is a ring homomorphism RC2 → R. Since R is
uniquely clean, this shows that f (and hence z) is uniquely determined by x.

(2). Write Cn = {1, g, g2, · · · , gn−1} where gn = 1, choose b ∈ R, and put x = g +
g2 + · · · + gn−1. Then gn−1 = bx + (bx + gn−1) so, to see that RCn is not uniquely
clean, it suffices to show that x2 = x and y = bx + gn−1 is invertible for any b ∈ R.

To see that x2 = x, observe that gx = x, and so gkx = x for each k ≥ 1. But then
x2 = �n−1

k=1gkx = (n − 1)x = x because n is odd.
To see that y is invertible, view it as the linear transformation RCn → RCn given

by t 
→ ty. Since y = 0 + bg + bg2 + · · · + bgn−2 + (1 + b)gn−1, the matrix of y (with
respect to the basis {1, g, g2, · · · , gn−1}) is the n × n matrix An below. Hence it suffices
to show that det(An) = 1 for all choices of b, we have

An =




0 b b · · · b b b + 1
b + 1 0 b · · · b b b

b b + 1 0 · · · b b b
...

...
...

...
...

...
b b b + 1 · · · 0 b b
b b b · · · b + 1 0 b
b b b · · · b b + 1 0




,

Bn =




1 1 1 · · · 1 1 1
1 b 0 · · · 0 0 0
0 1 b · · · 0 0 0
...

...
...

...
...

...
0 0 1 · · · b 0 0
0 0 0 · · · 1 b 0
0 0 0 · · · 0 1 b




.

If rows 2 through n of An are added to row 1, and then b times row 1 is added to each
of the other rows, the result (since n is odd) is that det(An) = det(Bn). Now expand
det(Bn) by column 1 to obtain det(Bn) = b + det(Bn−1). Repeating this for Bn−1, we
obtain det(Bn) = det(Bn−2). It follows that det(Bn) = det(B3) = 1, so det(An) = 1, as
required.

Finally, to see that RCn is clean, let w = �aigi ∈ RCn. Then w ∈ R0Cn where R0

is the subring of R generated by the coefficients ai. But R0 is finite (R is Boolean), so
R0G0 is a finite ring, and hence is clean (it is semiperfect—see 2). Thus w is clean in
R0Cn, and hence in RCn. �

PROPOSITION 25. The following conditions are equivalent for a ring R.

(1) R is uniquely clean;
(2) R = C(R) + J(R) where C(R) is uniquely clean and all idempotents of R are in

C(R);
(3) R = C + V where C is a subring and V � R such that

(a) C is uniquely clean, and if c ∈ C is a unit in R then c−1 ∈ C;
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(b) V ⊆ J(R);
(c) every idempotent in R has the form e + v where e2 = e ∈ C, v ∈ V and ev = ve.

Proof. (1)⇒(2). This is by Theorem 20, Lemma 4, and the remark after Example 11.
(2)⇒(3). Take C = C(R) and V = J(R).
(3)⇒(1). Assume the conditions in (3).

Claim. If a2 = a ∈ R then a ∈ C.

Proof. By (c) write a = e + v where e2 = e ∈ C, v ∈ V, and ev = ve. Since a2 = a
we obtain v = 2ev + v2; then multiplying by e gives ev + ev2 = 0, and multiplying by v

gives v2 = 2ev2 + v3. Hence v3 = v2 − 2ev2 = v2 + 2ev = v. Thus v2 is an idempotent
in V ⊆ J(R), that is v2 = 0. Hence v = v3 = 0 and a = e ∈ C. This proves the Claim.

Given r ∈ R, say r = c0 + v, c0 ∈ C, v ∈ V, write c0 = e + c, where e2 = e ∈ C
and c ∈ C is a unit in C and so in R. Hence r = e + (c + v) and c + v is a unit in R
because V ⊆ J(R). So R is clean; to see that R is uniquely clean, let e + a = f + b in
R where e2 = e, f 2 = f, and a−1, b−1 ∈ R. Then write a = c + v and b = d + w where
c, d ∈ C and v,w ∈ V ⊆ J(R). Hence c and d are units in R, and e, f ∈ C by the Claim.
Then e + a = f + b becomes

e + c + v = f + d + w.

Hence v − w ∈ C and so e + (c + v − w) = f + d is a decomposition in C where d and
c + v − w are units of R, and hence in C by (a). Since C is uniquely clean, we obtain
e = f. This completes the proof of (1). �

LEMMA 26. Let I(R; V ) be an ideal extension.
(1) If V has a unity f then r f = f r for all r ∈ R and I(R; V ) ∼= R × V.

(2) If V = V1 ⊕ V2 where each Vi is an R-R-bimodule, then V2 is an I(R; V1)-I(R; V1)-
bimodule via (r, v1)v2 = rv2 + v1v2 and v2(r, v1) = v2r + v2v1, and we have

I(R; V1 ⊕ V2) ∼= I(I(R; V1); V2).

(3) If W � V and W = RWR then I(R; V/W ) is an image of I(R; V ).

Proof. (1). We have r f − f r = f (r f − f r)f = 0 because r f − f r ∈ V. In particular,
e = (0, f ) is a central idempotent in S = I(R; V ), so S = eS ⊕ (1 − e)S is a direct
product of rings. Since V ∼= eS via v 
→ (0, v) and R ∼= (1 − e)S via r 
→ (r,−f r), this
proves (1).

(2). The map (r, v1 + v2) 
→ ((r, v1), v2) is a ring isomorphism I(R; V1 ⊕ V2) →
I(I(R; V1); V2).

(3). The map (r, v) 
→ (r, v + W ) is an onto ring morphism I(R; V ) →
I(R; V/W ). �

PROPOSITION 27. Let V = V1 ⊕ V2 as rings and R-R-bimodules where V2 contains
no nonzero idempotents and V1 = �α∈�eαV with e2

α = eα for each α. Then S = I(R; V )
is uniquely clean if and only if the following conditions are satisfied.

(1) eα ∈ C(V ) and reα = eαr for all r ∈ R and α ∈ �.

(2) R is uniquely clean.

(3) Each eαV is a uniquely clean ring.

(4) For each v ∈ V2 there exists w ∈ V2 such that v + w + vw = 0.

(5) If a2 = a ∈ R then av = va for all v ∈ V2.
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Proof. Assume that S is uniquely clean, so that (0, eα) is a central idempotent
in S for each α. This proves (1), and (2) follows by Theorem 22. As to (3), V =
eαV ⊕ V ′ where V ′ = {v − eαv | v ∈ V}, so Lemma 26 shows R × eαV ∼= I(R; eαV ) ∼=
I(R; V/V ′) is an image of I(R; V ). Hence R × eαV and eαV are uniquely clean, proving
(3). Next, I(R; V2) ∼= I(R; V/V1) is an image of I(R; V ) by Lemma 26. Since V2 has no
nonzero idempotents, (4) follows from Proposition 7. Finally, if a2 = a ∈ R then (a, 0)
is a (central) idempotent in S, and (5) follows.

Conversely, assume these conditions hold. We have I(R; V1 ⊕ V2) ∼=
I(I(R; V1); V2) by Lemma 26, so by Proposition 7 it suffices to prove that I(R; V1)
is uniquely clean.

Claim. For any finite subset {α1, α2, · · · , αk} of �, I(R; �k
i=1eαi V ) is uniquely clean.

Proof. Since each eαi ∈ C(V ) a standard argument shows that �k
i=1eαi V = f V

where f 2 = f ∈ C(V ). We claim that f V is uniquely clean. Indeed, �k−1
i=1 eαi V =

gV for some g2 = g ∈ C(V ) so f V = gV ⊕ V ′ and V ′ ∼= f V/gV ∼= eαk V/(gV ∩ eαk V )
is uniquely clean since eαk V is uniquely clean. It follows by induction on k that f V is
uniquely clean. By Lemma 26 it follows that I(R; f V ) ∼= R × f V is uniquely clean.

If (a, x) ∈ I(R; V1) then x ∈ �k
i=1eαi V for some k, so (a, x) ∈ I(R; �k

i=1eαi V ) and
hence (a, x) is clean in I(R; V1) by the Claim. So I(R; V1) is clean. Now suppose that
(e1, z1) + (u1, w1) = (e2, z2) + (u2, w2) where each (ei, zi) is an idempotent in I(R; V1)
and each (ui, wi) is a unit in I(R; V1) with (ui, wi)−1 = (u′

i, w
′
i) ∈ I(R; V1). Then there

exists n > 0 such that wi, zi, w
′
i ∈ �n

i=1eαi V for i = 1, 2, so (ei, zi), (ui, wi) and (u′
i, w

′
i)

are in I(R; �n
i=1eαi V ). Since I(R; �n

i=1eαi V ) is uniquely clean by the Claim, it follows
that (e1, z1) = (e2, z2) and (u1, w1) = (u2, w2). This shows that I(R; V1) is uniquely
clean. �

As a corollary, we obtain two examples of uniquely clean rings.

EXAMPLE 28. Let Iα � R for each α ∈ � where R is a uniquely clean ring. Then
I(R; ⊕α∈�R/Ia) is a uniquely clean ring.

EXAMPLE 29. For k ≥ 2 let R = �2k and F = {2i�2k | i = 0, 1, · · · , k − 1}. For any
family {Rα | α ∈ �} ⊆ F, I(R; ⊕α∈�Rα) is a uniquely clean ring.

ACKNOWLEDGEMENT. The work of the first author was supported by NSERC
Grant A8075, and that of the second author by Grant OGP 0194196. The second
author is grateful for the hospitality provided by the University of Calgary.

REFERENCES

1. D. D. Anderson and V. P. Camillo, Commutative rings whose elements are a sum of a
unit and idempotent, Comm. Algebra 30 (2002), 3327–3336.

2. V. P. Camillo and H.-P. Yu, Exchange rings, units and idempotents, Comm. Algebra 22
(1994), 4737–4749.

3. T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, Vol. 189
(Springer-Verlag, 1999).

4. W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229
(1977), 269–278.

5. W. K. Nicholson, On exchange rings, Comm. Algebra 25 (1997), 1917–1918.
6. R. B. Warfield, Exchange rings and decompositions of modules, Math. Ann. 199 (1972),

31–36.
7. H.-P. Yu, Stable range one for exchange rings, J. Pure Appl. Algebra 98 (1995), 105–109.

https://doi.org/10.1017/S0017089504001727 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089504001727

