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Abstract

Deciding whether or not eradication of an invasive species has been successful is one of the main
dilemmas facing managers of eradication programmes. When the species is no longer being
detected, a decision must be made about when to stop the eradication programme and declare
success. In practice, this decision is usually based on ad hoc rules, which may be inefficient. Since
surveillance undertaken to confirm species absence is imperfect, any declaration of eradication
success must consider the risk and the consequences of being wrong. If surveillance is insuffi-
cient, then eradication may be falsely declared (a Type I error), whereas continuation of
surveillance when eradication has already occurred wastes resources (a Type II error). We
review the various methods that have been developed for quantifying these errors and incorp-
orating them into the decision-making process. We conclude with an overview of future
developments likely to improve the practice of determining invasive species eradication success.

Impact statement

We review the latest quantitative methods that can be used to analyse surveillance data to
estimate the probability of species absence, when no individuals are detected. These methods
allow defendable and transparent decisions to be made about the probability of successful
eradication. Decisions associated with eradication operations need to be evidence-based to
ensure that cost-efficient strategies are adopted and to satisfy concerns of funders, policymakers,
managers and the public.

Introduction

The impacts of invasive species on ecosystems are becoming increasingly pervasive, threatening
biodiversity, ecosystem functioning, agricultural productivity and human health (Myers et al.,
2000; Simberloff, 2014; Seebens et al., 2018; Blackburn et al., 2019; Seebens et al., 2021). Early
intervention against incursions of invasive species that aims for eradication represents some of
the highest benefit/cost ratios for investments in biosecurity policy (Baxter et al., 2008). However,
eradication of invasive species can be challenging, especially once the species has become
established. Eradicating a pest species from an area requires removing all individuals and
simultaneously preventing reinvasion (Bomford and O’Brien, 1995). Despite these challenges,
the list of international eradications is growing rapidly and encompasses diverse taxa, with over
1,550 eradication events recorded in the Database of Island Invasive Species Eradications,
including 1,081 successful eradications of 59 species (Spatz et al., 2022). New technologies and
evidence-based strategies (Nugent et al., 2018; Murphy et al., 2019) are enabling eradication of
pest species from increasingly larger islands and continental areas (Cruz et al., 2005; Carrion
etal,2011; Anderson et al., 2022a). With eradication programmes becoming more ambitious and
logistically difficult, the need to provide evidenced-based criteria for evaluating the progress and
success of eradication programmes is becoming more critical.

Key questions

One of the main decisions facing managers attempting to eradicate an invasive species is deciding
when eradication has occurred. Once the species is no longer being detected, a decision must be
made about when to stop the eradication programme and declare success (Morrison et al., 2007;
Ramsey et al., 2009). In many eradication programmes, this decision is based on ad hoc rules
(Russell and Blackburn, 2017). One popular rule of thumb for declaring eradication success for
animal pests is 2 years without a detection (e.g., Dominiak et al., 2011; Robinson and Copson,
2014; Russell et al, 2016), whereas 3-5 years without a detection is often used for weeds
(Rejmanek and Pitcairn, 2002).
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However, using ad hoc rules of thumb based on surveillance or
waiting for arbitrary periods of time with no detections has several
issues. The main difficulty is that the selected time to declare success
may not be optimal. The optimal time for declaring eradication
successful is one that takes into account the consequences of
making an erroneous decision. If surveillance is insufficient, then
eradication may be falsely declared, resulting in the population
continuing to spread and cause negative impacts (a Type I error),
whereas continuation of surveillance when eradication has already
occurred wastes resources (a Type II error). Both of these types of
errors incur costs, and the optimal decision is one that minimises
these costs (Regan et al., 2006). Here, we review the various
methods that have been developed for quantifying these errors
and incorporating them into the decision-making process for
declaring eradication success. A glossary of important terms is
included (Table 1).

Methods developed for examining eradication success

Collection of surveillance data to confirm eradication success is
usually undertaken at the point when eradication is suspected to
have occurred; hence, the data consist entirely (or almost entirely)
of ‘zeros’ (absences). We define the period when active control of
the species is being undertaken as the ‘removal phase’ and the
period of surveillance to confirm eradication as the ‘confirmation
phase’. In the usual sequence of events, the confirmation phase only
commences once individuals are no longer being detected. If sur-
veillance detects the species of interest, clearly, the species has not
been eradicated (although ‘functional’ eradication could still be
claimed [Green and Grosholz, 2021]). However, when the surveil-
lance data consist entirely of absence records, how confident can we
be that eradication has occurred? Confidence in eradication can be
quantified by the probability of eradication (or species absence).
Hence, following a series of zero detections from surveillance
activities, the primary quantity of interest is the probability of
absence, given the species was not detected.

Occupancy models have been developed to estimate false nega-
tive errors in biological species surveys (the probability the species
was present but was not detected) (MacKenzie et al., 2002; Tyre
etal.,2003). These models also allow estimation of the complement,
the probability of absence given no detections. Extensions have
involved the development of dynamic occupancy models, which
allow estimation of colonisation and extinction rates, in addition to
site occupancy (MacKenzie et al., 2006). However, estimation of site
occupancy requires the collection of spatially and temporally struc-
tured data on species presence and absence (e.g., using a sampling
design), which can be labour-intensive and may not be possible
towards the end of an eradication programme, when the species is
mostly absent. In addition, the use of multiple types of monitoring
data, both structured and unstructured (e.g., sighting reports col-
lected haphazardly by the public), presents difficulties for use in
occupancy models. Hence, using occupancy models to estimate
eradication success may not always be practical or even feasible.

Several authors have used a time series of presence and absence
records of a species (i.e., sighting records) to infer species absence
(Solow, 1993; Solow et al., 2008; Rout et al., 2009a). Interest is
usually focused on the tail of the record, when sightings are sparse,
and the inference is based on the number of absent sighting
occasions deemed necessary for declaring absence. These methods
model the unknown observation process by assuming that the
underlying sighting rate of the species is either constant or declining
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and follows a stationary or nonstationary Poisson process. Various
modifications of this approach have been developed to allow flexi-
bility in the sighting process specifications, for example, modifica-
tions for handling uncertain sightings (Lee, 2014), and for
increasing or decreasing populations (Caley and Barry, 2014).
However, the incorporation of structured and unstructured sur-
veillance data presents difficulties for these methods, especially if
surveillance effort is nonconstant in space or time.

Early work on inferring species eradication or extinction pro-
posed using a null hypothesis testing framework to inform the
decision about when to declare a species absent after a series of
zero sightings (e.g., Solow, 1993; Reed, 1996; Solow and Roberts,
2003; Mclnerny et al., 2006). Hence, this approach addresses the
question of how many zero sightings are probable, given the species
is extant (null hypothesis), setting a threshold for this probability
(Type I error). Solow (1993) also provided an alternative frame-
work that calculated the probability that the species was extant,
given a sighting record, using Bayes’ theorem. This framework
required construction of the prior probability that the species was
extant and used Bayes factors to assess the degree of support for this
probability (Solow, 1993; Rout et al., 2009a). Regan et al. (2006) first
proposed explicit consideration of the costs of making a Type I
error (false declaration of eradication) or a Type II error (surveil-
lance continues when species has been eradicated), adopting a
Bayesian framework for inference. These costs were considered
jointly, and eradication was declared when the net expected costs
(NEC) were minimised. Hence, the optimal time to declare eradi-
cation success was a trade-off between the cost of ongoing surveil-
lance and the cost of making a false declaration of eradication. The
main issue with this approach was that uncertainty was not incorp-
orated into the estimates of the detection (likelihood) and persist-
ence (prior) parameters required by the model; hence, decisions
may not be robust to uncertainty (Rout et al., 2009b)

Surveillance sensitivity

During the confirmation phase, the probability of absence can be
derived from estimates of the surveillance sensitivity (SSe), the
probability of detecting the species within a region of interest, given
it is present at some predetermined level (i.e., the ‘design preva-
lence’ - see below) (Martin et al., 2007). The SSe is subtly different
from the detection probability that is derived from models fitted to
monitoring data (e.g., occupancy models), which only condition on
presence in a sampling unit. The SSe for a region is usually con-
structed from the sensitivities of the various types of surveillance,
which can be either structured or unstructured (Martin et al., 2007).
Given a series of zero detections, the SSe quantifies the effectiveness
of the search effort (the probability of detection given the design
prevalence), but it is not, per se, an appropriate indicator of eradi-
cation success. The probability of absence given no detections from
surveillance can be derived from the SSe using Bayes’ theorem,
which also requires consideration of the prior probability of
absence (i.e., the probability of absence prior to the confirmation
phase). Given an estimate of the SSe and the prior probability of
absence (Prior), the probability of species absence (PoA) is given by

Specificity X Prior

PoA= ,
? Specificity x Prior+(1— SSe)(1— Prior)

(1)

where Specificity is the probability of not detecting the species
when the species is not present. Equation (1) is analogous to the
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Table 1. Glossary of terms used in text, including abbreviations and brief definitions

Terms Abbreviations  Definitions

Probability of absence PoA Probability that the target species is absent from the area of interest, given no detections

Surveillance sensitivity SSe Probability of detecting an individual within the total area of interest, given that P, cells are occupied

Prior Prior The starting probability of absence (PoA) before surveillance has begun

Design prevalence Pu Statistical parameter defining the number of occupied cells in the surveillance data model

Maximum probability of detection 9o Probability of detection during a single time interval for a device placed at the home range centre

Spatial detection decay parameter o Rate of decay in the probability of detection with increasing distance between the home range centre
and the device

Type | error Falsely declaring a species eradicated (and ceasing surveillance)

Type Il error Falsely declaring a species extant (and continuing surveillance)

Net expected cost NEC Joint expected cost of making a Type | or Type Il error

Stopping rule

Criteria used to determine when an eradication programme ceases

negative predictive value of a diagnostic test used in disease
surveillance (Martin et al., 2007). If we can assume that the
Specificity is equal to 1.0 (i.e., no false positive detections), then
equation (1) simplifies to

Prior

PoA = .
¢ 1—5Se(1— Prior)

()

The Prior can be obtained in a number of ways, including
(i) expert opinion (Ramsey et al., 2009), (ii) meta-analysis of
eradication programmes from similar species (Dodd et al,
2015), or (iii) use of models to simulate lethal control (Gormley
et al,, 2016).

The PoA is the metric used to guide decisions, which incorpor-
ates the Prior and the SSe. The following hypothetical example
illustrates the importance of the Prior and why we bother with
Bayesian logic. Consider two identical islands on which toxic baits
were used to remove rats (Samaniego-Herrera et al., 2013). The first
island had complete bait coverage, whereas the second had large
gaps in bait deployment. The higher operational investment on the
first island results in a higher prior probability of success (before the
confirmation phase) than on the second island. The subsequent
surveillance during the confirmation phase was equal on both
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islands (i.e., equal SSe), and no rats were detected. Combining the
Prior with the SSe demonstrates, intuitively and quantitatively, that
confidence in eradication success is higher for the first island than
for the second.

The value specified for the Prior has a large influence on the level
of surveillance that needs to be conducted to confidently declare
absence of the pest (Figure 1A). For example, if we have low
confidence that control was sufficient to eradicate the pest
(Prior = 0.5), then surveillance efforts need to be extremely high
(SSe = 0.9) to achieve a high level of confidence in successful
eradication (PoA > 90%). Conversely, if the Prior = 0.8, then
surveillance efforts can be reduced (yielding an SSe = 0.6) to achieve
the same level of confidence regarding absence of the pest
(PoA > 90%).

Quantitative planning increases the chances that a cost-effective
surveillance strategy will be deployed (Gormley et al., 2018). We
can rearrange equation (2) to determine the level of surveillance
required ( SSe,.,) to improve our level of confidence in eradication
from the Prior to the target PoA (PoArqrger):

PoAtqrger — Prior

SSereq = . 3
€req P0ATarget (1 — Prior) 3)
1.0 S
08 |
06 |
Q
»
71
04 |
PoA
02 I'"59%
0.95
0.0 0.9 |

0.0 0.2 04 0.6 0.8 1.0
Prior

Figure 1. (A) Contour plot showing the relationship between the starting probability of absence (Prior) (x-axis) and the resulting probability of absence (PoA) (y-axis) for three levels
of surveillance sensitivities (SSe) (contour lines). (B) Contour plot showing the relationship between the Prior (x-axis), the PoA (contour lines) and the SSe (y-axis).
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For example, if the Prior = 0.9 (i.e., we are 90% sure of eradi-
cation after control) and PoArarg = 0.95 (i.e., we want to be 95%
sure of success), then SSer.q = 0.53; this means that we need to do
enough surveillance to have a 53% chance of detecting any remain-
ing individuals at the design prevalence (Figure 1B). If, however, we
wanted to be 99% sure of success, then for the same Prior, a much
higher level of surveillance would be needed (i.e., SSerq = 0.91).

Spatial PoA model

Methods have been developed to estimate SSe by incorporating
information on the spatial deployment of monitoring devices
across the area of interest, and on attributes of the target species
(Anderson et al., 2013; Kim et al., 2020). The surveillance model is
based on a simple spatial model for the detection of individuals
based on a function of the distance between an individual and a
detection device. Individuals are assumed to occupy a symmetric
home range, and detection declines with increasing distance
between the home range centre and the device location. This
spatial detection process is governed by two parameters: g, -
the probability of detection over a single time interval by a device
placed at the home range centre (i.e., the maximum probability of
detection); and o - the rate of decay in the probability of detection
with increasing distance between the home range centre and the
device (Efford, 2004). For simplicity, a half-normal function is
usually used to model the decay in detection probability, with ¢
being equivalent to the standard deviation of the circular normal
kernel. This parameter is proportional to the home range size of an
individual. This simple model was first used to model detection in
spatially explicit capture-recapture models (Efford, 2004; Borch-
ers and Efford, 2008). However, this spatial detection function has
also proved to be useful in simulation models for designing
efficient surveillance for achieving management objectives
(Ramsey et al., 2005; Gormley and Warburton, 2020; Anderson
et al., 2022a).

The spatial surveillance approach is constructed by superim-
posing a spatially referenced grid-cell system on the area of interest
(i.e., a raster layer). Each grid cell corresponds to a sampling unit,
and the model quantifies the probability of detecting an individual
in each grid cell, given a surviving individual’s home range centre is
located in the grid cell. Detection devices or search effort in or
around a grid cell have a chance of detecting an individual. Each
device type has its own maximum detection probability ( g,), with
o derived from home range estimates for the species. A spatially
explicit detection surface is quantified by adding detection kernels
for each device location. The height (or intensity) of the kernel is
equivalent to the amount of sampling effort undertaken by that
device (e.g., number of trap nights). The number of grid cells
covered by all kernels determines the proportion of the total area
covered by surveillance. Alternatively, grid cells can be searched
directly with the probability of detection related to the amount of
search effort in a cell. Methods based on search effort by observers
are most often employed during surveillance for weeds (e.g., Gar-
rard et al., 2008; Hauser et al., 2022). The grid-cell approach allows
the accommodation of diverse combinations of surveillance infor-
mation, which might vary by detection method, location, sampling
effort, and deployment period. The use of multiple detection
methods, including those not requiring an interaction by the animal
(such as a camera or eDNA), can improve the chances of detecting
device-shy individuals.

The spatially explicit surveillance model also incorporates
habitat selection by the target species because the likely location
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of a limited number of survivors is not expected to be equal across
the landscape but concentrated in preferred areas. Resource selec-
tion studies (Manly et al., 2002) and the results from species
distribution models (Elith et al., 2006) can inform the relative
probabilities of survivors in different locations and assist in the
creation of a relative-risk map (Anderson et al., 2013, 2022a). The
resolution of the grid-cell system superimposed on the eradication
area should be finer than the home range size and should also
accommodate spatial heterogeneity of the relative-risk map. The
estimated SSe will be maximised when search effort is spatially
distributed proportionate to the relative risk of survivor presence
(Martin et al., 2007).

The SSe for the eradication area is calculated by combining the
spatial surveillance surface (grid-cell-level probabilities of detec-
tion), the relative-risk map of habitat use, and a statistical param-
eter representing the minimum number of occupied grid cells (P,)
that are available to be detected. The latter element is referred to
as ‘design prevalence’ in disease surveillance (Cameron and
Baldock, 1998) and determines the definition of the SSe. For
example, if the minimum number of occupied grid cells is set to
1, the SSe is defined as ‘the probability of detecting an individual
given that only one grid cell is occupied in the area of interest’.
Intuitively, it is easier to detect one of many occupied grid cells
than a single occupied grid cell. When aiming to confirm eradi-
cation success, we are trying to find the last survivor, or one of a
few remaining survivors. Therefore, the minimum number of
occupied grid cells is generally set to 1 (however, see ‘Extensions
to the PoA model’ below). If we obtain a high SSe assuming only
one occupied cell, and do not detect anything, we can increase our
confidence that less than one cell remains occupied, that is, zero
are present.

Values for the spatially explicit detection parameters ( g, and o)
of animals in monitoring devices can be obtained from published
reports, experimental or field studies (Efford, 2004; Ball et al., 2005;
Ramsey et al., 2015; Anderson et al., 2022b) or expert opinion
(Anderson et al., 2022a). Similarly, detection experiments have
typically been used to estimate the probability of weed detection
given a certain amount of search effort (Garrard et al., 2008; Hauser
et al., 2022). These parameters are input into the model as distri-
butions in order to account for uncertainty. High variances should
be used where there is high parameter uncertainty, which is propa-
gated through to estimates of SSe (Anderson et al., 2022a). Given
high parameter uncertainty, increasing sample size, through
increased surveillance effort, will increase the mean and decrease
the variance of the SSe.

Once an estimate of SSe and its uncertainty is obtained, the PoA
(and associated variance) can be calculated, initially by updating the
Prior (equation (2)). The resulting PoA then becomes the prior
probability for the next round of surveillance data, and so forth.
This updating of the PoA continues as new surveillance data are
added (Anderson et al., 2013; Ramsey et al., 2022), until the mean
PoA exceeds a target threshold, which is set by stopping rules (see
below).

Stopping rules

No matter how much surveillance is undertaken, managers can
never be certain about eradication success, due to uncertainty in the
detection process. Decisions on when to declare success must
consider the risk of being wrong. As stated above, this risk can be
encapsulated by the Type I and Type II error rates and the conse-
quences of making a wrong decision. A stopping rule is a statement


https://doi.org/10.1017/ext.2023.1

Cambridge Prisms: Extinction

about the criteria for ceasing an eradication programme, which may
or may not consider these error rates.

Intuitively, successful eradication can be declared when there is
a high probability that the residual population is zero. This is
equivalent to minimising the Type I error rate, the probability that
eradication is wrongly declared. A logical stopping rule would
involve a threshold for the PoA that, when exceeded, triggers
declaration of eradication success. Typically, thresholds are set such
that eradication success is declared once the PoA exceeds some
value, such as 95% or 99% (e.g., Ramsey et al., 2009, 2011; Anderson
et al, 2017). A stopping rule using a 95% threshold for the prob-
ability of absence is equivalent to saying that one out of 20 similar
eradication attempts with equivalent effort would fail to detect
survivors. The advantage of this type of stopping rule is its relative
transparency; the level of certainty is clear to managers. The dis-
advantage of this type of stopping rule is that picking a threshold for
the Type I error rate is arbitrary.

A second type of stopping rule considers both the Type I and
Type II error rates, by examining the joint costs associated with
these errors. These costs can be summarised as the cost of surveil-
lance plus the expected cost that would be incurred if eradication
were to be wrongly declared. The optimal time for declaring eradi-
cation successful is when the NEC is minimised (Regan et al., 2006).
A stopping rule based on minimising the NEC avoids the issue of
setting a threshold for the PoA. While theoretically sound, imple-
menting this stopping rule has practical difficulties. The main
difficulty is that the expected cost of wrongly declaring successful
eradication is not easily quantified. This is because these costs
include both tangible costs (e.g., the cost of repeating the eradica-
tion attempt) and intangible costs (e.g., reputational costs or bio-
diversity loss associated with the failure to eradicate). In many
eradication attempts, the intangible costs are deemed to be high,
but they are difficult or even impossible to quantify (e.g., costs due
to biodiversity loss). Many managers are primarily concerned with
the intangible costs and thus try to minimise the Type I error.
Recently, attempts have been made to address this through a utility
function that considers both the cost variance and the expected
costs, incorporating a parameter indicating the degree of ‘risk
aversion’. This is then used to optimise the most cost-effective
threshold for the PoA (Gormley et al,, 2018).

Extensions to the PoA model

Extensions to the spatial PoA model have been developed, princi-
pally to allow the model to be applied to large eradication pro-
grammes (Anderson et al., 2017). Large (or broadscale) eradication
programmes are defined as ones in which management of the
species cannot occur concurrently over the entire area of interest.
The eradications of Bovine Tb (Mycobacterium bovis) from wildlife
in New Zealand (Livingstone et al., 2015), fire ants (Solenopsis
invicta) from south-east Queensland, Australia (Spring and Cacho,
2015) and nutria (Myocastor coypus) from the Delmarva Peninsula,
USA (Anderson et al., 2022a) are all attempting eradications over
0.5-2.0 M ha. By necessity, these large areas are often subdivided
into smaller management zones, in each of which, eradication
actions operate as a single unit and are large enough to minimise
the risk of reinvasion from neighbouring zones. Eradication then
proceeds in two stages. Stage I involves the removal of the species,
followed by confirmation phase surveillance to declare absence
within each zone. Once a management zone is declared free of
the species in Stage I, it then passes to Stage II and the operational
resources are reallocated to the next zone. In this way, eradication
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Figure 2. The spatiotemporal progression of a hypothetical broadscale eradication
operation over a square-shaped region, which begins in the north-west of the region in
2022 and finishes in the south-east in 2035 (modified from Anderson et al., 2017). Each
square represents a management zone for control purposes, and the number in each
represents the year in which control is to be undertaken in the zone. Surveillance
devices or search efforts are allocated to the surveillance unit (smallest squares, top of
figure). Stage | is the period in which control is being undertaken, and ‘freedom’ is the
criterion required for an operational decision at the management-zone level to allow
reallocation of resources to other management zones, that is, progression of the
operation across the landscape. Stage Il entails ongoing surveillance in management
zones declared ‘free’ at the end of Stage I. The purpose of Stage Il is to identify
erroneous freedom declarations, and to eventually declare the species eradicated
from the entire broadscale area. Confirmation of eradication in Stage Il may extend
well beyond 2035.

proceeds progressively over the entire extent until all zones are
declared free of the species (Figure 2). Importantly, once a zone
progresses to Stage II, surveillance in that zone should continue, so
that any residual survivors or incursions are detected. Since the
majority of resources are committed to zones undergoing Stage I,
Stage II surveillance data sources will usually be low-cost/low-
intensity sources, such as reports from the public or other passive
surveillance sources.

An important point is that all zones being declared free of the
species at Stage I does not necessarily equate to a high level of
confidence in eradication over the entire extent. Consider 10 man-
agement zones declared free using a 95% threshold for the PoA.
Hence, each zone has a Type I error rate of 5% of being incorrectly
declared free, and therefore the probability that at least one of the
10 zones has been incorrectly declared freeis 1 — (1—0.05)'°=0.4,
giving a PoA over the entire extent of 0.6. To achieve high confi-
dence in eradication over the entire extent, Stage II surveillance
must be used. Since the management zones have been undergoing
Stage II surveillance for various periods of time (i.e., since declar-
ation of absence of the species at the end of Stage I), calculation of
the SSe for each zone needs to incorporate this variable time under
surveillance. This is achieved by assuming that the residual popu-
lation (if present) should increase within the zone with the passage
of time. Under positive population growth, detection of a species
should become more likely over time due to population increase
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and spread. This is reflected in the calculations of the SSe for each
management zone by allowing the minimum number of occupied
cells ( P,) to increase over the period of Stage II surveillance. This
can be achieved, for example, by assuming that P, increases
according to the logistic growth function

Pyy =Pug—1)+ 1Py [1 = Pug—1 /K] (4)

where r equals the intrinsic growth rate and K is the carrying
capacity. Assuming K is large relative to population size (as is
expected in a population of residual survivors), equation (4) can be
approximated by

Py =Py—1y(1+7). (5)

Allowing P, to increase due to equation (5) means that, even if the
SSe is initially low, it will increase over time because undetected
survivors would be expected to increase, making them easier to
detect (Caley et al., 2015; Anderson et al., 2017).

Approximations to the spatial PoA model

The spatial PoA model outlined above represents a flexible and
powerful tool for quantifying eradication success. However, there
are several limitations. Calculations of the uncertainty in the esti-
mates of the SSe and the PoA are derived from Monte Carlo
simulations based on the underlying probability distributions of
the component parts (e.g., gy, o, and Prior). Usually, many draws
are required to reduce Monte Carlo errors, so processing models
utilising data from large extents over many years is computationally
expensive. Recently, analytical Bayesian solutions to the PoA model
have been developed (Barnes et al., 2021, 2022). The analytical
solutions are based on probability-generating functions, which fully
define discrete distributions (Feller, 1958). Using standard statis-
tical theory, the stochastic processes in the PoA model can be
expressed as compound distributions from which analytical solu-
tions can be determined. These solutions can then provide a
straightforward means of deriving posterior distributions and stat-
istics (Barnes et al., 2021, 2022). One advantage of these analytical
formulations is that they allow a more tractable analysis of surveil-
lance design, making exploration of the cost of alternative strat-
egies, the impacts of stochasticity and parameter uncertainty much
more computationally efficient.

Outlook and future directions

Declaring successful eradication of invasive species has come a long
way from the use of simple ad hoc rules that rely on a ‘wait-and-see’
approach. The proof of absence framework enables calculation of
the PoA using a wide variety of surveillance types. Using the power
of Bayesian updating, managers can make informed, evidence-
based decisions as to whether eradication can be declared with a
degree of confidence or whether more surveillance is needed. In
addition, methods now exist for quantitatively assessing surveil-
lance strategies so as to ensure that the most cost-efficient strategies
are adopted for declaring eradication success.

Challenges for the implementation of these surveillance models
are finding efficient ways of obtaining the parameters of the com-
ponent species-specific detection probabilities for each surveillance
method ( g,), especially for novel monitoring techniques. For weed
species, studies have demonstrated how detection probabilities can
be related to species traits and observer experience (Garrard et al.,
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2013) and similar trait-based models may be applicable to the
detection parameters for animal species. One barrier to the uptake
of analytical methods now available to managers of eradication
programmes is their complexity: managers need to have some
quantitative skills for their successful implementation. Current
work that aims to deliver these models within a user-friendly
computer programme or interface should greatly lower the barriers
to their use, enabling managers to confidently determine the opti-
mal amount of surveillance required to declare eradication, allow-
ing more efficient use of resources.
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