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1. Introduction

For a given group G, we denote by A(G) the FC-centre (finite-conjugacy centre) of G,
that is:
A(G)={9€G|G:Ca(g)] < oo}

Also, for a ring R we shall denote by U R the group of units of R, i.e. the set of invertible
elements of R. Herstein showed in [6] that if D is a division ring then A(UD) coincides
with Z(UD), the centre of UD.

The study of the FC-centre of groups of units of group rings started with papers by
Sehgal and Zassenhaus [14], Polcino Milies [8] and Cliff and Sehgal [2]. Also, Williamson
[16], studied elements of a periodic group G that has finite conjugacy class in the group
of units of its integral group ring. A more general approach was given by Sehgal and
Zassenhaus in [15]. This work was followed by several papers studying group rings over
fields [3,9].

Theorem 2.2 below shows that a result similar to that of Herstein holds for finite-
dimensional algebras over infinite fields and this fact is extended to algebraic algebras
in Corollary 2.3. However, it follows from [3, Example 1] that it cannot be extended to
all infinite-dimensional algebras. In §3 we consider orders in finite-dimensional algebras
where the situation is more complicated. In particular, a theorem of Williamson for
integral group rings [16] shows that an analogue of Herstein’s result does not hold for
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orders. However, we are able to obtain general positive results for large classes of orders
and we give a partial extension of a theorem of Sehgal and Zassenhaus [15, Theorem 1].
In §4 we consider some applications to group rings and, in particular, we obtain a short
proof of the theorem of Williamson.

2. Algebras

The following fact should be known; however, we include an argument for the sake of
completeness.

Proposition 2.1. Let G be a connected algebraic group over an infinite field. Then
every FC-element of G is central.

Proof. Let G be a connected algebraic group and z € G an FC-element. Then, the
centralizer Cg(x) is a closed subgroup of finite index G. For a fixed y € G the map
z — yz € G is polynomial and, therefore, continuous. Since the same holds for its
inverse, it is a homeomorphism. Hence, each coset yCq(z) is closed in G and G is a
union of a finite number of them. Since G is connected (even irreducible), it follows that
z € Z(G). O

For a group G let TG denote the torsion part of G.

Theorem 2.2. Let A be an algebra with unity over an infinite field K.

(i) If A is finite dimensional, then UA is a connected linear algebraic group and,

consequently,
AUA) = Z(UA).

Moreover, A is generated by its units, as a vector space over K and, therefore, UA
is FC if and only if A is commutative.

(ii) Every torsion unit of A(UA) commutes with each algebraic unit of A and, conse-
quently, A(UA) is solvable of length at most 2.

(iii) Every element of A(UA) commutes with each nilpotent element of A.

Proof. (i) Let n = dimg A and I' : A — M, (K) be the regular representation of A.
Then z € A is invertible if and only if det(I'(z)) # 0. Indeed, if det(I"(x)) # 0, then I'(z)
is invertible in M,,(K), thus it cannot be a zero divisor in I'(A). Since an element in a
finite-dimensional algebra is either a zero divisor or invertible, the statement follows.

Taking a basis in A, det(I'(z)) can be considered as a polynomial f in coordinates
T1,...,T, of z. Hence

UA={(x1,...,2n) € A| f(x1,...,2,) # 0}

So, with respect to the Zariski topology on A, we have that U/ A is a principal open
subset in A = K". Therefore, UA is an irreducible (i.e. connected) algebraic group.
Therefore, by Proposition 2.1, we have that A(UA) = Z(UA).
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Note that U A is a linear algebraic group as both I' : A — I'(A) and its inverse are
polynomial maps. Since /A is an open subset of A, we have that /A = A. Let A; be
the linear span of U/ A. Since every linear subspace is closed under Zariski’s topology, we
have that /A C A;; hence A; = A.

Ttem (ii) is an easy consequence of (i), indeed, let x € TA(UA), y € UA be algebraic
and n be the dimension of the subalgebra generated by y. Then, by Dietzmann’s Lemma
(see [11, 15.1.11]), the conjugates of z in H = (x, y) generate a finite normal subgroup N,
and every element of H can be written as a K-linear combination of elements of the form
hyi with h € N and 0 < i < n — 1. Hence the K-linear span of H is a finite-dimensional
algebra and, by item (i), 2y = yz, as desired. In particular, TA(U A) is abelian and, since
AUA)Y ¢ TAUA), by Neuman’s Theorem [11, 15.1.7], A(UA) is solvable of length at
most 2.

(iii) Let y € A be a nilpotent element and let n be a positive integer such that y™ # 0
and "t = 0. For each o € K we consider z, = 1 + ay, which is a unit whose inverse is
2ot =" o(=1) (ay)" and we have that

n
2 ez, =+ Z(viai),
i=1

where v; = (—1) (y'z — y* " lzy), 1 <i < n.

Since x € A(UA), there exists an infinite set S of K such that the set {217z, | a € S}
consists of a single element.

Let B be a K-basis of A and set «, 3 € S, with § fixed. Write

v = Z (o (b)b
beB

and

zﬁ_lxz5 —x= Zw(b)b.
beB

As 2 twz, = z[;lng, we get

> w(b) = a(z vl(b)b> +a? (Z vg(b)b) o

beB beB beB

Assume that vy = zy — yx # 0. Then, there exists an element by € B such that
v1(bo) # 0. Consequently, the polynomial —w(bg) + avy(bg) + a?v2(bg) + - -+ is non zero
and has infinitely many roots, since it is zero for every o € S, a contradiction. O

We note that the proof of (iii) also works in the case of orders, as we show in the
beginning of the next section.

Notice that if K is a finite field, results similar to those of the previous theorem need
not hold. In fact, let A be a direct sum of infinitely many copies of a full matrix ring
M, (K), n > 2. Then every unit in A4 is FC so

UA = AUA) £ ZUA).
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Moreover, U A is not solvable and clearly units need not commute with nilpotent elements
so none of the statements of the theorem above hold.

Throughout this section we shall always assume that the algebras considered are taken
over an infinite field K.

Corollary 2.3. If YA and A(UA) are generated by algebraic units, then
AUA) = ZUA).

In particular, this happens if A is an algebraic algebra. In this case A is generated by
units as a vector space, and UA is FC if and only if A is commutative.

Proof. Let © € A(UA), y € UA be algebraic, H = (x,y) and z1,...,x5 be the
conjugates of x in H. Each commutator of (x1,...,xs) is torsion and, therefore, central
by (ii) of Theorem 2.2. Hence, each h € H can be written as

h= y”‘x?l .. .a:fs H[xi,xj]““f,

with o, 81, ..., Bs,7ij € Z. Now, let n; (respectively n) be the dimension of the subalgebra
generated by x; (respectively y). Then h is a K-linear combination of elements of the
form

y‘sxil Sl H[l‘z, xj]¥

with 0 < 0 < n, 0 < g < ny, 0 < wyj < o[y, z;]). We have finitely many such
elements and, consequently, the K-linear span of H is a finite-dimensional algebra. It
follows from (i) of Theorem 2.2 that x and y commute, as desired. The last statement
also follows from part (i) of that theorem. O

Now, we wish to consider algebras with many units; more precisely, algebras that
are generated, as a vector space, by their units. These include large classes of algebras,
such as group rings, crossed products, finite-dimensional algebras, algebraic algebras and
algebras unitally generated by nilpotent elements such as those considered in [1].

The following lemma is an extension of [3, Lemma 2.1] to the general case.

Lemma 2.4. Let x € A be an element such that 2 = bx for some b € K. Then
xy = yx for ally € A(UA).

Proof. Let k be an arbitrary element in K. If b # 0 we set ux, = 1 — b~ o + b~ Lkz.
Then uy is a unit of A whose inverse is u,:l =1—blz+ b1k 1z. Given an element
y € UA;, we compute

Yr = ukyulzl =1 -ble+do k)l —b e+ b7k )
=y—bloy — b lyr + b kay + bk yx + (2072 — b2k — b2k Y aya.

1

If we denote ¢ = yxy ™", we have that yx = cy and we can write

ye=04+bkr—b e —b e+ b kT e+ 207 22 — b2 ke — b2k ae)y.
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Hence
vy =x(k+ b te— b7 ke)y = k(x — b lze)y + b aey.

Thus, if z — b~ 'zc # 0, as K is infinite, we would have infinitely many conjugates for
y. So we must have that x = b~'zc and, back in the expression of y;, we obtain

yo=1—=bte+b e+ e e —2))y.

Once again, if ¢ # = we would have infinitely many conjugates for y, a contradiction.
Hence, z = y~'ay, as desired.

The case where b = 0 can be obtained by a similar argument, considering the unit
g = 1 4+ az. It also follows immediately from Theorem 2.2. |

Let A; denote the linear span of A(UA) in A. Since A(UA) is a group, it follows
immediately that A; is a subalgebra of A.

Corollary 2.5. Every idempotent of A; is central in A.

Proof. Let e € A; be an idempotent and let = be an arbitrary element of A. The
elements o = ex(1 —¢e) and 8 = (1 — e)xe are such that o? = 3% = 0.

Write e as a linear combination e = ), l;u; of elements u; € A(UA) with coefficients
l; € K. By the previous lemma, both o and 8 commute with every u; and thus with e.

Hence
ea =ae =0,
ef = Pe = 0.
Now, ea = ex(1 —e) and thus ex = exe. In a similar way we obtain that ze = exe and
thus xe = ex, as claimed. O

Theorem 2.6. Let A be an algebra generated by its units, as a linear space over an
infinite field K such that UA is FC. Then every idempotent and every nilpotent element
are central in A.

Moreover, if A is generated by its torsion units, as a linear space over K, then UA is
FC if and only if A is commutative.

Proof. The first part of the statement follows immediately from Corollary 2.5 and
item (iii) of Theorem 2.2 while the second is a consequence of item (ii) of the same
theorem. g

3. Orders

Let D be a domain, K its field of fractions and let A be a K-algebra. By a D-order A
in A we mean a D-subalgebra of A such that A = KA. Notice that this implies that A
contains a K-basis of A. Of course, A(UA) C A(UA) N A, but, in general, equality does
not hold. To see this take, for example, Kg = (a,b | a* = 1, a? = b2, bab~! = a~!) and
set A = ZKg and A = QKg. Then the element = 1 4+ a + a3 lives in A, is central and
invertible in A, with inverse 27! = 2(1 + a — 24 + a®), but = ¢ UA.
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Proposition 3.1. Let D be an infinite domain and let K be its field of fractions. Let
A be a K-algebra and A a D-order in A. If x € A(UA) and y € A is nilpotent then

Ty = yx.
Proof. Let y € A be a nilpotent element. Since A is a D-order in A, there exists an

element d € D such that y; = dy € A.
For each o € D set z, = 1+ ay;. Then z, is a unit in A whose inverse is

n
Zal =Y (1) (an)"
i=0
As in item (iii) of Theorem 2.2 we can conclude that there exists an infinite set S of
D such that the set {z; 122, | @ € S} consists of a single element. If 2y, # y;x taking
a K-basis B of A contained in A and a fixed scalar 3 € S we can obtain, as before, a

non-zero polynomial —w(bg) + avy(by) + ?ve(by) + - - that has infinitely many roots
in S, a contradiction.
Hence, xy; = y12 and thus also zy = yx. (I

As a consequence of Proposition 3.1 we obtain the following theorem.

Theorem 3.2. Let D be an infinite domain, K its field of fractions, A a finite-
dimensional K-algebra, A a D-order in A, J = J(A) the ‘Jacobson radical’ of A, and
A = A/J. Assume that Homa(P;, Pj) = 0 for every pair of non-isomorphic principal
modules P;, P; of multiplicity 1 in A. If every minimal ideal of A which is a division ring

is isomorphic to K, then
AUA) C Z(A),

Proof. Let A = M, (D;) x --- x M,,_(D,) be the Wedderburn decomposition of A,
let V; be the ith irreducible A-module and P; the principal A-module corresponding to
V;. Then we have an A-module isomorphism

A%n1771 @"'@nspsv (31)

and, by the Peirce decomposition (see [4, p. 26]), we obtain that A is isomorphic to the
algebra of matrices of the form

ailp a2 a1s
az; a2 a2s

)
Ags1 As2 Agss

where a;; € Homa(n;Pj,n;P;). Notice that End 4 (n;P;) = M, (Enda(P;)).

We shall denote by e;;(a;;) a matrix whose entry in position (¢, j) is equal to a;; and
all other entries are equal to zero.

Let z € A(UA). By Proposition 3.1 we have that © commutes with all nilpotent ele-
ments of A. In particular, if ¢ # j, it commutes with every matrix e;;(a;;). Thus it remains
to show that z centralizes the diagonal subalgebra End 4(n1P1) X -+ x End g (nsPs).
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Let x;; € A be the entry of = belonging to Hom4(n;P;,n;P;). We wish to show that
x is a diagonal matrix. Assume that, in the decomposition of A given in (3.1) above, we
have that n; > 1if 1 <i<tandn;, =1ift +1 < i < s. It follows directly from our
assumption on the principal modules of multiplicity 1 in A that x is of the form

T1,1 Z1,2 Tt LT1,t+1 T1,t+2
T21 T22 Tat T2 t+1 T2t42
= Tt,1 T2 Tt Tt t+1 Tt t+42
Tig41,1  Te41,2 Tigp1,t Titlt+1 0
Tip21  Tiy2,2 Tiyat 0 Ti42,642
L Ts,1 Ts,2 Ts,t 0 0

)

T1,s
x2s
Tt,s

)

0

Ts,sl

For an index 4 < ¢ and every nilpotent element a € End 4(n;P;), by Proposition 3.1 we

have that e;;(a)x = zey(a). A straightforward computation shows that

ar;; = 0= x40 for all j # 4.

(3.2)

We claim that this implies ;; = x;; = 0, for all j # 4, 1 < i < s. In fact, recall that
Endg(n;P;) = My, (Enda(P;)) and set a = e (1) € M,,(Enda(F;)) with k& # I. For an

i

arbitrary element y € n; P; we compute z;;(y) € n;P;, so, if we consider n,; P; as column

matrices with entries in P;, we can write z;;(y) in the form

Then

0= ary ) = ew)) | | = | sty |

l

where z;;(y) is the kth entry of the column.

This implies that xfj(y) = 0 for I # k. Since k and [ are arbitrary distinct, we have
that x;;(y) = 0, for all y € n;P; and thus z;; = 0. A similar argument shows that also

z;; = 0. Consequently, x is diagonal.

Fix an index ¢ with 1 < ¢ < ¢ (and, thus, n; > 1). Consider the element y = e;;(exm (1))
of the diagonal subalgebra where k # m and the elementary matrix ey, (1) belongs to
M, (Enda(P;)). Then y?> = 0 and the equality zy = yx implies that z;; commutes
with egy,(1). Since k and m are arbitrary, it follows that x;; must be scalar, z;; = al,
a € End 4 (P;). Moreover, for all b € End4(P;) and ej, (b) € Enda(P;), we have that

alepm(b) = aberm (1) = e;(b)al = baegm (1).
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Consequently, a € Z(End4(P;)). Thus x;; centralizes E4(n;P;) with n; > 1.

Now assume i > t and thus n; = 1.

In this case, M,,(D;) = D; is a division ring, so, by our hypothesis, D; = End 5(V;)
K. Therefore, Enda(P;)/J (Enda(P;)) is also isomorphic to K. Hence

)

EndA('Pi) = Ke; ® j(EndA(Pi)),

a direct sum of K-vector spaces. Since we have shown that x is diagonal, it follows imme-
diately that it commutes with the elements of Ke; and, as x centralizes J(End4(P;)),
we conclude that « € C4(End4(P;)), which completes the proof. O

Remark 3.3. Notice that the restriction that Homa(P;, P;) = 0 for every pair of
non-isomorphic principal modules F;, P; of multiplicity 1 in A is always verified in the
case of semisimple algebras, by Schur’s Lemma. On the other hand, we observe that it
is essential in the non-semisimple case, as shown by the following example.

Take
Q Q L Z
A= d A=
o g ™ 0 z|’
and set
11
xr = .
01
It is easy to see that the conjugacy class of x in U A is of order 2, so x is non-central but
x € A(UA).

Corollary 3.4. Let D and K be as above, A be a finite-dimensional K-algebra and A
an order in A. Assume that Hom 4 (P;, P;) = 0 for every pair of non-isomorphic principal
modules P;, P; of multiplicity 1 in A. If K is a splitting field for A, then

AUA) C Z(A).

Corollary 3.5. Let D and K be as above, A be a semisimple finite-dimensional K -
algebra and A a D-order in A. If A has no minimal ideal that is a non-commutative
division ring, then

AUA) C Z(A).

Proof. The proof of the theorem shows that x € A(U{A) centralizes each Wedderburn
component M, (D;) of A with n; > 1. On the other hand, by our assumption, n; = 1
implies that D; is a field. Hence z € Z(A). O

Theorem 3.6. Let D be an infinite domain and R a D-algebra.

(i) If R is torsion free as a D-module, then

where I is the identity matrix of M, (R).
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(i) If char(D) =0 and n > 1, then

Proof. Let {e;; : 1 <, j < n} be the basis of elementary matrices of M, (R) and let

a = Zaijeij S A(GLn(R))

,J
Fix 1 < g, jo < n with ig # jo and for each r € D set
ar = (I - reiojo)a’(l + Teiojo)'

Since D is infinite and the conjugacy class of a is finite, there exist r,s € D, r # s,
such that a, = a,. This implies that a commutes with I + (r — s)e;,;, and hence with
€igjo, @ R is torsion free over D. It follows that aj,; = ai;, = 0 for all j # jo and @ # ig
and that a;y;, = aj,j,- Since this holds for all 1 < g, jo < n, %9 # jo, we conclude that
a =ay1] and a1; € A(R) and (i) follows.

Now suppose that char(D) =0. For i # j set u;; = I + e;;. Then w;; is a unit. If
a € A(GL,(R)) then there exists a positive integer k such that ufj centralizes a. Note
that ufj = I + ke;;. Since char(D) = 0, it follows easily that ae;; = e;ja if i # j and, as
eii = ejj - €4, we conclude that a commutes with all the matrices of the basis of M, (R)
and thus a is a scalar matrix, i.e. of the form a = Ao, where I is the identity matrix and
Ao € R. Finally, set u = I + Aejo with A € R. Since u¥ = I+ kleqs, an argument similar
to the one above shows that Ao € Z(R). O

Notice that the arguments in the proof above do not depend on the fact that the given
matrix a is invertible. Hence, if for a given ring R we denote by A(R) the set of elements
in R who have finitely many conjugates under the action of /R, we actually have the
following.

Corollary 3.7. Let D be an infinite domain and R a D-algebra.
(i) If R is torsion free as a D-module then
A(Mn(R)) = A(R)I,
where I is the identity matrix of M, (R).

(ii) If char(D) =0 and n > 1 then

4. Group rings

In this section we shall apply our previous results to the case of group rings. First,
we notice that if G is a finite group such that the group algebra QG has no min-
imal ideal which is a non-commutative division ring, then Corollary 3.5 shows that
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AU(ZG)) C Z2(QG). We remark that there are many important classes of groups which
satisfy this condition, as all finite simple groups, nilpotent groups of odd order [13, Corol-
lary 20.7], and groups which have no non-abelian homomorphic image that is fixed-point
free, as considered in [10].

We begin with some technical lemmas.

Lemma 4.1. Let K be a field and let G be a subgroup of GL(2, K). Then

(i) if e € GL(2, K) is non-central, its centralizer in GL(2, K) is abelian, and

(ii) either A(G) = Z(G) or G is abelian-by-finite.

Proof. To prove (i) we may assume, without loss of generality, that K is algebraically
closed. Then the statement follows directly, considering the Jordan normal form of a.

To prove (ii), notice that if A(G) # Z(G), taking a € A(G) non-central, we have

that [G : Cg(a)] is finite and the argument above showed that Cg(a) is abelian so G is
abelian-by-finite, as desired. O

Notice that, if Kg is the quaternion group of order 8, it is well-known that U (ZKs) =
+ Ky and thus an analogue of Herstein’s result does not hold for the order ZKg in QKs5.
However, we have the following.

Proposition 4.2. Let G = Kg X (c¢), where c is an element of order p, an odd prime,
and Kg = (a,b) is the quaternion group of order 8. Then

AUZG)) = ZU(ZG)).

Proof. Let Kg = {a,b:a* =1, a> =b?, b=tab= a~!). Consider the ring representa-
tion ¢ : ZG — M, (C) given by

i 0 0 -1 E0
a—><0 —i)’ b—><1 O)’ c—><0 5),

where £ is a primitive pth root of unity.
If we write u = xg + x1a + x2b + x3ab € ZG with

we = ag, +ay,ct o+ ap, e Z({e),

then

W(u) = (?Jo +yi — (2 +y31)> ’

Y2 — Y3l Yo — Y1l
with
Y = ag, + o1, §+ -+ 1,607 € LI
and Ker ¢ = ¢ZG.

If we restrict ¢ to U(ZG) we have a group homomorphism

Y| UZEG) = GL(2,0),

https://doi.org/10.1017/50013091599001285 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091599001285

Finite conjugacy in algebras and orders 211

whose kernel is Ker 1| = (1 + ¢ZG) NU(ZG), where ¢ = 1 +c+ -+ - + P~L. We will show
that there are no units of ZG of this form, other than 1, that is, the restriction of ¢ is an
injection of U(ZG) into GL(2,C). For this let ¢ : G — Ks be a group homomorphism
defined by ¢ — a, b — b and ¢ — 1. Extend it linearly to ¢ : ZG — ZKgs. Now let
x =1+ éy € U(ZG) and observe that we may assume that y € ZKs. So p(x) = 1+ py
is a unit in ZKg and then it must be trivial. Hence y = 0.

Now suppose that A(U(ZG)) is not contained in the centre of U(ZG). Let u €
AU(ZG)), u ¢ Z(U(ZG)). Then ¢(u) ¢ Z(GL(2,C)) and, by Lemma 4.1, p(U(ZG)) is
abelian-by-finite.

On the other hand, by a Theorem of Hartley and Pickel (see [13, Theorem 5.1]), we
have that U(ZG) contains a non-cyclic free group, therefore ¢(U(ZG)) =2 U(ZG) cannot
be abelian-by-finite, a contradiction. Hence A(U(ZG)) = Z(U(ZQ)). O

Lemma 4.3. Let G be a group and let g0 € TA(U(ZG)) and g € G. Then the
commutator [go, g] Is an element of {go) (){g)-

Proof. Since TA(U(ZGQG)) is a periodic normal subgroup of U(ZG), it follows from [12,
Theorem II.5.1] that TAWU(ZG)) C G and that all its subgroups are also normal. In
particular, g normalizes the group (go), so we only need to prove that gy also normalizes
the group (g).

Let « = (1—g)gog. If « is zero then the claim follows easily. If not, since « is nilpotent,
Proposition 3.1 tells us that agy = goo so it also follows that go normalizes (g), as
desired. g

Proposition 4.4. Let G be a finite group and suppose that TA(U(ZG)) is non-
abelian. Then G is a 2-group.

Proof. Since TA(U(Z@G)) is a torsion normal subgroup, it follows again from [12,
Theorem I1.5.1] that it is contained in G and that every subgroup of TA(U(ZG)) is
normal. As we are assuming that it is not abelian, it must be a Hamiltonian group and
thus contains a subgroup H isomorphic to Kg. Suppose that there exists a prime p > 3
dividing the order of G and let x € G be an element of order p. As H N (z) = 1, it
follows from Lemma 4.3 that z centralizes H. Hence G; = H X (x) is a subgroup of
G. Thus H C TA(U(ZG4)), which, according to Proposition 4.2, should be central, a
contradiction. |

Our next result first appeared in [16, Theorem 1] and alternative proofs were given
in [15]. The proof we offer is shorter than the previous ones.

Theorem 4.5. Let G be a periodic group. If TA(U(ZG)) has a non-central element
go then there exist an element x € G of order 4 and an abelian subgroup A such that
G=(Ax|2? =g} and 2 'ax = a=Va € A).

Proof. Assume that there exist elements go € TA(U(ZG)), g € G, such that gog #
990- Then Lemma 4.3 shows that (go) and (g) are both normal in (g, go), so every cyclic
subgroup of this group is normal and, thus, the group is Hamiltonian. As it has only
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two generators, it must be isomorphic to Kg. Since the only element of order 2 in Ky is
central, it follows that o(g) = 0(go) = 4 and also that g = gZ and g~ 'gog = g5 "
Let A denote the centralizer of gy in G. If g € G is not in A, then, for each element
a € A, we have that ag € A, so (ag)go # go(ag) and, by the argument in the above
paragraph, we have that (ag)% = g~'a~!. On the other hand, (ag)? = ag? = ag~!, so
we also conclude that gag™' = a~! for all a € A. This implies that A is abelian.
Finally, let us observe that, if x and y are two elements that do not commute with gg, we

have that x 'y 'gozy = 271 gy = = gy so y € zA and thus G = (A, z), as claimed. [

We can also use Proposition 4.1 to give an example in the case of infinite groups.

Example 4.6. Consider the infinite dihedral group D = {(a,b | b*> = 1, bab = a~!) and
let R be an integral domain of characteristic 0. We claim that A(U(RD)) = Z(U(RD)).

In fact, it is well known that, if N is a subgroup of a group G with [G : N] = n, then
RG can be imbedded in the full matrix ring M,,(RN). So, as (a) is torsion free, abelian,
we have that R(a) is an integral domain and it follows that RD can be imbedded in
M5 (K), where K denotes the field of fractions of R{a).

Once again, a result of Hartley and Pickel [13, Theorem 5.1] shows that ¢/(RD) con-
tains a free group on two generators. Hence Proposition 4.1 implies that A(U(RD)) =
Z(U(RD)), as claimed.

Proposition 4.7. Let G be a finite group such that QG has no Wedderburn com-
ponent which is a non-commutative division ring and let H be a free abelian group.
Then

AU(Z|G x H])) = ZU(Z]G x H))).

Proof. Set G; = G x H. Then QG; = QG ® QH and, if QG = @;M,,(D;) is the
Wedderburn decomposition of QG, we have that

QG = QH ® (9iM,,(D;)) = &;M,,(QH ® D;).

Notice that Proposition 3.1 implies that an element x € A(U(Z[G x H])) commutes
with every nilpotent element in each component. This shows that the components of x
are scalar matrices. Also, since they commute with every matrix of the form e;;(d), for
all d € D, we have that each component of z is central, so the result follows. O

We conclude this section by showing that our main theorem also allows us to obtain
some results in the case when the characteristic is positive.

Corollary 4.8. Let R be an infinite domain of positive characteristic and let G be a
finite group. If char(R) does not divide |G|, then A(RG) = Z(RG).

Proof. Let K be the field of fractions of R and suppose that p does not divide |G|.
Then KG is semisimple.

Assume that a Wedderburn component of KG is a division ring D. Then D is gen-
erated, as a K-vector space, by the image GG; of G under the projection to D. But G,
is a finite subgroup of D and a theorem of Herstein [5] shows that G; is cyclic so D is
commutative. The result now follows from Corollary 3.5. ]
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