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1. Introduction

For a given group G, we denote by ∆(G) the FC-centre (finite-conjugacy centre) of G,
that is:

∆(G) = {g ∈ G | [G : CG(g)] < ∞}.
Also, for a ring R we shall denote by UR the group of units of R, i.e. the set of invertible
elements of R. Herstein showed in [6] that if D is a division ring then ∆(UD) coincides
with Z(UD), the centre of UD.

The study of the FC-centre of groups of units of group rings started with papers by
Sehgal and Zassenhaus [14], Polcino Milies [8] and Cliff and Sehgal [2]. Also, Williamson
[16], studied elements of a periodic group G that has finite conjugacy class in the group
of units of its integral group ring. A more general approach was given by Sehgal and
Zassenhaus in [15]. This work was followed by several papers studying group rings over
fields [3,9].

Theorem 2.2 below shows that a result similar to that of Herstein holds for finite-
dimensional algebras over infinite fields and this fact is extended to algebraic algebras
in Corollary 2.3. However, it follows from [3, Example 1] that it cannot be extended to
all infinite-dimensional algebras. In § 3 we consider orders in finite-dimensional algebras
where the situation is more complicated. In particular, a theorem of Williamson for
integral group rings [16] shows that an analogue of Herstein’s result does not hold for
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orders. However, we are able to obtain general positive results for large classes of orders
and we give a partial extension of a theorem of Sehgal and Zassenhaus [15, Theorem 1].
In § 4 we consider some applications to group rings and, in particular, we obtain a short
proof of the theorem of Williamson.

2. Algebras

The following fact should be known; however, we include an argument for the sake of
completeness.

Proposition 2.1. Let G be a connected algebraic group over an infinite field. Then
every FC-element of G is central.

Proof. Let G be a connected algebraic group and x ∈ G an FC-element. Then, the
centralizer CG(x) is a closed subgroup of finite index G. For a fixed y ∈ G the map
z → yz ∈ G is polynomial and, therefore, continuous. Since the same holds for its
inverse, it is a homeomorphism. Hence, each coset yCG(x) is closed in G and G is a
union of a finite number of them. Since G is connected (even irreducible), it follows that
x ∈ Z(G). �

For a group G let TG denote the torsion part of G.

Theorem 2.2. Let A be an algebra with unity over an infinite field K.

(i) If A is finite dimensional, then UA is a connected linear algebraic group and,
consequently,

∆(UA) = Z(UA).

Moreover, A is generated by its units, as a vector space over K and, therefore, UA
is FC if and only if A is commutative.

(ii) Every torsion unit of ∆(UA) commutes with each algebraic unit of A and, conse-
quently, ∆(UA) is solvable of length at most 2.

(iii) Every element of ∆(UA) commutes with each nilpotent element of A.

Proof. (i) Let n = dimK A and Γ : A → Mn(K) be the regular representation of A.
Then x ∈ A is invertible if and only if det(Γ (x)) 6= 0. Indeed, if det(Γ (x)) 6= 0, then Γ (x)
is invertible in Mn(K), thus it cannot be a zero divisor in Γ (A). Since an element in a
finite-dimensional algebra is either a zero divisor or invertible, the statement follows.

Taking a basis in A, det(Γ (x)) can be considered as a polynomial f in coordinates
x1, . . . , xn of x. Hence

UA = {(x1, . . . , xn) ∈ A | f(x1, . . . , xn) 6= 0}.

So, with respect to the Zariski topology on A, we have that UA is a principal open
subset in A = Kn. Therefore, UA is an irreducible (i.e. connected) algebraic group.
Therefore, by Proposition 2.1, we have that ∆(UA) = Z(UA).
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Note that UA is a linear algebraic group as both Γ : A → Γ (A) and its inverse are
polynomial maps. Since UA is an open subset of A, we have that UA = A. Let A1 be
the linear span of UA. Since every linear subspace is closed under Zariski’s topology, we
have that UA ⊂ A1; hence A1 = A.

Item (ii) is an easy consequence of (i), indeed, let x ∈ T∆(UA), y ∈ UA be algebraic
and n be the dimension of the subalgebra generated by y. Then, by Dietzmann’s Lemma
(see [11, 15.1.11]), the conjugates of x in H = 〈x, y〉 generate a finite normal subgroup N ,
and every element of H can be written as a K-linear combination of elements of the form
hyi with h ∈ N and 0 6 i 6 n− 1. Hence the K-linear span of H is a finite-dimensional
algebra and, by item (i), xy = yx, as desired. In particular, T∆(UA) is abelian and, since
∆(UA)′ ⊂ T∆(UA), by Neuman’s Theorem [11, 15.1.7], ∆(UA) is solvable of length at
most 2.

(iii) Let y ∈ A be a nilpotent element and let n be a positive integer such that yn 6= 0
and yn+1 = 0. For each α ∈ K we consider zα = 1 + αy, which is a unit whose inverse is
z−1
α =

∑n
i=0(−1)i(αy)i and we have that

z−1
α xzα = x+

n∑
i=1

(viα
i),

where vi = (−1)i(yix− yi−1xy), 1 6 i 6 n.
Since x ∈ ∆(UA), there exists an infinite set S of K such that the set {z−1

α xzα | α ∈ S}
consists of a single element.

Let B be a K-basis of A and set α, β ∈ S, with β fixed. Write

vi =
∑
b∈B

vi(b)b

and
z−1
β xzβ − x =

∑
b∈B

w(b)b.

As z−1
α xzα = z−1

β xzβ , we get

∑
b∈B

w(b)b = α

(∑
b∈B

v1(b)b
)

+ α2
(∑

b∈B
v2(b)b

)
+ · · · .

Assume that v1 = xy − yx 6= 0. Then, there exists an element b0 ∈ B such that
v1(b0) 6= 0. Consequently, the polynomial −w(b0) + αv1(b0) + α2v2(b0) + · · · is non zero
and has infinitely many roots, since it is zero for every α ∈ S, a contradiction. �

We note that the proof of (iii) also works in the case of orders, as we show in the
beginning of the next section.

Notice that if K is a finite field, results similar to those of the previous theorem need
not hold. In fact, let A be a direct sum of infinitely many copies of a full matrix ring
Mn(K), n > 2. Then every unit in A is FC so

UA = ∆(UA) 6= Z(UA).
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Moreover, UA is not solvable and clearly units need not commute with nilpotent elements
so none of the statements of the theorem above hold.

Throughout this section we shall always assume that the algebras considered are taken
over an infinite field K.

Corollary 2.3. If UA and ∆(UA) are generated by algebraic units, then

∆(UA) = Z(UA).

In particular, this happens if A is an algebraic algebra. In this case A is generated by
units as a vector space, and UA is FC if and only if A is commutative.

Proof. Let x ∈ ∆(UA), y ∈ UA be algebraic, H = 〈x, y〉 and x1, . . . , xs be the
conjugates of x in H. Each commutator of 〈x1, . . . , xs〉 is torsion and, therefore, central
by (ii) of Theorem 2.2. Hence, each h ∈ H can be written as

h = yαxβ1
1 . . . xβs

s

∏
[xi, xj ]γij ,

with α, β1, . . . , βs, γij ∈ Z. Now, let ni (respectively n) be the dimension of the subalgebra
generated by xi (respectively y). Then h is a K-linear combination of elements of the
form

yδxε1
1 . . . xεs

s

∏
[xi, xj ]ωij

with 0 6 δ 6 n, 0 6 εi 6 ni, 0 6 ωij 6 o([xi, xj ]). We have finitely many such
elements and, consequently, the K-linear span of H is a finite-dimensional algebra. It
follows from (i) of Theorem 2.2 that x and y commute, as desired. The last statement
also follows from part (i) of that theorem. �

Now, we wish to consider algebras with many units; more precisely, algebras that
are generated, as a vector space, by their units. These include large classes of algebras,
such as group rings, crossed products, finite-dimensional algebras, algebraic algebras and
algebras unitally generated by nilpotent elements such as those considered in [1].

The following lemma is an extension of [3, Lemma 2.1] to the general case.

Lemma 2.4. Let x ∈ A be an element such that x2 = bx for some b ∈ K. Then
xy = yx for all y ∈ ∆(UA).

Proof. Let k be an arbitrary element in K. If b 6= 0 we set uk = 1 − b−1x + b−1kx.
Then uk is a unit of A whose inverse is u−1

k = 1 − b−1x + b−1k−1x. Given an element
y ∈ UA1, we compute

yk = ukyu
−1
k = (1 − b−1x+ b−1kx)y(1 − b−1x+ b−1k−1x)

= y − b−1xy − b−1yx+ b−1kxy + b−1k−1yx+ (2b−2 − b−2k − b−2k−1)xyx.

If we denote c = yxy−1, we have that yx = cy and we can write

yk = (1 + b−1kx− b−1x− b−1c+ b−1k−1c+ 2b−2xc− b−2kxc− b−2k−1xc)y.
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Hence
xyk = x(k + b−1c− b−1kc)y = k(x− b−1xc)y + b−1xcy.

Thus, if x− b−1xc 6= 0, as K is infinite, we would have infinitely many conjugates for
y. So we must have that x = b−1xc and, back in the expression of yk, we obtain

yk = (1 − b−1c+ b−1x+ b−1k−1(c− x))y.

Once again, if c 6= x we would have infinitely many conjugates for y, a contradiction.
Hence, x = y−1xy, as desired.

The case where b = 0 can be obtained by a similar argument, considering the unit
ua = 1 + ax. It also follows immediately from Theorem 2.2. �

Let A1 denote the linear span of ∆(UA) in A. Since ∆(UA) is a group, it follows
immediately that A1 is a subalgebra of A.

Corollary 2.5. Every idempotent of A1 is central in A.

Proof. Let e ∈ A1 be an idempotent and let x be an arbitrary element of A. The
elements α = ex(1 − e) and β = (1 − e)xe are such that α2 = β2 = 0.

Write e as a linear combination e =
∑

i liui of elements ui ∈ ∆(UA) with coefficients
li ∈ K. By the previous lemma, both α and β commute with every ui and thus with e.
Hence

eα = αe = 0,

eβ = βe = 0.

Now, eα = ex(1− e) and thus ex = exe. In a similar way we obtain that xe = exe and
thus xe = ex, as claimed. �

Theorem 2.6. Let A be an algebra generated by its units, as a linear space over an
infinite field K such that UA is FC. Then every idempotent and every nilpotent element
are central in A.

Moreover, if A is generated by its torsion units, as a linear space over K, then UA is
FC if and only if A is commutative.

Proof. The first part of the statement follows immediately from Corollary 2.5 and
item (iii) of Theorem 2.2 while the second is a consequence of item (ii) of the same
theorem. �

3. Orders

Let D be a domain, K its field of fractions and let A be a K-algebra. By a D-order Λ
in A we mean a D-subalgebra of A such that A = KΛ. Notice that this implies that Λ
contains a K-basis of A. Of course, ∆(UΛ) ⊂ ∆(UA) ∩ Λ, but, in general, equality does
not hold. To see this take, for example, K8 = 〈a, b | a4 = 1, a2 = b2, bab−1 = a−1〉 and
set Λ = ZK8 and A = QK8. Then the element x = 1 + a+ a3 lives in Λ, is central and
invertible in A, with inverse x−1 = 1

3 (1 + a− 2a2 + a3), but x 6∈ UΛ.
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Proposition 3.1. Let D be an infinite domain and let K be its field of fractions. Let
A be a K-algebra and Λ a D-order in A. If x ∈ ∆(UΛ) and y ∈ A is nilpotent then
xy = yx.

Proof. Let y ∈ A be a nilpotent element. Since Λ is a D-order in A, there exists an
element d ∈ D such that y1 = dy ∈ Λ.

For each α ∈ D set zα = 1 + αy1. Then zα is a unit in Λ whose inverse is

z−1
α =

n∑
i=0

(−1)i(αy1)i.

As in item (iii) of Theorem 2.2 we can conclude that there exists an infinite set S of
D such that the set {z−1

α xzα | α ∈ S} consists of a single element. If xy1 6= y1x taking
a K-basis B of A contained in Λ and a fixed scalar β ∈ S we can obtain, as before, a
non-zero polynomial −w(b0) + αv1(b0) + α2v2(b0) + · · · that has infinitely many roots
in S, a contradiction.

Hence, xy1 = y1x and thus also xy = yx. �

As a consequence of Proposition 3.1 we obtain the following theorem.

Theorem 3.2. Let D be an infinite domain, K its field of fractions, A a finite-
dimensional K-algebra, Λ a D-order in A, J = J (A) the ‘Jacobson radical’ of A, and
Ā = A/J . Assume that HomA(Pi, Pj) = 0 for every pair of non-isomorphic principal
modules Pi, Pj of multiplicity 1 in A. If every minimal ideal of Ā which is a division ring
is isomorphic to K, then

∆(UΛ) ⊂ Z(A),

Proof. Let Ā = Mn1(D1) × · · · ×Mns
(Ds) be the Wedderburn decomposition of Ā,

let Vi be the ith irreducible Ā-module and Pi the principal A-module corresponding to
Vi. Then we have an A-module isomorphism

A ∼= n1P1 ⊕ · · · ⊕ nsPs, (3.1)

and, by the Peirce decomposition (see [4, p. 26]), we obtain that A is isomorphic to the
algebra of matrices of the form 


a11 a12 . . . a1s

a21 a22 . . . a2s

...
...

. . .
...

as1 as2 . . . ass


 ,

where aij ∈ HomA(njPj , niPi). Notice that EndA(niPi) ∼= Mni
(EndA(Pi)).

We shall denote by eij(aij) a matrix whose entry in position (i, j) is equal to aij and
all other entries are equal to zero.

Let x ∈ ∆(UΛ). By Proposition 3.1 we have that x commutes with all nilpotent ele-
ments of A. In particular, if i 6= j, it commutes with every matrix eij(aij). Thus it remains
to show that x centralizes the diagonal subalgebra EndA(n1P1) × · · · × EndA(nsPs).
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Let xij ∈ A be the entry of x belonging to HomA(njPj , niPi). We wish to show that
x is a diagonal matrix. Assume that, in the decomposition of A given in (3.1) above, we
have that ni > 1 if 1 6 i 6 t and ni = 1 if t + 1 6 i 6 s. It follows directly from our
assumption on the principal modules of multiplicity 1 in A that x is of the form

x =




x1,1 x1,2 · · · x1,t x1,t+1 x1,t+2 · · · x1,s

x2,1 x2,2 · · · x2,t x2,t+1 x2,t+2 · · · x2,s

· · · · · ·
xt,1 xt,2 · · · xt,t xt,t+1 xt,t+2 · · · xt,s

xt+1,1 xt+1,2 · · · xt+1,t xt+1,t+1 0 · · · 0
xt+2,1 xt+2,2 · · · xt+2,t 0 xt+2,t+2 · · · 0

· · · · · ·
xs,1 xs,2 · · · xs,t 0 0 · · · xs,s



.

For an index i 6 t and every nilpotent element a ∈ EndA(niPi), by Proposition 3.1 we
have that eii(a)x = xeii(a). A straightforward computation shows that

axij = 0 = xija for all j 6= i. (3.2)

We claim that this implies xij = xji = 0, for all j 6= i, 1 6 i 6 s. In fact, recall that
EndA(niPi) = Mni(EndA(Pi)) and set a = ekl(1) ∈ Mni(EndA(Pi)) with k 6= l. For an
arbitrary element y ∈ njPj we compute xij(y) ∈ niPi, so, if we consider niPi as column
matrices with entries in Pi, we can write xij(y) in the form

xij(y) =



x1

ij(y)
x2

ij(y)
. . .

xni
ij (y)


 .

Then

0 = axij(y) = ekl(1)



x1

ij(y)
x2

ij(y)
. . .

xni
ij (y)


 =




0
. . .

xl
ij(y)
. . .

0


 ,

where xl
ij(y) is the kth entry of the column.

This implies that xl
ij(y) = 0 for l 6= k. Since k and l are arbitrary distinct, we have

that xij(y) = 0, for all y ∈ njPj and thus xij = 0. A similar argument shows that also
xji = 0. Consequently, x is diagonal.

Fix an index i with 1 6 i 6 t (and, thus, ni > 1). Consider the element y = eii(ekm(1))
of the diagonal subalgebra where k 6= m and the elementary matrix ekm(1) belongs to
Mni

(EndA(Pi)). Then y2 = 0 and the equality xy = yx implies that xii commutes
with ekm(1). Since k and m are arbitrary, it follows that xii must be scalar, xii = aI,
a ∈ EndA(Pi). Moreover, for all b ∈ EndA(Pi) and ekm(b) ∈ EndA(Pi), we have that

aIekm(b) = abekm(1) = eij(b)aI = baekm(1).
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Consequently, a ∈ Z(EndA(Pi)). Thus xii centralizes EA(niPi) with ni > 1.
Now assume i > t and thus ni = 1.
In this case, Mni(Di) = Di is a division ring, so, by our hypothesis, Di

∼= EndĀ(Vi) ∼=
K. Therefore, EndA(Pi)/J (EndA(Pi)) is also isomorphic to K. Hence

EndA(Pi) = Kei ⊕ J (EndA(Pi)),

a direct sum of K-vector spaces. Since we have shown that x is diagonal, it follows imme-
diately that it commutes with the elements of Kei and, as x centralizes J (EndA(Pi)),
we conclude that x ∈ CA(EndA(Pi)), which completes the proof. �

Remark 3.3. Notice that the restriction that HomA(Pi, Pj) = 0 for every pair of
non-isomorphic principal modules Pi, Pj of multiplicity 1 in A is always verified in the
case of semisimple algebras, by Schur’s Lemma. On the other hand, we observe that it
is essential in the non-semisimple case, as shown by the following example.

Take

A =

[
Q Q

0 Q

]
and Λ =

[
Z Z

0 Z

]
,

and set

x =

[
1 1
0 1

]
.

It is easy to see that the conjugacy class of x in UΛ is of order 2, so x is non-central but
x ∈ ∆(UΛ).

Corollary 3.4. Let D and K be as above, A be a finite-dimensional K-algebra and Λ
an order in A. Assume that HomA(Pi, Pj) = 0 for every pair of non-isomorphic principal
modules Pi, Pj of multiplicity 1 in A. If K is a splitting field for A, then

∆(UΛ) ⊂ Z(A).

Corollary 3.5. Let D and K be as above, A be a semisimple finite-dimensional K-
algebra and Λ a D-order in A. If A has no minimal ideal that is a non-commutative
division ring, then

∆(UΛ) ⊂ Z(A).

Proof. The proof of the theorem shows that x ∈ ∆(UΛ) centralizes each Wedderburn
component Mni(Di) of A with ni > 1. On the other hand, by our assumption, ni = 1
implies that Di is a field. Hence x ∈ Z(A). �

Theorem 3.6. Let D be an infinite domain and R a D-algebra.

(i) If R is torsion free as a D-module, then

∆(GLn(R)) = ∆(UR)I,

where I is the identity matrix of Mn(R).
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(ii) If char(D) = 0 and n > 1, then

∆(GLn(R)) = Z(GLn(R)).

Proof. Let {eij : 1 6 i, j 6 n} be the basis of elementary matrices of Mn(R) and let

a =
∑
i,j

aijeij ∈ ∆(GLn(R)).

Fix 1 6 i0, j0 6 n with i0 6= j0 and for each r ∈ D set

ar = (I − rei0j0)a(I + rei0j0).

Since D is infinite and the conjugacy class of a is finite, there exist r, s ∈ D, r 6= s,
such that ar = as. This implies that a commutes with I + (r − s)ei0j0 and hence with
ei0j0 , as R is torsion free over D. It follows that aj0j = aii0 = 0 for all j 6= j0 and i 6= i0
and that ai0i0 = aj0j0 . Since this holds for all 1 6 i0, j0 6 n, i0 6= j0, we conclude that
a = a11I and a11 ∈ ∆(R) and (i) follows.

Now suppose that char(D) = 0. For i 6= j set uij = I + eij . Then uij is a unit. If
a ∈ ∆(GLn(R)) then there exists a positive integer k such that uk

ij centralizes a. Note
that uk

ij = I + keij . Since char(D) = 0, it follows easily that aeij = eija if i 6= j and, as
eii = eij · eji, we conclude that a commutes with all the matrices of the basis of Mn(R)
and thus a is a scalar matrix, i.e. of the form a = λ0I, where I is the identity matrix and
λo ∈ R. Finally, set u = I + λe12 with λ ∈ R. Since uk = I + kλe12, an argument similar
to the one above shows that λ0 ∈ Z(R). �

Notice that the arguments in the proof above do not depend on the fact that the given
matrix a is invertible. Hence, if for a given ring R we denote by ∆(R) the set of elements
in R who have finitely many conjugates under the action of UR, we actually have the
following.

Corollary 3.7. Let D be an infinite domain and R a D-algebra.

(i) If R is torsion free as a D-module then

∆(Mn(R)) = ∆(R)I,

where I is the identity matrix of Mn(R).

(ii) If char(D) = 0 and n > 1 then

∆(Mn(R)) = Z(Mn(R)).

4. Group rings

In this section we shall apply our previous results to the case of group rings. First,
we notice that if G is a finite group such that the group algebra QG has no min-
imal ideal which is a non-commutative division ring, then Corollary 3.5 shows that
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∆(U(ZG)) ⊂ Z(QG). We remark that there are many important classes of groups which
satisfy this condition, as all finite simple groups, nilpotent groups of odd order [13, Corol-
lary 20.7], and groups which have no non-abelian homomorphic image that is fixed-point
free, as considered in [10].

We begin with some technical lemmas.

Lemma 4.1. Let K be a field and let G be a subgroup of GL(2,K). Then

(i) if a ∈ GL(2,K) is non-central, its centralizer in GL(2,K) is abelian, and

(ii) either ∆(G) = Z(G) or G is abelian-by-finite.

Proof. To prove (i) we may assume, without loss of generality, that K is algebraically
closed. Then the statement follows directly, considering the Jordan normal form of a.

To prove (ii), notice that if ∆(G) 6= Z(G), taking a ∈ ∆(G) non-central, we have
that [G : CG(a)] is finite and the argument above showed that CG(a) is abelian so G is
abelian-by-finite, as desired. �

Notice that, if K8 is the quaternion group of order 8, it is well-known that U(ZK8) =
±K8 and thus an analogue of Herstein’s result does not hold for the order ZK8 in QK8.
However, we have the following.

Proposition 4.2. Let G = K8 × 〈c〉, where c is an element of order p, an odd prime,
and K8 = 〈a, b〉 is the quaternion group of order 8. Then

∆(U(ZG)) = Z(U(ZG)).

Proof. Let K8 = 〈a, b : a4 = 1, a2 = b2, b−1ab = a−1〉. Consider the ring representa-
tion ψ : ZG → M2(C) given by

a →
(

i 0
0 −i

)
, b →

(
0 −1
1 0

)
, c →

(
ξ 0
0 ξ

)
,

where ξ is a primitive pth root of unity.
If we write u = x0 + x1a+ x2b+ x3ab ∈ ZG with

xt = α0t + α1tc+ · · · + αp−1t
cp−1 ∈ Z(〈c〉),

then

ψ(u) =

(
y0 + y1i −(y2 + y3i)
y2 − y3i y0 − y1i

)
,

with
yt = α0t + α1tξ + · · · + αp−1tξ

p−1 ∈ Z[ξ]

and Kerψ = ĉZG.
If we restrict ψ to U(ZG) we have a group homomorphism

ψ| : U(ZG) → GL(2,C),
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whose kernel is Kerψ| = (1 + ĉZG) ∩ U(ZG), where ĉ = 1 + c+ · · · + cp−1. We will show
that there are no units of ZG of this form, other than 1, that is, the restriction of ψ is an
injection of U(ZG) into GL(2,C). For this let ϕ : G → K8 be a group homomorphism
defined by a → a, b → b and c → 1. Extend it linearly to ϕ : ZG → ZK8. Now let
x = 1 + ĉy ∈ U(ZG) and observe that we may assume that y ∈ ZK8. So ϕ(x) = 1 + py

is a unit in ZK8 and then it must be trivial. Hence y = 0.
Now suppose that ∆(U(ZG)) is not contained in the centre of U(ZG). Let u ∈

∆(U(ZG)), u /∈ Z(U(ZG)). Then ψ(u) /∈ Z(GL(2,C)) and, by Lemma 4.1, ψ(U(ZG)) is
abelian-by-finite.

On the other hand, by a Theorem of Hartley and Pickel (see [13, Theorem 5.1]), we
have that U(ZG) contains a non-cyclic free group, therefore ψ(U(ZG)) ∼= U(ZG) cannot
be abelian-by-finite, a contradiction. Hence ∆(U(ZG)) = Z(U(ZG)). �

Lemma 4.3. Let G be a group and let g0 ∈ T∆(U(ZG)) and g ∈ G. Then the
commutator [g0, g] is an element of 〈g0〉

⋂〈g〉.
Proof. Since T∆(U(ZG)) is a periodic normal subgroup of U(ZG), it follows from [12,

Theorem II.5.1] that T∆(U(ZG)) ⊂ G and that all its subgroups are also normal. In
particular, g normalizes the group 〈g0〉, so we only need to prove that g0 also normalizes
the group 〈g〉.

Let α = (1−g)g0ĝ. If α is zero then the claim follows easily. If not, since α is nilpotent,
Proposition 3.1 tells us that αg0 = g0α so it also follows that g0 normalizes 〈g〉, as
desired. �

Proposition 4.4. Let G be a finite group and suppose that T∆(U(ZG)) is non-
abelian. Then G is a 2-group.

Proof. Since T∆(U(ZG)) is a torsion normal subgroup, it follows again from [12,
Theorem II.5.1] that it is contained in G and that every subgroup of T∆(U(ZG)) is
normal. As we are assuming that it is not abelian, it must be a Hamiltonian group and
thus contains a subgroup H isomorphic to K8. Suppose that there exists a prime p > 3
dividing the order of G and let x ∈ G be an element of order p. As H ∩ 〈x〉 = 1, it
follows from Lemma 4.3 that x centralizes H. Hence G1 = H × 〈x〉 is a subgroup of
G. Thus H ⊂ T∆(U(ZG1)), which, according to Proposition 4.2, should be central, a
contradiction. �

Our next result first appeared in [16, Theorem 1] and alternative proofs were given
in [15]. The proof we offer is shorter than the previous ones.

Theorem 4.5. Let G be a periodic group. If T∆(U(ZG)) has a non-central element
g0 then there exist an element x ∈ G of order 4 and an abelian subgroup A such that
G = 〈A, x | x2 = g2

0 and x−1ax = a−1∀a ∈ A〉.
Proof. Assume that there exist elements g0 ∈ T∆(U(ZG)), g ∈ G, such that g0g 6=

gg0. Then Lemma 4.3 shows that 〈g0〉 and 〈g〉 are both normal in 〈g, g0〉, so every cyclic
subgroup of this group is normal and, thus, the group is Hamiltonian. As it has only
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two generators, it must be isomorphic to K8. Since the only element of order 2 in K8 is
central, it follows that o(g) = o(g0) = 4 and also that g2 = g2

0 and g−1g0g = g−1
0 .

Let A denote the centralizer of g0 in G. If g ∈ G is not in A, then, for each element
a ∈ A, we have that ag 6∈ A, so (ag)g0 6= g0(ag) and, by the argument in the above
paragraph, we have that (ag)g0 = g−1a−1. On the other hand, (ag)g0 = agg0 = ag−1, so
we also conclude that gag−1 = a−1 for all a ∈ A. This implies that A is abelian.

Finally, let us observe that, if x and y are two elements that do not commute with g0, we
have that x−1y−1g0xy = x−1g−1

0 x = g0 so y ∈ xA and thus G = 〈A, x〉, as claimed. �

We can also use Proposition 4.1 to give an example in the case of infinite groups.

Example 4.6. Consider the infinite dihedral group D = 〈a, b | b2 = 1, bab = a−1〉 and
let R be an integral domain of characteristic 0. We claim that ∆(U(RD)) = Z(U(RD)).

In fact, it is well known that, if N is a subgroup of a group G with [G : N ] = n, then
RG can be imbedded in the full matrix ring Mn(RN). So, as 〈a〉 is torsion free, abelian,
we have that R〈a〉 is an integral domain and it follows that RD can be imbedded in
M2(K), where K denotes the field of fractions of R〈a〉.

Once again, a result of Hartley and Pickel [13, Theorem 5.1] shows that U(RD) con-
tains a free group on two generators. Hence Proposition 4.1 implies that ∆(U(RD)) =
Z(U(RD)), as claimed.

Proposition 4.7. Let G be a finite group such that QG has no Wedderburn com-
ponent which is a non-commutative division ring and let H be a free abelian group.
Then

∆(U(Z[G×H])) = Z(U(Z[G×H])).

Proof. Set G1 = G × H. Then QG1 = QG ⊗ QH and, if QG ∼= ⊕iMni
(Di) is the

Wedderburn decomposition of QG, we have that

QG1 ∼= QH ⊗ (⊕iMni
(Di)) ∼= ⊕iMni

(QH ⊗Di).

Notice that Proposition 3.1 implies that an element x ∈ ∆(U(Z[G × H])) commutes
with every nilpotent element in each component. This shows that the components of x
are scalar matrices. Also, since they commute with every matrix of the form eij(d), for
all d ∈ D, we have that each component of x is central, so the result follows. �

We conclude this section by showing that our main theorem also allows us to obtain
some results in the case when the characteristic is positive.

Corollary 4.8. Let R be an infinite domain of positive characteristic and let G be a
finite group. If char(R) does not divide |G|, then ∆(RG) = Z(RG).

Proof. Let K be the field of fractions of R and suppose that p does not divide |G|.
Then KG is semisimple.

Assume that a Wedderburn component of KG is a division ring D. Then D is gen-
erated, as a K-vector space, by the image G1 of G under the projection to D. But G1

is a finite subgroup of D and a theorem of Herstein [5] shows that G1 is cyclic so D is
commutative. The result now follows from Corollary 3.5. �
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