J. Austral. Math. Soc. (Series A) 42 (1987), 247-264

SMOOTH DERIVATIONS ON ABELIAN C*-DYNAMICAL SYSTEMS

DEREK W. ROBINSON

(Received 29 April 1985; revised 5 July 1985)

Communicated by J. F. Price

Abstract

Let $(\mathbf{A}, \mathbf{R}, \sigma)$ be an abelian C^* -dynamical system. Denote the generator of σ by δ_0 and define $\mathbf{A}_{\infty} = \bigcap_{n \ge 1} D(\delta_0^n)$. Further define the Lipschitz algebra

$$\mathbf{A}_{1/2} = \left\{ f \in \mathbf{A}; \sup_{|t| > 0} \left\| \left(\sigma_t f - f \right) / t \right\| < +\infty \right\}.$$

If δ is a *-derivation from A_{∞} into $A_{1/2}$, then it follows that δ is closable, and its closure generates a strongly continuous one-parameter group of *-automorphisms of A. Related results for local dissipations are also discussed.

1980 Mathematics subject classification (Amer. Math. Soc.): 46 L 05.

1. Introduction

Let $\mathbf{A} = C_0(X)$ be an abelian C^* -algebra, let $t \in \mathbb{R} \mapsto \sigma_t$ be a strongly continuous one-parameter group of *-automorphisms of \mathbf{A} with generator δ_0 , and set $\mathbf{A}_n = D(\delta_0^n)$, $\mathbf{A}_{\infty} = \bigcap_{n \ge 1} D(\delta_0^n)$. Our aim is to continue the investigation [1], [2], [3] of the structure of *-derivations from \mathbf{A}_{∞} into \mathbf{A} . To describe the elements of this investigation, it is necessary to introduce a number of additional concepts.

First let S denote the group of homeomorphisms of X associated with σ by

$$(\sigma_t f)(\omega) = f(S_t \omega),$$

where $f \in C_0(X)$, $t \in \mathbb{R}$, and $\omega \in X$. Next define the fixed point set X_0 by $X_0 = \{ \omega \in X; S_t \omega = \omega \text{ for all } t \in \mathbb{R} \}.$

^{© 1987} Australian Mathematical Society 0263-6115/87 \$A2.00 + 0.00

Further, introduce the period p of each $\omega \in X$ by

$$p(\omega) = \inf\{t > 0; S_t \omega = \omega\},\$$

and the frequency ν by $\nu(\omega) = 1/p(\omega)$. Thus X_0 corresponds to the set of points with period zero.

Now in [1] it was established that δ is a *-derivation from A_{∞} into A if, and only if, $\delta = \lambda \delta_0$, where λ denotes multiplication by a real function which vanishes on X_0 , is continuous over $X \setminus X_0$, and is polynomially bounded in the frequency, i.e.

$$|\lambda(\omega)| \leq c (1 + \nu(\omega)^k)$$

for some c > 0 and $k \ge 0$, and for all $\omega \in X \setminus X_0$. (For an earlier partial result see [4], and for an alternative derivation of the polynomial bounds see [2].) Note that the representation $\delta = \lambda \delta_0$ implies that both $\pm \delta$ are dissipative, and in particular that δ is closable. Let $\overline{\delta}$ denote its closure.

It was also established in [1] that δ maps A_{∞} into A_n if, and only if, $\lambda \in D(\delta_0^n)$ and $\delta_0^m \lambda$ is polynomially bounded in the frequency for all $0 \le m \le n$. Note that here δ_0 is defined as the derivative at the origin of σ extended to C(X) by the definition $(\sigma_t f)(\omega) = f(S_t \omega)$.

Finally, in [3] it was proved that if σ maps A_{∞} into A_1 , then $\overline{\delta}$ is automatically the generator of a strongly continuous one-parameter group of *-automorphisms. The principal aim of this paper is to generalize and optimize this last statement. A key feature of this generalization is the Lipschitz algebra

$$\mathbf{A}_{1/2} = \left\{ f \in \mathbf{A}; \sup_{|t| \ge 0} \left\| (\sigma_t f - f) / t \right\| < +\infty \right\}.$$

It is easily established that $A_{1/2}$ is a *-algebra and that $A_1 \subseteq A_{1/2}$. In particular, $A_{1/2}$ is norm dense. Our first result, in Section 2, shows that the *-derivation δ maps A_{∞} into $A_{1/2}$ if, and only if, $\delta = \lambda \delta_0$, where λ and $(\sigma_t \lambda - \lambda)/t$ are polynomially bounded in the frequency, with the latter bound uniform in t. In Section 3 we prove that these conditions are sufficient to ensure that $\overline{\delta}$ is a generator. The proof of this result is based upon a version of the Trotter-Kato theorem on semigroup convergence which is given in an appendix. In Section 4 related results for dissipations are discussed.

2. Smooth derivations

In this section we derive a characterization of derivations from A_{∞} into $A_{1/2}$. But first note that since $||(\sigma_t f - f)/t|| \le 2||f||/|t|$, one can equally well define $A_{1/2}$ by

$$\mathbf{A}_{1/2} = \left\{ f \in \mathbf{A}; \sup_{0 < |t| \leq 1} \left\| (\sigma_t f - f) / t \right\| < +\infty \right\}.$$

In fact since

$$(\sigma_t-1)f=\sum_{m=0}^{n-1}\sigma_{mt/n}(\sigma_{t/n}-1)f,$$

one has

$$\left\| (\sigma_t - 1) f/t \right\| \leq \left\| (\sigma_{t/n} - 1) f/(t/n) \right\|,$$

and hence

$$\mathbf{A}_{1/2} = \left\{ f \in \mathbf{A}; \ \limsup_{t \to 0} \left\| (\sigma_t f - f) / t \right\| < + \infty \right\}.$$

THEOREM 2.1. Let σ be a strongly continuous one-parameter group of *-automorphisms of an abelian C*-algebra $\mathbf{A} = C_0(X)$ with generator δ_0 and associated flow S on X. Let $X_0 \subseteq X$ denote the fixed points of S and $\nu(\omega)$ the frequency of the point $\omega \in X$ under the group S. Define $\mathbf{A}_{\infty} = \bigcap_{n \ge 1} D(\delta_0^n)$ and

$$\mathbf{A}_{1/2} = \left\{ f \in \mathbf{A}; \sup_{0 < |t| \leq 1} \left\| (\sigma_t f - f) / t \right\| < +\infty \right\}.$$

If δ is a *-derivation from A_{∞} into A, then the following conditions are equivalent:

1. $\delta(\mathbf{A}_{\infty}) \subseteq \mathbf{A}_{1/2}$.

2. $\delta = \lambda \delta_0|_{A_{\infty}}$, where λ vanishes on X_0 , λ is continuous on $X \setminus X_0$, and there exist positive constants c_1 , c_2 and non-negative integers k_1 , k_2 such that

$$|\lambda(\omega)| \leq c_1 (1 + \nu(\omega)^{k_1}),$$
$$|\lambda(S_t \omega) - \lambda(\omega)| \leq c_2 (1 + \nu(\omega)^{k_2})|t|$$

for all $\omega \in X \setminus X_0$ and $t \in \mathbb{R}$.

PROOF. The proof is an elaboration of arguments given in [1].

 $2 \Rightarrow 1$. Observation 6 in Section 3 of [1] establishes that if $f \in A_{\infty}$ and k is a positive integer, then the function

$$\omega \in X \setminus X_0 \mapsto \nu(\omega)^k (\delta_0 f)(\omega)$$

vanishes at infinity on $X \setminus X_0$. Consequently, $\delta f = \lambda \delta_0 f$ is continuous on X and vanishes at infinity on $X \setminus X_0$. Thus $\delta(\mathbf{A}_{\infty}) \subseteq \mathbf{A}$. But

$$t^{-1}(\sigma_t - 1)\delta f = (\sigma_t \lambda)t^{-1}(\sigma_t - 1)\delta_0 f + (t^{-1}(\sigma_t - 1)\lambda)\delta_0 f$$
$$= (\sigma_t \lambda)t^{-1}\int_0^t ds \frac{d}{ds}\sigma_s \delta_0 f + (t^{-1}(\sigma_t - 1)\lambda)\delta_0 f,$$

and hence

$$|t^{-1}(\sigma_t\delta f - \delta f)(\omega)| \leq c_1|t|^{-1} \int_0^{|t|} ds \Big| \sigma_s \Big((1+\nu)^{k_1} \delta_0^2 f \Big)(\omega) + c_2 \Big| \Big((1+\nu)^{k_2} \delta_0 f \Big)(\omega) \Big|.$$

Consequently the above observation implies that δ maps A_{∞} into $A_{1/2}$.

 $1 \Rightarrow 2$. Since $\delta(\mathbf{A}_{\infty}) \subseteq \mathbf{A}$, it follows from [1], Theorem 1.2 that Condition 2 is verified with the possible exception of the uniform polynomial bound on $|(\lambda(S_t\omega) - \lambda(\omega))/t|$. But this bound follows from the hypothesis $\delta(\mathbf{A}_{\infty}) \subseteq \mathbf{A}_{1/2}$. We will prove this in two stages. First we prove that $\omega \mapsto (\lambda(S_t\omega) - \lambda(\omega))/t$ is uniformly bounded on sets of bounded frequencies.

Suppose $\nu(\omega) \leq N/2$. Then the map $t \in (-1/N, 1/N) \mapsto S_t \omega$ is injective. Now let $F_N \in C_c^{\infty}(-1/N, 1/N)$ be an infinitely differentiable function with compact support in (-1/N, 1/N) such that $F_N = 1$ on [-1/2N, 1/2N] and define G_N by setting $G_N(t) = tF_N(t)$. Hence $G'_N(t) = 1$ for $t \in [-1/2N, 1/2N]$. But it then follows that there exists a $g_N \in \mathbf{A}_{\infty}$, with compact support, such that $g_N(S_t\omega) =$ $G_N(t)$ for $t \in (-1/N, 1/N)$ (see, for example, the argument used in the proof of Observation 5.2 of [2]). Consequently,

$$(\sigma_t \delta g_N - \delta g_N)(\omega)/t = (\lambda(S_t \omega)G'_N(t) - \lambda(\omega)G'_N(0))/t$$
$$= (\lambda(S_t \omega) - \lambda(\omega))/t$$

for $t \in [-1/2N, 1/2N]$. Combining this with the estimate given at the beginning of the section, one concludes that

$$\sup_{0 < |t| \le 1} \frac{|(\lambda(S_t \omega) - \lambda(\omega))/t| \le \sup_{0 < |t| \le 1/2N} |(\lambda(S_t \omega) - \lambda(\omega))/t|}{\le \sup_{0 < |t| \le 1} |(\sigma_t \delta g_N - \delta g_N)/t|},$$

i.e. one has boundedness on sets of bounded frequency.

Now consider polynomial boundedness on sets of large frequency. We establish this property by adapting the argument used to prove Observation 5 in Section 3 of [1]. We argue by contradiction.

Assume there exist sequences $\omega_i \in X \setminus X_0$ and $0 < |t_i| \leq 1$ such that $(\lambda(S_{t_i}\omega_i) - \lambda(\omega_i))/t_i$ is not polynomially bounded in the frequency. One may assume that $\nu(\omega_i) \ge 1/2$ because of the boundedness property proved above. Proceeding as in Section 3 of [1], one constructs functions $f_i \in A_{\infty}$ with compact support O_i such that

$$\begin{split} \|f_i\|_j &\leq 2(2\pi\nu(\omega_i))^J, \qquad j = 1, 2, \dots, i, \\ S_{[-1,1]}\omega_i &\subseteq \mathbf{O}_i, \\ f_i(S_t\omega_i) &= \exp\{2\pi i\nu(\omega_i)t\}, \qquad t \in [-1,1], \end{split}$$

and the O_i are mutually disjoint. Then if ρ_i is any sequence in \mathbb{C} which is rapidly decreasing in the sense that

$$\lim_{i\to\infty} \nu(\omega_i)^{J} \rho_i = 0$$

for $j = 1, 2, \ldots$, it follows that

$$f = \sum_{i \ge 1} \rho_i f_i$$

converges with respect to the C_n -seminorms to an $f \in \mathbf{A}_{\infty}$, and $f = \rho_i f_i$ on \mathbf{O}_i . Hence $(\delta f)(\omega) = \rho_i(\delta f_i)(\omega)$ for all $\omega \in \mathbf{O}_i$. Consequently,

$$(\sigma_{t_i} \delta f - \delta f)(\omega_i)/t_i = \rho_i (\sigma_{t_i} \delta f_i - \delta f_i)(\omega_i)/t_i = \rho_i (\lambda(S_{t_i} \omega) e^{2\pi i \nu(\omega_i) t_i} - \lambda(\omega_i)) \nu(\omega_i) 2\pi i/t_i.$$

Since $\|(\sigma_i \delta f - \delta f)/t\|$ is bounded uniformly in t, it follows that the coefficient of ρ_i must be bounded by a polynomial in the frequencies $\nu(\omega_i)$. But

$$\begin{split} \left(\lambda(S_t\omega_i)e^{2\pi i\nu(\omega_i)t_i} - \lambda(\omega_i)\right)/t_i &= \left(\lambda(S_{t_i}\omega_i) - \lambda(\omega_i)\right)/t_i \\ &+ \lambda(S_{t_i}\omega_i)(e^{2\pi i\nu(\omega_i)t_i} - 1)/t_i, \end{split}$$

and the second term on the right hand side is bounded by a polynomial in the frequencies $\nu(\omega_i)$. Hence the first term is also polynomially bounded, which is inconsistent with the initial hypothesis. This completes the proof that

$$|(\lambda(S_t\omega) - \lambda(\omega))/t| \leq c_2(1 + \nu(\omega)^{k_2})$$

for all $\omega \in X \setminus X_0$ and $t \in \mathbb{R}$, and completes the proof of the theorem.

3. Generators

In this section we establish that the condition $\delta(A_{\infty}) \subseteq A_{1/2}$ is sufficient to ensure that $\overline{\delta}$ is a generator. The proof uses the Lipschitz criterion derived in Theorem 2.1 and semigroup convergence techniques.

The major part of the proof consists of a generator result for derivations $\delta = \lambda \delta_0$, where λ is a real continuous function over $X \setminus X_0$ which satisfies slightly more general bounds than those derived in Theorem 2.1. Note that the Lipschitz bounds automatically imply that λ is continuous along orbits, and the continuity across orbits plays practically no part in our proof. It is only used to ensure that δ is densely defined. (The domain $D(\delta)$ of $\delta = \lambda \delta_0$ is, by definition, those $f \in D(\delta_0)$ such that $\lambda \delta_0(f) \in \mathbf{A}$.)

Although the following result could be partly deduced from Theorems 2.6 and 2.10 of [3], we give an almost independent proof based on resolvent convergence arguments. But to apply this technique it is convenient to use a density result from [3] which essentially allows one to avoid high frequencies.

First, for each $N \ge 0$, introduce the closed set $X^{(N)} = \{ \omega \in X; \nu(\omega) \ge N \}$. Second define $\mathbf{A}^{(N)} \subseteq \mathbf{A}$ by

$$\mathbf{A}^{(N)} = \left\{ f \in \mathbf{A}; \, f(S_t \omega) = f(\omega) \text{ for all } t \in \mathbf{R}, \, \omega \in X^{(N)} \right\}.$$

It follows immediately that each $\mathbf{A}^{(N)}$ is a C*-subalgebra of A, and if $N \leq M$, then $\mathbf{A}^{(N)} \subseteq \mathbf{A}^{(M)}$. But one deduces from Lemma 2.7 of [3] that

$$\mathbf{A} = \overline{\bigcup_{N \ge 0} \mathbf{A}^{(N)}},$$

where the bar denotes norm closure. Finally each $A^{(N)}$ is σ -invariant, and hence one can deduce information about the system $(\mathbf{A}, \mathbb{R}, \sigma)$ by examining the subsystems $(\mathbf{A}^{(N)}, \mathbb{R}, \sigma)$.

THEOREM 3.1. Let σ be a strongly continuous one-parameter group of *-automorphisms of an abelian C*-algebra $\mathbf{A} = C_0(X)$ with generator δ_0 and associated flow S on X. Let $X_0 \subseteq X$ denote the fixed points of S and $\nu(\omega)$ the frequency of the point $\omega \in X$ under the group S. Define $\mathbf{A}_{\infty} = \bigcap_{n \ge 1} D(\delta_0^n)$.

If λ is a real continuous function over $X \setminus X_0$ satisfying

$$C_{1/2}: \begin{cases} |\lambda(\omega)| \leq K_1(\nu(\omega)), \\ |\lambda(S_t\omega) - \lambda(\omega)| \leq |t| K_2(\nu(\omega)), \quad t \in \mathbb{R}, \end{cases}$$

where $K_i: \mathbb{R}_+ \mapsto \mathbb{R}_+$ are positive non-decreasing functions, then the closure $\overline{\delta}$ of the derivation $\delta = \lambda \delta_0$ is the generator of a strongly continuous one-parameter group of *-automorphisms of A. Moreover $D(\delta) \cap A_{\infty}$ is a core of $\overline{\delta}$.

REMARK. This result differs from similar statements in [3] in two respects. First the boundedness assumption on λ is much stronger than that of Theorem 2.6 of [3] which established the existence of a unique generator extension of $\lambda \delta_0$. Second the differentiability assumption, $\lambda \in D(\delta_0)$, which was necessary in Theorem 2.12 of [3] in order to identify the unique generator extension of $\lambda \delta_0$ with its closure, is not necessary in the present context. The advantage of the present result is that it suffices for the discussion of derivations from $A_{\infty} \rightarrow A_{1/2}$, it is considerably easier to prove than the analogous results of [3], and it has potential extensions to non-abelian systems.

PROOF. Fix $N \ge 0$ and consider the dynamical system $(\mathbf{A}^{(N)}, \mathbb{R}, \sigma)$. Here $\mathbf{A}^{(N)}$ is the C*-subalgebra of A introduced before the proposition, and we identify σ with its restriction to $\mathbf{A}^{(N)}$. We also identify δ_0 and its restriction but explicitly indicate its domain $\mathbf{A}^{(N)} \cap D(\delta_0)$.

Now if $f \in \mathbf{A}^{(N)} \cap D(\delta_0)$, then $(\delta_0 f)(\omega) = 0$ whenever $\nu(\omega) \ge N$. Hence $\mathbf{A}^{(N)} \cap D(\delta_0) \subseteq \mathbf{A}^{(N)} \cap D(\delta)$, and one has

$$|(\lambda\delta_0 f)(\omega)| \leq K_1(N)|(\delta_0 f)(\omega)|,$$
$$|((\sigma_t \lambda - \lambda)\delta_0 f)(\omega)| \leq |t|K_2(N)|(\delta_0 f)(\omega)|.$$

253

Thus on the range $R(\delta_0)$ of δ_0 , restricted to $A^{(N)}$, the function λ is uniformly bounded and satisfies a uniform Lipschitz condition. Alternatively stated, one has

$$\|\lambda\|_{N} \leq K_{1}(N),$$

$$\|\sigma_{t}\lambda - \lambda\|_{N} \leq K_{2}(N)|t|,$$

where $\|\cdot\|_N$ denotes the usual operator norm calculated on the range $R(\delta_0)$ of δ_0 restricted to $\mathbf{A}^{(N)}$. This reduces the proof of the propositions on $\mathbf{A}^{(N)}$ to the case that K_1 and K_2 are uniformly bounded. We will handle this by regularizing λ and then using a convergence argument.

First, for $\alpha > 0$, define the regularization λ_{α} by

$$\lambda_{\alpha} = \frac{1}{\alpha^2} \int_0^{\alpha} ds \int_0^{\alpha} dt \, \sigma_{s+t} \lambda.$$

Then $\lambda_{\alpha} \in D(\delta_0^2)$, and

$$\delta_0\lambda_\alpha=\frac{1}{\alpha^2}\int_0^\alpha ds(\sigma_{s+\alpha}\lambda-\sigma_s\lambda).$$

Therefore,

$$\|\lambda_{\alpha}\|_{N} \leq K_{1}(N), \qquad \|\delta_{0}\lambda_{\alpha}\|_{N} \leq K_{2}(N).$$

and

$$\|\lambda_{\alpha}-\lambda\|_{N} \leq \frac{1}{\alpha^{2}} \int_{0}^{\alpha} ds \int_{0}^{\alpha} dt \|\sigma_{s+1}\lambda-\lambda\|_{N} \leq \alpha K_{2}(N).$$

In particular, $\lambda_{\alpha} \rightarrow \lambda$ uniformly on the range of δ_0 , as $\alpha \rightarrow 0$.

Second, for $\beta > 0$, define $H_{\alpha,\beta}$ on $\mathbf{A}^{(N)} \cap D(\delta_0^2)$ by

$$H_{\alpha,\beta} = \lambda_{\alpha} \delta_0 - \beta \delta_0^2$$

It follows easily that $H_{\alpha,\beta}$ is the generator of a C_0 -semigroup $\tau^{\alpha,\beta}$ of contractions on $\mathbf{A}^{(N)}$. To establish this, note that $-\delta_0^2$ is the generator of a contraction semigroup, the Gaussian semigroup associated with σ . Moreover,

$$\|\delta_0 f\| \le b \|\delta_0^2 f\| + \|f\|/b$$

for all $f \in D(\delta_0^2)$ and b > 0, by application of Taylor's theorem and the triangle inequality to the function $t \mapsto \sigma_t f$. Hence

$$\|\lambda_{\alpha}\delta_{0}f\| \leq b\beta \|\delta_{0}^{2}f\| + (K_{1}(N)^{2}/\beta b)\|f\|$$

for all $f \in D(\delta_0^2)$ and b > 0. But $H_{\alpha,\beta}$ is dissipative (see, for example, Lemma 4.1 of [3]), and hence $H_{\alpha,\beta}$ generates a C_0 -semigroup of contractions $\tau^{\alpha,\beta}$ by perturbation theory.

It follows from general semigroup theory that $||(I + \varepsilon H_{\alpha,\beta})^{-1}|| \leq 1$ for all $\varepsilon > 0$, and we use this to prove the strong convergence of $(I + \varepsilon H_{\alpha,\beta})^{-1}$ in the limit $\beta \to 0$, then $\alpha \to 0$. For this proof, note that

$$\left\{ \left(I + \varepsilon H_{\alpha,\beta_1}\right)^{-1} - \left(I + \varepsilon H_{\alpha,\beta_2}\right)^{-1} \right\} f$$

= $\varepsilon (\beta_1 - \beta_2) \left(I + \varepsilon H_{\alpha,\beta_2}\right)^{-1} \delta_0^2 \left(I + \varepsilon H_{\alpha,\beta_1}\right)^{-1} f$

254 and

$$\begin{split} \left\{ \left(I + \varepsilon H_{\alpha_1,\beta}\right)^{-1} - \left(I + \varepsilon H_{\alpha_2,\beta}\right)^{-1} \right\} f \\ &= \varepsilon \left(I + \varepsilon H_{\alpha_2,\beta}\right)^{-1} \left(\lambda_{\alpha_1} - \lambda_{\alpha_2}\right) \delta_0 \left(I + \varepsilon H_{\alpha_1,\beta}\right)^{-1} f \end{split}$$

for all $f \in \mathbf{A}^{(N)}$. Hence

$$\left\|\left\{\left(I+\varepsilon H_{\alpha,\beta_{1}}\right)^{-1}-\left(I+\varepsilon H_{\alpha,\beta_{2}}\right)^{-1}\right\}f\right\|\leq \varepsilon|\beta_{1}-\beta_{2}|\left\|\delta_{0}^{2}\left(I+\varepsilon H_{\alpha,\beta_{1}}\right)^{-1}f\right\|$$

and

$$\left\|\left\{\left(I+\varepsilon H_{\alpha_{1},\beta}\right)^{-1}-\left(I+\varepsilon H_{\alpha_{2},\beta}\right)^{-1}\right\}f\right\|\leq \varepsilon \|\lambda_{\alpha_{1}}-\lambda_{\alpha_{2}}\|_{N}\|\delta_{0}\left(I+\varepsilon H_{\alpha_{1},\beta}\right)^{-1}f\|.$$

Now since all the resolvents $(I + \varepsilon H_{\alpha,\beta})^{-1}$ are contractions, it suffices to prove the strong convergence on a dense subspace of $\mathbf{A}^{(N)}$ such as $\mathbf{A}^{(N)} \cap D(\delta_0^2)$. But it follows from the first of these estimates that one has convergence as $\beta \to 0$ if $\|\delta_0^2(I + \varepsilon H_{\alpha,\beta})^{-1}f\|$ is bounded uniformly in β for $f \in \mathbf{A}^{(N)} \cap D(\delta_0^2)$. Then it follows from the second estimate that one has convergence as $\beta \to 0$ and then $\alpha \to 0$ if, in addition, $\|\delta_0(I + \varepsilon H_{\alpha,\beta})^{-1}f\|$ is bounded uniformly in α and β for $f \in \mathbf{A}^{(N)} \cap D(\delta_0^2)$. Hence we next examine these boundedness properties.

First, if $f \in \mathbf{A}^{(N)} \cap D(\delta_0)$, then

$$\delta_0 (I + \varepsilon H_{\alpha,\beta})^{-1} f = (I + \varepsilon H_{\alpha,\beta})^{-1} \Big\{ \delta_0 f + \Big[I + \varepsilon H_{\alpha,\beta}, \delta_0 \Big] (I + \varepsilon H_{\alpha,\beta})^{-1} f \Big\}$$
$$= (I + \varepsilon H_{\alpha,\beta})^{-1} \Big\{ \delta_0 f - \varepsilon (\delta_0 \lambda_\alpha) \delta_0 (I + \varepsilon H_{\alpha,\beta})^{-1} f \Big\}.$$

Hence, setting $K_2 = K_2(N)$, we obtain

$$\left\|\delta_0 \left(I + \varepsilon H_{\alpha,\beta}\right)^{-1} f\right\| \leq \|\delta_0 f\| + \varepsilon K_2 \left\|\delta_0 \left(I + \varepsilon H_{\alpha,\beta}\right)^{-1} f\right\|,$$

and for $\varepsilon K_2 < 1$, one has the bound

$$\left\| \delta_0 \left(I + \varepsilon H_{\alpha,\beta} \right)^{-1} f \right\| \leq \| \delta_0 f \| \left(1 - \varepsilon K_2 \right)^{-1},$$

which is uniform in α and β . Similarly, if $f \in \mathbf{A}^{(N)} \cap D(\delta_0^2)$, one finds that

$$\begin{split} \left\| \delta_0^2 \big(I + \varepsilon H_{\alpha,\beta} \big)^{-1} f \, \right\| &\leq \left\| \delta_0^2 f \, \right\| + 2\varepsilon \| \delta_0 \lambda_\alpha \|_N \left\| \delta_0^2 \big(I + \varepsilon H_{\alpha,\beta} \big)^{-1} f \, \right\| \\ &+ \varepsilon \| \delta_0^2 \lambda_\alpha \|_N \left\| \delta_0 \big(I + \varepsilon H_{\alpha,\beta} \big)^{-1} f \, \right\|. \end{split}$$

Thus, if $2\varepsilon K_2 < 1$, one has the bound

$$\left\| \delta_0^2 \left(I + \varepsilon H_{\alpha,\beta} \right)^{-1} f \right\| \leq \left[\left\| \delta_0^2 f \right\| + \varepsilon \left\| \delta_0^2 \lambda_\alpha \right\|_N \left\| \delta_0 f \right\| \left(1 - \varepsilon K_2 \right)^{-1} \right] \left(1 - 2\varepsilon K_2 \right)^{-1},$$

which is uniform in β .

Therefore, if $0 < \epsilon < (2K_2)^{-1}$, we have established the existence of the strong limit

$$R_{\varepsilon} = \lim_{\alpha \to 0} \lim_{\beta \to 0} (I + \varepsilon H_{\alpha,\beta})^{-1}.$$

Next consider the convergence of $(I + \varepsilon H_{\alpha,\beta})^{-1}$ as $\varepsilon \to 0$. Given $f \in \mathbf{A}^{(N)}$ and $\kappa > 0$, one can choose $g \in \mathbf{A}^{(N)} \cap D(\delta_0^2)$ such that $||f - g|| < \kappa ||f||/2$. Hence, setting $K_1 = K_1(N)$, we have

$$\begin{split} \left\|\left\{\left(I+\varepsilon H_{\alpha,\beta}\right)^{-1}-I\right\}f\right\| &\leq \kappa \|f\|+\varepsilon \|H_{\alpha,\beta}g\| \\ &\leq \kappa \|f\|+\varepsilon \|\lambda_{\alpha}\|_{N}\|\delta_{0}g\|+\varepsilon \beta \|\delta_{0}^{2}g\| \\ &\leq \kappa \|f\|+\varepsilon K_{1}\|\delta_{0}g\|+\varepsilon \beta \|\delta_{0}^{2}g\|. \end{split}$$

Consequently,

$$\lim_{\epsilon \to 0} \sup_{0 < \alpha, \beta < 1} \left\| \left\{ \left(I + \epsilon H_{\alpha, \beta} \right)^{-1} - I \right\} f \right\| \leq \kappa \| f \|.$$

Since $\kappa > 0$ was arbitrary, this proves that $(I + \varepsilon H_{\alpha,\beta})^{-1}$ converges strongly to the identity as $\varepsilon \to 0$, uniformly in α and β .

Therefore it follows from the version of the Trotter-Kato convergence theorem given in the appendix that there exists a C_0 -contraction semigroup τ on $\mathbf{A}^{(N)}$ with generator H such that $\tau_t^{\alpha,\beta} \to \tau_t$ in the limit $\beta \to 0$, then $\alpha \to 0$, uniformly for t in finite intervals of \mathbb{R}_+ , and $(I + \varepsilon H_{\alpha,\beta})^{-1} \to (I + \varepsilon H)^{-1}$ as $\beta \to 0$ then $\alpha \to 0$, uniformly for $\varepsilon > 0$. We will argue that $H = \overline{\lambda \delta_0}|_{\mathbf{A}^{(N)} \cap D(\delta_0^2)}$.

Let $f \in D(H)$ and set $g = (I + \varepsilon H)f$. Now choose $g_{\gamma} \in \mathbf{A}^{(N)}$ such that $||g_{\gamma} - g|| \to 0$ as $\gamma \to 0$. Next set $f_{\alpha,\beta,\gamma} = (I + \varepsilon H_{\alpha,\beta})^{-1}g_{\gamma}$. Since $D(H_{\alpha,\beta}) = D(\delta_0^2)$, one has $f_{\alpha,\beta,\gamma} \in \mathbf{A}^{(N)} \cap D(\delta_0^2)$. But

$$\lim_{\gamma \to 0} \lim_{\alpha \to 0} \lim_{\beta \to 0} f_{\alpha,\beta,\gamma} = f.$$

Moreover,

$$(I + \epsilon \lambda \delta_0) f_{\alpha,\beta,\gamma} - g_{\gamma} = \left\{ \epsilon (\lambda - \lambda_{\alpha}) \delta_0 - \epsilon \beta \delta_0^2 \right\} f_{\alpha,\beta,\gamma}$$

and

$$\begin{split} \left\|\left\{\left(\lambda-\lambda_{\alpha}\right)\delta_{0}-\beta\delta_{0}^{2}\right\}f_{\alpha,\beta,\gamma}\right\| &\leq \|\lambda-\lambda_{\alpha}\|_{N}\left\|\delta_{0}\left(I+\varepsilon H_{\alpha,\beta}\right)^{-1}g_{\gamma}\right\| \\ &+\beta\left\|\delta_{0}^{2}\left(I+\varepsilon H_{\alpha,\beta}\right)^{-1}g_{\gamma}\right\|. \end{split}$$

Therefore, using the estimates derived above, one finds that

$$\lim_{\gamma\to 0} \lim_{\alpha\to 0} \lim_{\beta\to 0} (I + \epsilon\lambda\delta_0) f_{\alpha,\beta,\gamma} = g = (I + \epsilon H) f.$$

[9]

This establishes that the closure $\overline{\delta}$ of $\lambda \delta_0 |_{\mathbf{A}^{(N)} \cap D(\delta_0^2)}$ is an extension of H. But since H is a generator, it has no proper dissipative extensions, and hence $H = \overline{\delta}$.

The foregoing argument applies equally well to $-\lambda$, and consequently both $\pm \overline{\delta}$ are generators of C_0 -contraction semigroups. Hence, by a simple standard argument, $\overline{\delta}$ in fact generates a C_0 -group of isometries τ . Finally, as λ is real, δ is a *-derivation, and τ must be a group of *-automorphisms of $\mathbf{A}^{(N)}$. Next we extend τ from $\mathbf{A}^{(N)}$ to \mathbf{A} .

For each $N \ge 0$, we have constructed a group of *-automorphisms, which we now denote by $\tau^{(N)}$, of $\mathbf{A}^{(N)}$ and the generator of $\tau^{(N)}$ is $H^{(N)} = \overline{\lambda \delta_0}|_{\mathbf{A}^{(N)} \cap D(\delta_0^2)}$. But if $N \le M$, then $\mathbf{A}^{(N)} \subseteq \mathbf{A}^{(M)}$, and $\tau^{(N)} \subseteq \tau^{(M)}$ because $H^{(N)} \subseteq H^{(M)}$. Thus, defining τ on $\bigcup_{N \ge 0} \mathbf{A}^{(N)}$ by setting $\tau = \tau^{(N)}$ on $\mathbf{A}^{(N)}$, one can then extend τ to a C_0 -group of *-automorphisms of \mathbf{A} by continuity, because

$$\mathbf{A} = \overline{\bigcup_{N \ge 0} \mathbf{A}^{(N)}} \,.$$

The generator H of τ is by construction a closed extension of $\lambda \delta_0$ restricted to $\mathbf{D} = \bigcup_{N \ge 0} \mathbf{A}^{(N)} \cap D(\delta_0^2)$, but in fact $H = \overline{\lambda \delta_0}|_{\mathbf{D}}$. To prove this, let $f \in D(H)$ and set $g = (1 + \varepsilon H)f$. By density there exists a sequence $g_N \in \mathbf{A}^{(N)}$ such that $||g_N - g|| \to 0$, and, since $H^{(N)} = H|_{\mathbf{A}^{(N)}}$ is a generator, there exists a sequence $f_N \in D(H^{(N)})$ such that $g_N = (1 + \varepsilon H^{(N)})f_N = (1 + \varepsilon H)f_N$. Then it follows that $f_N = (1 + \varepsilon H)^{-1}g_N \to f$. But as $\mathbf{A}^{(N)} \cap D(\delta_0^2)$ is a core of $H^{(N)}$, one concludes that $\bigcup_{N \ge 0} \mathbf{A}^{(N)} \cap D(\delta_0^2)$ is a core of H.

Finally, if $f \in \mathbf{A}^{(N)} \cap D(\delta_0^2)$, and if $h \in C_0(\mathbb{R})$ is a positive, infinitely differentiable function with support in [-1, 1] and total integral one, then, defining

$$f_n = n \int dt h(nt) \sigma_t f$$
$$= \int dt h(t) \sigma_{t/n} f,$$

one has $f_n \in \mathbf{A}_{\infty}^{(N)} = \mathbf{A}^{(N)} \cap \mathbf{A}_{\infty}$. But $f_n \to f$ and $\delta_0 f_n \to \delta_0 f$ by strong continuity of σ . Moreover, λ is bounded on the range of δ_0 restricted to $\mathbf{A}^{(N)}$, so $\delta f_n = \lambda \delta_0 f_n \to \lambda \delta_0 f = \delta f$. Therefore $\bigcup_{N \ge 0} \mathbf{A}_{\infty}^{(N)}$ is a core of H.

Combining Theorems 2.1 and 3.1, one obtains the result stated in the abstract.

COROLLARY 3.2. Let σ be a strongly continuous one-parameter group of *-automorphisms of an abelian C*-algebra A with generator δ_0 . Define $A_{\infty} = \bigcap_{n \ge 1} D(\delta_0^n)$ and

$$\mathbf{A}_{1/2} = \left\{ f \in \mathbf{A}; \ \sup_{0 < |t| \le 1} \| (\sigma_t f - f) / t \| < +\infty \right\}.$$

If δ is a *-derivation from \mathbf{A}_{∞} into $\mathbf{A}_{1/2}$, then δ is closable, and its closure $\overline{\delta}$ is the generator of a strongly continuous one-parameter group of *-automorphisms of \mathbf{A} .

PROOF. It follows from Theorem 2.1 that $\delta = \lambda \delta_0$, where λ satisfies the condition $C_{1/2}$ of Theorem 3.1 with K_1 and K_2 polynomials, thereby ensuring that $\mathbf{A}_{\infty} \subseteq D(\delta)$. The corollary is then a direct consequence of Theorem 3.1.

4. Local dissipations

An operator $H: \mathbf{A}_{\infty} \to \mathbf{A}$ is defined to be *local* if $\operatorname{supp}(Hf) \subseteq \operatorname{supp}(f)$ for all $f \in \mathbf{A}_{\infty}$, and to be a *dissipation* if

$$H(\tilde{f}f) \leq H(\tilde{f})f + \tilde{f}H(f)$$

for all $f \in A_{\infty}$. In [1] it was demonstrated that H is a local dissipation if, and only if, it has the form

$$Hf = \lambda_0 f + \lambda_1 \delta_0 f - \lambda_2 \delta_0^2 f, \qquad f \in \mathbf{A}_{\infty},$$

where λ_0 is bounded and continuous on X, where λ_1 , λ_2 vanish on X_0 and are polynomially bounded and continuous on $X \setminus X_0$, and where λ_0 , $\lambda_2 \ge 0$. Moreover, if H maps \mathbf{A}_{∞} into \mathbf{A}_n , then the $\lambda_i \in \mathbf{A}_n$, $\delta_0^{\prime} \lambda_0$ is bounded, and $\delta_0^{\prime} \lambda_1$, $\delta_0^{\prime} \lambda_2$ are polynomially bounded, for $j \le n$.

In [3] it was conjectured, in analogy with results for derivations, that if H: $A_{\infty} \rightarrow A_2$ is a local dissipation, then its closure generates a C_0 -semigroup of positive contractions. This conjecture was verified in the special case that λ_1 is bounded by $\lambda_2^{1/2}$. The general conjecture is, however, false, as we next demonstrate with a specific example. Subsequently we extend the positive results on dissipations obtained in [3] to local dissipations H: $A_{\infty} \rightarrow A_{3/2}$, where $A_{3/2}$ is defined by

$$\mathbf{A}_{3/2} = \left\{ f \in \mathbf{A}_1; \, \delta_0 f \in \mathbf{A}_{1/2} \right\}.$$

Then we discuss some other possible characterizations of $A_{3/2}$.

First consider the example $\mathbf{A} = C_0(\mathbb{R})$ and σ the group of translations. (I am indebted to Charles Batty for help in constructing this example.) Thus $\delta_0 = d/dx$ and $\mathbf{A}_{\infty} = C_0^{\infty}(\mathbb{R})$. Now let $C_0^{\infty}(\mathbb{R})$ denote the infinitely differentiable functions with compact support and $H: C_c^{\infty}(\mathbb{R}) \to C_0(\mathbb{R})$ the operator defined by

$$H = -x^2 \frac{d^2}{dx^2} - (1 - x^2) \frac{d}{dx}.$$

Then H is a dissipation, but if g is defined by

$$g(x) = x^{-2} \exp\{-x^{-1}\}, \quad x > 0,$$

= 0, $x \le 0,$

one readily computes that

$$\int dx g(x)((1+H)f)(x) = 0$$

[12]

for all $f \in C_c^{\infty}(\mathbb{R})$. Thus the closure of H is definitely not the generator of a contraction semigroup on $C_0(\mathbb{R})$.

This example is almost a counterexample to the conjecture in [3]. It fails only because the coefficients of H are unbounded at infinity, and hence H is not defined on all of A_{∞} . One can, however, convert this example into a genuine counterexample on $C(\mathbb{T})$ by the change of variable $x \in \mathbb{R} \mapsto y \in \mathbb{T}$, where $y = \operatorname{Tan}^{-1} x$. One then obtains the more complicated expression

$$H = (1/4) \left(-\sin^2 2y \frac{d^2}{dy^2} + 2(\sin 2y(1 - \cos 2y) - 2\cos 2y) \frac{d}{dy} \right),$$

which has bounded continuous coefficients and can be defined on all of $C^{\infty}(\mathbb{T})$. But by the above calculation $\overline{R(1+H)} \neq C(\mathbb{T})$, and hence \overline{H} is not a generator.

Next we turn to the examination of local dissipations $H: \mathbf{A}_{\infty} \to \mathbf{A}_{3/2}$, and we begin by remarking that, by an extension of the proof of Theorem 2.1, one can establish that the coefficients λ_0 , λ_1 , $\lambda_2 \in D(\delta_0)$ satisfy the condition

$$C_{3/2}: \begin{cases} |\lambda(\omega)| \leq L_1(\nu(\omega)) \\ |(\delta_0\lambda)(\omega)| \leq L_2(\nu(\omega)) \\ |(\delta_0\lambda)(S_t\omega) - (\delta_0\lambda)(\omega)| \leq |t|L_3(\nu(\omega)) \end{cases}$$

where the L_i are polynomials. Hence the basic problem is to show that the closure of $H = \lambda_1 \delta_0 - \lambda_2 \delta_0^2$ on A_{∞} , where $\lambda_2 \ge 0$, and where λ_1 , λ_2 satisfy $C_{3/2}$ on $X \setminus X_0$, is a generator. (The term λ_0 causes no problems, since it is positive and bounded, and H is closable because it is automatically dissipative [3].)

Now the closure of $\lambda_1 \delta_0$ generates a group of *-automorphisms by Theorem 3.1, or Theorem 3.1 of [3], and we next argue that the closure of $-\lambda_2 \delta_0^2$ generates a positive contraction semigroup. Then if λ_1 is bounded by $\lambda_2^{1/2}$, the generator result follows for the sum $H = \lambda_1 \delta_0 - \lambda_2 \delta_0^2$ by perturbation theory.

PROPOSITION 4.1. Let $(\mathbf{A}, \mathbf{R}, \sigma)$ be an abelian C*-dynamical system. Denote the generator of σ by σ_0 and set $\mathbf{A}_{\infty} = \bigcap_{n \ge 1} D(\delta_0^n)$.

If λ is a non-negative continuous function over the spectrum X of A which satisfies condition $C_{3/2}$ above, then the closure \overline{H} of $H = -\lambda \delta_0^2$ generates a positive C_0 -contraction semigroup. Moreover, $\mathbf{A}_{\infty} \cap D(H)$ is a core of \overline{H} .

REMARKS. 1. For this result it suffices that the functions L_i which occur in Condition $C_{3/2}$ are positive, and finite-valued. If the L_i are polynomials, then $A_{\infty} \subseteq D(H)$; and hence A_{∞} is a core of \overline{H} .

2. It follows from the first part of the proof that, since λ is non-negative, the bound on $\delta_0 \lambda$ in Condition $C_{3/2}$ follows from the other two bounds, and in fact one can assume that $L_2^2 \leq 2L_1L_3$.

[13]

PROOF. The key to the proof is the observation that

$$0 \leq \sigma_t \lambda = \lambda + t(\delta_0 \lambda) + \int_0^t ds(\sigma_s - 1)(\delta_0 \lambda).$$

Therefore

$$0 \leq \lambda(\omega) + t(\delta_0\lambda)(\omega) + (t^2/2)L_3(\nu(\omega))$$

for all $t \in \mathbb{R}$, and hence

$$|(\delta_0\lambda)(\omega)|^2 \leq 2\lambda(\omega)L_3(\nu(\omega)).$$

But this implies that $\lambda^{1/2} \in D(\delta_0)$, and so

$$\left|\left(\delta_0\lambda^{1/2}\right)(\omega)\right|^2 = \left|\left(\delta_0\lambda\right)(\omega)\right|^2/2\lambda(\omega) \leq L_3(\nu(\omega))/2.$$

Hence by Theorem 3.1 of [3], or Theorem 3.1 in the previous section, the closure $\bar{\delta}$ of $\delta = \lambda^{1/2} \delta_0$ generates a C_0 -group of *-automorphisms τ of A. Consequently, $-\bar{\delta}^2$ generates a positive C_0 -contraction semigroup ρ , the convolution semigroup associated with τ , defined by

$$\rho_t f = \left(\pi t\right)^{-1/2} \int_{-\infty}^{\infty} ds \, e^{-s^2/t} \tau_s f.$$

Next let $\mathbf{A}^{(N)}$ denote the C^* -subalgebra of \mathbf{A} spanned by those $f \in \mathbf{A}$ which satisfy $f(S_t\omega) = f(\omega)$ for all $t \in \mathbb{R}$ and all ω in the closed set $X^{(N)} = \{\omega: \nu(\omega) \ge N\}$. The groups σ and τ leave each $\mathbf{A}^{(N)}$ invariant, and hence ρ also leaves the $\mathbf{A}^{(N)}$ invariant. Next, following [3], we observe that

$$H = -\lambda \delta_0^2 = -(\lambda^{1/2} \delta_0)^2 + (\delta_0 \lambda^{1/2}) (\lambda^{1/2} \delta_0),$$

and if $f \in \mathbf{A}^{(N)} \cap D((\lambda^{1/2}\delta_0)^2)$, then

$$\| (\delta_0 \lambda^{1/2}) \lambda^{1/2} \delta_0 f \| \leq L_3(N)^{1/2} \| \lambda^{1/2} \delta_0 f \| / 2^{1/2}$$

$$\leq b \| (\lambda^{1/2} \delta_0)^2 f \| + (L_3(N)/2) \| f \| / b$$

for all b > 0. Now *H* is dissipative, and hence \overline{H} generates a C_0 -semigroup κ of contractions by perturbation theory. Since *H* is a dissipation, κ is also positive by [3], Proposition 4.3. Now κ is defined on each $A^{(N)}$ consistently, i.e. if $N \leq M$, then the restriction of κ from $A^{(M)}$ to $A^{(N)}$ agrees with the direct definition of κ on $A^{(N)}$. Finally, $A = \bigcup_{N \ge 1} A^{(N)}$, and hence κ extends to a positive C_0 -contraction semigroup on A by continuity.

The core property follows by the same arguments used to derive the analogous property in Theorem 3.1.

We conclude with some comments on the definition of $A_{3/2}$. There are various alternatives to the choice that we have used. But the following propositions show that the obvious ones coincide, even for non-abelian A.

260

PROPOSITION 4.2. Let $(\mathbf{A}, \mathbf{R}, \sigma)$ be a C*-dynamical system and let δ denote the generator of σ . Then, for each $A \in \mathbf{A}$, the following conditions are equivalent:

1. $\sup_{|t|>0} ||(\sigma_t - 1)^2 A / t^2|| < +\infty$,

2. $\sup_{|t|>0} \sup_{|s|>0} ||(\sigma_t - 1)(\sigma_s - 1)A/ts|| < +\infty$,

3. $A \in D(\delta)$ and $\sup_{|t|>0} ||(\sigma_t - 1)\delta(A)/t|| < +\infty$.

Moreover, if these conditions are satisfied, then the three suprema are equal.

PROOF. $3 \Rightarrow 2$. This follows from the triangle inequality once one observes that

$$\frac{(\sigma_s-1)A}{s}=-\frac{1}{2}\int_0^s dr\,\sigma_r\delta(A).$$

 $2 \Rightarrow 1$. This is obvious.

 $1 \Rightarrow 3$. First we prove that $A \in D(\delta)$. Set

$$a = \sup_{|t|>0} \| (\sigma_t - 1)^2 A / t^2 \|.$$

Then note that

$$\left(\frac{\sigma_{t}-1}{t}-\frac{\sigma_{t/2}-1}{t/2}\right)A = \frac{(\sigma_{t/2}-1)}{t/2}\left(\frac{(\sigma_{t/2}+1)}{2}-1\right)A$$
$$= \frac{(\sigma_{t/2}-1)^{2}}{t/2}A/2.$$

Replacing t by $t_m = t/2^m$ and summing from m = 0 to m = n - 1, one finds that

$$\left(\frac{(\sigma_t-1)}{t}-\frac{(\sigma_{t_n}-1)}{t_n}\right)A = \sum_{m=0}^n \frac{(\sigma_{t_{m+1}}-1)^2}{t_{m+1}}A/2.$$

Therefore

(*)
$$\left\| \left(\frac{(\sigma_{t} - 1)}{t} - \frac{(\sigma_{t_{n}} - 1)}{t_{n}} \right) A \right\| \leq (a/2) \sum_{m=0}^{\infty} |t_{m+1}|$$
$$\leq (a/2) |t| \sum_{m \geq 0} \frac{1}{2^{m+1}}$$
$$= (a/2) |t|.$$

Consequently, for all $m, n \ge 0$, one has

$$\left\|\left(\frac{(\sigma_{t_n}-1)}{t_n}-\frac{(\sigma_{t_m}-1)}{t_m}\right)A\right\| \leq a|t|,$$

and, replacing t by t_p , one concludes that

$$\left\| \left(\frac{(\sigma_{t_n} - 1)}{t_n} - \frac{(\sigma_{t_m} - 1)}{t_m} \right) A \right\| \leq a |t| / 2^p$$

for all $m, n \ge p$. This proves that

$$\lim_{n\to\infty}\frac{(\sigma_{t_n}-1)}{t_n}A=A_t$$

exists, but in principle it could depend upon t. Nevertheless,

$$\frac{(\sigma_{s_n+t_n}-1)}{s_n+t_n}A = \frac{t_n}{s_n+t_n}\sigma_{s_n}\frac{(\sigma_{t_n}-1)}{t_n}A + \frac{s_n}{s_n+t_n}\frac{(\sigma_{s_n}-1)}{s_n}A,$$

and hence

$$(s+t)A_{s+t} = sA_s + tA_t,$$

i.e. the function $t \in \mathbb{R} \mapsto tA_t \in A$ is additive. But (*) implies that

 $||tA_t|| \leq 2||A|| + (a/2)t^2$,

and consequently, by classical reasoning, the function $t \in \mathbb{R} \mapsto tA_t \in A$ must be linear, i.e. $A_t = A_1$ is independent of t. Now referring to (*) once again, one sees that

$$\lim_{t\to 0} \|(\sigma_t - 1)A/t - A_1\| = 0,$$

i.e. $A \in D(\delta)$ and $\delta(A) = A_1$.

Finally, using the foregoing identification and the estimate (*), one has

 $\left\| (\sigma_t - 1)^2 A/t^2 - (\sigma_t - 1)\delta(A)/t \right\| \leq a.$

Hence the supremum in Condition 3 is finite. This establishes that $1 \Rightarrow 3$.

Now consider the last statement of the proposition. Let a_1 , a_2 , a_3 denote the values of the suprema occurring in Conditions 1, 2, and 3 respectively. Then by elementary reasoning $a_1 \le a_2 \le a_3$. But using $(\sigma_t - 1) = (\sigma_{t/2} - 1)(\sigma_{t/2} + 1)$, one deduces that

$$\left\| (\boldsymbol{\sigma}_{t}-1)^{2} \boldsymbol{A}/t^{2} \right\| \leq \left\| (\boldsymbol{\sigma}_{t}-1) (\boldsymbol{\sigma}_{t_{n}}-1) \boldsymbol{A}/tt_{n} \right\|$$
$$\leq \left\| (\boldsymbol{\sigma}_{t_{n}}-1)^{2} \boldsymbol{A}/t_{n}^{2} \right\| \leq a_{1},$$

where we have once again used the notation $t_n = t/2^n$. Therefore, taking the limit as $n \to \infty$, one finds that

$$\left\| \left(\sigma_t - 1\right)^2 A / t^2 \right\| \leq \left\| \left(\sigma_t - 1\right) \delta(A) / t \right\| \leq a_1.$$

Finally, taking the supremum over t gives $a_1 \leq a_3 \leq a_1$, and hence $a_1 = a_2 = a_3$.

Appendix-semigroup convergence

In Section 3 we make several applications of a version of the Trotter-Kato theorem on semigroup convergence. The resolvent formulation of this result is given in [5, Chapter IV], but it can also be stated in terms of the semigroup. The complete result, for contraction semigroups, is summarized in the following proposition.

PROPOSITION. Let S^{α} be a net of C_0 -contraction semigroups on a Banach space **B** and denote the generator of S^{α} by H_{α} . The following conditions are equivalent.

1. The strong limit of S_t^{α} exists for all small t > 0, and for each $a \in \mathbf{B}$,

$$\lim_{t\to 0+} \left\| \left(S_t^{\alpha} - I \right) a \right\| = 0$$

uniformly in α .

2. The strong limit of $(I + \varepsilon H_{\alpha})^{-1}$ exists for all small $\varepsilon > 0$, and for each $a \in \mathbf{B}$,

$$\lim_{\varepsilon \to 0^+} \left\| \left(\left(I + \varepsilon H_{\alpha} \right)^{-1} - I \right) a \right\| = 0$$

uniformly in α .

Moreover, these conditions imply that there exists a C_0 -contraction semigroup S, with generator H, such that $S_t^{\alpha} \to S_t$ uniformly for t in any finite interval of \mathbb{R}_+ , and such that $(I + \varepsilon H_{\alpha})^{-1} \to (I + \varepsilon H)^{-1}$ uniformly for $\varepsilon > 0$.

PROOF. Assume that Condition 1 holds and let S_t denote the strong limit of S_t^{α} . Since $||S_t^{\alpha}|| \leq 1$ for all $t \geq 0$, it readily follows that the strong limit exists for all $t \geq 0$ and that $S_s S_t = S_{s+t}$ for all $s, t \geq 0$. But $S_0 = I$, and one automatically has $||S_t|| \leq 1$. Therefore, to conclude that S is a C_0 -contraction semigroup, it remains to prove continuity at the origin. But given $a \in \mathbf{B}$ and $\varepsilon > 0$, one can choose t_0 such that

$$\left\| \left(S_t^{\alpha} - I \right) a \right\| < \varepsilon/2$$

for all $0 \le t \le t_0$, uniformly in α . Then for $0 < t \le t_0$ fixed, one can choose α_0 such that

 $\|(S_t^{\alpha}-S_t)a\|<\varepsilon/2$

for $\alpha > \alpha_0$. Therefore, by the triangle inequality,

$$\|(S_t-I)a\|<\varepsilon,$$

and this is valid for any $0 \le t \le t_0$.

Now since S^{α} converges to the C_0 -contraction semigroup S, it follows from the usual Trotter-Kato theorem (see, for example, [7], Theorem 3.1.26) that $(I + \varepsilon H_{\alpha})^{-1}$ converges strongly to $(I + \varepsilon H)^{-1}$, where H is the generator of S, and the convergence is uniform in ε . But

$$\left[\left(I+\varepsilon H_{\alpha}\right)^{-1}-I\right]a=\int_{0}^{\infty}dt\,e^{-t}\left(S_{\varepsilon t}^{\alpha}-I\right)a,$$

and hence, for any M > 0, one estimates that

$$\left\|\left[\left(I+\varepsilon H_{\alpha}\right)^{-1}-I\right]a\right\| \leq 2e^{-M}\|a\|+\sup_{|t|<\varepsilon M}\left\|\left(S_{t}^{\alpha}-I\right)a\right\|.$$

It follows immediately that $(I + \varepsilon H_{\alpha})^{-1} \to I$ as $\varepsilon \to 0$ uniformly in α .

263

This establishes that Condition 2, and also the last statement of the proposition, follow from Condition 1.

Next assume that Condition 2 holds. Then the existence of S and H and the identification

$$(I + \varepsilon H)^{-1} = \lim_{\alpha} (I + \varepsilon H_{\alpha})^{-1}$$

follow from [5, Chapter IX, Theorem 2.17]. The proof can be summarized as follows.

Let R_{ε} denote the strong limit of $(I + \varepsilon H_{\alpha})^{-1}$. Since $||(I + \varepsilon H_{\alpha})^{-1}|| \le 1$, and since the resolvent relation

$$\varepsilon_1 (I + \varepsilon_1 H_{\alpha})^{-1} - \varepsilon_2 (I + \varepsilon_2 H_{\alpha})^{-1} = (\varepsilon_1 - \varepsilon_2) (I + \varepsilon_1 H_{\alpha})^{-1} (I + \varepsilon_2 H_{\alpha})^{-1}$$

is valid, it follows that

$$\|R_{\epsilon}\| \leq 1$$

and that

$$\epsilon_1 R_{\epsilon_1} - \epsilon_2 R_{\epsilon_2} = (\epsilon_1 - \epsilon_2) R_{\epsilon_1} R_{\epsilon_2}$$

But given $a \in \mathbf{B}$ and $\kappa > 0$, one can choose $\varepsilon_0 \ge 0$ such that

 $\left\|\left(\left(I+\varepsilon H_{\alpha}\right)^{-1}-I\right)a\right\|<\kappa/2$

for $0 < \varepsilon \leq \varepsilon_0$ uniformly in α . Then, for $0 < \varepsilon \leq \varepsilon_0$ fixed, one can choose α_0 such that

$$\left\|\left(\left(I+\varepsilon H_{\alpha}\right)^{-1}-R_{\varepsilon}\right)a\right\|<\kappa/2$$

for $\alpha > \alpha_0$. Hence, by the triangle inequality,

$$\|(R_{\varepsilon}-I)a\|<\kappa,$$

and this is valid for any $0 \le \epsilon \le \epsilon_0$. Consequently,

$$\lim_{\epsilon \to 0} R_{\epsilon} = I$$

It immediately follows that $R_{\epsilon} = (I + \epsilon H)^{-1}$, where H is the generator of a C_0 -contraction semigroup S. Then $S^{\alpha} \to S$ by the usual Trotter-Kato convergence theorem, and this implies the last statement of the proposition.

It remains to prove that $S_t^{\alpha} \to I$ as $t \to 0$ uniformly in α . Now given $a \in \mathbf{B}$, set $a_{\alpha} = (I + \kappa H_{\alpha})a^{-2}$. Then $a_{\alpha} \in D(H_{\alpha}^2)$,

$$a_{\alpha}-a=\big((I+\kappa H_{\alpha})^{-1}+I\big)\big((I+\kappa H_{\alpha})^{-1}-I\big)a,$$

and

$$H_{\alpha}^{2}a_{\alpha}=\frac{1}{\kappa^{2}}\left(\left(I+\kappa H_{\alpha}\right)^{-1}-I\right)^{2}a.$$

In particular, $||a_{\alpha} - a|| \leq 2||((I + \kappa H_{\alpha})^{-1} - I)a||$, and $||H_{\alpha}^2 a_{\alpha}|| \leq 4||a||/\kappa^2$. But by a standard estimate (see, for example, [5, Chapter IX, Section 1.2]), we have

$$\left\|\left(S_t^{\alpha}-\left(I+\frac{t}{n}H_{\alpha}\right)^{-n}\right)a_{\alpha}\right\| \leq \frac{t^2}{2n}\left\|H_{\alpha}^2a_{\alpha}\right\| \leq 2t^2\|a\|/n\kappa^2.$$

Therefore

$$\|(S_t^{\alpha} - I)a\| \leq \left\| \left(\left(I + \frac{t}{n}H_{\alpha}\right)^{-n} - I\right)a \right\| + \left\| \left(S_t^{\alpha} - \left(I + \frac{t}{n}H_{\alpha}\right)^{-n}\right)a_{\alpha} \right\| + 2\|a - a_{\alpha}\| \\ \leq n \left\| \left(\left(I + \frac{t}{n}H_{\alpha}\right)^{-1} - I\right)a \right\| + 2t^2\|a\|/n\kappa^2 \\ + 4 \| \left(\left(I + \kappa H_{\alpha}\right)^{-1} - I\right)a \|.$$

Hence, by first choosing κ and then t, one deduces that $S_t^{\alpha} \to I$ uniformly in α as $t \to 0$. This completes the proof.

References

- O. Bratteli, G. E. Elliott, and D. W. Robinson, 'The characterizations of differential operators by locality; classical flows', *Comp. Math.* 58 (1986), 279-319.
- [2] C. J. K. Batty and D. W. Robinson, 'The characterization of differential operators by locality; abstract derivations', Erg. Theor. Dyn. Syst. 5 (1985), 171-183.
- [3] O. Bratteli, T. Digernes, F. Goodman, and D. W. Robinson, 'Integration in abelian C*-dynamical systems', Publ. R. I. M.S. Kyoto Univ. 21 (1985), 1001-1030.
- [4] C. J. K. Batty, 'Derivations on compact spaces', Proc. London Math. Soc. (3) 42 (1981), 299-330.
- [5] T. Kato, Perturbation theory for linear operators (Springer-Verlag, 1966).
- [6] C. J. K. Batty, 'Delays to flows on the real line' (Edinburgh preprint, (1980), unpublished).
- [7] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics, Vol. I. (Springer-Verlag, 1979).

Department of Mathematics, Institute of Advanced Studies Australian National University Canberra Australia

264