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Abstract In this paper we determine the group of endotrivial modules for certain symmetric and
alternating groups in characteristic p. If p = 2, then the group is generated by the class of Ωn(k) except
in a few low degrees. If p > 2, then the group is only determined for degrees less than p2. In these cases
we show that there are several Young modules which are endotrivial.
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1. Introduction

Endotrivial modules play an important role in the modular representation theory of
finite groups. They are the building blocks of the endo-permutation modules and are an
essential part of the Picard group of self equivalences of the stable category of kG-modules
in the case when G is a finite group and k is a field of characteristic p. A few years ago,
Carlson and Thévenaz completed a program to classify the endotrivial kG-modules over
p-groups [9]. Building on this result, Bouc [7] has completed a similar program to classify
the endo-permutation modules over p-groups.

More recently, using the classification for p-groups, the authors of this paper started
a project to classify the endotrivial modules over families of finite simple groups and
related groups (see [10]). For a finite group of Lie type in the defining characteristic, we
have found the structure of the group of endotrivial modules and explicit generators for
the group in many cases. The group of endotrivial modules is cyclic, generated by the
class of the syzygy module Ω(k), except in the cases in which the group has Lie rank 1,
or that the Lie rank is 2 and the field of definition of the group is small.

The natural next case, which we introduce with this paper, is the groups of endotrivial
modules for the symmetric and alternating groups. In spite of the advanced nature of
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the representation theory of symmetric groups, determining the torsion in the endotrivial
group is considerably more difficult than the case for groups of Lie type. To this point,
we have obtained only partial results. In particular, we give complete classifications with
generators for the symmetric and the alternating groups, Σn and An, on n letters, in the
cases when p = 2, or p > 2 and n < p2.

Let k be a field of characteristic p which is a splitting field for a given finite group G

and all its subgroups, and let T (G) denote the group of endotrivial kG-modules. In this
paper we prove the following.

Theorem 1.1. Let Σn be the symmetric group on n letters.

(a) If p = 2, then

T (Σn) ∼=

⎧⎪⎨
⎪⎩

{0} if n � 3,

Z2 if n = 4, 5,

Z if n � 6.

(b) If p � 3 and 1 � n < 2p, then

T (Σn) ∼=

⎧⎪⎨
⎪⎩

{0} if n < p,

Z/2(p − 1)Z if n = p, p + 1,

Z/2(p − 1)Z ⊕ (Z/2Z) if p + 2 � n < 2p.

(c) If p � 3 and 2p � n < p2, then

T (Σn) ∼=
{

Z ⊕ (Z/2Z)2 if 2p � n < 3p,

Z ⊕ (Z/2Z) if 3p � n < p2.

(d) If p � 3 and p2 � n, then

the torsion-free rank of T (Σn) is

{
2 if p2 � n < p2 + p,

1 if p2 + p � n.

Theorem 1.2. Let An be the alternating group on n letters.

(a) If p = 2, then

T (An) ∼=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{0} if n � 3,

Z ⊕ (Z/3Z) if n = 4, 5,

Z2 if n = 6, 7,

Z if n � 8.

(b) If p � 3 and 1 � n < 2p, then

T (An) ∼=

⎧⎪⎨
⎪⎩

{0} if n < p,

Z/(p − 1)Z ⊕ (Z/2Z) if n = p, p + 1,

Z/2(p − 1)Z if p + 2 � n < 2p.
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(c) If p � 3 and 2p � n < p2, then

T (An) ∼=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Z ⊕ (Z/4Z) if p = 3 and n = 6, 7,

Z ⊕ (Z/2Z)2 if p > 3 and n = 2p, 2p + 1,

Z ⊕ (Z/2Z) if 2p + 2 � n < 3p,

Z if 3p � n < p2.

(d) If p � 3 and p2 � n, then

the torsion-free rank of T (An) is

{
2 if p2 � n < p2 + p,

1 if p2 + p � n.

In the case when p = 2, the problem is reasonably straightforward because the Sylow
2-subgroups are self-normalizing except in a couple of well-known cases. These results
are found in § 4. A surprise in the odd characteristic case for the symmetric groups is
that there are several Young modules which are endotrivial.

We strongly suspect that, for p > 2 and n � p2, the groups T (Σn) and T (An) have no
torsion beyond that coming from the sign representation. The torsion-free ranks of these
groups are known from general principles that give us the results stated above. That
is, the torsion-free rank of T (G) depends only on the number of G-conjugacy classes of
maximal elementary abelian p-subgroups of order p2. However, we do not know (yet)
how to determine generators for the torsion-free part of T (G) unless this rank is 1, or
if p = 2 and the Sylow 2-subgroups are dihedral. For our purposes, this concerns the
groups T (Σn) and T (An) for p � 3 and p2 � n < p2 + p. In addition, finding the torsion
elements of T (Σn) and T (An) for p � 3 and p2 � n has not been completed at the time
of writing. We plan to investigate these issues in future work.∗

Several of our calculations for small groups relied on the algebra software Magma

(cf. [6]). The computations turned out to be very effective in revealing to us that there
are non-trivial endotrivial modules whose class is a torsion element in the group of
endotrivial modules. This led us to understand and prove the underlying theoretical
facts.

2. Setting

Throughout the paper, let G be a finite group, usually the symmetric group Σn or the
alternating group An acting on the set {1, . . . , n}, for some n, and let k be a field of
characteristic p which is a splitting field for G and all of its subgroups. For this, it is
sufficient that k contains all mth roots of unity, where m is the order of G. When defining
subgroups of the symmetric or alternating groups we assume the natural ordering on the
letters unless otherwise indicated. For example, we write H = Σa × Σb ⊆ Σn to mean
the subgroup where Σa is the collection of all permutations on {1, . . . , a} and Σb is the
set of all permutations in Σn on {a + 1, . . . , a + b} (a + b � n).

∗ Note added in proof: these problems have now been solved. Proofs will appear in [11].
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For two subgroups H and K of G let [G/H] denote a complete set of representatives
for the left H-cosets in G and let [H \ G/K] be a complete set of representatives for the
H–K double cosets in G. Normally, we assume that the identity element 1 of G is one of
the representatives, so that [G/H]\{1} means a set of representatives of the nonidentity
cosets.

We consider only finitely generated left modules over group algebras. If M is a kG-
module, we write ResG

H M , or M ↓G
H , for the restriction of M to kH where H is a subgroup

of G. If N is another kG-module, we denote by Homk(M, N) the kG-module of all k-
linear maps M −→ N . We let Endk M = Homk(M, M) denote the k-endomorphism ring
of M . The k-dual of M is M∗ = Homk(M, k), where k also denotes the trivial kG-module.
Let M ⊗ N be the tensor product of two modules M and N over the base field k with
diagonal action of the group G. We write M | N to mean that the module M is a direct
summand of N .

For M a kG-module, we denote the kernel of the projective cover P −→ M by Ω(M)
and the cokernel of the injective hull M −→ Q by Ω−1(M). Inductively, for any n > 1,
we define Ωn(M) = Ω(Ωn−1(M)) and Ω−n(M) = Ω−1(Ω1−n(M)). The combinatorics
are that (Ωn(M))∗ ∼= Ω−n(M∗) and that, for any module N , there exists a projective
module P such that Ωn(M) ⊗ N ∼= Ωn(M ⊗ N) ⊕ P .

We write mod(kG) for the category of all finitely generated kG-modules and stmod(kG)
for the stable module category, namely the quotient of mod(kG) by the subcategory of
projective modules. That is, the stable category has the same objects as mod(kG). For
two finitely generated kG-modules M and N , the morphisms from M to N in the stable
category are given by

HomkG(M, N) = HomkG(M, N)/ PHomkG(M, N),

where PHomkG(M, N) is the subspace of homomorphisms that factor through a projec-
tive module.

Definition 2.1. A kG-module M is endotrivial provided that Endk M ∼= k ⊕ (proj)
or, equivalently, Endk M ∼= k in stmod(kG).

Recall that Homk(M, N) ∼= M∗ ⊗N as kG-modules. Consequently, the tensor product
of two endotrivial modules is endotrivial. This allows us to define the group of endotrivial
modules whose elements are classes [M ] as follows.

Definition 2.2. Two endotrivial kG-modules are equivalent if they are isomorphic in
stmod(kG). That is, [M ] = [N ] if M ⊕ P ∼= N ⊕ Q for projective modules P and Q. The
group of endotrivial kG-modules is the set T (G) of equivalence classes [M ] of endotrivial
kG-modules M , with the operation given by the rule [M ] + [N ] = [M ⊗ N ].

Clearly, T (G) is abelian, and we have that 0 = [k] and −[M ] = [M∗]. Furthermore,
if p does not divide the order of G, then every module is projective. In this case, the
definition of an endotrivial module does not have much meaning, as every object in the
stable category is equivalent to the zero object, and also every module is an endotrivial
module, by a strict interpretation of the definition. In that case, we set T (G) = {0}.

The next theorem collects some useful properties of the group T (G).
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Theorem 2.3. Let G be any finite group. The group T (G) is finitely generated. Thus,
there is a torsion-free subgroup TF (G) of finite rank, such that T (G) ∼= TT (G)⊕TF (G),
where TT (G) denotes the torsion subgroup of T (G).

(a) The modules Ωn(k) are endotrivial and their classes generate a cyclic direct sum-
mand of T (G) [1,9,12,13].

(b) Let n denote the number of conjugacy classes of maximal elementary abelian p-
subgroups of p-rank 2 in G. Then the rank of TF (G) is n if G has p-rank at most
2 and is n + 1 if the p-rank of G is greater than 2 [1,10].

(c) If E is an abelian p-group having p-rank at least 2, then T (E) ∼= Z and is generated
by the class of Ω(k) [12,13].

(i) If G has p-rank at least 2, then the product of the restriction maps

Res : TF (G) −→
∏
E

T (E)

from TF (G) to all of the elementary abelian p-subgroups E of p-rank 2 of G,
is injective [1,10].

(ii) A kG-module is endotrivial if and only if its restriction to every elementary
abelian p-subgroup of G is endotrivial [9].

(d) Let P be a Sylow p-subgroup of G.

(i) The torsion subgroup TT (P ) is trivial except in the case when P is cyclic,
quaternion or semidihedral [9].

(ii) If TT (P ) is trivial, then TT (G) is generated by the classes [M ] of indecompos-
able endotrivial kG-modules M such that M ↓G

P
∼= k ⊕ (proj), for a projective

kP -module (proj) [10]. (Note that, in general, a module with vertex P and
trivial source is not endotrivial.)

(e) The restriction map ResG
H : T (G) −→ T (H) is injective, provided the subgroup H

of G contains the normalizer of a Sylow p-subgroup of G [10].

It follows from (d) in the above theorem that the torsion subgroup TT (P ) of T (P ) is
often trivial. We will show in the next sections that, as a consequence of this, TT (G) is
generated by the equivalence classes of the indecomposable trivial source modules that
are endotrivial, for an arbitrary finite group G having a Sylow p-subgroup isomorphic
to P . If G is the symmetric group, it turns out that some of these modules can be
found among the Young modules. We refer the reader to [19] for the basic background
on the representation theory of the symmetric groups, and to [15, 16, 18] for deeper
investigations of the Young modules. Some computer computations of Young module
can be found on the first author’s web page (www.math.uga.edu/˜jfc/hecke.html).
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Definition 2.4. Let λ = (λ1, . . . , λk) be the a partition of n and let G = Σn.

(a) A Young subgroup Σλ associated with λ is a subgroup of G that is conjugate to
Σλ1 × · · · × Σλk

.

(b) The Specht module Sλ associated with λ is the kG-module with k-basis the set
of standards polytabloids (cf. [19]). It is a submodule of the permutation module
Mλ = k ↑G

Σλ
.

(c) The Young module Y λ associated with λ is the unique (up-to-isomorphism) inde-
composable direct summand of Mλ that contains Sλ.

It should also be noted that all of the indecomposable direct summands of the permu-
tation modules Mλ are Young modules Y µ for some partitions µ which are greater than
or equal to λ in the dominance ordering. In particular, we will call upon the following
observation.

Lemma 2.5. Suppose that S is a Young subgroup of G = Σn that contains a Sylow
p-subgroup of G. Suppose that N is an indecomposable kG-module such that N ↓G

S
∼=

k ⊕ (proj). Then N is a Young module with vertex a Sylow p-subgroup of G.

Proof. Because S contains a Sylow p-subgroup, N is relatively S-projective. Conse-
quently, N is a direct summand of N ↓G

S ↑G
S . Since k is a direct summand of N ↓G

S , a
vertex of N is a Sylow p-subgroup of G, and N is a direct summand of k ↑G

S . �

Remark 2.6. Note that, in the proof of the above lemma, N is a Young module
simply because every indecomposable summand of k ↑G

S is a Young module. We cannot
conclude that N is the Young module corresponding to the same partition as the Young
subgroup S. Indeed, the trivial module N = k satisfies the hypotheses of the lemma,
even when the subgroup S corresponds to a non-trivial partition.

3. Some generalities

In this section we present a few general results that will be used in the course of this
paper.

Proposition 3.1. Suppose that H is a normal subgroup of G and that p does not
divide the index of H in G. Let M be an indecomposable endotrivial kG-module. Then
M ↓G

H is endotrivial and indecomposable.

Proof. Assume that H is normal in G and that M is an endotrivial indecomposable
kG-module. Then M ↓G

H
∼= M0 ⊕ Q, with M0 an indecomposable endotrivial module and

Q a projective module. Since p does not divide |G : H|, M is projective relative to H

and we deduce that M is a direct summand of M0 ↑G
H . It follows that M ↓G

H is a direct
summand of

M0 ↑G
H ↓G

H
∼=

⊕
g∈[G/H]

gM0,

since H � G. The only way that this can happen is if Q is the zero module. �
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Lemma 3.2. Let H be a subgroup of G that contains a Sylow p-subgroup P of G. If
|P | > |G : H|, then the kernel of the restriction map ResG

H : T (G) −→ T (H) is generated
by the classes of the one-dimensional kG-modules M such that M ↓G

H = k. In particular, if
G = Σn, H = Σn−1, n > 2p, and if p � n, then the restriction map ResG

H : T (G) −→ T (H)
is injective. The same applies if G = An and H = An−1. Similarly, if p > 2, then the
kernel of the restriction map T (Σn) −→ T (An) has order 2 and is generated by the class
of the sign representation.

Proof. Let M be an indecomposable endotrivial kG-module such that M ↓G
H

∼= k ⊕
(proj). Then, by relative projectivity and a vertex argument, we have that M | k ↑G

H . Since
Dim(k ↑G

H) = |G : H| < |P |, the kH-module M ↓G
H has no non-zero projective summand.

Therefore, Dim(M) = 1.
Assume that G = Σn and H = Σn−1 (respectively, G = An and H = An−1), with n >

2p. Assume also that p � n. Then, the index |G : H| = n < |P |, where P is a common
Sylow p-subgroup of G and H. Hence, Ker(ResG

H) consists of the isomorphism classes (in
stmod(kH)) of the one-dimensional kG-modules that restrict trivially to H. If G = Σn or
G = An, then there is exactly one such module: the trivial module. Likewise, Ker(ResΣn

An
)

is generated by the class of the sign representation if p > 2. �

We will now provide some general information about the situation when the field has
characteristic 2. The following proposition is recorded in [3, Lemma 5.4, Theorem 5.5].

Proposition 3.3. Suppose that G is a finite group whose Sylow 2-subgroups are dihe-
dral. Then G has two conjugacy classes of elementary abelian 2-subgroups of rank 2, rep-
resented by subgroups E1 and E2. Let P0 be the projective cover of the trivial kG-module
k. Then, taking the radical modulo the socle of P0 (i.e. the ‘heart’ of P0), we get

Rad(P0)/ Soc(P0) ∼= M ⊕ M∗,

where M ↓G
E1

∼= Ω(k) and M ↓G
E2

∼= Ω−1(k). Hence, M is an endotrivial module and

TF (G) = 〈[Ω(k)], [M ]〉 ∼= Z2.

Moreover, if a dihedral group D is a Sylow 2-subgroup of G, then the restriction map
ResG

H : TF (G) −→ T (D) is an isomorphism.

Proposition 3.3 provides the answer to a question that was left open in [10]. Namely,
in the case when G = PSL3(F2) (i.e. the finite group of Lie type A2(2)), we have that
the Sylow 2-subgroups are dihedral of order 8. In [10, Theorem 8.1], we demonstrated
that T (G) ∼= Z2. Now, the diagram of the projective cover P0 of the trivial module is
(cf. [5, § 11])

k

M M∗

k

, with M of dimension 3.

Thus, we have Rad(P0)/ Soc(P0) ∼= M ⊕ M∗. By Proposition 3.3, M is endotrivial and
we have T (G) = 〈[Ω(k)], [M ]〉.
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We end this section with a known result about the normalizers of the Sylow 2-subgroups
of the symmetric and alternating groups.

Proposition 3.4. Let n be a positive integer.

(a) The Sylow 2-subgroups of Σn are self-normalizing for all n.

(b) The Sylow 2-subgroups of An are self-normalizing for all n � 6.

Proof. This is a result due to Weisner (see [22, Corollary 2, Theorem, p. 124]). �

4. The case p = 2

In this section, we give a complete characterization of the group T (G) in the case when
G = Σn and G = An for p = 2. For each family of groups, we first determine the
isomorphism type of T (G), and then describe the generators in detail.

Theorem 4.1. Suppose that G = Σn and p = 2. Then TT (G) = {0}, for all positive
integers n. We have that

T (G) ∼= TF (G) ∼=

⎧⎪⎨
⎪⎩

{0} if n � 3,

Z2 if n = 4, 5,

Z if n � 6.

Proof. Let P be a Sylow p-subgroup of G. In this case, N := NG(P ) = P , by
Proposition 3.4. By the classification of endotrivial modules of a p-group (cf. [9]), we
know that TT (P ) = {0}. Indeed, P is either cyclic of order 2, dihedral of order 8, or has
all maximal elementary abelian 2-subgroups of 2-rank at least 3, in the three cases. The
last statement is an exercise for the reader. If n = 6 or 7, then P is a direct product of
a cyclic group of order 2 with a dihedral group of order 8, and the conclusion about the
ranks of the maximal elementary abelian subgroups is obvious. If n = 8 or 9, then P is
a wreath product of a dihedral group of order 8 and a cyclic group of order 2, and again
the conclusion holds. For larger n, we always have that P is a direct product of wreath
products of Sylow subgroups of smaller symmetric groups.

Because N = P , we have that TT (N) = {0}, and so TT (G) = {0}. The result for
T (G) is then a direct consequence of Theorem 2.3 and of [10, Corollary 3.2]. �

Let us now explore the group T (G) further. First, note that, in the theorem, if T (G)
is cyclic, then T (G) = 〈[Ω(k)]〉, and this tells us all about T (G), for n � 6 or n � 3.
When n = 4 or 5, the class [Ω(k)] generates one summand of T (G) and, because P

is dihedral, there are at least two ways of finding a generator for the other summand.
For one we know the structure of the projective cover P0 of the trivial module k, as in
Proposition 3.3. The structure of these modules can be seen from the diagrams in [5].
The other method is to draw on the classical representation theory of the symmetric
group, which turns out to be a matter of linear algebra.

Say P = 〈x, y | x2 = y2 = (xy)4 = 1〉, so that the centre of P is generated by the
element (xy)2. By [8, Theorem 5.4], we have that T (P ) = 〈[Ω(k)], [ΩP/〈x〉(k)]〉 ∼= Z2,
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where ΩP/〈x〉(k) is the kernel of the map k[P/〈x〉] −→ k sending each coset u〈x〉 to 1,
and k[P/〈x〉] is the permutation kP -module with k-basis the cosets of P/〈x〉, on which
P acts by left multiplication.

On the other hand, the Specht module S(3,1) has dimension 3 and we can take as
k-basis the set of (3, 1)-polytabloids, i.e. the row equivalence classes of the standard
(3, 1)-tableaux. We refer the reader to [19] for the details.

A direct computation shows that the kP -modules S(3,1) ↓G
P and ΩP/〈x〉(k) are isomor-

phic, and hence it proves that

T (G) = 〈[Ω(k)], [S(3,1)]〉.

Let us now consider G = Σ5 and let G′ = Σ4 < G. Then, by [21, Lemma 1.5], we have
that S(3,1) ↑G

G′ ∼= S(4,1) ⊕ M , where M is an extension

0 −→ S(3,1,1) −→ M −→ S(3,2) −→ 0.

Thus, M has dimension 11, and is the Green correspondent of S(3,1) over kG. It is also
the Green correspondent of ΩP/〈x〉(k). Thus, by [3, § 6], we have that M is endotrivial
and M ↓G

P
∼= ΩP/〈x〉(k) ⊕ kP . This shows that

T (G) = 〈[Ω(k)], [M ]〉,

where M is the above module.
For the alternating groups we have the following. Again, the case of n � 3 is trivial,

since then 2 does not divide the order of An.

Theorem 4.2. Suppose that G = An, the alternating group on n letters, and p = 2.
The group of endotrivial modules has the form

T (G) ∼=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{0} if n � 3,

Z ⊕ (Z/3Z) if n = 4, 5,

Z2 if n = 6, 7,

Z if n � 8.

Proof. Let P be a Sylow 2-subgroup of G. If n = 4 or 5, then P is isomorphic to a
Klein four group and the normalizer N of P has the form P � C3, where C3 is a cyclic
group of order 3. Hence, TF (G) = TF (N) ∼= Z and so

T (N) = TF (N) ⊕ TT (N) ∼= Z ⊕ (Z/3Z).

Indeed, since k is a splitting field for N , the group TT (N) identifies with the character
group of N , which is isomorphic to Z/3Z. Now, in both cases, P is a trivial intersection
(TI) subgroup of G. That is, if x ∈ G and x /∈ NG(P ), then xPx−1 ∩ P = {1}. In such a
situation, the stable module categories stmod(kG) and stmod(kN) are equivalent, by the
induction and restriction functors, and these functors induce isomorphisms T (G) ∼= T (N)
(cf. [10, Proposition 2.8]). Hence, we have that T (G) ∼= Z ⊕ (Z/3Z).
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For n > 5, the Sylow 2-subgroups P of G are self-normalizing (cf. Proposition 3.4).
Consequently, there are no non-trivial one-dimensional representations of the normalizer
N = P of P . It follows that TT (G) = TT (N) = {0}. In the cases in which n = 6 or 7, the
Sylow 2-subgroups are dihedral of order 8 and hence we have that T (G) = TF (G) ∼= Z2,
by Theorem 2.3. In all other cases, G has no maximal elementary abelian 2-subgroup of
rank 2. �

As for the symmetric group, let us look for the additional generator of TF (An) needed
when n = 6, 7. For this, we use Proposition 3.3, since P is dihedral, and we consider the
diagrams of the projective cover of the trivial module given in [4, Appendix, pp. 206, 213].
It turns out that there are endotrivial modules of dimension 19 if n = 6, and of dimen-
sion 35 if n = 7 that are the kAn-Green correspondents of the kP -module ΩP/〈x〉(k), as
defined above. In particular, we observe that the restriction map ResG

P : T (G) −→ T (P )
is an isomorphism.

5. The case n < 2p, for p � 3

From this point on we assume that p � 3 (i.e. p is an odd prime). Note first that if
n < p, then p does not divide the order of G = Σn, or of An, and every module is
projective. Thus, T (G) = {0} if n < p, as mentioned in § 2. We now consider the case
when p � n < 2p.

Proposition 5.1. Let G = Σn, and let N = NG(P ), where P is a Sylow p-subgroup
of G.

(a) If n = p or n = p + 1, then

T (G) = TT (G) ∼= TT (N) ∼= Z/2(p − 1)Z.

(b) If n = p + b, with 1 < b < p, then

T (G) = TT (G) ∼= TT (N) ∼= Z/2(p − 1)Z ⊕ (Z/2Z).

Proof. Suppose that p � n < 2p. Then P is cyclic of order p, and so T (P ) = TT (P ) =
〈[Ω(k)]〉 ∼= Z/2Z. The subgroup P is a TI subgroup of G. Hence, the restriction functor
induces an isomorphism T (G) ∼= T (N) (cf. [10, Proposition 2.8]).

In the case when n = p or n = p+1, we have N ∼= Cp�Cp−1, and TT (N) ∼= Z/2(p−1)Z,
since we assume that k is a splitting field for N . That is, by a routine calculation it
can be shown that Ω2(k) is a one-dimensional kN -module which is a generator for the
multiplicative group of one-dimensional kN -modules (one-dimensional characters of N).
Consequently, the class of Ω(k) generates a cyclic subgroup of order 2(p − 1) in T (N).
But this must be all of T (N) since we know that the kernel of the restriction map from
T (N) to T (P ) is the group generated by the one-dimensional kN -modules and that T (P )
has order 2.

When n = p + b, for an integer 1 < b < p, we have that N ∼= (Cp � Cp−1) × Σb, and
so TT (N) ∼= Z/2(p − 1)Z ⊕ (Z/2Z), where the Z/2Z factor is the subgroup generated by
the class of the inflation of the sign representation of Σb to N . �
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Similar arguments apply to the alternating groups, and they lead us to the following
result.

Proposition 5.2. Let A = An, and let NA = NA(P ), where P is a Sylow p-subgroup
of A.

(a) If n = p or n = p + 1, then

T (A) = TT (A) ∼= TT (NA) ∼= Z/(p − 1)Z.

(b) If n = p + b, with 1 < b < p, then

T (A) = TT (A) ∼= TT (NA) ∼= Z/2(p − 1)Z.

Proof. We have, as above, T (P ) = TT (P ) = 〈[Ω(k)]〉 ∼= Z/2Z. Because P is a TI
subgroup of A, we obtain T (A) ∼= T (NA). Now, embed A into G = Σp+b and consider
N = NG(P ) as in the previous proposition. By Lemma 3.2, the restriction map T (N) −→
T (NA) has kernel equal to Z/2Z. That is, the class of the sign representation is the
only non-trivial element of the kernel. In the case when b = 0, 1, we find immediately
that T (NA) ∼= Z/(p − 1)Z, as asserted. Now suppose that 1 < b < p. Then, N ∼=
(Cp � Cp−1) × Σb. Let J = An ∩ Σb, where here the Σb means the Σb factor in N as we
have expressed it. Note first that J is in the kernel of every one-dimensional representation
of NA, since it is in the commutator subgroup of Σb. Hence, T (NA/J) ∼= T (NA) by the
inflation map. But now NA/J ∼= Cp � Cp−1. This proves the last statement. �

6. The case n = ap, for an integer 2 � a < p

We begin this section with the description of the p-local group structure of the groups
G = Σn and A = An, in the case when 2p � n < p2. Write n = ap + b, with 2 � a < p

and 0 � b < p. Note that p must be an odd prime. We assume that G acts on the set
{1, . . . , n}. Let P be a common Sylow p-subgroup of G and of A having the form

P = 〈(1, . . . , p), (p + 1, . . . , 2p), . . . , ((a − 1)p + 1, . . . , ap)〉

and let N = NG(P ) be the normalizer of P in G and NA = NA(P ) = N ∩ A. For
simplicity, if X ⊆ G, we denote by XA the intersection X ∩ A.

Let us describe certain subgroups of G. We leave it to the reader to determine the
structure of the corresponding subgroups for the alternating groups. The group P is
elementary abelian of p-rank a, and N ∼= Np � Σa × Σb, where Np

∼= Cp � Cp−1 is the
normalizer in Σp of a Sylow p-subgroup of Σp. Here, ‘�’ denotes the wreath product and,
for a positive integer �, we denote by C� a (multiplicative) cyclic group of order �. We will
also use the notation Xa for the direct product of a copies of a group X. Let S denote
the Young subgroup containing P and corresponding to the partition (p, . . . , p, b) of n.
Then H = NS is the normalizer of S in G and it is isomorphic to Σp � Σa × Σb.

Hence, in Figure 1 we show the (three-dimensional) diagram of the inclusions of these
subgroups (with obvious identifications of the subgroups of G).
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Figure 1. Subgroups of Σap+b.

In this section, we consider the case in which n = ap, for an integer 2 � a < p. For
convenience, we will denote by NS = NS(P ) ∼= (Np)a.

Because P is elementary abelian of p-rank at least 2, TT (P ) is trivial. Thus, TT (N)
and TT (NA) are generated by the isomorphism classes of one-dimensional kN -modules
and kNA-modules, respectively, by Theorem 2.3. Since the arguments for A and for G

are alike, we will work through only the case of the symmetric group, and state the
corresponding results for the alternating groups without rewriting the reasoning.

From N ∼= Np �Σa, we deduce that TT (N) ∼= Z/(p−1)Z⊕(Z/2Z), where the Z/(p−1)Z
and Z/2Z factors correspond to the subgroups generated by the k-linear characters of
Np and by the sign representation of Σa, respectively.

Let X be a kN -module of dimension 1, and let Y be the kH-Green correspondent of X.
This makes sense because N ⊆ H. Then let XNS

= X ↓N
NS

, and, since NS = NS(P ), it
makes sense to consider the kS-Green correspondent YS of XNS

. Matching the modules
with the corresponding groups, we get Figure 2 (where the double-headed dotted arrows
denote the Green correspondence between the indicated modules and groups).

Our aim now is to limit the choices for the module YS .

Lemma 6.1. If Y is an endotrivial kH-module, then YS is an endotrivial kS-module
and Y ↓H

S
∼= YS .

Proof. By a property of the Green correspondence, Y is a direct summand of the
induced module X ↑H

N . Thus, using the Mackey formula and the equality H = NS, we
obtain that Y ↓H

S is a direct summand of

X ↑H
N ↓H

S
∼=

⊕
g∈[S\H/N ]

gX ↓
gN
gN∩S ↑S

gN∩S = XNS
↑S

NS
∼= YS ⊕ Z,
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Figure 2. Green correspondents for Σap+b.

where Z is a direct sum of indecomposable kS-modules each having vertex strictly con-
tained in P . We remind the reader that [S\H/N ] is a complete set of representative of the
S–N double cosets in H. Since Y is indecomposable with vertex P , its restriction Y ↓H

S

to S must have YS as direct summand. Consequently, if we assume that Y is endotriv-
ial, then YS must also be endotrivial and the other direct summands appearing in the
decomposition of Y ↓H

S are projective. That is, because Y is endotrivial, its restriction to
S is endotrivial and can have only one non-projective indecomposable component. Now,
the facts that S � H and p � |H : S| imply, by Proposition 3.1, that Y ↓H

S
∼= YS . �

By the contrapositive of the lemma, if YS is not endotrivial, then neither is Y . So we
are down to the question of finding criteria for YS to be endotrivial. This is the main
result of the section.

Proposition 6.2. The module YS is endotrivial if and only if Dim(YS) = 1.

Proof. The ‘if’ part is clear. So now assume that YS is endotrivial. Let K =
Np × Σp

a−1 ⊆ G, where the ith factor Σp acts on {ip+1, . . . , (i+1)p}, for 1 � i � a− 1
and where Np is the normalizer of 〈(1 · · · p)〉 in the subgroup Σp of S that acts on
{1, . . . , p}. Thus, we have NS < K < S. Because YS is an endotrivial module, we may
write YS ↓S

K
∼= U ⊕ V for kK-modules U and V with U indecomposable endotrivial and

V projective. Moreover, the Green correspondence implies that U ↓K
NS

∼= XNS
⊕ W for

some projective kNS-module W (since U is endotrivial). We also have that U is a direct
summand of XNS

↑K
NS

. Moreover,

XNS
↑K

NS
↓K

NS
∼= XNS

⊕
⊕

g∈[NS\K/NS ]\{1}

gXNS
↓

gNS
gNS∩NS

↑NS
gNS∩NS

.

Since the largest normal p-subgroup Op(K) of K is non-trivial and is contained in NS ,
none of the indecomposable factors of the right-hand side is projective. From the fact
that U is endotrivial, we deduce that U ↓K

NS
∼= XNS

. Therefore, Dim(U) = 1.
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Now, YS is a direct summand of U ↑S
K , by the Green correspondence, which applies

since NS ⊆ K. Therefore, YS ↓S
K is a direct summand of

U ↑S
K ↓S

K
∼= U ⊕

⊕
g∈[K\S/K]\{1}

gU ↓
gK
gK∩K ↑K

gK∩K .

Again, g runs over a set of representatives of the K–K-double cosets in S, such that
g 
∈ K. Now, note that for K-coset representatives [S/K] in S we may take the Np-coset
representatives [Σp/Np] in Σp of the corresponding normal subgroups of S and K, respec-
tively. Thus, we may assume that every coset representative centralizes the subgroup
(Σp)a−1 of K. It follows that every intersection gK ∩ K, for g ∈ [K \ S/K], contains a
non-trivial p-subgroup. Hence, the right-hand side in the displayed isomorphism does not
contain any projective summands. Since YS is endotrivial, we deduce that YS ↓S

K
∼= U .

Hence, Dim(YS) = 1, as claimed. �

The last two results have an immediate consequence.

Corollary 6.3. Let M be an indecomposable endotrivial kG-module (where G = Σap,
2 � a < p) whose class belongs to the torsion subgroup TT (G). Then, M ↓G

H
∼= Y ⊕(proj),

where Y is an endotrivial kH-module of dimension 1.

By very similar arguments for the alternating group A = Aap, with 2 � a < p, we
prove the following.

Corollary 6.4. Let M be an indecomposable endotrivial kA-module whose class
belongs to the torsion subgroup TT (A). Then M ↓A

HA
∼= Y ⊕ (proj), where Y is an

endotrivial kHA-module of dimension 1.

7. The case n = 2p

In this section, we apply the results of § 6 in the case when G = Σ2p and A = A2p.
As noted, T (P ) = 〈[Ω(k)]〉 ∼= Z. We assume the notation of § 6 for G and for A, and,
since the reasonings for A and for G are alike, we give the details for G and leave the
alternating case as an exercise for the reader.

By [2, 6.1, 6.2] the subgroup H is strongly p-embedded in G, that is gH ∩ H is a
p′-group for any g ∈ G \ H. Therefore, for any kH-module Y of dimension 1, we have
that

Y ↑G
H ↓G

P
∼= Y ↓H

P ⊕
⊕

g∈[P\G/H]\{1}

gY ↓
gH
gH∩P ↑P

gH∩P

= k ⊕
⊕

g∈[P\G/H]\{1}
k ↑P

gH∩P = k ⊕ (proj),

where the sums are over representatives of the nonidentity P–H-double cosets. The
isomorphism holds because for g /∈ H the intersection gH∩P is trivial. Moreover, the one-
dimensional modules for H ∼= Σp �Σ2 form a Klein four group. We may take for generators
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the kH-modules εH and Y = kΣp
� εΣ2 , where εK denotes the sign representation of the

group K.
Observe that the isomorphism Y ↓H

S
∼= k forces the kG-Green correspondent M of Y

to be the Young module Y (p,p), associated with the partition (p, p) of 2p. Indeed, M is an
indecomposable non-trivial direct summand with vertex P of the permutation module
k ↑G

S (cf. [19] and [15]).

Proposition 7.1. Let G = Σ2p for p an odd prime. Then any one-dimensional
kH-module induced to G is endotrivial. The group T (G) is given by

T (G) = 〈[Ω(k)], [εG], [Y (p,p)]〉 ∼= Z ⊕ (Z/2Z)2.

Using this result, we obtain the following.

Proposition 7.2. Let A = A2p for p an odd prime. Then any one-dimensional
kHA-module, when induced to A, is endotrivial. The group T (A) is given by

T (A) = 〈[Ω(k)], [Y (p,p) ↓G
A], [M ]〉 ∼=

{
Z ⊕ (Z/2Z)2 if p > 3,

Z ⊕ (Z/4Z) if p = 3,

where M is an indecomposable endotrivial kA-module such that M ↑G
A is indecomposable.

The last claim above comes from the nature of the one-dimensional kHA-modules.
Namely, if E ∼= Ap × Ap, then E ⊆ H and is also a subgroup of HA. It is easy to
see that the restriction of any one-dimensional kHA-module Y to E is trivial. Thus, Y

is a k[HA/E]-module. Since the quotient H/E is a dihedral group of order 8 and HA

has index 2 in H, we have either that Y extends to H, or that the induction Y ↑H
HA

is
indecomposable. In the first case, this means that Y is the restriction of a kH-module,
and so we get Y (p,p) ↓G

A as kA-Green correspondent. Otherwise, Y ↑H
HA

is indecomposable,
which implies that the kA-Green correspondent M of Y has the property that M ↑G

A is
indecomposable. We refer the reader to § 8 for further details on the structure of M .

Note that, if p = 3, then HA/E is cyclic of order 4, and so TT (A) ∼= TT (HA) ∼=
Z/4Z, since we assume that k is a splitting field for HA. In particular, this shows that
Y (p,p) ↓G

A
∼= M ⊗ M in stmod(kA).

Before leaving this case, we record the following fact for later application.

Proposition 7.3. For the group H = Σp � Σ2, we have that

TT (H) = 〈[εH ], [Y ]〉 ∼= (Z/2Z)2,

where εH is the sign representation on H and Y is the one-dimensional module on which
Σp × Σp acts trivially and Σ2 acts by the sign representation.

Proof. It is clear that εH and Y are endotrivial modules and, moreover, they generate
the group of one-dimensional kH-modules. The only question is whether or not there are
other endotrivial modules generating TT (H). Therefore, suppose that U is an indecom-
posable endotrivial kH-module whose restriction to P is isomorphic to k ⊕ (proj). By
Lemma 6.1 and Proposition 6.2, the kS-module U ↓H

S is an indecomposable endotrivial
module and has dimension 1. Hence, the class [U ] is in the subgroup of T (G) generated
by εH and [Y ]. �
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8. Case n = 2p + b, for 0 < b < p

In this section, we consider the cases G = Σ2p+b and A = A2p+b, for an integer b with
0 < b < p. Throughout this section we use the notation for G and for A given at the
beginning of § 6.

Again, TF (G) = 〈[Ω(k)]〉 and TF (A) = 〈[Ω(k)]〉 are infinite cyclic, because the Sylow
p-subgroup P is elementary abelian of order p2. By Theorem 2.3, since T (P ) is torsion-
free, the groups TT (G) and TT (A) are generated by the classes of indecomposable mod-
ules whose restriction to N = NG(P ) and NA, respectively, are isomorphic to the direct
sum of a one-dimensional module and a projective module. In the case of the symmetric
group, we show that these modules are Young modules, or the sign representation. Then,
we will easily deduce a set of generators for T (G). The situation for the alternating groups
is more complicated and hence it is handled separately. Before splitting the question into
subcases, we point out the following fact, which shows that TT (G) and TT (A) have at
most order 4.

Lemma 8.1. In the above notation, the restriction maps ResG
Σ2p

: T (G) −→ T (Σ2p)
and ResA

A2p
: T (A) −→ T (A2p) are injective, for all 1 � b � p − 1.

Proof. The proof is immediate, by the transitivity of the restriction map and by
Lemma 3.2. �

At this point, we handle separately the groups G and A, and for simplicity, we start
with G. Namely, we exhibit a non-trivial endotrivial module whose class is in TT (G),
and this will prove that TT (G) is a Klein four group.

For convenience, let us set Gb = Σ2p+b, Hb for the subgroup of the form (Σp �Σ2)×Σb,
and Sb

∼= Σ2
p × Σb, for 0 � b < p (cf. § 6).

Let H and Y be as in Proposition 7.3. We identify H with the quotient Hb/Σb, and
let Ỹ and ε̃H be the inflations of Y and εH to Hb, respectively. Since Ỹ ↓Hb

Sb
= k, the

kGb-Green correspondent V of Ỹ is isomorphic to a direct summand of the permutation
module M (p,p,b) = k ↑Gb

Sb
(cf. Lemma 2.5). Hence, V is a Young module of the form Y λ

for some partition λ with λ � (p, p, b). By [15, Theorem 2], the Young module Y λ

associated with a partition λ of n is projective if and only if λ is p-restricted. A partition
λ = (λ1, . . . , λs) of a positive integer n is p-restricted (or p-column regular) if λi −λi+1 <

p, for all 1 � i < s, and if λs < p. This restricts the number of possible endotrivial
modules among all the Young modules.

Proposition 8.2. Let Gb = Σ2p+b for an integer b such that 0 < b < p. Consider the
same notation as above and as in Proposition 7.3. Let µ be the partition (p + b, p) of n.
Then we have the following.

(a) The Young module Y µ is endotrivial.

(b) The kG-Green correspondent of ε̃H is not endotrivial, and so

T (G) = 〈[Ω(k)], [εG], [Y µ]〉 ∼= Z ⊕ (Z/2Z)2 ∀0 � b < p.
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Figure 3. Subgroups of Σ2p+1.

Proof. Let us first observe that (b) follows immediately from (a), as noted above in
Lemma 8.1, and by Proposition 7.1. Hence, the only thing we need to show is that Y µ is
endotrivial.

We proceed by induction on b. We know that the result holds for b = 0, by Proposi-
tion 7.1. Assume b � 1. We apply [18, Theorem 5.1]. In the notation of Henke’s article
(where k is an index, and not the underlying field), we have r = 2p + b, k = p and
t(k) = 0, for all 0 < b < p. Thus, again in Henke’s notation, Vp = 0, implying that

ResGb

Gb−1
Y µ ∼= Y (p+b−1,p) ⊕

{
Y (p+b,p−1) if 0 < b < p − 1,

0 if b = p − 1.

Now, the partition (p+b, p−1) of 2p+b−1 is p-restricted for all integers b such that 0 < b <

p−1. In these cases, the kGb−1-module Y (p+b,p−1) is projective (cf. [15, Theorem 2]), and
Y (p+b−1,p) is endotrivial by the induction hypothesis and by Proposition 7.1. If b = p−1,
then the kGb−1-module Y (2p−2,p) is not projective, since the partition (2p−2, p) is not p-
restricted. However, it is isomorphic to the Specht module S(2p−2,p), by the computation
of [14, (2.6)]. Then, applying the modular branching rules (cf. [21]), the restricted kGb−2-
module ResGb−1

Gb−2
S(2p−2,p) is still indecomposable, and hence, it is isomorphic to the Young

module Y (2p−3,p), which is endotrivial by the induction hypothesis. This shows that the
Young kGb-module we started with, namely Y (2p−1,p) is endotrivial. This completes the
case for the symmetric groups. �

We now turn to the alternating groups. Let us first consider the group A = A2p+1.
Write G = Σ2p+1, G0 = Σ2p, A0 = A2p, H = Σp � Σ2, HA = H ∩ A, S = Σp × Σp,
SA = S ∩ A and V = Ap × Ap. So we have the diagram in Figure 3, where a number on
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Figure 4. Restrictions of modules for Σ2p+1.

an edge indicates the index of the subgroup. Since the quotient H/V is a dihedral group
of order 8, there is a simple kH-module U of dimension 2, whose restrictions to HA and
S split as a direct sum of two non-isomorphic modules. That is, a direct summand UA of
U ↓H

HA
is a one-dimensional module whose kA-Green correspondent might be endotrivial.

We prove that this is indeed the case.
Observe that, by Proposition 7.2, the kA0-Green correspondent of UA is endotrivial

and, hence, the kG0-Green correspondent of U restricts to A0 as a direct sum of two
non-isomorphic endotrivial modules. On the other hand, a direct summand US of U ↓H

S

is isomorphic to the outer tensor product kΣp ⊗ εΣp as a kΣp ⊗ kΣp-module (recall that
S = Σp × Σp). Consequently, the induced module US ↑G

S has a direct summand which
is the signed Young module Y (p+1|p) in the notation of [17]. Roughly, the signed Young
kΣn-module Y (a|b) is defined as a certain uniquely determined indecomposable direct
summand of the signed permutation module M (a|b) = (1Σa

⊗ εΣb
) ↑Σn

Σa×Σb
, for a 2-part

partition (a, b) of n. Now, by [17, Proposition 3.6.1], we have that Y (p+1|p) ∼= S(p+1,1p),
for the (ordinary) Specht module. By property of the Green correspondence (or by [20,
7.6]), we have that S(p+1,1p) ↓G

A
∼= M ⊕ cM , for two non-isomorphic kA-modules M and

cM , and where we may assume that M is the kA-Green correspondent of UA. Upon
restriction to G0 and by the modular branching rules (cf. [21, Lemma 1.5]), we have that
S(p+1,1p) ↓G

G0
is an indecomposable module isomorphic to a nonsplit extension X given

by the exact sequence

0 −→ S(p,1p) −→ X −→ S(p+1,1p−1) −→ 0

and X is isomorphic to the kG0-Green correspondent of U . Also, X is isomorphic to the
signed Young module Y (p|p), and X ↓G0

A0
∼= M0 ⊕ cM0, with M0 and cM0 endotrivial and

non-isomorphic. Relating to the above picture of inclusion of subgroups of G, we can
summarize the situation into the diagram in Figure 4 (where the double-headed dotted
arrows denote the Green correspondence between the indicated modules and groups).

In particular, since S(p+1,1p) ↓G
G0

is indecomposable, the restriction M ↓A
A0

is also inde-
composable, and we may assume (without loss of generality) that M ↓A

A0
∼= M0. The fact

that M0 is endotrivial implies that M is also endotrivial (since M extends M0 to A).
This proves the following.
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Proposition 8.3. Let A = A2p+1 and G = Σ2p+1. Then,

T (A) = 〈[Ω(k)], [Y (p+1,p) ↓G
A], [M ]〉 ∼= Z ⊕ (Z/2Z)2,

where M is an indecomposable direct summand of the restriction to A of the Specht
kG-module S(p+1,1p). Moreover, M ↓A

A2p
is indecomposable.

Let us now consider the group A = A2p+2. Then A contains a group G′ isomorphic to
Σ2p, and A is contained in G = Σ2p+2. We show the following.

Lemma 8.4. The restriction map ResA
G′ : T (A) −→ T (G′) is injective and the cokernel

has order 2, generated by the class of the sign representation εG′ of G′.

Proof. Let M be an indecomposable endotrivial kA-module such that M ↓A
G′ ∼=

k ⊕ (proj). By relative projectivity and a vertex argument, we deduce that M is a direct
summand of k ↑A

G′ . Thus, M is a direct summand of

k ↑G
G′ ↓G

A
∼= M (2p,1,1) ↓G

A, since G′ ∼= Σ2p ⊆ G.

Now, M (2p,1,1) ∼= ⊕µY µ for some partitions µ of 2p+2 such that µ � (2p, 1, 1). Thus, M

is a direct summand of Y µ for some such µ. Since M has vertex a Sylow p-subgroup and
is a trivial source module, it must be that Y µ has complexity 2. By [16, Theorem 3.3.2],
this leaves us with only two candidates, namely Y (2p+2) = k, whose Green correspondent
is the trivial module, and Y (2p+1,1) ∼= S(2p+1,1) (the Specht module corresponding to
the natural permutation representation of G). In the second case, it is known that the
restriction of S(2p+1,1) to A is indecomposable (cf. [20, 7.6]) and has dimension 2p + 1
(cf. [19]). Therefore, the latter has no endotrivial summand. This proves the injectivity
of the restriction map ResA

G′ .
The statement for the cokernel can be proved by using a argument similar to the one

used to verify the injectivity of the restriction. Indeed, let M be an indecomposable
endotrivial kA-module such that M ↓A

G′ ∼= εG′ ⊕ (proj). We then note that M does
not extend to G. Otherwise, we would have that M = N ↓G

A for N an indecomposable
endotrivial kG-module, which would be one of the modules εG, Y (p+2,p) or εG ⊗ Y (p+2,p).
But

εG ↓G
G′ ∼= εG ↓G

A ↓A
G′ = k and Y (p+2,p) ↓G

G′ ∼= Y (p,p) ⊕ (proj),

by transitivity of the restriction. Thus, M ↑G
A ↓G

A
∼= M ⊕ cM , with M 
∼= cM . Thus,

cM ↓A
G′ ∼= k ⊕ (proj) and so, by the above argument, we conclude that if such an M

exists, then M has dimension 1. Hence, M does not exist, as was to be shown. �

Now Lemmas 3.2 and 8.4 imply the following.

Proposition 8.5. Let A = A2p+b and G = Σ2p+b, for an integer b with 1 < b < p.
Then T (A) is the image of the restriction map ResG

A : T (G) −→ T (A), that is

T (A) = 〈[Ω(k)], [Y (p+b,p) ↓G
A]〉 ∼= Z ⊕ (Z/2Z).
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9. Case n = ap + b, for 3 � a < p and 0 � b < p

In this section we determine T (G) and T (A) for all groups G = Σap+b and A = Aap+b,
such that 3 � a < p and 0 � b < p. As in most of the work, the two can be handled
similarly and, in order to avoid repetitions, we state the results for both groups and we
only make explicit the reasoning for the symmetric groups, leaving the translation to the
alternating group as an exercise for the reader.

Again we have that T (P ) = 〈[Ω(k)]〉 ∼= Z, since P is an elementary abelian group of
p-rank a. We begin with the case when b = 0.

Proposition 9.1. Let G = Σap and A = Aap, for an integer a such that 3 � a < p.
Then

T (G) = 〈[Ω(k)], [εG]〉 ∼= Z ⊕ (Z/2Z) and T (A) = 〈[Ω(k)]〉 ∼= Z.

Proof. By Proposition 7.3, we have that TT (H) = 〈[εH ], [Y ]〉 ∼= (Z/2Z)2, where
Y = kΣp � εΣa . We also know from Theorem 2.3 that the map ResG

H : TT (G) −→ TT (H)
is injective. Note that the kG-Green correspondent of εH is εG, which is endotrivial.
Let M be the kG-Green correspondent of Y . The only question is whether or not M

is endotrivial. Note also that Y ↓H
S

∼= k implies M is a Young module that is a non-
trivial direct summand with vertex P of the permutation module Mλ = k ↑G

S , where
λ = (p, . . . , p).

Let U = Σp ×Σ(a−1)p be the subgroup of G containing S, with Σp acting on {1, . . . , p}
and Σ(a−1)p on {p+1, . . . , ap}. We set K = U ∩H ∼= Σp × (Σp �Σ(a−1)) and L = K ∩N .
Hence, L = NU (P ) and S ⊆ K.

Assume that M is endotrivial. Then, M ↓G
U = MU ⊕ (proj) for an indecomposable

endotrivial kU -module MU , and M ↓G
K

∼= YK ⊕ (proj), where YK = Y ↓H
K . By transitivity

of the restriction, we deduce then that MU ↓U
K

∼= YK ⊕ (proj). More precisely, YK and
MU are Green correspondents, since K ⊇ L = NU (P ). In particular, MU is a direct
summand of YK ↑U

K , and, by the Mackey formula,

YK ↑U
K ↓U

K
∼= YK ⊕

⊕
g∈[K\U/K]\{1}

gYK ↓
gK
gK∩K ↑K

gK∩K .

By choice of the subgroups U and K, we have that p divides |gK ∩ K|, for any g ∈ U ,
and so the right-hand side has no projective summand. Therefore, MU ↓U

K
∼= YK . In

particular, MU has dimension 1.
In addition, since p does not divide |G : U |, the kG-module M is a non-projective

module that is relatively projective to U . Hence, M ↓G
U is a direct summand of

MU ↑G
U ↓G

U
∼= MU ⊕

⊕
g∈[U\G/U ]\{1}

gMU ↓
gU
gU∩U ↑U

gU∩U .

Note that p divides | gU ∩ U |, for all g ∈ G, since the intersection gU ∩ U contains a sub-
group Σ(a−2)p for all g ∈ G. Therefore, the right-hand side has no projective summand.
Hence, the assumption M ↓G

U = MU ⊕ (proj) implies that M ↓G
U = MU , and so M has
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dimension 1. Since the only one-dimensional kG-modules are isomorphic to k or εG, we
have proved the claim for G.

Now, for A, we observe that the same arguments as for G work. This implies that
TT (A) is trivial, since there is no non-trivial one-dimensional kA-module. �

We now apply Lemma 8.1 in order to determine the endotrivial modules in the remain-
ing cases.

Corollary 9.2. Let G = Σap+b and A = Aap+b for 3 � a < p and 0 � b < p. Then

T (G) = 〈[Ω(k)], [εG]〉 ∼= Z ⊕ (Z/2Z) and T (A) = 〈[Ω(k)]〉 ∼= Z.
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