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EVALUATION OF STANDARD FREE ENERGIES OF FORMATION OF 
CLA Y MINERALS BY AN IMPROVED REGRESSION METHOD 
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Abstract - An improved regression method for the evaluation of standard free energies of formation (.:lGo ,) 
of clay minerals is here proposed in an attempt to remove some of the limitations of the earlier method 
(Chen, 1975), Particularly, this method suggests a procedure for the assignment of rankings for 2: .:lGo" i 

values. Moreover, an iterative least-squares fitting technique is applied to solve the exponential equation 
to obtain the estimated .:lGo,. The estimated .:lGo, data for the various standard clay minerals are derived 
and compared with data available in the literature; in general, there is good agreement between the values. 
It is also shown how the regression method can be extended to clay minerals of variable composition. 
The .:lG°e's for several such minerals have been evaluated; a large number of combination equations 
required for such computations have been listed, so that for other similar minerals the process of evaluation 
of .:lGo, is greatly simplified. 

Key Words-Clay minerals, Free energies of formation, Regression method. 

INTRODUCTION 
2.6 kcallmole. Recently, solid-solution concepts in var
ious forms have been used to derive solubility con-

Experimental methods for the determination of free stants as well as stability fields of clay minerals (Aa
energies of formation of clay minerals by calorimetry, gaard and Helgeson, 1983; Fritz, 1985; Lippman, 1977, 
solubility measurements, or hydrofluoric acid disso- 1981; Tardy and Fritz, 1981; Tardy et al., 1987; Var
lution are both complex and time consuming. Clay adachari, 1992). 
minerals having variable compositions present even Of the various empirical procedures suggested so far, 
greater difficulties since the free energy of formation the method used for silicate minerals in general, by 
must be determined for each individual composition. Karpov and Kashik (1968) and further refined by Chen 
The laborious nature of the experimental process, (1975), is both versatile and promising. It can be ap
therefore, limits the availability of free energy data to plied to any kind of clay mineral whose chemical com
a few select mineral species, thereby limiting the gen- position is known; the basic input data required for the 
eral applicability of thermodynamics, in practice, to a calculations are readily available in the literature. 
relatively small number of clay mineral systems. Moreover, the results show good agreement with ex-

Development of theoretical and empirical methods perimental data; in general, the calculated values de
for the evaluation of free energies of formation are viate from the experimental ones by an average ofless 
invaluable, in that they provide a relatively simple and than 0.2% (on the order of2 kcallmole). However, this 
rapid means of obtaining such values with a fair degree method, which may be termed "the regression meth
of accuracy. One such theoretical method (Slaughter, od" has further room for improvement. For example, 
1966) utilizes various crystal constants to obtain free the process for assignment of the rank "x" is quite 
energy values. The inherent difficulty with this method, arbitrary, although choice of this value is critical for 
however, is the nonavailability of accurate crystal en- obtaining IlGor (standard free energy of formation). A 
ergy parameters. In another empirical method (Tardy suitable method for solving the complex exponential 
and Garrels, 1974), free energies of silicates are rep- equation also needs to be outlined. Moreover, this 
resented as sums of their oxide and hydroxide com- method has so far only been applied to a few standard 
ponents, which are assumed to have fixed values for silicate minerals whose free energies of formation are 
all silicates, but which differ from those of the pure already available. Its utility for nonstoichiometric clay 
oxide/hydroxide phases. Free energies of formation minerals has not yet been explored. 
have also been evaluated (Nriagu, 1975) by applying The object of this study is to present an improved 
a small correction term to the total free energy change regression method for the evaluation of standard free 
accompanying the combination of silicon hydroxide energies offormation and to extend this to nonstoichio
with metal hydroxidCl:S. However, the average differ- metric clay minerals. More precisely, this work in
ence between the predicted and experimental data was cludes 1) a process for the assignment of "x" rankings, 
observed to be about ± 9.5 kcallmole. This model was 2) a process for computation of IlGor using an iterative, 
further refined (Mattigod and Sposito, 1978) with a least-squares fitting of data, and 3) evaluation of IlGor 
consequent increase in accuracy of the data to about of non-stoichiometric clays and tabulation of numer-
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ous combination equations required for such compu
tation. 

METHODOLOGY 

Details of the regression method have been ex
plained by Chen (1975). Briefly, the procedure consists 
in first, representing the mineral in question in the form 
of combinations of various compounds. Thus kaolin
ite, AI2Si20s(OH)4 may be written as AI20 3 + 2Si02 
+ 2H20, AI2SiOs + Si02 + 2H20, 2AIO(OH) + 2Si02 
+ H 20, etc. For each combination, the IlGor of the 
individual component minerals are added to give the 
sum ~ IlG\; . All the values of IlGor used here are ob
tained from Helgeson et al. (1978); the value of ~Gor 

for water is taken from Robie et al. (1978). Various 
possible combinations for each mineral are constructed 
and the ~ IlG\; values obtained therefrom. The values 
of ~ IlG\; are then arranged in descending order and 
each is assigned an integral value, x, which represents 
the rank of the ~ IlG\j. Utilizing the values of~ ~G\; 
and x, a regression equation of the form : 

~ IlGo . = aebx + c r.1 (1) 

is derived where a, b, and c are constants and the value 
of c gives the IlGo r of the mineral. 

Fitting for the above exponential equation is, how
ever, not simple. One method consists of applying a 
logarithmic transformation to the data to obtain a lin
ear function and then determining the least-squares 
solution for the transformed data. Such transforma
tion, however, results in a distortion of the error field 
associated with the variable and thus causes a biased 
least-squares fit. 

The method adopted here, utilizes an iterative least 
squares technique (Draper and Smith, 1981 ; van Hees
wijk and Fox, 1988). Briefly this method may be de
scribed as follows (Scarborough, 1976): 

Suppose an equation of the generalized form 

y = f(x, a, b, c) (2) 

contains two variables, x and y, and three unknowns, 
a , b, and c. First, some initial values of the unknowns 
are assumed as 110, ba , and co. Let ex, (3, and 'Y be the 
values by which these values differ from the actual 
values a, b, c. Then 

a=ao+ ex 
b=bo +{3 

c=co +'Y 

(3) 

If XI, x2, .. . , xp and YI, Y2 , ... , YP are the experimen
tally observed values ofx and y, then, by substituting 
110, ba, Co values in Eq. 2, we obtain 

(4) 

where n ranges from 1 to p. Eq. 4 is an approximation 
curve with a residual ro where, 

(5) 

Thus, r n gives the difference between the approximated 
value and the observed value of y. However, this ob
served value Yn differs from the value obtained from 
the best representative curve. This residual, termed ~n' 
is related as 

En = f(xn ' a, b , c) - Yn 

Combining Eqs. 3 and 6 gives 

(6) 

~n + Yn = f(xn, ao + ex, bo + (J, Co + 'Y) (7) 

On expanding in Taylor series as a function of a, b , c 
and ignoring higher order terms, we get 

tn + Yn = f(xn, 110, ba, c o) + ex(Of/oa)o 
+ (J(of/ob)o + 'Y(of/oc)o (8) 

However, since y'n = f(xn' aa, ba, c o) and rn = y'n - Yn, 
this Eq. 8 may be rewritten as 

~n = ex(of%a)o + {3(ofn/ob)o 
+ 'Y(ofn/5c)0 + ro (9) 

These equations are linear in ex, {3, and 'Y. Furthermore, 
according to the method of least squares, the best rep
resentative values of a, b , and c are those for which 
~~_I ~2 is a minimum. 

Eq. 8 can be easily solved for ex, {J, and 'Y by the least
squares technique if an initial estimate of aa, ba, Co is 
provided for the first iteration. At the completion of 
each iteration, the values 110, ba, Co are replaced by 
revised values derived from Eq. 2, and the whole pro
cedure is repeated again by replacing the zero sub
scripts by 1 (e.g., ai' b l, Cl)' This will lead to another 
set of revised estimates of a2, b2 , C2 and so on. The 
iterative process is continued until the solution con
verges, that is until , ex, {J, 'Y reach selected small values. 
At each stage of the iterative procedure, ~ E2 n is eval
uated to see if a reduction in its value is actually 
achieved. 

In some instances, convergence may occur very slowly 
or convergence may not occur at all. To combat this, 
it is suggested (Draper and Smith, 1981) that the pa
rameter increments ex, (J, 'Y are halved or doubled. 

In the particular case of the Eq. 1, ~ IlG\i = aebx + 
c which has the form 

f(x) = aeb x + c 

the partial derivatives are 

Of/5a = ebx 

5f/5b = ax ebx 

5f/Qc = I 

(10) 

(11) 

(12) 

(13) 

The procedure for iteration is the same as described 
above. Here, the initial approximate estimates 110, ba, 
Co were obtained by solving Eq. 1 using logarithmic 
transformation or by graphical means. 
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Figure I . "Tree" diagram for obtaining the various possible 
combinations of x for a set of four data. 

On substituting Eqs. 11-13 in Eq. 9, we obtain the 
equation 

or 

+ 'Y + ao eboxn + Co - Yn (15) 

By substituting values of n, we obtain p linear equa
tions. These equations can be solved by the usual linear 
least-squares inversion technique (Draper and Smith, 
1981) utilizing matrix algebra. 

Calculations were done on a VAX 11/180 main
frame computer using a Fortran subroutine CURVE
FIT provided by van Heeswijk and Fox (1988). The 
two sets of input data required are computed values 
of~ ~G\i and corresponding assigned values of rank
ings x. Assignment of the x values may lead to erro
neous results if done by visual examination of the data, 
as is the usual practice. Difficulties usually arise since 
one has the choice of assigning the rank of the (i + 
l)th ~Gof with the same value as that of the ith ~ ~Gof' 
or with a higher value. In this work, it has been possible 
to provide x assignments by choosing that combination 
of x that gives the best fitting curve. For a set of ~ 
~G\;, it is possible that several values of~ ~G\i may 
have the same value of x; alternatively, a particular x 
within the series may not have a corresponding value 
of~ ~G\;, thereby leaving a missing value ofx in the 
arrangement. In order to obtain the curve with the best 
fitting values of x, curve fitting is done for every pos
sible combination ofx values. Thus, each set of~ ~G\i 
for a mineral can be assigned several sets of probable 
rankings, x, from which one such set is chosen which 
produces a curve fit with the lowest residual error (~ 
f2). Without any limitation on the values that x may 
assume, the total number of combinations is infinite. 
However, certain conditions may be imposed based on 
the characteristics of the exponential curves. It is, 

thereby, possible to obtain a finite number of x com
binations. The conditions are as follows: 

1) The ~ ~G\i having the lowest numerical value is 
assigned a rank x equal to zero. 

2) Rankings of subsequent ~ ~G\i may either be zero 
or greater than zero. 

3) When the ~ ~Gof.i are arranged in order of increasing 
absolute numerical value, the ranking of the (i + 
l)th ~ ~Gof is either equal to or greater than the 
ranking ofthe ith ~ ~G°f> i.e., x value for ~ ~Go[i+l 
~ x value for ~ ~Gof.i' This logic is derived fr~m 
the nature of the exponential curve. 

4) A minimum of three different rankings is required 
to construct the exponential curve. 

5) The rankings of adjacent ~ ~Gof.i may have a miss
ing value. Effectively, it means that the rankings for 
the (i + l)th and ith ~ ~Gof may have a difference 
of 0, 1 or 2, i.e., xi + 1 - Xi = 0, I or 2. Thus, two 
adjacent ~ ~Gof,i may have the same rank, x, or 
their x's may differ by a value of 1 or 2; in the latter 
case, the ~ ~G\i of higher absolute numerical value 
has a higher corresponding rank x. Such an example 
can be seen in Table 2 where the rankings of~ ~G\i 
for kaolinite are 0, 1, 3, 5, 7 instead of 0, 1, 2, 3, 
4. Such a situation may arise from the fact that one 
can miss out constructing equations for interme
diate ~ ~Gof." thereby leaving gaps in the x value. 

Conditions (1) to (4) are fundamental to the regres
sion method as suggested by Chen (1975). Condition 
(5) has been incorporated because it has been found to 
improve curve-fitting, i.e., further minimize ~ E2 as 
compared to one in which the possibility of a missing 
value has not been considered. The possibility of two 
and more missing ranks, x, is practically impossible to 
compute at this stage because the total possible com
binations for assignment of x becomes infinite. How
ever, it has been observed in practice that if a sufficient 
number of equations are constructed, the aforesaid 
ranking rules are sufficient to provide very good curve 
fits. 

The various possible means of assigning x values to 
a set of~ ~Gof,i data have been computed based on the 
graph theory-tree method (Harary, 1972). An example 
of such a construction is shown in Figure 1 for a system 
containing 4 values of~ ~Gof,i' The combinations are 
obtained by following the branches beginning from the 
top 0 and following the lines downward. 

However, from this set, combinations that contain 
less than three different values of x are deleted, e.g., 
0000, 0001, etc. Thus, the following combinations are 
obtained from Figure 1: 0012,0013,0023,0024,0112, 
0113,0122,0123,0124,0133,0134,0135,0223,0224, 
0233, 0234, 0235, 0244, 0245, 0246. A combination 
such as 0012 refers to the fact that when the ~ ~G\i 
values are arranged serially in order of increasing nu
merical value, then the lowest value ~ ~Gof.i has a rank 
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Table 1. Comparative values for the standard free energy of formation of some clay minerals. 

Mineral 

Kaolinite Al2Si20,(OH). 

Phlogopite KAIMg3Si30 IO(OH), 

Muscovite KA13Si30 IO(OH)2 

Biotite KAlFe3Si30 IO(OH)2 

Chlorite Mg,A12Si30 IO(OH). 

Sepiolite Mg2 Si30 6 (OH). 

or 
Mg.Si60 IS(OHh(H20)2· 4H20 

, Derived by experimental methods. 
2 Derived by theoretical/empirical methods. 

x = 0; the next ~ .:lGor,i also has rank x = 0; the third 
~ .:lG°f,i has x = I and the highest ~ .:lG\i has x = 2. 
For systems containing more than four ~ .:lG\i values, 
the "branches" of the tree shown in Figure 1 are ex
tended further, on the same principle. 

Utilizing each combination ofx, the least-squares fit 
regression curve is computed as described earlier and 
the residual error is obtained. That combination which 
shows the best curve fitting, i.e., smallest residual error, 
is selected. The corresponding value of c in Eq. I gives 
the required value of the standard free energy of for
mation, .:lGor. 

AG, 
(kcal/mole) 

-905.1212 
-905.614' (Helgeson et al., 1978) 
-910.0' (Zen, 1972) 
-908.048' (Robie et aI., 1978) 
-904.0' (Reesman and Keller, 1968) 
-903.5' (Kittrick, 1971 b) 
-902.592 (Chen, 1975) 
-888.1' (Barany and Kelley, 1961) 

-1257.5502 
-1255.997' (He1geson et al., 1978) 
-1260.0' (Zen, 1972) 
-1259.383' (Robie et al., 1978) 
-1258.7' (Reesman and Keller, 1968) 
-1256.952 (Chen, 1975) 
-1250.12 (Slaughter, 1966) 
-1259.82 (Sposito, 1986) 
-1328.5582 
-1320.188' (He1geson et al., 1978) 
-1323.115' (Robie et al., 1978) 
-1320.0' (Bricker et al., 1973) 
-1319.32 (Slaughter, 1966) 
-1395.2212 
-1396.187' (Helgeson et al., 1978) 
-1402.679' (Mukherjee, 1979) 
-1400.72 (Tardy and Garrels, 1974) 
-1337.9912 
-1336.301' (He1geson et al., 1978) 
-1340.0' (Zen, 1972) 
-1338.56' (Robie et al., 1978) 
-1330.52 (Chen, 1975) 
-1327.52 (Karpov and Kashik, 1968) 
-1327.0' (Reesman and Keller, 1968) 
-1135.4972 
-1147.156' (Helgeson et al., 1978) 
-1953.2762 
-1961.703' (Helgeson et al., 1978) 
-1974.0' (Zen, 1972) 
-1952.22 (Chen, 1975) 
-1021.7292 
-1020.5' (Christ et al., 1973) 

-2213.4922 
-2211.192' (Helgeson et al., 1978) 

RESULTS AND DISCUSSION 

General 

Values of .:lGorderived here for some standard layer 
silicates are shown in Table 1, togetherwith.:lGorvalues 
obtained from the literature; Figure 2 shows the cor
responding exponential curves. The chemical combi
nation equations, ~ .:lG\i values and rankings x, which 
were utilized in deriving the .:lGor values, are listed in 
Table 2. From Table 1, it may be observed that, in 
general, data obtained by the regression method are 
close to those obtained by Helgeson et al. (1978). Since 
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Table 2. ~~G;'.i and the rankings of the combinations for some clay minerals. 

Clay minerals and their combinations 

Kaolinite AI2Si20,(OH)4 
I. Al20 3 + 2Si02 + 2H20 
2. AI2SiO, + Si02 + 2H20 
3. 2AIO(OH) + 2Si02 + H20 
4. 0.5A12SiO, + Al(OH)3 + 1.5Si02 + 0.5H20 
5. AI(OH)3 + AIO(OH) + 2Si02 

Regression equation: ~~G~.i = 7.6414e 0.lb'062, - 905.1208 

Muscovite KA3Si30 lO(OH)2 
1. Al20 3 + KA1SiO. + 2Si02 + H20 
2. KA1SiO. + A12SiO, + Si02 + H20 
3. KAlSi20. + 2AIO(OH) + Si02 

4. 0.5Al2Si.0 1O(OH), + KAlSiO. + AlO(OH) 
5. 0.5AI,Si20,(OH)4 + KAlSi20. + 0.5A120 3 
6. 0.5A12Si20,(OH). + KAISi20 b + AIO(OH) - 0.5H20 
7. AI,Si20,(OH). + KAISiO. - H20 

Regression equation: GO ~~ = 15.5 1 422e-0.093371x - 1337.991 

Phlogopite KAIMg3Si30 lO(OH), 
I. 3MgSi03 + 0.5K20 + 0.5Al20 3 + H20 
2. KAlSi30. + 3MgO + H20 
3. KAISi04 + 3Mg(OH)2 + 3Si02 - 2H, O 
4. Mg3Si20,(OH). + KAISi04 - H20 

Regression equation: ~~G~., = 65.8053e-06300b2x - 1395.221 

Biotite KAIFe3Si30 IO(OH)2 
1. 0.5K,O + 0.5Al20, + 3FeO + 3Si02 + H20 
2. O.5K20 + 0.5AI,SiO. + 3FeO + 2.5Si02 + H20 
3. 0.5K20 + 0.5AI2Si20,(OH)4 + 3FeO + 2Si02 
4. 0.5K20 + Fe2Si04 + FeO + H20 + 0.5A12SiO, + 1.5Si02 
5. 0.5K20 + Fe2Si04 + 0.5A12SiO, + Si02 + H20 
6. O.5K20 + 3FeSiO, + AIO(OH) + 0.5H20 
7. KAISi20 6 + 3Fe(OH)2 + Si02 - 2H20 
8. KA1Si20 6 + 3FeO + Si02 + H20 
9. KA1SiO. + 3Fe(OH)2 + 2Si02 - 2H20 

10. KAISi20. + Fe2Si04 + FeO + H20 
11. KAISi04 + 3FeO + 2Si02 + H 20 
12. KAISi,O. + 3Fe(OH)2 - 2H20 
13. KAISi30. + 3FeO + H20 
14. KAISi04 + 0.5Fe3Si40 lO(OH), + 1.5FeO + 0.5H20 
15. KAlSiO. + 1.5Fe2Si04 + 0.5Si02 + H20 

Regression equation: ~~G~ = 54.1834e-0.67S3 - 1135.497 

Pyrophyllite Al2Si.0 1O(OHh 
I. AI20 3 + 4Si02 + H20 
2. Al2SiO, + 3Si02 + H20 
3. 0.5Al(OH)3 + 0.75Al2SiO, + 3.25Si02 + 0.25H20 
4. 2AIO(OH) + 4Si02 

5. 0.5AI2Si20,(OH). + 0.5A120 3 + 3Si02 

6. 0.5AI2Si20,(OH). + 0.5A12SiO, + 2.5Si02 

Regression equation: ~~G;',i = 7.44371ge-0.1S933.2x - 1257.550 

Talc Mg3Si40 lO(OH)2 
I. MgO + 4Si02 + H20 
2. Mg2Si04 + Mg(OH)2 + 3Si02 
3. l.5Mg2SiO. + 2.5Si02 + H20 
4. 2MgSi03 + 2Si02 + Mg(OH)2 
5. 0.5Mg3Si20,(OH). + 1.5MgSi03 + 1.5Si02 
6. Mg3Si20,(OH). + 2Si02 - H20 

Regression equation: ~~G;'.i = 45. I 7277e-0.3511S67x - 1328.558 

Chlorite Mg,Al2Si30 lO(OH). 
1. 5MgO + A120 3 + 3Si02 + 4H20 
2. Al2Si20,(OH). + MgSi03 + 4MgO + 2H20 
3. AI2SiO, + 2MgSi03 + 3MgO + 4H20 

l:<lO'J [kcallmole) Rank 
(average value) [x) 

-897.496 0 
-898.613 I 
-900.482 3 
-901.775 5 
-902.710 7 

-1322.556 0 
-1323.673 I 
-1326.484 3 
-1326.999 4 
-1327.557 4 
-1329.050 6 

-1329.420 0 
-1360.175 I 
-1376.600 2 
-1389.931 4 

-1076.859 0 
-1077.417 0 
-1080.918 0 
-1082.250 0 
-1084.665 0 
-1085.603 0 
-1121.808 2 
-1123.269 2 
-1126.562 3 
-1127.612 3 
-1128.023 3 
-1130.894 4 
-1132.355 4 
-1135.191 6 
-1135.268 6 

-1250.098 0 
-1251.215 I 
-1252.796 3 
-1253.084 3 
-1254.154 5 
-1254.716 6 

-1283.385 0 
-1305.524 2 
-1306.215 2 
-1306.798 2 
-1312.799 3 
-1317.473 4 

-1895.707 0 
-1912.072 1 
-1913.318 1 
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Table 2. Continued. 

Clay minerals and their combinations 
2:aG,j [kcaJlmolel Rank 

(average value) [xl 

4. 0.5Mg,Si.O lO(OH), + Mg2SiO. + I.5MgO + 2AlO(OH) + 2.5H20 -1931.442 3 
5. 2.5Mg2SiO. + Al20, + 0.5Si02 + 4H20 -1931.577 3 
6. Mg2SiO. + 3Mg(OH)2 + 2Al(OH), + 2Si02 - 2H20 -1938.254 4 
7. Mg,Si20,(OH). + Al2SiO, + 2Mg(OH), -1944.750 6 
8. 1.5Mg,Si20,(OH). + 0.5MgO + 2AIO(OH) -1949.825 8 
9. Mg3Si20,(OH). + MgA120. + MgSiO, + 2H20 -1950.142 9 

Regression equation: ~~G~.; = 57.07883e-O.32814x - 1953.276 

Sepiolite Mg2Si30 6(OH)4 
I. 2MgO + 3Si02 + 2H20 -999.49 0 
2. Mg2Si04 + 2Si02 + 2H20 -1014.236 2 
3. 2MgSi03 + Si02 + 2H20 -1015.886 3 
4. 0.5Mg,Si,O,(OH). + 0.5Mg(OH)2 + 2Si02 0.5H20 -1019.895 5 
5. 0.5Mg,Si.O IO(OH), + 0.5Mg(OH), + Si02 + H20 -1021.253 7 

Regression equation: ~~G~.; = 22.16086e-o.4969167x - 1021.729 

Note: Sepiolite formulated as Mg.Si60 IS(OH),(H20),· 3H20 is the same as the above formula multiplied by 2 with 3 moles 
of H20 added, i.e., 2 x Mg2Si,06(OH). + 3H20 = Mg.Si60 IS(OH),(H20),· 3H20. The "c" value for the latter formula may 
be modified accordingly. 

the basic data used for these computations were ob
tained from Helgeson et al. (1978), it would be more 
reasonable to limit the comparisons of our ~Gof data 
with those of Helgeson et al. (1978). The other data 
(Table 1) are only to show the wide variation in ~Gof 
values that is obtained by different methods. It is seen 
here, that ~Gof for talc, chlorite, and biotite show large 
differences from the values obtained by Helgeson et al. 
(1978). For biotite, this is to be expected since equa
tions of sufficient complexity utilizing iron silicates 
(Table 2) could not be constructed due to non-avail-

a KAOllNITE PYROPHYLlITE 
·IH 

_-"1 
i-It4 ~ -UIt 

'" ~ 3 -12U 
~- .. ", ,. .~ .1lU : ... , 

~ -12S0 ! -'" i -"1 
~ -11S1 

_1254 ... , 
-1256 . 

" 
, 

RANk VALUES RANK IJAlUfS 

TALC PHLOGOPITE 

-m. 
;-1]20 

-t24G ~ 
-u" ~-1l4a 

-u .. ,. 
i-Il'O 

-uu ~ -Il. 

-Uloo 

• , , , , -1100 • . , . .... VALUES RANt( VALUES. 

ability of basic ~Gof data. It appears, therefore, that 
the regression method can be applied to biotite only 
when more data on ~Gof of complex iron-rich silicates 
are made available. In the case of talc and chlorite, the 
differences are, however, difficult to explain since the 
regression curves themselves show good curve fitting 
(Figure 2). More up-to-date experimental data on ~Gof 
of these two minerals are needed to verify the results 
and ascertain if indeed such error is present. For all 
other minerals, deviations are within 0.5 to 2.3 kcaV 
mole and are also in better agreement with the values 
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Figure 2. Regression of ~ AGor.; values for some standard clay minerals. 
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Figure 3. Regression of ~ aGo, .• values for some non-stoichiometric clay minerals. 

obtained by Helgeson et al. (1978) than those obtained 
by any other theoretical or experimental means (Table 
1). 

Standard free energy of formation of clay minerals of 
variable composition 

Free energies of formation of several clay minerals 
of variable composition, which have been derived here, 
are shown in Table 3. The various combinations used 
for these derivations as well as their ~ AG\i values are 
represented in Table 4. The corresponding regression 
curves may be seen in Figure 3. 

Formulae for the minerals have been taken from the 
following sources: Montmorillonite, average (Tardy and 
Garrels, 1974); montmorillonite, idealized (Grim, 
1968); illite, Fithian (Nriagu, 1975); iIlite, average 
(Weaver and Pollard, 1973); nontronite (Grim, 1968); 
saponite (Grim, 1968); and vermiculite and aluminous 
chlorite (Jackson, 1965). The AGor for various mont
morillonites (in kcal/mole), which have been obtained 

from the literature for comparative study, are as fol
lows: - 1270.0*, -1234.25* and - 1254.3~ for Clay 
Spur (Kittrick, 1971a; Reesman and Keller, 1968; 
Sposito, 1986); -1230.6*, -1228.3hnd -1245.7Hor 
Aberdeen (Kittrick, 1971 b; Sposito, 1986; Tardy and 
Garrels, 1974); - 1248.2* and - 1257.6HorWyoming 
and -1274.4*, - 1252.1* and -1261.0~ for Arizona 
(Huang and Keller, 1973; Reesman and Keller, 1968; 
Sposito, 1986). It is obvious that widely different val
ues are obtained for montmorillonites of different com
positions and sometimes even for montmorillonites of 
the same origin. 

For iIlites, the variation in the data is not very wide. 
Thus, values (in kcal/mole) such as -1270.0~ (Nriagu, 
1975), -1277.7* (Rouston and Kittrick , 1971), 
- 1278 . 8~ (Tardy and Garrels, 1974), -1282.1 * (Huang 

* Derived by experimental methods. 
11 Derived by theoretical/ empirical methods. 

Table 3. Standard free energies of formation (c), a, and b values evaluated for some clay minerals of variable composition. 

Mineral 

I1Iite (average) Ko."Na"."A12. 1. MSo.26Si3.S601O(OH)2 
Illite (Fithian) Ko.62AI2.oJFeo.29MSo.19Si3.Sl01O(OH), 
Vermiculite A11..Feo.3SMg2.mSi2.8,O 1O(OH)2 

AO; 
[kcallmoie) 

-1302.349 
-1274.734 
-1335.828 

a b 

-0.640779 
-0.806652 
-0.377853 

Montmorillonite (average) Ko.4AIl .6,Feo.l,MSo.3.Si3 .• 3010(OH)2 
Montmorillonite (idealised) Ko.33AI I.6,MSo 33Si. OlO(OH)2 
Saponite Ko.33AIo.33Mg3Si3.6,OIO(OH)2 

-1 266.625 
-1271.772 
- 1362.875 

45.14204 
43.72045 
38.30339 
22.36392 
22.43354 
72.23858 
11.92548 
20.58559 

-0.751450 
-0.853461 
-0.206231 

Nontronite Ko.33Alo.33Fe2Si3.6,Olo(OH)2 - lO79.522 -0.681420 
Chlorite (aluminous) AI •.• Si3 .• O IO(OH). -1842.694 -0.215571 
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Table 4. !.:lGf,i and the rankings of the combinations for some clay minerals of variable composition. 

2:<lG,; 
[kcal/model Rank 

Clay minerals and their combinations (average value) [xl 

Illite (average) K".ssN30.I5AI2.I.Mg".2.Si 3.5.0 lO( 0 H)2 
1. 1.09A120 3 + 0.26MgO + 3.56Si02 + 0.275K20 + 0.075Na20 + H20 -1257.102 0 
2. 0.26MgSi03 + 0.55KA1Si20. + 0.15NaA1SiO. + 2.05Si02 + 0.74A120 3 + H20 -1290.140 2 
3. 0.26MgSi03 + 0.55KA1Si30. + 0.815A12SiOs + 0.835Si02 + 0.075Na20 + H20 -1290.666 2 
4. 0.26MgO + 0.075Na20 + 0.55KAlSi30. + 0.28Si02 + 0.815A12Si20,(OH). - 0.63H20 -1294.241 3 
5. 0.55KAI3Si30,o(OH), + 0.26MgSi03 + 0.15NaA1SiO. + 0.19A120 3 + 1.5Si02 + OA5H 20 -1300.314 5 
6. 0.15NaAlSi30. + 0.55KA13Si30 IO(OH), + 0.26MgSi03 + 0.19A12Si20s(OH). + 0.82SiO, + 0.07H20 -13020478 7 

IIlite (Fithian) K".6,A12.03Feo.2.Mg".I.Si3.S1 OlO{OH), 
1. 1.015Al20 3 + 0.145Fe20 3 + 0.19MgO + 0.31K20 + 3.51Si02 + H20 -1231.020 0 
2. 0.62KA1SiO. + 0.705Al,SiOs + 0.145Fe,03 + 0.095Mg2SiO. + 2.09Si02 + H20 -1264.930 2 
3. 0.62KA1Si30. + 0.705A120 3 + 0.145Fe203 + 0.19MgSi03 + 1.46Si02 + H20 -1266.985 2 
4. 0.62KAlSi30. + 0.705AI2Si20s(OH). + 0.24Si02 + 0.145Fe203 + 0.19MgO - OA1H20 -1271.150 3 
5. 0.62KAI3Si30 lO(0H)2 + 0.085A120 3 + 0.19MgSi03 + 0.145Fe20 3 + 1.46Si02 + 0.38H20 -1272.821 4 

Vermiculite All..Feo.35Mg2.67SSi2.8,OlO(OH)2 
1. 2.85Si02 + 0.7A120 J + 0.175Fe,03 + 2.675MgO + H20 -1297.515 0 
2. 0.7A12SiO, + 1.3375Mg2SiO. + 0.175Fe20 3 + 0.8125Si02 + H 20 -1318.020 2 
3. 0.7AI2Si20,(OH). + 1.3375Mg2SiO. + 0.175Fe20, + 0.1125Si02 - OAH20 -1322.920 3 
4. 0.5Mg3Si.OlO(OH)2 + 0.7A120 3 + 0.175Fe20, + 0.5875Mg2SiO. + 0.2625Si02 + 0.5H20 -1323.277 3 
5. 0.5Mg3Si20,(OH). + 0.7A12SiOs + 0.175Fe20 3 + 0.5875Mg2SiO. + 0.5625Si02 -1323.931 3 
6. 0.5Mg,AI2Si30 IO(OH). + 0.2A120, + 0.175Fe20, + 0.175MgO + 1.35Si02 - H20 -1330.391 5 
7. 0.535Mg,A12Si30 IO(OH). + 0.175Fe20 3 + 0.165A12SiOs + 1.08Si02 - 1.14H20 -1332.876 7 
8. 0.535Mg,A12Si,OIO(OH). + 0.175Fe20 3 + 0.165AI2Si20,(OH). + 0.915Si02 - 1.47H20 -1334.031 8 

Montmorillonite (average) K" .. All .• 7Feo.,7Mg".3.Si3 .• 30lO(OH)2 
1. 0.835A12Si.O lO(OH)2 + 0.19Mg2SiO. + 0.2K20 + 0.085Fe20 3 + 0.3Si02 + 0.165H20 -12430456 0 
2. 1.67A1(0H), + 0.38MgSi03 + 0.085Fe20 3 + 0.2K20 + 3A5Si02 - 1.505H20 -1245.059 0 
3. OAKA1Si,O. + 0.635 AI2Si.OIO(OH), + 0.38MgO + 0.085Fe20 3 + 0.09Si02 + 0.365H20 -1261.673 2 
4. OAKA1Si30. + 0.635Al,SiO, + 0.085Fe,03 + 0.38MgSi03 + H20 + 1.615Si02 -1261.752 2 
5. OAKAlSi04 + 0.635Al,Si,O,(OH). + 0.19Mg2SiO. + 0.085Fe,03 + 1.97Si02 - 0.27H,O -1264.066 3 
6. OAKAlSi,O. + 0.635AI2Si20,(OH)4 + 0.085Fe20, + 0.38MgSiO, + 0.98Si02 - 0.27H20 -1266.198 5 

MontI'lorillonite (idealised) K".33A11.67Mg"."Si.OIO(OH)2 
1. 1.67AlO(OH) + 4Si02 + 0.33MgO + 0.165K20 + 0.165H20 -1248.368 0 
2. 0.5AI2Si20,(OH). + 0.335A12 SiO, + 2.665Si02 + 0.165K20 + 0.33MgO -1250.308 0 
3. 0.835A12SiOs + 3.265Si02 + 0.165K20 + 0.33MgO + H20 -1267.272 2 
4. 0.67A12Si.01O(OH)2 + O.33KAlSi,O. + 0.33MgO + 0.33Si02 + 0.33H2 0 -1268.141 2 
5. 0.33KAI3Si30 IO(OH)2 + 0.165Mg2SiO. + 0.34A12SiO, + 2.505Si02 + 0.67H20 -1270.108 3 
6. 0.11Mg3Si20,(OH). + 0.33KA1Si20. + 0.67A12Si.OlO(OH), + OA4Si02 + 0.l1H20 -1270.755 4 
7. 0.33MgSi03 + O.33KAlSi30. + 0.5AI2Si20,(OH). + 0.17AI2SiOs + 1.51Si02 -1271.143 4 
8. 0.34AI2Si.01O(OH)2 + 0.165Mg2SiO. + 0.33KAI3Si30 IO(OH), + 1.485Si02 + 0.33H20 -1271.733 6 

Saponite K".,3Alo.3JMg3Si3.6,OlO(OH)2 
1. 0.165A120, + 3MgO + 3.67Si02 + 0.165K20 + 2H20 -1290.559 0 
2. 0.165A12SiOs + 3MgSi03 + 0.165K20 + 0.505Si02 + H20 -1315.337 2 
3. 1.5Mg2SiO. + 0.33KA1Si,O. + 1.18Si02 + H20 -1330.992 4 
4. 0.5Mg3Si40 lO(OH)2 + 0.33KA1SiO. + 0.75Mg2SiO. + 0.59Si02 + 0.5H20 -1336.831 5 
5. Mg3Si20s(0H). + 0.33KA1SiO. + 1.34Si02 - H20 -1341.384 6 
6. 0.5Mg3Si.OlO(OH)2 + 0.5Mg3Si20s(OH). + 0.33KA1SiO. + 0.34Si02 - 0.5H20 -1342.742 6 

Nontronite K".33Alo.33Fe2Si3.670,o(OH), 
1. 0.1 1 KAl3Si30 lO(OH)2 + Fe20 3 + 0.IIK20 + 3.34Si02 + 0.89H20 -1067.595 0 
2. 0.33KA1SiO. + 3.34Si02 + 2FeO(OH) -10760495 2 
3. 0.33KAISi30. + 2FeO(OH) + 2.68Si02 -1077.925 3 
4. 0.33KAISi30. + 2.68Si02 + Fe20 3 + H20 -1078.770 4 

Chlorite (aluminous) Al •.• Si3 .. O lO(OH). 
I. 2AA120 3 + 3ASi02 + 4H20 -1822.134 0 
2. 4.8A10(OH) + 3ASi02 + 1.6H20 -1829.300 2 
3. 0.85AI2Si.OlO(OH)2 + 3.1AIO(OH) + 1.6H20 -1831.776 3 
4. 1.7 A12Si20,(OH). + 0.7 A120, + 0.6H,O -1835.935 5 
5. 1.7A12Si20,(OH). + 1.4AIO(OH) - 0.IH20 -1838.025 7 
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and Keller, 1973) and -1319.7* (Reesman, 1974) have 
been obtained for Fithian illite; -1272.1 * and - 1273.4~ 

for Goose Lake illite (Rouston and Kittrick, 1971; Tar
dy and Garrels, 1974); and -1250.0*, -1274.7* and 
-1276.2~ for Beavers Blend illite (Huang and Keller, 
1973; Rouston and Kittrick, 1971; Tardy and Garrels, 
1974). In spite of compositional variations even 
amongst the Fithian illite samples used by the various 
workers, the ~Gof value calculated in this study is well 
within the range of values obtained experimentally. 
Moreover, the ~Gofofillite (average) evaluated in this 
study by the regression method, i.e., -1302.349 kcal/ 
mole, is very close to that of a similar mineral studied 
by Helgeson (1969) and Nriagu (1975), the values ob
tained by them being -1300.98* and -1301.05~ kcal/ 
mole, respectively. Experimental data for the other 
minerals such as saponite, nontronite, etc., are not yet 
available for comparative analysis. 

In order to derive the ~Gof of other clay minerals, 
the combinations shown in Tables 2 and 4 may be 
easily utilized. Appropriate balancing of equations must 
be done. Care must be taken to ensure that composition 
of the mineral gives a net charge of zero; if cationic 
charge differs from the anionic charge by even a small 
fraction, then the equations cannot be balanced. Nec
essary adjustments, in the composition, may be made 
before further computation can be done. 

In conclusion, it appears that this method provides 
a fairly reliable and rapid means of evaluating ~Gof of 
clay minerals. Its greatest advantage is its extreme ver
satility; it can be utilized for any kind of clay mineral, 
and all that is needed is a knowledge of its chemical 
composition. In cases where experimental determi
nations are not convenient, the regression method pro
vides a handy tool for obtaining very important ther
modynamic data. 
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