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Arrays of heaving buoy type wave energy converters (WECs) are a promising contender to
harness the renewable power of ocean waves on a commercial scale but require strategies
to achieve efficient capture of wave energy over broad frequency bands for economic
viability. A WEC-array design is proposed for absorption over a target frequency range
in the two-dimensional water wave context by spatially grading the resonant properties
of WECs via linear spring–damper power take-off mechanisms. The design is based
on theories for rainbow reflection and rainbow absorption, which incorporate analyses
based on Bloch wave modes and pole–zero pairs in complex frequency space. In contrast
to previous applications of these theories, the influence of a higher-order passband and
associated pole–zero pairs are shown to influence absorption at the high-frequency end
of the target interval. The theories are used to inform initialisations for optimisation
algorithms, and an optimised array of only five WECs is shown to give near-perfect
absorption (≥99 %) over the target interval. Broadband absorption is demonstrated when
surge and pitch motions are released, for irregular sea states, and for incident wave packets
in the time domain, where the time-domain responses are decomposed into Bloch modes
to connect with the underlying theory.

Key words: surface gravity waves, wave scattering, wave-structure interactions

1. Introduction

Ocean waves offer an abundant and consistent source of renewable energy (Pecher &
Kofoed 2017). For over half a century, researchers have sought to harness this power
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using wave energy converters (WECs) (Cruz 2008), although they are yet to reach
economic viability (Gallutia et al. 2022). Heaving buoys with attached power take-off
mechanisms (PTOs) are one of the most popular proposed/tested WEC concepts for
commercial scale ocean-wave energy conversion (IRENA 2020). Like most WECs,
heaving buoys are tuned to resonate, such that maximum absorption is achieved through
optimum wave interference at the resonant frequency (Falnes 2005). But a naïve
deployment of WECs in the inherently broadband, seasonal, ocean-wave climate (Pecher
& Kofoed 2017) will not provide the broadband absorption needed to make them a
competitive energy source, as they are efficient only in a narrow frequency range due
to their physical characteristics (Falnes & Hals 2012).

WECs are deployed in arrays (or ‘farms’) to help meet energy demands and improve
cost-effectiveness (Pecher & Kofoed 2017). Wave interactions between the WECs in an
array can either enhance or degrade the performance of the array in comparison with
the same number of WECs operating independently (Göteman et al. 2020; Gallutia et al.
2022). Designing WEC-arrays to enhance power capture is an active research topic,
with most studies based on numerical and mathematical models, of which the majority
use linear potential-flow theory (Folley 2016). Approaches include optimising WEC
geometries/layouts (Babarit 2013; Göteman et al. 2020; Edwards & Yue 2022), employing
control strategies via the PTO mechanism to maintain/create resonant conditions over
broad frequency bands (Bacelli & Ringwood 2013; Pecher & Kofoed 2017), or a
combination of optimising the WEC layout and a control strategy (Garcia-Rosa, Bacelli &
Ringwood 2015; Golbaz et al. 2022).

Theoretical progress has been made for uniform WEC-arrays, i.e. identical and equally
spaced WECs with identical PTO parameters. Without absorption, the so-called Bloch
waves supported by the array separate into passbands (where the Bloch waves propagate
through the array) and bandgaps (where the Bloch waves are unable to propagate).
Bandgaps are related to destructive wave interference between WECs in an array, which
considerably reduces power capture, whereas frequencies on passbands just below the
bandgap are related to constructive wave interference over the array that enhances power
capture (Garnaud & Mei 2010; Tokić & Yue 2019). In general, bandgaps can be created
by Bragg resonance, which is controlled by the spacing of the WECs in the array (Tokić
& Yue 2019), or local resonances of individual WECs in the array. In the latter case, the
bandgap structure has been shown experimentally to be robust to nonlinear wave breaking
caused by the local resonances (motivated by coastal protection and without absorption
(Dupont et al. 2017)).

In order to be considered broadband, a WEC-array would need to achieve high efficiency
over a broad power capture interval, most likely lying within wave periods between 5 and
20 s, which are feasible for ocean wave energy capture (Coe, Bacelli & Forbush 2021).
The PTO parameters can be adjusted in time according to predicted sea states to achieve
broadband absorption, but this approach requires accurate wave prediction capability
(Fusco & Ringwood 2010; Gallutia et al. 2022) and is sensitive to model errors (Cruz 2008;
Folley 2016), while increasing cost, system complexity and maintenance requirements
(Garnaud & Mei 2009; Pecher & Kofoed 2017). Designing WEC-arrays to be capable
of broadband absorption with PTO parameters that are constant in time would improve
economic viability (Pecher & Kofoed 2017; Sergiienko et al. 2017).

Spatially graded arrays are a promising design strategy (Bennetts, Peter & Craster 2018)
to achieve broadband absorption (Porter 2021; Wilks, Montiel & Wakes 2022). Grading
(without absorption) is used for spatially controlled amplification of wave energy within an
array according to frequency, as wave energy at a certain frequency is gradually slowed and
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accumulates as it reaches the location in the array at which the local periodicity defines
the transition from a passband to a bandgap (Bennetts et al. 2018). Predictions of this
phenomenon from linear theory have been confirmed experimentally, in spite of nonlinear
wave breaking where the waves are amplified, which merely reduces the amplification
factors (Archer et al. 2020). Without absorption (e.g. Bennetts et al. 2018; Archer et al.
2020; Xu, Ning & Chen 2024), the graded array ultimately reflects the amplified wave
energy (hence, the phenomenon is referred to as rainbow reflection), but with absorption
the energy can potentially be captured (e.g. Chaplain et al. 2020). The resulting rainbow
absorption has been demonstrated in acoustics (e.g. Romero-García et al. 2016; Jiménez
et al. 2017), and elasticity (e.g. Chaplain et al. 2020).

Of particular relevance to the present study, Wilks et al. (2022) introduced the concept
of rainbow absorption to ocean wave energy harvesting, using a two-dimensional (2-D),
linear model of wave–structure interactions. Closely following the approach of Jiménez
et al. (2017) in acoustics, Wilks et al. (2022) designed a water-wave rainbow reflection
structure from an array of surface-piercing, rigid, vertical barriers by grading the
width between barriers and their submergence. They then added heaving pistons
with attached linear damping to create rainbow absorption, and optimised the graded
geometry to achieve broadband absorption of 98.2 % on an angular frequency interval
of 0.8–1.6 rad s−1 (wave periods ≈4–8 s). The barrier submergence increases with
distance along the array, reaching up to 80 % of the water depth, such that the isolated
barrier allows virtually no transmission for the wave frequencies of interest (B. Wilks,
personal communication). The corresponding periodic arrays support a single passband at
low frequencies, followed by a bandgap that extends to infinity in frequency (although
interspersed with very narrow high-frequency passbands (Wilks et al. 2024)). Their
approach is broadly similar to positioning a WEC-array near a rigid wall or breakwater
(e.g. Konispoliatis & Mavrakos 2020) to increase absorption by harnessing reflections
(Falnes & Hals 2012).

In this study, we show that it is possible to create rainbow absorption with a generic
array of heaving buoy type WECs by grading the WEC-resonances using the PTOs while
maintaining uniform WEC geometries and spacing, and without the need for a surrounding
structure. We achieve near-perfect absorption (99 % efficiency) over a broad, targeted
frequency range of practical interest (angular frequencies 0.3–0.65 rad s−1 or wave periods
≈10–20 s) using a small number of WECs (typically five) with time-independent PTO
parameters. The WECs do not act like rigid barriers, and destructive wave interactions
within the array are necessary to generate bandgaps. Over the frequency range considered,
multiple passbands and bandgaps exist, which results in interplay between local resonance
and Bragg resonance (Guo et al. 2020) not seen in previous cognate studies.

The governing equations and solutions methods used in the study are set out in §§ 2
and 3, respectively. The model (based on 2-D linear potential-flow theory) and methods
(eigenfunction matching for individual WECs and transfer matrices for WEC interactions)
are standard, but are presented for completeness and to establish key notations. The
primary contribution of the article is to outline an approach to design an array that achieves
near-perfect broadband absorption using bandgaps, zeros of reflection for complex-valued
frequencies, and efficient optimisation algorithms. The approach is introduced in stages:
by introducing Bloch waves for a uniform non-absorbing array and connecting the
complex resonances of the finite array with the band structure (passbands and bandgaps)
of the corresponding infinite array (§ 4); grading the PTO stiffness to achieve rainbow
reflection, and then tuning the PTO damping to achieve complex zeros of reflection and,
hence, rainbow absorption (§ 5); and using the knowledge gained to inform optimisation
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Figure 1. Schematic of the problem involving an array of N WECs forced by an incident wave from
x → −∞ (blue arrow).

algorithms that generate near-perfect broadband absorption, which is subsequently
extended to multiple degrees of freedom (surge and pitch released) and applied to irregular
sea states (§ 6). The performance of one of the proposed arrays is demonstrated in the time
domain for incident wave packets, for which a novel decomposition into the time-domain
Bloch wave modes is used to connect with the underlying theory (§ 7). The relevance of
the outlined approach to an equivalent three-dimensional (3-D) model is discussed, along
with other practical next steps (§ 8).

2. Preliminaries

Consider a 2-D water domain,Ω , in which locations are defined by a Cartesian coordinate
system (x, z), where the x-axis is chosen to coincide with the undisturbed free surface,
and the z-axis is directed out of the water. The water domain is bounded below by an
impermeable seabed at z = −h, and above by a free surface, z = η(x, t), where t is time.
An array of N geometrically identical WECs (WEC 1, WEC 2, . . . , WEC N) occupies
the water domain. Each WEC involves a heaving buoy and a PTO mechanism, broadly
representative of the bottom-referenced heaving buoy developed by CorPower Ocean
(2024). For ease of computation, the buoys are square with side lengths 2L, but should
have rounded vertices in practice to prevent flow separation and vortices (Yeung & Jiang
2014). The buoys are evenly spaced along the free surface with separation distance d, and
the first buoy is centred at x = 0 (figure 1).

Water motions are modelled using linear potential-flow theory (inviscid, incompressible
and irrotational fluid with small amplitude relative to wavelength λ), such that the velocity
field is the gradient of a scalar velocity potential, Φ(x, z, t) (Linton & McIver 2001). The
free surface is related to the velocity potential via the linearised dynamic condition

[∂tΦ]z=0 = −gη, (2.1)

where g ≈ 9.81 m s−2 is gravitational acceleration and ∂• denotes the partial derivative
with respect to the subscript (Linton & McIver 2001). Under the assumption of
time-harmonic motions at a prescribed angular frequency ω ∈ R > 0, the velocity
potential and surface elevation can be written as

Φ(x, z, t) = Re
{

gA
iω
φ(x, z) exp(−iωt)

}
and η(x, t) = Re{Aζ(x) exp(−iωt)},

(2.2a,b)

where φ ∈ C and ζ ∈ C are a reduced potential and surface elevation, respectively, A is
the incident wave amplitude and i = √−1 is the imaginary unit. The potential, φ, satisfies
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Broadband near-perfect power capture by an array of WECs

Laplace’s equation

∇2φ = 0 throughout Ω, (2.3)

and a no-normal flow condition at the seabed

∂zφ = 0 on z = −h. (2.4)

At the free surface, the potential is related to the surface elevation, ζ , by dynamic and
kinematic conditions, respectively,

ζ = [φ]z=0 and ζω2/g = [∂zφ]z=0, (2.5a,b)

which can be combined into the single boundary condition

∂zφ = ω2

g
φ at z = 0, (2.6)

for the potential only. Radiation conditions are applied in the far-field (Linton & McIver
2001).

The PTOs are modelled as linear spring–damper mechanisms, defined by stiffness and
damping coefficients, respectively,

cPTO
(n) and bPTO

(n) for n = 1, 2, . . .N. (2.7a,b)

The damping coefficients are non-negative but the stiffness coefficients can be positive or
negative (Todalshaug et al. 2016; Kurniawan & Zhang 2018). The complex amplitude of
the vertical (heave) oscillations of WEC n is denoted by ξh

(n) exp(−iωt) (n = 1, 2, . . . ,N).
Linearised boundary conditions on the wetted surfaces of each WEC are given by

∂zφ = ω2

g
ξh
(n) for x(n)L ≤ x ≤ x(n)R and z = −L (2.8)

and

∂xφ = 0 for x = x(n)L , x(n)R and − L < z < 0, (2.9)

for n = 1, 2, . . . ,N, where x(n)L and x(n)R denote the left- and right-hand edges of WEC n,
respectively (figure 1).

For an incident plane wave with angular frequency ω, the heave amplitude ξh
(n) of

WEC n, where n = 1, 2, . . . ,N, is obtained from the equations of motion

[−ω2(M + a(ω))− iω(b(ω)+ bPTO
(n) )+ (c + cPTO

(n) )]ξ
h
(n)(ω) = F(n)(ω), (2.10)

given the excitation force F(n)(ω) on WEC n, which depends on the wave amplitudes
within an array (i.e. it accounts for WEC interactions). The heave excitation force arises
from the hydrodynamic pressure exerted on the underside of a fixed WEC, while the added
mass, a(ω), and radiation damping, b(ω), result from forced oscillations in heave, and are
proportional to the acceleration and velocity of the body, respectively (Linton & McIver
2001; Mei, Stiassnie & Yue 2005). Assuming a suitable static force component of the PTO,
the mass per unit breadth of a single WEC is M = 4100L2 kg m−3, and c is the hydrostatic
stiffness (Mei et al. 2005).
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The proportion of incident wave energy captured by the WEC-array, α(ω), can
be determined from the scattering coefficients of the array (reflection, R ∈ C, and
transmission, T ∈ C, for the array of heaving WECs), using the relation

α(ω) = 1 − |R(ω)|2 − |T(ω)|2. (2.11)

To achieve perfect absorption (α = 1) at some ω0 ∈ R+, the WEC-array must prevent
reflection and transmission of waves at ω0, implying

|R(ω0)|2 = 0 and |T(ω0)|2 = 0. (2.12a,b)

For a single WEC in isolation (i.e. an array with N = 1 WEC), the optimal PTO parameters
for maximum power capture at a specified resonance frequency, ω = ω0, can be derived
as

cPTO = ω2
0(M + a(ω0))− c and bPTO = b(ω0), (2.13a,b)

which gives α(ω0) = 0.5 for a rigid, axisymmetric, heaving buoy (Evans 1981; Falnes
2005). This can be interpreted as setting the stiffness coefficient to tune the natural WEC
resonance to the chosen frequency and the damping coefficient such that the radiation
cancels the maximum possible amount of diffracted energy.

Broadband absorption over the target frequency interval

ωα ≡ [ωlb, ωub] = [0.3, 0.65] rad s−1 (2.14)

is defined in terms of the mean absorption over the interval, α̂, such that

α̂ = 1
ωub − ωlb

∫ ωub

ωlb

(1 − |R(ω)|2 − |T(ω)|2)︸ ︷︷ ︸
α(ω)

dω. (2.15)

For the purposes of this study, near-perfect absorption is defined as α ≥ 0.990 at a single
frequency and α̂ ≥ 0.990 over the target interval, which covers two thirds of usable ocean
wave frequencies (Coe et al. 2021).

Parameter values broadly representative of CorPower Ocean’s C4 device are applied
to model the WEC-array (Alday, Raghavan & Lavidas 2023). Each WEC has width
2L = 10 m (Babarit 2013), and the water depth is h = 50 m (Liu et al. 2023), as is
typical of heaving buoy arrays. However, different dimensions and wavelengths could
equivalently be employed. Negative stiffness coefficients are used to decrease the natural
WEC-resonances in order to achieve resonance on the target interval. A negative stiffness
mechanism can broaden the resonance bandwidth of the WECs, and has been successfully
applied to tune the C4 devices for power capture over the target interval ωα (Todalshaug
et al. 2016; Kurniawan & Zhang 2018; Satymov et al. 2024).

Without loss of generality, the array is forced by an incident plane wave of amplitude
A = 1 m from the left of the domain. Based on the corresponding wavelengths (λ ∈
[142, 429] m), the steepness of the incident waves, ε, satisfies 0.0149 < ε < 0.042, where
ε = kA � 1 is required to operate in a linear regime (Ding & Ning 2022).

3. Solution method

3.1. Single cell problem
Unit cell n is defined as the subregionΩ(n) of length W = 2L + d, containing WEC n at its
centre. The unit cell itself is partitioned into three regions, with interfaces defined by the
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left (x(n)L ) and right (x(n)R ) edges of WEC n (figure 1). Without loss of generality, suppose
WEC n is centred at x = 0 so that the unit cell is defined on |x| ≤ W/2, with the left- and
right-hand edges of the WEC given by x(n)L = −L and x(n)R = L, respectively.

Separation of variables is used to solve for φ ≡ φ(n) on Ω(n) (using the code of Yiew
et al. (2016)), which is expressed as an eigenfunction expansion in each region (Linton
& McIver 2001). Dynamic and kinematic boundary conditions (ensuring continuity of
pressure and horizontal velocity) are applied at interfaces between the regions (x = ±L)
to determine the unknown coefficients of the expansions (Linton & McIver 2001), which
leads to a system of linear equations involving the amplitudes, denoted a±

m in Region 1 and
b±

m in Region 3 (m = 0, 1, . . .), as well as amplitudes in Region 2 that are not required for
subsequent analysis (see Appendix A). Truncating each of the eigenfunction expansions
at m = M for a sufficiently large M (M = 25 is used in computations presented, see
Appendix B), the wave fields on either side of WEC n are expressed as

φ(n)(x, z)

≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M∑

m=0
(a+

m exp(ikm(x + L))+ a−
m exp(−ikm(x + L)))

cosh(km(z + h))
cosh(kmh)

x < −L,

M∑
m=0

(b+
m exp(ikm(x − L))+ b−

m exp(−ikm(x − L)))
cosh(km(z + h))

cosh(kmh)
x > L.

(3.1)

The wavenumbers km are the roots k of the dispersion equation

gk tanh(kh) = ω2, (3.2)

where k0 is the positive, real root and km (m ≥ 1) are purely imaginary, in the upper
half of the complex plane and ordered in increasing magnitude. Thus, amplitudes with
superscripts +/− are related to wave modes that propagate (m = 0) or decay (m > 0)
rightwards/leftwards.

The scattering properties of WEC n (the heaving buoy plus PTO, see Appendix A)
are defined by (M + 1)× (M + 1) reflection and transmission matrices, R(n) and T (n),
respectively. These map the incoming waves on WEC n (a+

m and b−
m) to the outgoing waves

(a−
m and b+

m). The relationships can be expressed in terms of a scattering matrix, S(n), such
that [

a−
(n)

b+
(n)

]
=

[
R(n) T (n)
T (n) R(n)

] [
a+

(n)
b−

(n)

]
, where S(n) ≡

[
R(n) T (n)
T (n) R(n)

]
(3.3)

and the M + 1 column vectors

a±
(n) ≡

⎡⎢⎣a±
n,0
...

a±
n,M

⎤⎥⎦ and b±
(n) ≡

⎡⎢⎣b±
n,0
...

b±
n,M

⎤⎥⎦ , (3.4a,b)

contain the amplitudes, where additional subscripts have been included to specify that the
amplitudes belong to unit cell n. In general, the PTO parameters differ between the WECs
in the array, so that each of the WECs has a different reflection and transmission matrix.
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3.2. WEC array
Let the scattering matrix for WEC p to WEC q be

S( p,q) ≡
[

R−
( p,q) T −

( p,q)

T+
( p,q) R+

( p,q)

]
, (3.5)

which includes multiple scattering effects between the WECs. Its reflection and
transmission matrices are given by (Bennetts & Squire 2009)

R−
( p,q) = R−

( p,q−1) + T+
( p,q−1)[I − R−

(q)R
+
( p,q−1)]

−1R−
(q)T

−
( p,q−1), (3.6)

T−
( p,q) = T −

( p,q−1)[I − R−
(q)R

+
( p,q−1)]

−1T −
(q), (3.7)

R+
( p,q) = R+

(q)+T−
(q)[I − R−

(q)R
+
( p,q−1)]

−1R+
( p,q−1)T

+
(q), (3.8)

and T +
( p,q) = T+

(q)[I − R−
(q)R

+
( p,q−1)]

−1T +
( p,q−1), (3.9)

where I is the (M + 1)× (M + 1) identity matrix. A recursive algorithm (Bennetts &
Squire 2009) is used to calculate the reflection and transmission matrices, R±

(1,n) and
T±
(1,n), for n = 2, 3, . . . ,N, and initialised with S(1,1) = S(1) (3.3). Wave amplitudes

within the array (to the right of WEC n for n = 1, 2, . . . ,N − 1) are determined, based
on the incident wave amplitude, using a combination of the left-to-right and right-to-left
scattering matrices (Bennetts & Squire 2009), such that

a+
(n+1) = [I − R+

(1,n−1)R
−
(N,n)]

−1[T+
(1,n−1)a

+
(1) + R+

(1,n−1)T
−
(N,n)b

−
(N)], (3.10)

and b−
(n) = [I − R−

(N,n)R
+
(1,n−1)]

−1[R−
(N,n)T

+
(1,n−1)a

+
(1) + T−

(N,n)b
−
(N)]. (3.11)

3.3. Wide-spacing approximation
The wide-spacing approximation is used, in which evanescent modes (m ≥ 1) are
neglected in interdevice interactions (Linton & McIver 2001). Consequently, only the
reflection and transmission coefficients associated with propagating modes (m = 0) are
retained in scatterings relations (R and T are reduced to scalars in (3.3)–(3.11)), i.e. it is
assumed that

φ(n) ∼ cosh(k0(z + h))
cosh(k0h)

×
⎧⎨⎩a+

(n) exp(ik0(x −ΩL
(n)))+ a−

(n) exp(−ik0(x −ΩL
(n))) x → ΩL

(n),

b+
(n) exp(ik0(x −ΩR

(n)))+ b−
(n) exp(−ik0(x −ΩR

(n))) x → ΩR
(n),

(3.12)

where ΩL
(n) = (2n − 3)W/2 and ΩR

(n) = (2n − 1)W/2 specify the left- and right-hand
edges of Ω(n), respectively. Consequently, the far field (x → ±∞) can be obtained using
the 2 × 2 global scattering matrix, as

φ ∼ cosh(k0(z + h))
cosh(k0h)

×
{

exp(ik0x)+ R exp(−ik0x) x → −∞
T exp(ik0x) x → ∞,

(3.13)

where R and T are the reflection and transmission coefficients for the array of heaving
WECs, which can be used to calculate the absorption of the array (2.11). In the absence of
PTO damping, R and T satisfy the energy conservation identity |R|2 + |T|2 = 1.
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Figure 2. The amplitudes of three non-absorbing WECs (ω0 = 0.44 rad s−1) in a uniform array obtained
using the wide-spacing approximation (—) when kd ∈ [0.0372, 0.2024] and d/2L = 0.4, compared with the
amplitudes of (a) WEC 1, (b) WEC 2 and (c) WEC 3 obtained when including evanescent modes (· · · ) in
WEC-interaction calculations.
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Figure 3. The modulus of the surface elevation |ζ | for a uniform array of five WECs (ω0 = 0.44 rad s−1) is
shown on the (a) ω–x axis, with the corresponding WEC amplitudes overlaid on ω–z axes. The local wave field
closely resembles the Bloch waves on the corresponding unit cell in (b) the dispersion diagram, with the array
supporting propagation in passbands and preventing transmission in bandgaps.

Formally, the wide-spacing assumption requires kd  1 and d/2L  1 (Linton &
McIver 2001). For the problem considered, accurate solutions are obtained even when
these conditions are violated, as demonstrated using the WEC amplitudes,

ξn = (a+
(n) exp(ikd/2)+ b−

(n+1) exp(ikd/2))ξh
(n), (3.14)
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in figure 2, where a spacing of d = 4 m is applied to a uniform array of three WECs,
tuned to resonate at ω ≈ 0.44 rad s−1 (2.13a). (Additional justification is provided in
Appendix B.) This spacing is selected to separate resonances of individual WECs from
resonances driven by the spacing of WECs in the array (§§ 4–5).

4. Uniform arrays, Bloch waves and complex resonances

4.1. A uniform array of non-absorbing WECs
Figure 3(a) shows the surface elevation over a range of frequencies (broader than the
target power capture interval) for a uniform array of five non-absorbing (bPTO = 0),
identically tuned WECs (ω0 = 0.44 rad s−1 > ωlb, as described in § 3.3), with spacing
d = 4 m (W = 14 m). For frequencies below approximately ω = ω0, incident waves
propagate through the array (|ζ | ∈ [0.88, 1] m beyond WEC 5). Around the resonant
frequency, ω = ω0, there is a series of large resonant WEC responses (|ξn| up to 36 m).
The resonances mark the transition to the array prohibiting wave propagation, up to
approximately ω = 0.65 rad s−1 (|ζ | ≈ 0 m and |ξn| ≈ 0 m beyond WEC 2). Between
ω = 0.65 rad s−1 ≡ ωub and 0.82 rad s−1, there is an alternating pattern of narrow bands
of moderately large responses of the array (|ξn| up to 7.5 m) and small responses (near zero)
to the incident waves. The array then transitions back to prohibiting wave propagation up
to the highest frequency considered.

4.2. Bloch waves
The wave field in a given cell can be decomposed into rightward and leftward Bloch wave
modes, ψ+

(n) and ψ−
(n) (n = 1, 2, . . . ,N), respectively. They are such that

ψ±
(n)(x, 0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

v±
(n) exp(ik0(x −ΩL

(n)))

+v∓
(n) exp(−ik0(x −ΩL

(n))), for x ≤ x(n)L

exp(±iβW)(v±
(n) exp(ik0(x −ΩR

(n)))

+v∓
(n) exp(−ik0(x −ΩR

(n)))) for x ≥ x(n)R .

(4.1)

The Bloch wavenumber, β(n), and amplitudes, v±
(n), are calculated from the 2 × 2 transfer

matrix, P(n), which is defined such that (Porter & Porter 2003)[
b+
(n)

b−
(n)

]
= P(n)

[
a+
(n)

a−
(n)

]
where P(n) = 1

T(n)

[
T2
(n) − R2

(n) R(n)

−R(n) 1

]
. (4.2)

The transfer matrix is diagonalised as

P(n) =
[
v+
(n) v−

(n)

v−
(n) v+

(n)

][
μ(n) 0

0 μ−1
(n)

][
v+
(n) v−

(n)

v−
(n) v+

(n)

]−1

, (4.3)

so that the Bloch wavenumber is calculated from the eigenvalue of the transfer matrix,
β(n) = −i ln(μ(n))/W, and the amplitudes are the entries of the eigenvectors. Note the
symmetry of the rightward and leftward Bloch waves, which is due to the symmetry of the
unit cells.
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Broadband near-perfect power capture by an array of WECs

The band structure of the unit cell is visualised by plotting the real parts of the Bloch
wavenumbers against frequency. For the uniform array, all unit cells are identical, and so
the band structure of any unit cell is representative of the array. Passbands are defined
by real-valued Bloch wavenumbers, and indicate frequency ranges over which Bloch
waves propagate across the unit cell. Bandgaps are defined by complex-valued Bloch
wavenumbers (Re(β(n)) = 0 or π), and indicate frequency intervals over which Bloch
waves decay across the unit cell.

For the uniform array and frequency range considered in § 4.1, there are two passbands
and two bandgaps (figure 3b). The first passband corresponds to the low-frequency interval
over which the incident waves propagate through the array, plus the narrow interval of
resonances around ω0. The first bandgap is connected with the resonances of the individual
WECs and is often referred to as the local resonance bandgap. It starts just above the
resonances of the individual WECs, and corresponds to the lowest-frequency interval over
which there is no propagation through the array, i.e. its upper bound is ≈ωub. The second
passband covers the interval of alternating narrow bands of large and small responses. Over
this interval, waves propagate along the array but partially reflect at the ends of the array
and constructively or destructively interfere following rereflections. The second bandgap is
connected with the WEC spacing along the array and is referred to as the Bragg bandgap,
as it is created by Bragg resonance. It extends to the highest frequencies considered, and
also corresponds to an interval over which there is no propagation through the array.

4.3. Complex resonances
The modulus of the transmission coefficient squared for the array, |T|2, i.e. the proportion
of transmitted energy, also shows the band structure (figure 4b). Almost full transmission
(|T|2 ≈ 1) occurs in the first passband at frequencies up to ω ≈ 0.3 rad s−1 ≡ ωlb. There
is a sequence of increasingly sharp, narrow peaks and troughs at the high-frequency end of
the first passband, just below the resonant frequency, ω = ω0. Transmission is zero in both
bandgaps and oscillates in the second passband that separates the bandgaps. The modulus
of the reflection coefficient squared, |R|2, shows the band structure in a complementary
manner, i.e. near zero reflection or oscillations in the passbands and full reflection in
the bandgaps, due to the energy conservation identity (2.11) for the non-absorbing array
(α ≡ 0).

Transmission oscillations in the passbands are governed by the structure of the
transmission coefficient in the complex frequency plane (ω ∈ C; figure 4a). Each peak
in transmission on the real frequency axis is associated with a pole in the transmission
coefficient in the lower half of the complex plane, which are known as complex resonances
(Romero-García et al. 2016; Meylan & Fitzgerald 2018; De Chowdhury, Bennetts &
Manasseh 2023). The closer the complex resonances are to the real frequency axis, the
sharper the transmission peaks on the real axis are. Each complex resonance corresponding
to a peak in the first passband is associated with a specific WEC in the array and labelled
accordingly. The association indicates that the location of the complex resonance is
sensitive to variations in the properties of the WEC (not shown), although all of complex
resonances move to a certain degree when the properties of any WEC in the array or the
array spacing vary. The resonance associated with WEC 5 is outside the axes limits.

The complex resonances associated with transmission peaks in the second passband are
created by wave interference along the array (they have no analogue in the single body
problem). Thus, their locations depend predominantly on the WEC spacing – for example,
a larger spacing would push them to lower frequencies. There are four overlapping zeros
in transmission on the real-frequency axis very close to the resonant frequency, ω = ω0,
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Figure 4. (a) The structure of transmission coefficient (T ∈ C) as a function of ω ∈ C for a uniform array
of five WECs with bPTO = 0, visualised by colour-coding the phase (arg(T)) to form a phase portrait (Wegert
2012), where the magnitude of the phase is represented by hue. Poles (WEC-resonances; marked with an X) and
zeros are identified by rapid phase changes and distinguished by the ordering of colours in the anticlockwise
direction (Wegert 2012). A white • marks the location where the complex zeros coalesce on Im(ω) = 0 at
ω ≈ 0.45 rad s−1, resulting in (b) |T|2 = 0 and (c) |R|2 = 1 for ω ∈ R+, and the first bandgap in figure 3(b).
Resonances in the complex plane produce a local maximum of |T|2 and a local minimum of |R|2 for ω ∈ R+.
The real-valued WEC-resonance is denoted ω0.

and at the point where the Bloch wavenumber jumps between branches (shown by the
discontinuity in Re(β), figure 3b).

5. Grading the resonant properties of WECs

5.1. Rainbow reflection
Consider the uniform array of five non-absorbing WECs (as in § 4) but in which the
stiffness coefficients are graded with distance along the array, so that the WEC-resonant
frequencies increase from right to left (from WEC 5 to WEC 1). The grading has the effect
of frequency upshifting the first bandgaps (in the unit cells, from right to left), as well
as narrowing their frequency ranges, as they are bounded above by the second (Bragg)
bandgaps, which are insensitive to the WEC-resonances (figure 5a–c). The grading is
sufficiently gradual that the first bandgaps for adjacent unit cells overlap (the resonant
frequency for WEC n lies in the bandgap associated with WEC (n + 1)). This creates a
wide effective bandgap for the array that covers the target interval, i.e. array transmission is
approximately zero (|T|2 ≈ 0 and |R|2 ≈ 1) for ω ∈ [0.3, 0.8] rad s−1 ⊃ ωα . The effective
bandgap manifests as separation of the complex zeros in the phase portrait of T(ω) along
the real frequency axis over the target frequency range (figure 6a).
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Figure 5. (a–c) Band diagrams of the Bloch waves for an array with W = 14 m (d = 4 m and L = 5 m),
for increasing cPTO values and bPTO = 0. Real-valued WEC-resonances ω0 ∈ R are marked by a red x,
where (a) ω0 = 0.31 rad s−1, (b) ω0 = 0.48 rad s−1, (c) ω0 = 0.72 rad s−1. Increasing cPTO shifts the first
bandgap (shaded green) to higher frequencies, and reduces the interval of the second passband. The second
bandgap (grey) is caused by Bragg resonance. Grading the WEC-resonances in a finite array of five WECs
(first, third and fifth WECs correspond to panels (c–a), respectively) forms (d) an effective bandgap on
ω ∈ [0.3, 0.8] rad s−1, where |R|2 ≈ 1 and |T|2 ≈ 0.
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Figure 6. Phase portraits of (a) T(ω) and (b) R(ω) are shown as a function of ω ∈ C for the graded array in
figure 5. Complex WEC-resonances (X) can be identified from (a) or (b). White circles (o) denote the complex
zeros in R and T , and the corresponding |R(ω)|2 and |T(ω)|2 for ω ∈ R are superimposed. Vertical dotted lines
demarcate the effective bandgap induced by the grading (figure 5), and red xs correspond to the real-valued
WEC-resonance of each WEC. The complex resonances preceding the Bragg bandgap are marked by � in (a),
with the corresponding pole–zero pairs in (b) not visible at the current scale.

The WEC-resonances are graded from high-to-low from left-to-right to create the
rainbow reflection effect, such that incident waves at frequencies in the target range
penetrate into the array, with penetration distances that depend on the wave frequency.
(Grading low-to-high would prevent propagation into the array.) For a given ω ∈ ωα , an
incident wave will propagate into the graded array until reaching a cutoff point, which
is approximately where the local Bloch wave has zero group velocity, and occurs in the
unit cell at which the frequency lies in the corresponding bandgap. Put simply, the Bloch
wave propagates until it reaches a WEC with a comparable resonant frequency. The wave
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Figure 7. Phase portrait of R(ω), when ω ∈ C, for a single WEC in a graded array (of five WECs). When
bPTO = 0, (a) the complex zero (white circle) is located above Im(ω) = 0, and the complex WEC-resonance
(X) below Im(ω) = 0. Increasing cPTO (b) moves the WEC-resonance to the right, tuning the WEC to a
higher frequency. Positive bPTO (c) moves the complex zero towards Im(ω) = 0. Perfect absorption (d) is
achieved when bPTO∗ > 0 places the complex zero on Im(ω) = 0. Simultaneously, a near-zero minimum of |R|2
is obtained for ω ∈ R (overlaid).

is amplified just before the cutoff point due to the slow-down of wave energy transport,
which creates a near-resonant (i.e. finite) response.

The near-resonances are connected with complex resonances in the reflection coefficient
in the lower-half complex frequency plane (black crosses in figure 6b), which have real
parts approximately covering the target interval. The near full reflection over the real
frequency interval creates near symmetry in the real frequency axis of the reflection phase
and reciprocity of the modulus, so that complex zeros of reflection occur at approximately
the complex conjugates of the complex resonant frequencies (figure 7a; Bennetts &
Meylan (2021)). (Note the symmetry is weakest for the WEC 4 pole–zero pair, where full
reflection is not achieved.) Manipulating the properties of the pole–zero pairs in complex
frequency space provides a novel means to analyse and control the array response based
on the resonant properties of individual WECs. The PTO stiffness is used to influence the
locations of real parts of the pole–zero pairs (figure 7b). However, interactions between
the phase structures supported by the pole–zero pairs (i.e. their bandwidths) prevent full
control. The location of the pole–zero pair associated with WEC 1 is restricted towards
high frequencies by pole–zero pairs related to complex resonances in the second passband.

5.2. Rainbow absorption
In complex frequency space, adding PTO damping to WEC n moves the corresponding
complex zero of reflection towards the real axis and the pole away from it (figure 7c).
When the pole–zero pairs are sufficiently separated, a value of the PTO damping can be
found such that the complex zero of reflection lies on the real frequency axis (figure 7d).
This approach is used as a basis to create rainbow absorption, i.e. high absorption over
a wide frequency range, where the absorption peaks are spatially separated according to
frequency.

The rainbow absorption approach involves adding the WECs to the array one at a time,
starting with the rightmost WEC (WEC 5 in this example) and moving leftwards, so that
the number of WECs in the array increases with each iteration. The rightmost WEC is
used only to create a zero in transmission close to the low-frequency end of the target
frequency interval, rather than as an absorbing device (figure 8a). As each WEC is added
to the array, its PTO stiffness is tuned to a chosen frequency (noting that pole–zero pair
interactions mean the chosen frequency is not arbitrary) and then its damping is tuned to
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Figure 8. The transmission (–, blue) and reflection (–, red) of the array versus frequency as (a) WEC 5,
(b) WEC 4, (c) WEC 3, (d) WEC 2 and (e) WEC 1 are added to the array (from right to left, with W = 14 m)
and tuned. The location of |R|2 ≈ 0 associated with each WEC is denoted ωn, and corresponds to the location
of complex zeros (white circles) of the absorbing WECs in the phase portrait of R(ω) for ω ∈ C for the graded
array shown in ( f ). The non-absorbing WEC 5 is denoted ωlow. Complex WEC-resonances are denoted X and
open circles denote the zeros when bPTO

(n) = 0 (n = 1, 2, . . . ,N).

create a zero in reflection at a nearby (real) frequency. The tuning of the additional WEC
PTO tends to slightly frequency-downshift the existing pole–zero pairs and displace the
complex zeros from the real frequency axis. Thus, the PTOs of the existing WECs are
simultaneously retuned increasingly far apart in the complex plane as the WEC-resonance
frequency and corresponding resonance bandwidth increase (Romero-García et al. 2016),
which forces the reflection zeros to become spaced increasingly far apart.

The process is accomplished manually for WEC 4 down to WEC 2 (figure 8b–d).
However, it becomes increasingly challenging to separate the pole–zero pairs on the
restricted interval (bounded above by the complex resonances associated with the second
passband). The increasing distance between each pole–zero pair as frequency increases
is responsible for increasing bandwidths around the zeros and the need for increasing
separation between the zeros (e.g. figure 8e). Only four near zeros of reflection (|R|2 ≈ 0)
are found manually after WEC 1 is added. This solution is used as an initial guess in an
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optimisation algorithm (the sequential quadratic programming algorithm in the MATLAB
function fmincon) with the objective

minimise
∫ ωub

ωlb

|R(ω)|2 dω with respect to cPTO
(n) and bPTO

(n) (n = 1, 2, . . . ,N), (5.1)

to obtain four zeros in reflection (figure 8e).
The above approach yields reflection zeros at N − 1 = 4 real frequencies, which

corresponds to four complex zeros of reflection being translated to the real frequency axis
by adding PTO damping (figure 8f ). The reflected energy remains small between the zeros
(|R|2 < 0.003), such that near-perfect broadband absorption of the incident wave energy is
almost achieved over the target interval (α̂ = 0.984). A small amount of transmitted energy
away from its low-frequency zero prevents near-perfect absorption (

∫ |T(ω)|2 dω = 0.014
on ωα).

6. Near-perfect broadband absorption

Both |R|2 and |T|2 should be minimised simultaneously over the target frequency interval
(α̂ maximised) to achieve near-perfect, broadband power capture. Thus, optimisation is
performed with the objective to

minimise
∫ ωub

ωlb

{|R(ω)|2 + |T(ω)|2} dω with respect to cPTO
(n) and bPTO

(n) (6.1)

for n = 1, . . . ,N. The aim is to use the theory for rainbow absorption (§§ 4–5) to
determine an initialisation strategy and constraints on the optimisation parameters that
gives an efficient automated algorithm for near-perfect absorption.

6.1. Generic algorithm
To cover the target power capture interval, ωα = [ωlb, ωub], the stiffness coefficients of
the first and last WECs in the array (cPTO

(1) and cPTO
(N) , respectively) are initialised so that the

corresponding resonances (ω(1)0 and ω(N)0 ) coincide with the upper and lower bounds of the
target interval (ωub and ωlb). The WEC N resonance induces a zero in transmission at a
frequency just above the lower bound (ωlb, as in figure 8a), and the stiffness coefficient of
the penultimate WEC (cPTO

(N−1)) is initialised to place its resonance (ω(N−1)
0 ) at the frequency

of the transmission zero. The remaining stiffness coefficients are initialised to space the
resonances of WEC 2 to WEC (N − 2) evenly between ω(N−1)

0 and ω(1)0 , such that

ω
(N)
0 < ω

(N−1)
0 < · · · < ω

(1)
0 . (6.2)

The damping coefficients bPTO
(1) , bPTO

(2) , . . . , bPTO
(N−1) are initialised at the optimal values for

the corresponding WECs in isolation (2.13b). The final WEC is non-absorbing (bPTO
(N) = 0).

To account for the leftward movement of WEC-resonances due to damping
and WEC interactions on the restricted interval, the stiffness coefficients cPTO

(n)
(n = 2, 3, . . . , (N − 1)) are bounded below by their initial values and above by the initial
value of the preceding WEC in the array (i.e. the initial value of cPTO

(n−1)). The upper
bound for the stiffness coefficient of the first WEC (cPTO

(1) ) is above the target interval
and not an initial value. For arrays of N < 7 WECs, the upper bound is set to constrain
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Broadband near-perfect power capture by an array of WECs

WEC n 1 2 3 4 5

ω
(n)
0 rad s−1 0.789 0.655 0.482 0.353 0.299

cPTO
(n) kN m−2 −10.403 −36.752 −64.684 −81.028 −86.475

bPTO
(n) kN m−2 s−1 29.582 50.276 40.221 24.137 0
α̂(n) on ωα 0.255 0.422 0.255 0.0676 0

Table 1. The PTO parameters and resulting WEC-resonance of each WEC in the graded array of five WECs
shown in figure 8.

WEC n 1 2 3 4 5

ω
(n)
0 rad s−1 0.722 0.563 0.433 0.340 0.310

cPTO
(n) kN m−2 −24.133 −52.264 −71.392 −82.453 −85.470

bPTO
(n) kN m−2 s−1 39.046 39.393 28.008 14.390 0

α̂(n) on ωα 0.443 0.372 0.154 0.0304 0

Table 2. Optimised PTO parameters for broadband absorption by the (generic) graded array of five WECs in
figure 9(b).

cPTO
(1) to a frequency interval length comparable to the constraints on cPTO

(2) , provided

ω
(1)
0 < 0.79 rad s−1 (i.e. the pole–zero pair remains on ωα). When N ≥ 7, the upper bound

corresponds to ω(1)0 = 0.72 rad s−1, which is approximately the minimum WEC-resonance
required to maintain a bandgap at ωub (depending on pole–zero pair interactions). The
damping coefficients bPTO

(n) (n = 1, 2, . . . , (N − 1)) are constrained below such that they
do not become negative (i.e. do not add energy to the system) and above such that they
do not exceed twice the initial value, which does not limit the optimisation in practice (in
tests conducted).

The generic algorithm creates near-perfect broadband absorption from an array of five
WECs (α̂ = 0.990), which slightly improves on the absorption given by the graded array
of five WECs with zeros in reflection (α̂ = 0.984; § 5.2). In comparison with the array
with zeros in reflection (table 1), the WEC-resonances are graded more gradually, over a
narrower frequency range (table 2). This slightly increases the absorption over the majority
of the target power capture interval (figure 9a). In complex-frequency space, the zeros in
reflection are slightly displaced from the real frequency axis (figure 9b) to balance reduced
transmission. However, the absorption is lower than the array with zeros in reflection
towards the ends of the target frequency interval, particularly at the high frequency end,
which is influenced by the complex zeros corresponding to the second passband.

The grading of WEC-resonances partially controls the lower bound of the second
passband. By grading the array more gradually to reduce transmission, this lower bound
is downshifted, causing reflection and transmission to rise near ωub which decreases
absorption. Increasing the number of WECs (e.g. to N = 10) improves the absorption
at the high-frequency end of the target interval (and more generally across the interval,
figure 9a), by facilitating a gradual grading across the entire target interval, which
simultaneously reduces the width of the second passband, and the transmission over ωα .
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Figure 9. The absorption of the optimised, graded array (—) of five WECs is shown in (a) with the
corresponding phase portrait of R(ω) for ω ∈ C in (b). The absorption of the array in figure 8( f ) is overlaid
(· · · ) in (a), with the associated complex zeros in reflection marked by white os in (b). Absorption improves
over the majority of ωα as a result of a more gradual grading in the generic solution (reduces |T|2), which is
facilitated by increasing the number of WECs to N = 10 in (a), using the array of N = 10 WECs in figure 10(b).

The generic algorithm becomes prohibitively expensive as the number of WECs
increases. For N = 6, the algorithm takes 8 h on an Intel(R) Xeon(R) CPU E5-2699
v3 @ 2.30 GHz with 251 GB RAM. Moreover, MATLAB exceeds the default tolerated
number of function evaluations for N ≥ 7. Consequently, an approach was developed for
N ≥ 7, in which approximate solutions were obtained using a coarse frequency resolution
(ω = 0.01257 rad s−1) after the tolerated number of function evaluations, and then used as
initial guesses in a second application of the algorithm with a higher frequency resolution
(ω = 0.006283 rad s−1). In the second application, the stiffness coefficient constraints
are updated to be bounded below by the initial guess, and above by the preceding WEC
resonance. Here, WEC 1 is constrained such that ω(1)0 ∈ [0.72, 0.78] rad s−1. The array of
N = 10 WECs requires three applications of the algorithm.

6.2. Hybrid algorithm
The generic algorithm is adapted into a hybrid algorithm that incorporates more
knowledge gained from the analysis of the graded array (§ 5.2) to accelerate the
optimisation process. To cater for the leftward shift of the WEC-resonances and ensure
absorption at ωub, WEC 1 is initialised and constrained such that its real-valued
resonance lies above the power capture interval, with cPTO

(1) constrained around ω ≈
0.75 rad s−1. Similarly, cPTO

(N−1) is constrained to a narrow interval above ωlb, around
ω ≈ 0.33 rad s−1. Further, the initial damping constants for the first and second last
WECs in the array (WEC 1 and WEC (N − 1)) are set lower than optimal values for
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Broadband near-perfect power capture by an array of WECs

WEC n 1 2 3 4 5

ω
(n)
0 rad s−1 0.741 0.558 0.423 0.331 0.308

cPTO
(n) kN m−2 −20.111 −52.870 −72.269 −82.928 −85.160

bPTO
(n) kN m−2 s−1 44.060 39.540 26.762 13.407 0

α̂(n) on ωα 0.469 0.361 0.143 0.0264 0

Table 3. Optimised PTO parameters for the graded array of five WECs in figure 11 when surge and pitch are
released as uncontrolled degrees of freedom.

the WECs in isolation to provide greater control over the location of pole–zero pairs of
reflection and transmission in complex frequency space, i.e. consistent with observations
in table 1. The stiffness and damping coefficients, cPTO

(n) (n = 2, . . . , (N − 2)) and bPTO
(n)

(n = 1, 2, . . . ,N), respectively, are constrained analogously to the generic algorithm, with
the exception of the upper bound for WEC 2, which is constrained above by the lower
constraint bound of WEC 1.

The hybrid algorithm gives almost identical broadband absorption to the generic
algorithm for N ≥ 5 (figure 10a). It does so at approximately half the runtime of the
generic algorithm when N = 6. The algorithm was reapplied (as in § 6.1) for N = 10,
with the constraints held fixed. The differences between the algorithms are manifest in the
structure of the reflection coefficient in complex frequency space, for which the generic
algorithm stacks the pole–zero pairs at low frequencies (figure 10b), whereas the hybrid
algorithm keeps them separated (figure 10c). The increased separation allows for greater
control over the location of pole–zero pairs, as evidenced by additional near-zeros in
reflection in the hybrid solution. A pole–zero pair associated with an absorbing WEC is
pushed beyond the axes limits in both algorithms as a result of interactions on the restricted
interval.

6.3. Multiple degrees of freedom
Allowing the buoys to surge and pitch (as non-absorbing degrees of freedom), as well as
heave (the absorbing degree of freedom), has little impact on the near-perfect, broadband
absorption achieved by the optimised arrays. For example, the average absorption of the
array of five WECs produced by the generic algorithm (table 2) decreases only from
α̂ = 0.990 to α̂ = 0.988 when the surge and pitch motions are released (figure 11).
Reoptimising the PTO parameters for heave motion for the problem including surge and
pitch (starting from the optimised solution for heave only) brings the average absorption
back to α̂ = 0.990. The optimal PTO parameters for the multiple-degrees-of-freedom case
(table 3) differ from the single-degree-of-freedom case (table 2) by only 5 %, on average.
Small differences for the absorption versus frequency are visible for the two optimised
arrays (figure 11).

6.4. Ocean wave spectra
The JONSWAP ( Joint North Sea Wave Project (Hasselmann et al. 1973)) spectrum is
commonly used to model realistic (irregular, random) sea states (Chakrabarti 2005). The
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Figure 10. The average absorption on ωα (a) increases with the number of WECs in both algorithms.
Constraining the PTO parameters based on problem knowledge in the hybrid algorithm reduces run time and
produces almost identical absorption (· · · ) to the generic algorithm (—). However, the array properties differ,
as demonstrated for an array of 10 WECs using the phase portraits of R(ω) for ω ∈ C corresponding to the
solution of the generic (b), and hybrid (c) algorithms, respectively. Pole–zero pairs are more separated in (c)
allowing for more near-zeros in reflection to be obtained compared with (b). In both algorithms, the pole–zero
pair of an absorbing WEC is pushed beyond axes limits (WEC 10 lies below the axes limits).

JONSWAP spectrum is defined by the spectral density function

S(ω) = 0.0081g2

ω5 exp(−1.25(ωp/ω)
4)γ r where r = exp(−(ω − ωp)

2/2σ 2ω2
p) (6.3)

and the spectral width is

σ =
{

0.007 ω < ωp,

0.009 ω ≥ ωp.
(6.4)

The peak enhancement factor γ characterises the sharpness of the spectrum around the
peak frequency ωp = 2π/Tp (peak period Tp, with maximum energy in the spectrum).
Smaller values are indicative of broader banded sea states, with γ ≤ 2.4 generally suited
to coastal regions (Mazzaretto, Menéndez & Lobeto 2022).

Let the JONSWAP spectrum be approximated by a finite sum of monochromatic
waves (Cruz 2008), at frequencies ω0 = 0.22 rad s−1, ω1 = ω0 +�ω, . . . , ω200 =
ω0 + 200�ω = 1.26 rad s−1 (�ω = 0.0052), then the corresponding absorption of the
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Broadband near-perfect power capture by an array of WECs
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Heave only

Surge and pitch released

Optimal PTO for heave, given surge and pitch

0.45

ω  (rad s–1)
0.50 0.55 0.60 0.65

0.95

0.97α
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Figure 11. Releasing surge and pitch (· · · ) in the optimal generic solution (–) for the array of N = 5 WECs
in table 2 reduces the average absorption by 0.0017 (α̂ = 0.988). Reoptimising the solution to account for the
uncontrolled surge and pitch motions (-•-) over the target interval results in an average absorption of α̂ = 0.990.

spectrum is defined as

αs(ωi) =
200∑
i=0

α(ωi)|A(ωi)|2 where A(ωi) =
√

2S(ωi)�ω. (6.5)

The proportion of the spectrum absorbed is

α̂s =
∫
αs(ω)dω∫ |A(ω)|2 dω

. (6.6)

The optimised array of five WECs (generic algorithm, table 2) captures α̂s = 0.95 of
the incident energy in a JONSWAP spectrum with a narrow-banded sea state (γ = 3.3)
and a peak period Tp = 17 s, as the spectral peak lies within the target power capture
interval (figure 12a). The array still captures over α̂s > 0.75 of the incident energy when
the spectral peak is moved close to the upper boundary of the target interval (Tp = 10 s,
figure 12a). The array captures over 85 % of the incident energy for peak periods of
approximately 11–20 s. For a broader sea state (γ = 1.54) this Tp-interval is shifted to
12–21 s, and the peak absorption is reduced slightly to α̂s = 0.936 at Tp = 17 s.

7. Absorption of Bloch modes in time domain

An incident wave packet of unit amplitude in the time domain is specified via the Fourier
transform of its ocean surface displacement, η(x, t). The Fourier transform maps between
the time and frequency domains and is expressed in terms of wavenumber, k(ω), as

F{η(x, 0)} ≡ f̂ (k) = 1

σ
√

2π
exp(−(k − k0)

2/2σ 2), (7.1)

where k0 is the prescribed central wavenumber and σ is the prescribed packet width
(in wavenumber space). The response of the WECs and the free surface elevation are
calculated from the frequency domain solutions, as, respectively,

Ξn(t) = Re
{

1
π

∫ ∞

0
f̂ (k)ξn(k) exp(−iω(k)t) dk

}
for n = 1, 2, . . . ,N, (7.2)

and

η(x, t) = Re
{

1
π

∫ ∞

0
f̂ (k)ζ(x : k) exp(−iω(k)t) dk

}
, (7.3)

where the dependencies of frequency domain quantities on wavenumber are made explicit.
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Figure 12. The absorption of spectra (γ = 3.3) with peak periods located in ωα is shown in (a) for the graded
array of five WECs in table 2. The proportion of spectra captured by the array is shown as a function of peak
period in (b) for a constant significant wave height of 1 m. Absorption decreases as the peak period shifts
farther from the targeted interval and the energy of the spectrum is located outside the designed frequency
range of the array. On average, α̂s > 0.85 (· · · ) on ωα for both γ = 1.54 and γ = 3.3.

In the frequency domain, the wave field in each unit cell is decomposed into the
rightward and leftward Bloch modes, by writing

φ(n)(x, z : k) ≈ w+
(n)(k)ψ

+
(n)(x, z : k)+ w−

(n)(k)ψ
−
(n)(x, z : k) for n = 1, . . . ,N, (7.4)

where the weights w±
(n) (n = 1, . . . ,N) are calculated as[

w+
(n)

w−
(n)

]
=

[
v+
(n) v−

(n)
v−
(n) v+

(n)

]−1 [
a+
(n)

a−
(n)

]
. (7.5)

Similarly, the free surface elevation and heave amplitudes are decomposed as

ζ(x : k) = w+
(n)(k)ψ

+
(n)(x, 0 : k)+ w−

(n)(k)ψ
−
(n)(x, 0 : k) for ΩL

(1) ≤ x ≤ ΩR
(N), (7.6)

and
ξn(k) = w+

(n)(k)γ
+
(n)(k)+ w−

(n)(k)γ
−
(n)(k) for n = 1, . . . ,N, (7.7)

where

γ±
(n) = (v±

(n) exp(ik0(x −ΩL
(n)))+ exp(±iβW)v∓

(n) exp(−ik0(x −ΩR
(n))))ξ

h
(n). (7.8)

Equivalent decompositions of the surface elevation and heave displacements are made in
the time domain, with

η(x, t) = Ψ+
n (x, t)+ Ψ−

n (x, t) for ΩL
(n) ≤ x ≤ ΩR

(n), (7.9)

and
Ξn(t) = Ξ+

n (t)+Ξ−
n (t), (7.10)
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where

Ψ±
n (x, t) = Re

{
1
π

∫ ∞

0
f̂ (k)w±

(n)(k)ψ
±
(n)(x, 0 : k) exp(−iω(k)t) dk

}
(7.11)

and

Ξ±
n (t) = Re

{
1
π

∫ ∞

0
f̂ (k)w±

(n)(k)γ
±
(n) exp(−iω(k)t) dk

}
(7.12)

for n = 1, 2, . . . ,N. Note that the rightward and leftward Bloch modes are not continuous
at the interfaces between the unit cells (only their sum is continuous).

As an example, consider the case of the optimised array of N = 5 WECs (table 2),
which gives near-perfect broadband absorption over the target interval (α̂ = 0.990).
The spatiotemporal responses to two separate incident wave packets are shown, where
the packets are centred around a wavenumber at the resonant frequency of WEC 2
(k0 = 0.03441, figure 13) and WEC 4 (k0 = 0.01703, figure 14). Both have a packet
width of σ = 0.002673 m−1, so that the packet centred at WEC 2 covers the resonant
frequencies of WECs 1–3, and the packet centred at WEC 4 covers WECs 2–5. The
total responses are shown (figures 13a,b and 14a,b), as well as their decompositions
into rightward and leftward Bloch modes (figures 13c,d and 14c,d, and figures 13e, f and
14e, f, respectively). The responses are shown for the non-absorbing array (bPTO

(n) = 0 for
n = 1, 2, . . . , 5, figures 13a,c,e and 14a,c,e), as well as the absorbing array (figures 13b,d, f
and 14b,d, f ). (The artificial periodicity introduced via the discrete implementation of the
Fourier transform is ≈40 min, which is much greater than the ≈3 min duration of the
responses shown.)

For the non-absorbing array, the incident wave packets gradually reduce in amplitude
as they propagate through the array due to a series of partial reflections by the WECs
(figures 13a and 14a). There is a more abrupt cutoff after the WECs corresponding to
the central wavenumbers of the incident packets (WEC 2 in figure 13a and WEC 4 in
figure 14a), such that the amplitudes reduce to ≈20 % of their incident values. The overall
reflection is indicated by the durations of the wave signals decreasing with distance into the
array (up to the cutoffs). The incident and reflected packets are isolated from one another
by the decomposition into Bloch modes, such that the incident wave packets propagate
through the array in the form of rightward Bloch modes (figures 13c and 14c) and are
reflected back out of the array in the form of leftward Bloch modes (figures 13e and 14e).

The incident wave packets propagate similar distances into the absorbing arrays
(figures 13b and 14b), as their non-absorbing counterparts. However, there is almost no
reflected wave packet generated, as indicated by similar durations of the wave signal
along the array (up to the cutoffs), and the near-resonant WEC responses are reduced
by 30 %–40 % compared with the non-absorbing arrays. Thus, absorption is the cause of
reductions in the amplitude of the incident packet. The decomposition into Bloch modes
gives further evidence of the absence of reflection and dominance of absorption, with the
rightward Bloch modes indistinguishable from the total wave fields (figures 13d and 14d)
and virtually no leftward Bloch modes excited (figures 13f and 14f ).

8. Conclusions and discussion

Arrays of heaving point-absorber WECs have been designed to achieve near-perfect,
broadband wave energy absorption, using 2-D linear potential-flow theory. The WECs
consisted of floating buoys plus spring–damper PTOs, and used parameters inspired
by CorPower Ocean’s C4 device. Broadband absorption was demonstrated in both the
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Figure 13. The spatiotemporal behaviour of the non-absorbing (a,c,e) and absorbing arrays (b,d, f ), are shown
in (a,b), respectively, when forced by a wave packet centred at k0 = 0.03441. The total wave fields are
decomposed into rightward Bloch modes in (c,d), and leftward Bloch modes in (e, f ), respectively. The WEC
displacements are overlaid on z–t axes at the x-location of WECs in the x–t domain. In the non-absorbing array,
the rightward Bloch mode cuts off at WEC 2 (c). The leftward mode (e) then drives almost total reflection
of frequencies above the cutoff. In the absorbing array, the total wave field (b) and WEC displacements are
dominated by the rightward Bloch mode (d), with little excitement of the leftward Bloch mode ( f ) through the
absorption of incident energy.
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Figure 14. The spatiotemporal behaviour of the non-absorbing (a,c,e) and absorbing arrays (b,d, f ) when
forced by a wave packet centred at k0 = 0.01703. The total wave fields are decomposed into rightward Bloch
modes in (c,d), and leftward Bloch modes in (e, f ), respectively. The WEC displacements are overlaid on z–t
axes at the x-location of WECs in the x–t domain. The total wave field (a) is dominated by the rightward Bloch
mode (c) in the non-absorbing array before the cut off at WEC 4 is reached. The leftward mode (e) drives
high reflection above the cutoff. With PTO damping, the total wave field (b) and WEC displacements in the
absorbing array are governed predominantly by the rightward Bloch mode (d), with little excitement of the
leftward Bloch mode ( f ), and thus, near-zero reflection.
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frequency and time domains over a typical frequency interval for power capture (equivalent
to a wave period interval ≈10–20 s) using time-independent PTO parameters. In particular,
an array of only five heaving buoy type WECs was shown to capture 99 % of the incident
wave energy over the target interval. The array performance was analysed for irregular sea
states, and near-perfect broadband absorption was also demonstrated when surge and pitch
motions were released.

The approach to designing near-perfect broadband absorption was based on theories for
graded arrays. From an underlying uniform array of non-absorbing WECs, the rainbow
reflection effect was generated by grading the PTO stiffness coefficients to prohibit
transmission of wave frequency bands at spatially controlled locations within the array,
thus producing a wide effective bandgap over the targeted frequency range. The approach
to this first stage was based on decomposing the local wave fields into Bloch wave
modes, and requires the WEC-resonances to decrease in the direction of the incident
wave. Rainbow absorption was then created by adding PTO damping to capture the
reflected energy by manipulating the associated complex zeros over the targeted interval.
This second stage used analysis of the reflection coefficient in complex-frequency space,
and control of the pole–zero pair locations (via the PTO parameters) for zero reflection
at discrete frequencies. A rainbow absorbing array of five WECs was presented, which
gave high broadband absorption (>98 % over the target frequency interval), although
near-perfect absorption was prohibited by small amounts of transmission. The rainbow
absorbing theory was used to inform algorithms that minimise the sum of the reflected and
transmitted energies to generate near-perfect broadband absorption. An algorithm in which
the initialisation incorporates knowledge about the manual process to move complex zeros
to the real-frequency axis was found to create a far more efficient optimisation algorithm.

The high-frequency end of the target power capture interval is the most difficult to
control as the cluster of pole–zero pairs close to the real frequency axis just above the
target frequency interval (related to the second passband) force spikes in transmission
and reflection, hence, lowering absorption. Near-perfect absorption at the high-frequency
end of the target power capture requires tuning a sufficient number of WECs to high
frequencies, although this increases the difficulty of separating the complex zeros close
to the real frequency axis without them interfering with one another. Pole–zero pairs
had to be forced towards the upper bound by adjusting the constraints and initialisations
in the optimisation algorithms. This issue does not seem to have been encountered in
previous designs of rainbow absorbing arrays (Jiménez et al. 2017; Wilks et al. 2022),
due to near total reflection above the target intervals, and more weakly coupled systems
(Romero-García et al. 2016).

The distance between WECs (i.e. the widths of the unit cells) can be used to control the
separation of the pole–zero pairs corresponding to the first and second passbands, such that
shorter WEC spacing gives greater separation. A spacing similar to the WEC dimensions
(d/L = 0.8) was chosen to give a reasonable separation between the passbands/pole–zero
pairs. A shorter spacing is unlikely to be feasible in applications. From a different
perspective, using a longer WEC separation would have the benefit of compressing the
second passband and bringing the second bandgap (due to Bragg resonance) to lower
frequencies, such that it could be used to extend the target power capture interval to
higher frequencies. Thus, the target interval would be covered by the first bandgap (due to
local/WEC resonances) and the second bandgap (due to Bragg resonance). The combined
bandgap (in the non-absorbing case) is similar to the super bandgap idea being developed
in vibroacoustic systems (Guo et al. 2020; Cleante et al. 2022). However, the second
bandgap/pole–zero pairs will occupy the target interval and cause absorption to drop
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over a frequency interval, such that near-perfect absorption would be more challenging
to achieve.

The broadband extraction of wave energy demonstrated by WEC-arrays in this study
could help protect coastlines against extreme events (e.g. Ozkan, Mayo & Passeri 2022),
by countering erosion at vulnerable coastlines as a by-product of power capture (Abanades
et al. 2018), or in the design of WEC-arrays for coastal protection (e.g. Cui et al. 2024). In
this guise, graded WEC-arrays would provide a broadband extension for coastal protection
to the proposed uniform arrays of non-absorbing resonators that reflect (Dupont et al. 2017)
or attenuate (Zhang et al. 2024) low-frequency bands of damaging wavelengths, or utilise
local and Bragg resonant effects for attenuation over wider frequency ranges (Lorenzo
et al. 2023).

The design for broadband absorption can be extended to different modes of motion,
devices and operating principles, including multiresonant devices which, as individual
devices, are efficient over a relatively broad frequency range for fixed PTO parameters
(e.g. Evans & Porter 2012; Crowley, Porter & Evans 2013), and oscillating wave surge
converters which can achieve high capture factors (e.g. Renzi & Dias 2012; Noad &
Porter 2015; Huang & Porter 2024). In some instances, grading geometry may be more
appropriate, as in Wilks et al. (2022), which can be applied to oscillating water columns
with multiple chambers (e.g. Zhao et al. 2023), or by altering flap length in arrays of
oscillating wave surge converters (Noad & Porter 2015).

The computational efficiency gained by using a 2-D model facilitated the in-depth
analysis of, in particular, complex-frequency space and the optimisation algorithms.
However, the key components of the proposed approach to design highly efficient
broadband arrays of WECs, namely Bloch waves and complex resonances, also exist in
3-D models. Therefore, we envisage 3-D models of WECs (e.g. Tokić & Yue 2019, 2023),
arranged into rows (otherwise known as gratings with associated Bloch waves (Bennetts
& Squire 2009; Peter & Meylan 2010)), graded such that they produce rainbow reflection
(similar to Bennetts, Peter & Craster (2019)), and with PTOs tuned to achieve rainbow
absorption.

Future research directions include incorporating factors such as physical constraints on
the WEC operation and motion to develop practical designs for WEC-arrays (Bacelli &
Ringwood 2013; Wang et al. 2015), and nonlinearities particularly relevant to accurately
modelling heaving buoys under operational conditions, for example, through viscous drag
and nonlinear Froude–Krylov forces, in partially nonlinear models (Giorgi & Ringwood
2017; Penalba, Giorgi & Ringwood 2017), or weakly nonlinear approaches (e.g. Michele,
Sammarco & d’Errico 2018). Based on experimental results relating to band structures
(Dupont et al. 2017; Lorenzo et al. 2023) and rainbow trapping (Archer et al. 2020) in
arrays of non-absorbing resonators, it is likely that the demonstrated rainbow absorption
will be robust to nonlinear phenomena, but that the efficiency will be reduced.

In conclusion, we have shown that a handful of heaving point-absorber WECs can
achieve near-perfect, broadband absorption, by grading their resonant properties using
time-independent PTO parameters. The novel approach for tuning arrays of heaving buoys
revolved around manipulating band structures local to each WEC in the array and taking
an analytic continuation of the problem into complex-frequency space to connect the
near-resonances generated as part of the rainbow reflection phenomenon to pole–zero
pairs of the reflection coefficient. Near-perfect, broadband absorption was generated by
choosing the PTO damping to move the complex zeros in reflection to the real frequency
axis.
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Appendix A. Scattering matrix for the single cell problem

The wave field in cell n (subscript omitted for ease of notation) is obtained by solving
separate diffraction (d) and radiation (r) subproblems, which are combined to return
the full wave field φ = φd + ξhφ

r. The unknown coefficients in the diffraction problem
are determined by truncating the eigenfunction expansions at M modes and applying
kinematic and dynamic boundary conditions at the interfaces between regions, namely

φd
i = φd

i+1 and
∂φd

i
∂x

= ∂φd
i+1

∂x
at x = ±L for i = 1, 2. (A1a,b)

Multiplying by an appropriate test function and integrating over depth produces a system
of equations for the unknown diffraction coefficients in terms of prescribed incident waves⎡⎢⎣a−

d
b+

d
α+

d
α−

d

⎤⎥⎦ =

⎡⎢⎢⎣
Rd T d

T d Rd

Gd Hd

Hd Gd

⎤⎥⎥⎦ [
a+
b−

]
. (A2)

The vectors α±
d contain the coefficients corresponding to the potential underneath the

WEC (Region 2),

φd
2 = αd−

0 + αd+
0 x +

∞∑
m=1

(αd+
m exp(iκm(x + L))

+ αd−
m exp(−iκm(x − L)))

cosh(κm(z + h))
cosh(κm(h − d))

, (A3)

where κm = imπ/(h − d) are purely imaginary wavenumbers. Assuming unit heave
amplitude (ξh = 1), the radiation potentials in Regions 1 and 3,

φr
1 =

∞∑
m=0

(ar−
m exp(−ikm(x + L)))

cosh(km(z + h))
cosh(kmh)

(A4)

φr
3 =

∞∑
m=0

(br+
m exp(ikn(x − L)))

cosh(km(z + h))
cosh(kmh)

, (A5)
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are obtained analogously to the diffraction potential. Underneath the WEC, φr
2 is

composed of a homogeneous and particular solution which satisfies the boundary
condition ∂zφ = ξhω

2/g,

φr
2 = αr−

0 + αr+
0 x +

∞∑
m=1

(αr+
m exp(iκm(x + L))

+ αr−
m exp(−iκm(x − L)))ζm + ω2

2g(h − d)
[(z + h)2 − x2]. (A6)

To determine the unknown heave amplitude (2.10), the hydrodynamic forcing is found
by integrating the pressure over the wetted surface of the body SB, with respect to the
outward pointing unit normal to the surface of the body,

ρg
∫

SB

φn dS = ρg
∫

SB

φdn dS︸ ︷︷ ︸
excitation force

+ ρg
∫

SB

ξhφ
rn dS︸ ︷︷ ︸

radiation component

. (A7)

The radiation component resulting from forced oscillations of the body is separated
into real and imaginary parts in phase with the acceleration and velocity of the body,
respectively, to give the added mass and radiation damping (Linton & McIver 2001; Mei
et al. 2005)

[ω2a(ω)+ iωb(ω)]ξh = ρg
(∫

SB

ξhφ
rn dS

)
. (A8)

The excitation force F produces a vertical force at the underside of the WEC which
depends on the coefficients of the incident waves, and therefore, interactions within the
array. This dependence is incorporated in the initial scattering matrix of a WEC by
expressing the excitation force in the radiation problem in terms of the incident amplitudes,∫

SB

φdn dS = V +α+
d + V −α−

d (A9)

= [V +Gd + V −Hd ]a+ + [V +Hd + V −Gd ]b−, (A10)

where V ± are vectors with M + 1 elements. From (2.10), the heave amplitude is

ξh(ω) = [−ω2(M + a(ω))− iω(b(ω)+ bPTO)+ (c + cPTO)]−1F(ω) (A11)

= V̂ +a+ + V̂ −b−. (A12)

The scattering matrix S in (3.3) for the heaving buoy is

S = Sd + Sr =
[

Rd + a−
rV̂ + T d + a−

rV̂ −
T d + b+

rV̂ + Rd + b+
rV̂ −

]
, (A13)

with the corresponding coefficients in (3.1) given by a−
m = ad−

m + ξhar−
m and b+

m = bd+
m +

ξhbr+
m . The multiple scattering routine resolves the coupling between WECs, and the forces

on a particular WEC can be recovered from (A.10).
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Figure 15. The absorption of the graded array of N = 5 WECs in table 2 is shown for combinations of the
truncation M in the single body problem, and the number of evanescent modes N included in WEC interactions.
While sufficient evanescent modes are included in the single body problem for convergence of the final solution,
the wide-spacing approximation (N = 0) incurs a small error in the average absorption of 0.0001.

Appendix B. Convergence results

The truncation of M = 25 was determined based on the convergence of the WEC
amplitudes and scattering coefficients in the single cell problem. Higher truncation values
produce indistinguishable solutions (converged to four decimal places), as illustrated in
figure 15 where the absorption for the array of N = 5 WECs in table 2 with M = 25
evanescent modes is compared with the absorption when M = 100 evanescent modes are
included. Here, N refers to the number of evanescent modes included in WEC interactions,
with N = 0 indicating the wide-spacing approximation is applied to the array. The solution
obtained when including evanescent modes (N > 0) in WEC interactions is overlaid to
further justify the use of the wide-spacing approximation. The average absorption of the
array increases from α̂ = 0.9900 to α̂ = 0.9901 with the inclusion of evanescent modes.
Only N = 3 evanescent modes are required for convergence (solution is unchanged for
larger truncation values, e.g. N = 10 with M = 100 in figure 15). The error incurred
was deemed to be acceptably small so as to motivate the reduced computational effort
associated with the wide-spacing approximation.

REFERENCES

ABANADES, J., FLOR-BLANCO, G., FLOR, G. & IGLESIAS, G. 2018 Dual wave farms for energy production
and coastal protection. Ocean Coast Manag. 160, 18–29.

ALDAY, M., RAGHAVAN, V. & LAVIDAS, G. 2023 Analysis of the North Atlantic offshore energy flux from
different reanalysis and hindcasts. In Proc. EWTEC 15 (ed. J.M.B. Ilzarbe), 15, 140.

ARCHER, A.J., WOLGAMOT, H.A., ORSZAGHOVA, J., BENNETTS, L.G., PETER, M.A. & CRASTER, R.V.
2020 Experimental realization of broadband control of water-wave-energy amplification in chirped arrays.
Phys. Rev. Fluids 5 (6), 062801.

BABARIT, A. 2013 On the park effect in arrays of oscillating wave energy converters. Renew. Energy 58,
68–78.

BACELLI, G. & RINGWOOD, J. 2013 Constrained control of arrays of wave energy devices. Intl J. Mar. Energy
3–4, e53–e69.

BENNETTS, L.G. & MEYLAN, M.H. 2021 Complex resonant ice shelf vibrations. SIAM J. Appl. Maths 81 (4),
1483–1502.

BENNETTS, L.G., PETER, M.A. & CRASTER, R.V. 2018 Graded resonator arrays for spatial frequency
separation and amplification of water waves. J. Fluid Mech. 854, R4.

BENNETTS, L.G., PETER, M.A. & CRASTER, R.V. 2019 Low-frequency wave-energy amplification in graded
two-dimensional resonator arrays. Phil. Trans. R. Soc. A 377 (2156), 20190104.

BENNETTS, L.G. & SQUIRE, V.A. 2009 Wave scattering by multiple rows of circular ice floes. J. Fluid Mech.
639, 213–238.

998 A5-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

81
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.819


Broadband near-perfect power capture by an array of WECs

CHAKRABARTI, S.K. 2005 Ocean environment. In Handbook of Offshore Engineering (ed. S.K. Chakrabarti),
pp. 79–131. Elsevier.

CHAPLAIN, G.J., PAJER, D., DE PONTI, J.M. & CRASTER, R.V. 2020 Delineating rainbow reflection and
trapping with applications for energy harvesting. New J. Phys. 22 (6), 063024.

CLEANTE, V.G., BRENNAN, M.J., GONÇALVES, P.J.P. & CARNEIRO JR, J.P. 2022 On the formation of a
super stop-band in finite mono-coupled periodic structures using an array of vibration absorbers: controlling
parameters and physical insight. Mech. Syst. Signal Process. 180, 109383.

COE, R.G., BACELLI, G. & FORBUSH, D. 2021 A practical approach to wave energy modeling and control.
Renew. Sust. Energ. Rev. 142, 110791.

CORPOWER OCEAN 2024 Wave energy technology. Available at: https://corpowerocean.com/wave-energy-
technology/.

CROWLEY, S., PORTER, R. & EVANS, D.V. 2013 A submerged cylinder wave energy converter. J. Fluid
Mech. 716, 566–596.

CRUZ, J. (Ed.) 2008 Ocean Wave Energy: Current Status and Future Perspectives. Springer.
CUI, L., et al. 2024 Protecting coastlines by offshore wave farms: on optimising array configurations using a

corrected far-field approximation. Renew. Energy 224, 120109.
DE CHOWDHURY, S., BENNETTS, L.G. & MANASSEH, R. 2023 A coupled damped harmonic oscillator

model for arbitrary arrays of floating cylinders using homotopy methods. Phys. Fluids 35 (10), 107141.
DING, B. & NING, D. (Ed.) 2022 Modelling and Optimization of Wave Energy Converters. CRC Press.
DUPONT, G., REMY, F., KIMMOUN, O., MOLIN, B., GUENNEAU, S. & ENOCH, S. 2017 Type of dike using

c-shaped vertical cylinders. Phys. Rev. B 96 (18), 180302(R).
EDWARDS, E.C. & YUE, D.K.-P. 2022 Optimisation of the geometry of axisymmetric point-absorber wave

energy converters. J. Fluid Mech. 933, A1.
EVANS, D.V. 1981 Power from water waves. Annu. Rev. Fluid Mech. 13, 157–187.
EVANS, D.V. & PORTER, R. 2012 Wave energy extraction by coupled resonant absorbers. Phil. Trans. R. Soc.

A 370 (1959), 315–344.
FALNES, J. 2005 Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy

Extraction. Cambridge University Press.
FALNES, J. & HALS, J. 2012 Heaving buoys, point absorbers and arrays. Phil. Trans. R. Soc. A 370 (1959),

246–277.
FOLLEY, M. (Ed.) 2016 Numerical Modelling of Wave Energy Converters: State-of-the-Art Techniques for

Single Devices and Arrays. Academic Press.
FUSCO, F. & RINGWOOD, J.V. 2010 Short-term wave forecasting for real-time control of wave energy

converters. IEEE Trans. Sustain. Energy 1 (2), 99–106.
GALLUTIA, D., FARD, M.T., SOTO, M.G. & HE, J. 2022 Recent advances in wave energy conversion

systems: from wave theory to devices and control strategies. Ocean Engng 252, 111105.
GARCIA-ROSA, P.B., BACELLI, G. & RINGWOOD, J.V. 2015 Control-informed optimal array layout for wave

farms. IEEE Trans. Sustain. Energy 6 (2), 575–582.
GARNAUD, X. & MEI, C.C. 2009 Wave-power extraction by a compact array of buoys. J. Fluid Mech. 635,

389–413.
GARNAUD, X. & MEI, C.C. 2010 Bragg scattering and wave-power extraction by an array of small buoys.

Proc. R. Soc. A 466 (2113), 79–106.
GIORGI, G. & RINGWOOD, J.V. 2017 Nonlinear Froude-Krylov and viscous drag representations for wave

energy converters in the computation/fidelity continuum. Ocean Engng 141, 164–175.
GOLBAZ, D., ASADI, R., AMINI, E., MEHDIPOUR, H., NASIRI, M., ETAATI, B., NAEENI, S.T.O.,

NESHAT, M., MIRJALILI, S. & GANDOMI, A.H. 2022 Layout and design optimization of ocean wave
energy converters: a scoping review of state-of-the-art canonical, hybrid, cooperative, and combinatorial
optimization methods. Energy Rep. 8, 15446–15479.

GÖTEMAN, M., GIASSI, M., ENGSTRÖM, J. & ISBERG, J. 2020 Advances and challenges in wave energy
park optimization–a review. Front. Energy Res. 8, 26.

GUO, J., CAO, J., XIAO, Y., SHEN, H. & WEN, J. 2020 Interplay of local resonances and Bragg band gaps
in acoustic waveguides with periodic detuned resonators. Phys. Lett. A 384 (13), 126253.

HASSELMANN, K., et al. 1973 Measurements of wind-wave growth and swell decay during the Joint North
Sea Wave Project (JONSWAP). Ergänzung zur Deut. Hydrogr. Z., Reihe A 8 (12), 1–95.

HUANG, J. & PORTER, R. 2024 Wave power calculation of a large periodic array of bottom-hinged paddle
wave energy converters using Floquet–Bloch theory. Appl. Ocean Res. 150, 104102.

IRENA 2020 Innovation Outlook: Ocean Energy Technologies. International Renewable Energy Agency.

998 A5-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

81
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://corpowerocean.com/wave-energy-technology/
https://corpowerocean.com/wave-energy-technology/
https://doi.org/10.1017/jfm.2024.819


A.-R. Westcott, L.G. Bennetts, N.Y. Sergiienko and B.S. Cazzolato

JIMÉNEZ, N., ROMERO-GARCÍA, V., PAGNEUX, V. & GROBY, J.-P. 2017 Rainbow-trapping absorbers:
broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems.
Sci. Rep. 7, 13595.

KONISPOLIATIS, D.N. & MAVRAKOS, S.A. 2020 Wave power absorption by arrays of wave energy converters
in front of a vertical breakwater: a theoretical study. Energies 13 (8), 1985.

KURNIAWAN, A. & ZHANG, X. 2018 Application of a negative stiffness mechanism on pitching wave energy
devices. In Proceedings of the 5th Offshore Energy and Storage Symposium Ningbo, China, 4–6 July.

LINTON, C.M. & MCIVER, P. 2001 Handbook of Mathematical Techniques for Wave/Structure Interactions.
CRC Press.

LIU, J., MEUCCI, A., LIU, Q., BABANIN, A.V., IERODIACONOU, D., XU, X. & YOUNG, I.R. 2023 A
high-resolution wave energy assessment of south-east Australia based on a 40-year hindcast. Renew. Energy
215, 118943.

LORENZO, M., PEZZUTTO, P., DE LILLO, F., VENTRELLA, F.M., DE VITA, F., BOSIA, F. & ONORATO,
M. 2023 Attenuating surface gravity waves with an array of submerged resonators: an experimental study.
J. Fluid Mech. 973, A16.

MAZZARETTO, O.M., MENÉNDEZ, M. & LOBETO, H. 2022 A global evaluation of the JONSWAP spectra
suitability on coastal areas. Ocean Engng 266, 112756.

MEI, C.C., STIASSNIE, M. & YUE, D.K.-P. 2005 Theory and Applications of Ocean Surface Waves,
Advanced Series on Ocean Engineering, vol. 23. World Scientific Publishing.

MEYLAN, M.H. & FITZGERALD, C. 2018 Computation of long lived resonant modes and the poles of the
S-matrix in water wave scattering. J. Fluids Struct. 76, 153–165.

MICHELE, S., SAMMARCO, P. & D’ERRICO, M. 2018 Weakly nonlinear theory for oscillating wave surge
converters in a channel. J. Fluid Mech. 834, 55–91.

NOAD, I.F. & PORTER, R. 2015 Optimisation of arrays of flap-type oscillating wave surge converters. Appl.
Ocean Res. 50, 237–253.

OZKAN, C., MAYO, T. & PASSERI, D.L. 2022 The potential of wave energy conversion to mitigate coastal
erosion from hurricanes. J. Mar. Sci. Engng 10 (2), 143.

PECHER, A. & KOFOED, J.P. (Ed.) 2017 Handbook of Ocean Wave Energy, Ocean Engineering and
Oceanography, vol. 7. Springer International Publishing.

PENALBA, M., GIORGI, G. & RINGWOOD, J.V. 2017 Mathematical modelling of wave energy converters: a
review of nonlinear approaches. Renew. Sustain. Energy Rev. 78, 1188–1207.

PETER, M.A. & MEYLAN, M.H. 2010 Water-wave scattering by vast fields of bodies. SIAM J. Appl. Maths
70 (5), 1567–1586.

PORTER, R. 2021 Modelling and design of a perfectly-absorbing wave energy converter. Appl. Ocean Res.
113, 102724.

PORTER, R. & PORTER, D 2003 Scattered and free waves over periodic beds. J. Fluid Mech. 483, 129–163.
RENZI, E. & DIAS, F. 2012 Resonant behaviour of an oscillating wave energy converter in a channel. J. Fluid

Mech. 701, 482–510.
ROMERO-GARCÍA, V., THEOCHARIS, G., RICHOUX, O. & PAGNEUX, V. 2016 Use of complex frequency

plane to design broadband and sub-wavelength absorbers. J. Acoust. Soc. Am. 139 (6), 3395–3403.
SATYMOV, R., BOGDANOV, D., DADASHI, M., LAVIDAS, G. & BREYER, C. 2024 Techno-economic

assessment of global and regional wave energy resource potentials and profiles in hourly resolution. Appl.
Energy 364, 123119.

SERGIIENKO, N.Y., CAZZOLATO, B.S., DING, B., HARDY, P. & ARJOMANDI, M. 2017 Performance
comparison of the floating and fully submerged quasi-point absorber wave energy converters. Renew.
Energy 108, 425–437.

TODALSHAUG, J.H., ÁSGEIRSSON, G.S., HJÁLMARSSON, E., MAILLET, J., MÖLLER, P., PIRES, P.,
GUÉRINEL, M. & LOPES, M. 2016 Tank testing of an inherently phase-controlled wave energy converter.
Intl J. Mar. Energy 15, 68–84.
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