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Neuroprotection of Early Locomotor
Exercise Poststroke: Evidence From
Animal Studies

Pengyue Zhang, Jia Xianglei, Yang Hongbo, Jichuan Zhang, Ce Xu

ABSTRACT: Early locomotor exercise after stroke has attracted a great deal of attention in clinical and animal research in recent years. A
series of animal studies showed that early locomotor exercise poststroke could protect against ischemic brain injury and improve functional
outcomes through the promotion of angiogenesis, inhibition of acute inflammatory response and neuron apoptosis, and protection of the
blood-brain barrier. However, to date, the clinical application of early locomotor exercise poststroke was limited because some clinicians
have little confidence in its effectiveness. Here we review the current progress of early locomotor exercise poststroke in animal models. We
hope that a comprehensive awareness of the early locomotor exercise poststroke may help to implement early locomotor exercise more
appropriately in treatment for ischemic stroke.

RESUME: Neuroprotection conférée par ’exercice locomoteur précoce apres un accident vasculaire cérébral : données tirées des études chez
P’animal. L’exercice locomoteur précoce apres un accident vasculaire cérébral (AVC) a retenu I’attention en recherche clinique et en recherche chez
I’animal au cours des dernieres années. Plusieurs études chez I’animal ont montré que 1’exercice locomoteur précoce apres un AVC protégerait contre une
lésion ischémique du cerveau et pourrait améliorer 1’issue fonctionnelle en favorisant I’angiogenese, 1’inhibition de la réponse inflammatoire aigué et
I’apoptose neuronale ainsi que la protection de la barriere hémato-encéphalique. Cependant, a ce jour, le recours en clinique a 1’exercice locomoteur
précoce apres un AVC a été limité parce que certains cliniciens ont peu confiance en son efficacité. Nous revoyons les progres actuels dans le domaine de
I’exercice locomoteur précoce apres un AVC chez des modeles animaux. Nous espérons qu’une sensibilisation a 1’exercice locomoteur précoce apres un
AVC pourra favoriser une utilisation de I’exercice locomoteur précoce de facon plus appropriée dans le traitement de I’AVC ischémique.
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INTRODUCTION

Cerebral ischemia is one of the most serious neurological
disorders and is the most common cause of permanent disability
all over the world." Its sequelae not only reduce the quality of
survivor’s life, but also put a heavy burden on families and
society.? Although a great deal of effort have been made in past
decades, today we still lack effective strategies that can improve
functional outcome in stroke survivors.’

The early phase postischemia is the critical time window for
the functional recovery in which plenty of neuroprotective
mechanisms were initiated, such as neurogenesis, functional
plasticity, axonal sprouting and synaptogenesis, and attenuation
of muscle atrophy in unaffected sides.*® This time window is
sensitive to specific treatments that can trigger and promote
neuroprotective mechanisms in spontaneous recovery.

In recent years, increasing clinic evidence has suggested that
early locomotor exercise after stroke facilitated the functional
recovery from stroke and had attracted a great deal of attention.’
The benefits of early locomotor exercise after stroke included
fewer deaths, fewer and less severe complications, less disability,
and better quality of life.*'° Moreover, early locomotor exercise
poststroke has currently been recommended in a range of clinical

THE CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES

https://doi.org/10.1017/cjn.2015.39 Published online by Cambridge University Press

guidelines, such as the Clinical Guidelines for Stroke Management
2010 document sponsored by the National Stroke Foundation in
Australia."" Although early locomotor exercise poststroke was
considered an important and potential treatment strategy for
stroke, its clinical application is limited. Some clinicians have
little confidence in its effectiveness because of the absence of
high-quality randomized, double-blind, control clinical trials and
an undefined molecular mechanism.'*"?

Although there are some differences between patient and
animal models, the animal studies can help us explore underlying
molecular mechanisms that is difficult to achieve in clinical trials.
The unmasked mechanism may increase the willingness of
clinicians to implement the early locomotor exercise poststroke in
clinical settings. Here we review the mechanism of early
locomotor exercise poststroke in animal stroke models in recent
years. We hope that a comprehensive awareness of early
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Table 1: References of early exercise after stroke

Exercise protocol Starting Functional Molecular mechanism References
time performance
Voluntarily exercise 24 hours Positive Decreased infarct volume; neuroplasticity 114,135
Negative Decreased neurogenesis in subventricular zone; 132

48 hours Positive

BDNF, NGF, GAP43, neuroplasticity

85,124,126,128

72 hours Positive Apoptosis, angiogenesis

71,111,136

Constant force exercise | 24 hours Positive

neurogenesis

Neuroplasticity; BDNF, anti-neuroinflammation, insulin-like
growth factor I signaling; neuroplasticity, angiogenesis,

18,20,25,28,29,30,48,75,87,90,91,115,125,127

48 hours Positive Attenuating muscle atrophy

6,148

72 hours Positive

Anti-neuroinflammation, angiogenesis, neurogenesis

57,72,110,134

Gradually increased 24 hours Positive

force exercise

Anti-neuroinflammation, apoptosis, angiogenesis, NGF, netrin-1,
blood-brain barrier, BDNF, neurogenesis, mitochondrial

16,17,19,28,49,74,82,83,112,113,116,130,144,145

biogenesis
48 hours Positive Apoptosis, neurogenesis, neurotrophin 4 73,89
72 hours Positive Neuroplasticity 129
Compared between 24 hours Positive BDNF 84,86

voluntary and force
exercise

NGF, nerve growth factors.

locomotor exercise may help implement early locomotor exercise
more appropriately in treatment for cerebral ischemic stroke.

SEARCH METHODOLOGY AND RESULTS

We aimed to identify all rodent animal studies relating to
cerebral ischemia, early locomotor exercise poststroke, behavioral
recovery, and mechanism. We searched PubMed including all
years up to January 2015 (English language only). We included
animal studies that used global or focal ischemic stroke. Any
intervention using early locomotor exercise, such as forced or
voluntary locomotor exercise, was included.

Based on the keywords “cerebral ischemia” and “exercise,” we
obtained 826 titles. Of these, 258 studies were animal models and
their abstracts were identified for further review. Reference lists in
these articles were hand-searched for further studies with potential
relevance. Finally, 49 studies met the criteria (rodent model,
cerebral ischemia, early-initiated [24-72 hours poststroke], and
locomotor exercise intervention) and measured the effects of early
locomotor exercise postcerebral ischemia on brain repair and so
were included in this review (Table 1).

DEFINITION OF EARLY LOCOMOTOR EXERCISE

To implement early locomotor exercise appropriately, it is crucial
to define the time window of the early phase after stroke. However,
there is not a standard definition of early phase either in clinical
applications or animal studies. In the clinical setting, 24 hours, the first
3 days, and the first week after stroke onset were considered as early
phase.'*!> The time window is one of the direct guides for clinical
therapy. However, the optimal time point for early exercise depends
on multiple factors including race, sex, age, lifestyle, complications,
and individual differences. Thus the early phase after stroke cannot be
defined only by time point in the clinical setting.
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This issue becomes simple in animal model because we can
control almost all conditions in experiments including the type of
animal, sex, age, and severity of stroke. The middle cerebral artery
occlusion is widely used in rodent stroke model. In most reports,
early exercise was initiated during 24 to 72 hours after middle
cerebral artery occlusion in rodents with 60 to 120 minutes of
ischemia'®2° (Table 1). Thus the exercise begun 24 to 72 hours
after stroke was defined as early exercise in this review, with the
training period lasting from 1 to 4 weeks.

The locomotor exercise program in this review included
voluntary exercise and forced exercise (constant intensity during
all training periods and gradually increased intensity during the
first few days) (Table 1).

HISTOLOGICAL AND FUNCTIONAL IMPROVEMENT

The death of neurons is the disastrous consequence of cerebral
ischemia, which leads to serious histological damages and the
formation of an infarct zone in brain parenchyma. The neurons in
the ischemic core die via irreversible necrosis and apoptosis.
Subsequently, most cells in the penumbra, region that surrounds
the infarct zone, undergo apoptosis gradually after stroke.?! These
cells can potentially be rescued in the early phase of cerebral
ischemia by inhibiting the apoptotic pathway or by recovering the
cerebral blood. Because decreased neuron death means reduced
infarct volume and promoted functional recovery, the treatment
strategies to date that could reduce infarct volume are potential
protocols in stroke treatment.

Locomotor exercise at early phase is one kind of treatment in
after-stroke recovery. However, early locomotor exercise did not
reduce infarct volume consequentially; the infarct volume in
ischemic rats may even be enlarged by conditioned overuse of the
affected limb and high-intensity exercise at early phase after
stroke. >+ Early locomotor exercise with a proper intensity
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reduced the infarct volume.> Although early locomotor exercise
significantly promoted motor coordination and alleviated neuro-
logical deficits,>>?® the promoted functional recovery is not
accompanied by reduced infarct volume.?’ Furthermore, the effect
of early locomotor exercise on recovery is timing window—
dependent. Yang28 and Rasmus et al*® demonstrated that rats with
one week of mild treadmill training initiated 24 hours after
operation had reduced infarct volume and better functional
recovery than rats with equal training initiated one week after
operation. Our group also demonstrated that early treadmill training
with gradually increased intensity significantly reduced infarct
volume and promoted functional recovery of motor and memory.
Moreover, aging is often accompanied by stroke attack. Two weeks
of early locomotor exercise decreased the infarct volume both in
young and old rats compared with the control group, but the young
rats had a smaller infarct volume than did the older rats.*®

In summary, these experimental studies indicate that loco-
motor exercise with mild to moderate intensity initiated early may
decrease histological damage and enhance functional recovery
from cerebral ischemia.

NEUROPROTECTIVE MECHANISM OF EARLY EXERCISE

Early locomotor exercise initiates multiple neuroprotective
responses in injured brains such as change of cerebral blood flow,
gene expression, angiogenesis, neurogenesis, mitochondrial
biogenesis, suppression of apoptosis, and neuroinflammation
response. Their synergistic effect contributes to neuroprotection
and subsequent functional recovery (Table 1).

Early Locomotor Exercise Attenuates Neuroinflammation
Response

Cerebral ischemia is accompanied with the inflammatory
responses, such as the production of proinflammatory cytokines,
chemokines, and adhesion molecules and activation of the resi-
dent glial cells. These processes start within hours after ischemia
and persist for months.>'*? Although inflammatory responses
exerted some beneficial effects in recovery from stroke,>33>
accumulating evidence showed that inflammatory response in the
acute ischemic period was one of the main factors that led to brain
damage and exacerbated ischemic injury in potentially viable
tissues through secretion of deleterious molecules, such as gluta-
mate, and production of reactive oxygen species and nitric
oxide.>*** Some experimental evidence have demonstrated that
inhibition of acute inflammatory responses with antagonists,
neutralizing antibodies, or gene knockouts relieved the detri-
mental effects and markedly improved functional recovery.*'#?

Existing evidence shows that physical exercise diminishes
inflammation in some chronic diseases and in aged mice.** The
molecular mechanism involves the reduction of macrophage
infiltration, expression of inducible nitric oxide synthase and
tumor necrosis factor-alpha in the heart and expression of
chemokines and cytokines in the circulatory system.***¢ Inter-
estingly, a recent article has indicated that preischemic physical
exercise led to chronically increased expression of tumor necrosis
factor-alpha during exercise, which conversely ameliorated
inflammatory injury induced by ischemia/reperfusion.47 A possi-
ble explanation is that the chronically proinflammatory response
during exercise led to ischemic tolerance, a phenomenon in which
minor injury before ischemia led to a greater tolerance to
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subsequent serious injury. Recent research has focused on the
effect of postischemic physical exercise on the acute inflamma-
tory response. Our data indicated that early locomotor exercise
after stroke significantly attenuated the acute neuroinflammation
through decreasing proinflammatory cytokines and cell adhesion
molecules, suppressing the activation of astrocytosis and micro-
glia, and attenuating the detriment of over-released glutamate. 1948
Furthermore, we found that early locomotor exercise protects
blood-brain barrier (BBB) integrity against ischemia/refusion
injury.*’ The disrupted BBB is a critical early event that initiates
the inflammatory cascade and exaggerates edema, which ulti-
mately results in poor outcomes.”® Recent studies have indicated
Toll-like receptor (TLR) signaling pathways are also involved the
neuroprotective action of early locomotor exercise. TLRs are a
group of important receptors in the brain’s innate immune system;
they play a critical role in initiating and modulating the inflam-
matory cascade caused by cerebral ischemia through recruiting
and linking to their endogenous ligands released from damaged
neuronal cells.”' Studies have shown that early locomotor
exercise decreased TLR expression on cell-surface and inflam-
matory cytokine production in monocytes in ischemic brain
tissue.”*>® The main downstream targets of TLR2/4, MyD88, and
nuclear factor-kB were also reduced by early exercise following
cerebral ischemia.>” In summary, early locomotor exercise after
stroke may attenuate acute inflammatory responses via reduced
expression of proinflammatory cytokines and inhibited BBB
dysfunction so as to confer neuroprotective action.

Early Locomotor Exercise Suppresses Neural Apoptosis in
Penumbra

Cerebral ischemia leads to irreversible death of neurons in the
ischemic core. However, some neurons in penumbra survive with
dysfunction and then undergo apoptosis if they do not receive
effective therapeutic treatment.”®*® Thus, these injured neurons
could be rescued in early-phase postischemia, and suppression of
apoptosis may potentially be an opportunity to salvage these neu-
rons and then alleviate brain injury.®%% Increasing evidence shows
that appropriate locomotor exercise could suppress apoptosis in
many diseases,>®* particularly in ischemic myocardial infarc-
tion®®® and Alzheimer disease®’ by reducing the expression of
proapoptotic proteins and increasing the expression of antiapoptotic
proteins.®®”° Two-week early locomotor exercise started at 48 or
72 hours poststroke significantly reduces the number of TdT-
mediated dUTP-biotin nick-end labeling—positive cells and sup-
pressed autophagosomes.”'”* Even early locomotor exercise started
at 24 hours after stroke also significantly improves neurological
function by decreasing caspase-3 and cleaved caspase-3 expression
and the number of apoptotic cells detected by Fluoro-Jade-B staining
and TdT-mediated dUTP-biotin nick-end labeling concurrently by
increasing Bcl-2 (a key antiapoptotic protein) expression detected by
western blotting.'®’*” These results indicate that suppressing neural
apoptosis in the penumbra may be the potential underlying
mechanism conferred to the neuroprotective mechanism induced by
early locomotor exercise following cerebral ischemia.

Early Locomotor Exercise Increases Expression of
Neurotrophic Factors

Neurotrophic factors play crucial roles in neuronal survival,
repair, and recovery from stroke.”® However, their clinical
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application is limited because the recombinant neurotrophic factors
cannot cross the BBB.”” It is well-known that exercise can upregulate
the expression of nerve growth factors in rats with both normal and
diseased brains, such as brain-derived neurotrophic factor
(BDNF),78’81 nerve growth factors, and neurotrophin, and so on.

Similarly, recent reports indicate that early locomotor exercise
following stroke increases the expression of neurotrophic factors,
such as BDNF and insulin-like growth factor (IGF), the possible
mechanisms involved in the 5-HT, Trk, and AKT signaling
pathways.®>®” The increased BDNF induced by early locomotor
exercise is mainly distributed in the contralateral hemisphere and
the penumbra in the ipsilateral hemisphere.88 The expression
levels of nerve growth factors and Midkine are significantly
upregulated in the cells around the infarct zone of the ischemic
rats that received low-intensity early locomotor exercise com-
pared with the ischemia-only sedentary rats.'” Early locomotor
exercise increases neurotrophin-4 protein level in the bilateral
hemispheres compared with the ischemia-only sedentary rats,
particularly in the contralateral hemisphere and the zone that
adjacent to the ischemic region; this increase was detected as early
as day 9 after ischemia.®® The study by Chang et al found that
early locomotor exercise increases the IGF-I concentration
through promoted IGF-I entrance into the affected brain zone and
increased its expression. Inhibiting IGF-I signaling eliminates
such protective effects.”® A study conducted by Ohwatashi et al
found that early locomotor exercise induces increased expression
of glial cell line-derived neurotrophic factor in rats who under-
went photochemical infarction.”" It is noteworthy that Liu et al**
demonstrated that early locomotor exercise started at 24 hours
significantly increased the expression of netrin-1 and its receptors,
which regulate diverse recovery processes including neuron
survival and migration,”*** axonal outgrowth and branching,”*
and ang,giogenesis.95

Early Locomotor Exercise Enhances the Angiogenesis and
Improves Cerebral Blood Flow in the Ischemic Zone

Angiogenesis is a neuroprotective response induced by hypoxia
within a few hours after the onset of stroke. The expression of a group
of angiogenic factors including vascular endothelial growth factor,
Angl/2, and their receptor Tie2 in infarct hemisphere was gradually
upregulated for weeks after stroke. These proteins trigger the pro-
liferation of endothelial cells and neovascularization.”®*” Krupinski
et al found some vascular buds and connections in an ischemic rat by
brain vascular cast method.'® Newly formatted blood vessels not
only improve the exchange of oxygen and glucose through increased
blood flow, %19 but also remove damaged tissues and ameliorate
the microenvironment in hypoxic tissue.'® The improved micro-
environment rescues the injured neurons and promotes the pro-
liferation and migration of neural stem cells.'®1% Indeed, clinical
observation found that stroke patients with more newly formatted
blood vessels survive a longer time.'*'%” Thus, improving angio-
genesis after stroke plays a crucial role in recovery from stroke and is
a potential strategy for treatment of ischemia,'%%1%°

Early locomotor exercise after ischemia has been shown to
augment angiogenesis through increasing the messenger RNA
transcription and protein translation of angiopoietins, such as
vascular endothelial growth factor''°, PECAM-1"2, CD31'!,
Angl, and their receptor Tie2.'">!"3 Endothelial nitric oxide
synthesis may be an underlying mechanism because the lack of
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endothelial nitric oxide synthase abolishes the beneficial effects of
early locomotor exercise on angiogenesis.''* Recently, we
demonstrated that these newly formatted vessels increased by early
locomotor exercise indeed give rise to new functional vessels and
improve the cerebral blood flow in ischemic brain zone visualized
by laser speckle flowmetry, a noninvasive imaging blood flow
technique.''? The similar result was achieved in Yang’s study,
which reported increased CD31-positive blood vessel density in the
affected striatum.'!® Furthermore, an in vitro study indicated that a
modest flow induced by appropriate locomotor exercise decreases
brain microvascular endothelial cells apoptosis in the ischemic
condition.''® These results suggested that early locomotor exercise
can improve cerebral blood flow through angiogenesis and increase
blood flow rate in the ischemic brain zone.

Early Locomotor Exercise Promotes Neuroplasticity:
Neurogenesis and Synaptic Reorganization

Neuroplasticity is a critical element in brain repair after stroke.
Accumulative evidence has suggested that some newborn neurons
after stroke were functionally recruited and formed appropriate
synapses with the existing neurons in hippocampus.“7'119 In
addition to neurogenesis, synaptic reorganization is another key
constituent in functional recovery following stroke.'?® The
neurons in peri-infarct region of ipsilateral hemisphere and the
contralateral hemisphere form some new synapses with survived
neurons and newborn neurons.'?!

There is increasing evidence to show that locomotor exercise
promoted neuroplasticity both in normal and ischemic animals.”®'*
Several reports have shown that locomotor exercise initiated within
7 days after stroke enhances neurogenesis and functional
recovery.'* Some recent studies have detected the change of protein
expression profile induced by early locomotor exercise in the cortex
of rats with stroke. These results suggest that early locomotor
exercise after stroke upregulate a group of proteins that promote
synaptic plasticity, such as growth-associated protein 43 (GAP43,
the key axon growth-associated protein), Synl, synaptosomal-
associated protein (SNAP-25), PSD95, and others.'**'? Accord-
ingly, increased neurogenesis was detected in the hippocampus
dentate gyrus and peri-infarct regions in rats who underwent early
locomotor exercise.'*” During spontaneous recovery after ischemia,
many of these newborn neurons undergo apoptosis,131 but early
locomotor exercise significantly increases the neurogenesis and
decreases the number of apoptotic cells.”' However, some reports
show that early locomotor exercise poststroke reduces neurogenesis
in the subventricular zone and dentate gyrus.'**'** These incon-
sistent results could be due to different models and exercise
protocols used. Ameliorative neuroplasticity can be detected by
electrophysiology. The results from Tang et al'*>'*® indicate that
early locomotor exercise enhanced activity-dependent long-term
depression through PICK1-dependent mechanisms and an
increased expression level of AMPA receptor subunits that can
increase synaptic transmission. Thus early locomotor exercise
postischemia promotes neuroplasticity through neurogenesis and
synaptogenesis and increases the functional synapse.

Early Locomotor Exercise Promotes Mitochondrial
Biogenesis

Mitochondria is a critical organelle that supports the neuronal
survival, metabolism, synthesis, and release of neurotransmitters
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and recovery from injury.'*”'*® However, mitochondrion play
opposite roles during cerebral ischemic injury. On the one hand,
injured mitochondria releases a great deal of reactive oxygen
species that initiate detrimental cascade; on the other hand,
biogenesis of functional mitochondria induced by stroke is helpful
for neuroprotection and re:c:ove:ry.137’139 Thus, the strategy to
decrease mitochondria damage and increase mitochondrial bio-
genesis would be important to neuroprotective treatment after
stroke.'*® Consistent evidence suggests that exercise increases
mitochondrial biogenesis in healthy and ischemic brains.'#!"'%3
Recent evidence from our laboratory shows that early locomotor
exercise started 24 hours after stroke increases mitochondrial
DNA content and significantly enhances the messenger RNA
and protein expression of three transcription factors considered
critical for mitochondrial gene transcription and DNA replication:
PGC-1, NRF-1, and TFAM.'**'* These results indicate that
early locomotor exercise after stroke could enhance mitochondrial
biogenesis and may serve as a key component of early loco-
motor exercise—induced neuroprotective mechanisms in the
ischemic brain.

SUMMARY AND PROSPECTS

Locomotor exercise is an effective, inexpensive, home-based,
and accessible intervention strategy. Early locomotor exercise
poststroke has attracted a great deal of attention in rehabilitative
centers and laboratories. Animal studies have increasingly
revealed that early locomotor exercise induced neuroprotective
mechanisms in the ischemic brain; randomized control trials with
larger sample number are further exploring the optimal early
locomotor exercise protocol. This evidence from clinical and
animal studies indicates that early locomotor exercise poststroke
was beneficial for recovery from cerebral ischemia and that it can
be applied safely. However, to apply early locomotor exercise in
clinical practice and maximize functional outcome, the choice of
interventional protocol should be considered carefully. The first
consideration is how to choose the type of locomotor exercise.
Cumulative evidence indicates that different exercise protocols
could lead to an entirely different outcome.®*¥!15 There are
many locomotor exercise manipulations that could be used con-
veniently, but so far this is no unified standard to assist in
choosing the optimum type. The second consideration is whether
early locomotor exercise combined with other rehabilitative
treatments or drugs is more reasonable than locomotor exercise
only.l%’147 A related rehabilitative treatment may be functional
electrical stimulation, acupuncture, music stimulus, light stimu-
lus, skilled training, and so on. Drugs can include multiple agents
that alleviate inflammatory response and neuronal apoptosis and
promote angiogenesis and neurogenesis. Additionally, some
locomotor exercise can be carried out under the help of body-
weight support or a robot."*® The third consideration is how we
can determine the amount and intensity of early locomotor exercise
based on different levels of severity in a stroke patient. According
to our knowledge from animal studies and clinic observations, low
and gradually increased exercise intensity should be performed in
the early phase after stroke,?%!?>!4

In summary, early exercise poststroke was safe, feasible, and
effective (Table 1). But its implementation in a clinical setting
should be cautiously introduced and based on each individual’s
condition.
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