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   In recent years, we have witnessed the substantial progress of ultrafast transmission electron microscopy 

(UTEM) [1,2]. As a powerful table-top apparatus, UTEM is challenging the resolution abilities of our 

instrument in both spatial and temporal domain, thanks to the well-developed pump-probe and electron 

microscopy techniques [3,4]. With its nanometer and sub-picosecond  spatiotemporal resolution 

capabilities, UTEM has enabled the visualization of numerous important transient processes, including 

the lattice relaxation, the phase transition [5], the nanomechanical motions, the spin [6] and electronic 

dynamics [7-9] for nanoscale materials or structures ranging from physics to chemistry and biology. In 

particularly, UTEM also lead to a research direction completely outside the realm of conventional TEM, 

i.e. photon-induced-near-filed electron microscopy (PINEM), an unique experimental technique that can 

image the light-electron interactions near nanostructures or at an interface, providing exciting prospects 

for the investigation of dynamics of photonics and plasmonics [10]. 

  In our laboratory, an ultrafast transmission electron microscope (UTEM) has been developed based on 

Schottky-type field emission gun (FEG) ( Institute of Physics, Chinese Academy of Sciences). This setup 

can operate either in continuous or pulsed mode, and the electron pulse emission is achieved by integrating 

a laser port between the electron gun and the column. For pulsed mode, the optimized electron beam 

properties are of ~ 0.65 eV energy monochromaticity, micrometer-scale coherence lengths and ~ 300 fs 

pulse duration. Then these UTEMs have been extensively improved for photoemission imaging and time-

resolved observations, including ultrafast electron diffraction/imaging, Lorentz UTEM, time-resolved 

electron energy-loss spectroscopy (EELS) and photoinduced near-field electron microscopy (PINEM) 

[11], as shown in Fig.1. 

  Recently, we have performed a variety of investigations on the structural dynamics of functional 

materials in our laboratory.  For instance, the notable anisotropic lattice dynamics in multi-walled C- and 

BN-nanotubes  have been studied in a full reversible cycle with a time scale from picoseconds to hundreds 

of microseconds, moreover, a visible change of energy band-gap was found on the BN-nanotubes  after a 

fs-laser excitation[12], as shown in Fig.2. The martensitic transition in the Heusler alloy Mn50Ni40Sn10 

has also been investigated using the time-resolved imaging and ultrafast diffraction[13]. The photoinduced 

magnetic processes  have been directly observed using time-resolved Lorentz TEM imaging. Very 

recently, the nonequilibrium phase transition between CDW states and the relevant hidden quantum states 

has been carefully investigated and analyzed in low-dimensional system 1T-TaS2−xSex at low 

temperatures [14, 15, 16]. 
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Figure 1. The UTEM apparatus based on a Schottky-type field emission gun and its performance 

in  photo-emission mode. (a)  A photograph of  UTEM and the fs-laser instruments in our laboratory. The 

inserted figures show images and data of Schottky-field emitter, the EELS spectrum with energy 

resolution of 0.65eV and an electron diffraction pattern of the Au-crystal taken from pulsed mode.  (b) 

EELS data taken at the delay time of t=0 for an Ag nanorod irradiated with a fs-laser pulse. (c)  Relevant 

PINEM image obtained for an individual nanorod (~ 90nm)  (exposure time ~ 100 s), and a convention 

TEM image is also shown for comparison. 

https://doi.org/10.1017/S1431927620015482 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927620015482


674  Microsc. Microanal. 26 (Suppl 2), 2020 
 

 

 
Figure 2. Time-resolved analysis of electronic structural changes in BN nanotubes. (a) The plasmon peaks 

shift with the time delays, illustrating the valence excitation features of the inter band transitions upon fs-

laser excitation. (b) Dielectric function of the BNNTs showing the real and imaginary parts derived from 

the loss function, which yields a clear contraction of the energy bandgap at an excited state. (c) Non-

thermal change in the interlayer spacing and contraction of the energy bandgap as measured from −10 ps 

to 40 ps, showing the cooperative evolution of the bandgap and the nonthermal structural transient in BN 

nanotubes. 
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