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Metric Compactifications and Coarse
Structures

Kotaro Mine and Atsushi Yamashita

Abstract. Let TB be the category of totally bounded, locally compact metric spaces with the C0
coarse structures. We show that if X and Y are in TB, then X and Y are coarsely equivalent if
and only if their Higson coronas are homeomorphic. In fact, the Higson corona functor gives an
equivalence of categoriesTB→ K, whereK is the category of compactmetrizable spaces. We use this
fact to show that the continuously controlled coarse structure on a locally compact space X induced
by some metrizable compactiûcation X̃ is determined only by the topology of the remainder X̃ ∖ X.

1 Introduction

When studying “large-scale” or “asymptotic” structures of metric spaces, one is o�en
led to consider a kind of “boundary at inûnity” of them, for example, the bound-
ary sphere ∂∞Hn = Sn−1 of the Poincaré ball Hn . _is boundary sphere re�ects the
geometry of Hn in the sense that the isometries of Hn are in one-to-one correspon-
dence with theMöbius transformations of Sn−1. In many situations we can associate a
boundary at inûnity with ametric space, and in the optimal case, the large-scale struc-
ture in question is recovered from the boundary. Results in this direction are pursued
by several authors, including Paulin [9], Bonk–Schramm [2], Buyalo–Schroeder [4],
and Jordi [8]. As an example, let X and Y be Gromov hyperbolic geodesic spaces and
let ∂∞X and ∂∞Y be their boundaries at inûnity. We can deûne a visual metric on
each of these boundaries, which is an analogue of the angle metric on ∂∞Hn = Sn−1

(see [3, Chapter III.H]). _en under some niceness condition (for example, it is satis-
ûed by Cayley graphs of Gromov hyperbolic groups and their boundaries), the metric
spaces X and Y are quasi-isometric if and only if ∂∞X and ∂∞Y are quasi-Möbius
equivalent [4, 8].

In this paper, we prove another such correspondence in more topological settings.
Let X be a locally compact, totally bounded metric space. _en our main result
states that a large-scale structure called the C0 coarse structure on X introduced by
Wright [14] (see §2) is completely recovered from the topology of the boundary X̃∖X,
where X̃ stands for the completion of X (_eorem 4.2). Before introducing our re-
sults in more details, we informally review the notion of coarse structure (see §2 for
formal deûnitions). “Large-scale” properties of spaces, such as quasi-isometry invari-
ant properties of ûnitely generated groups, can be described by coarse structures. A
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coarse structure on a set X is given by a collection of controlled subsets of X × X sat-
isfying several axioms. When E ⊂ X × X is a ûxed controlled subset, one thinks of
x and y as “close uniformly” for all (x , y) ∈ E. _us a typical coarse structure on a
metric space X is the bounded coarse structure, where E ⊂ X × X is controlled if and
only if there exists C > 0 such that d(x , y) ≤ C for all (x , y) ∈ E. In this structure, the
phrase “close uniformly” above has its usual meaning. _e C0 coarse structure on a
locally compact metric space, mentioned above, is another kind of coarse structure.
Roughly, the phrase “close uniformly” in the C0 structure actually means “becoming
closer and closer as points approach inûnity”.

Given a suitable coarse structure on a locally compact Hausdorò space, we can de-
ûne the Higson compactiûcation hX of X (see §2), a compactiûcation of X deûned in
terms of the ring of “slowly oscillating” functions called the Higson functions. _e
remainder νX = hX ∖ X is called the Higson corona, and νX can be regarded as a
boundary of X. _e corona νX is a coarse invariant, in the sense that “coarsely equiv-
alent” coarse spaces have homeomorphic Higson coronas [10, Corollary 2.42]. _en
it is natural to ask whether the converse holds: if νX and νY are homeomorphic, then
are X and Y coarsely equivalent? As we mentioned earlier, an analogous statement is
true for Gromov hyperbolic groups.

_e paper of Cuchillo-Ibáñez, Dydak, Koyama, andMorón [5] gives an aõrmative
answer to this question about Higson coronas in some special case. _ey considered
Z-sets (which are “thin” closed subsets in some sense) in the Hilbert cube and their
complements, where each Z-set can be regarded as the Higson corona of the com-
plement equipped with the C0 structure. _eir result then states that the category of
Z-sets in the Hilbert cube (and the continuous maps between them) is isomorphic to
the category of the C0 coarse spaces formed by their complements.

In this paper, we extend the argument in [5] to general locally compact metric
spaces equipped with the C0 structure. Formally stated, our main result claims an
equivalence of categoriesTB→ K, whereTB is the category of totally bounded locally
compact metric spaces and C0 coarse maps modulo closeness, and K is the category
of compact metrizable spaces and continuous maps (_eorem 4.2). _is equivalence
is realized by the Higson corona functor, which in this case reduces to the operation
of taking the complement in the completion. As a consequence of the equivalence
TB ≃ K, it follows that the C0 coarse structure on M ∖Z, where Z is a nowhere dense
closed set in a compactmetric spaceM, is determined (up to coarse equivalence) only
from the topological type of Z, regardless of the spaceM or how Z is embedded in M
(Corollary 4.3).
A compactiûcation X̃ of a (locally compactHausdorò) space X in general induces a

natural coarse structure on X, called the continuously controlled coarse structure (see
§2). Since this structure can be regarded as a C0 coarse structure with the Higson
compactiûcation X̃ (seeCorollary 3.10 andRemark 4.1), we have that the continuously
controlled structure on X is determined, up to coarse equivalence, by the topological
type of the remainder X̃ ∖ X (Corollary 4.4).
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2 Preliminaries on Coarse Structures and Higson Coronas

We refer the reader to Roe’s monograph [10] as a basic reference for this section.
A coarse structure on a set X is deûned as a collection E of subsets of X × X, called

controlled sets, satisfying the following ûve conditions:
(i) the diagonal ∆X = {(x , x) ∣ x ∈ X} belongs to E,
(ii) if E ∈ E and E′ ⊂ E then E′ ∈ E,
(iii) if E ∈ E then its inverse E−1 = {(x , y) ∈ X × X ∣ (y, x) ∈ E} belongs to E,
(iv) if E , F ∈ E then the composition

E ○ F = {(x , z) ∈ X × X ∣ there exists y ∈ X such that (x , y) ∈ E and (y, z) ∈ F}

belongs to E, and
(v) if E , F ∈ E then the union E ∪ F belongs to E.
_e pair (X ,E) (or brie�y X) is then called a coarse space. A subset B ⊂ X is called
bounded in the coarse space X if B × B is controlled.

Let X and Y be coarse spaces. We can deûne a class of maps from X to Y that
respect coarse structures, namely the coarse maps, as follows. A map f ∶X → Y is
called proper if the inverse image f −1(B) is bounded for every bounded set B of Y .
_emap f is called bornologous if ( f × f )(E) ⊂ Y×Y is controlled for every controlled
set E ⊂ X × X. _en we say that f ∶X → Y is a coarse map if it is both proper and
bornologous. A coarse map f ∶X → Y is called a coarse equivalence if there exists
a coarse map g∶Y → X such that both g ○ f and f ○ g are close to their respective
identities. Here maps h, k∶ S → Z from a set S to a coarse space Z are called close if
the set {(h(s), k(s)) ∣ s ∈ S} is controlled. Coarse spaces X and Y are then called
coarsely equivalent.
A coarse structure on a paracompact Hausdorò space X is called proper (in which

case we say that X is a proper coarse space) if (1) there is a controlled neighborhood
of the diagonal ∆X and (2) every bounded subset has compact closure. For a proper
coarse space X, the converse statement of (2) is also true if X is coarsely connected,
that is, each singleton {(x , y)} is controlled (see [10, Proposition 2.23]). Notice also
that a proper coarse space is necessarily locally compact.
As mentioned in the introduction, a standard example of a coarse structure is the

bounded coarse structure on a metric space (X , d), where E ⊂ X × X is deûned to
be controlled if there exists C > 0 such that d(x , y) ≤ C for every (x , y) ∈ E. In
this structure, the bounded sets are exactly the bounded sets in the metric sense. _e
bounded coarse structure on X is proper if and only if X is proper as a metric space,
that is, every closed bounded subset of X is compact. It is not diõcult to show that two
geodesic metric spaces with the bounded coarse structures are coarsely equivalent if
and only if they are quasi-isometric.
For a locally compact metric space (X , d), we can deûne a coarse structure other

than the bounded structure, called the C0 coarse structure, which was introduced by
Wright [14]. In the C0 coarse structure, a subset E of X ×X is deûned to be controlled
if for every ε > 0 we can ûnd a compact set K ⊂ X such that d(x , y) < ε for every
(x , y) ∈ E ∖ K × K. _e following proposition is proved for completeness.
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Proposition 2.1 Let (X , d) be a locally compact metric space. _en the above deû-
nition of the C0 coarse structure indeed gives a coarse structure on X, where a subset is
bounded if and only if it has compact closure. In case X is separable, this structure is
proper.

Proof Let (X , d) be a locally compact metric space. It is easy to verify conditions
(i), (ii), (iii), and (v). To see (iv), take any controlled sets E , F and ε > 0. We prove
that E ○ F is also controlled. Since E ∪ F is controlled, we can choose a compact set
K0 of X such that d(x , y) < ε/2 whenever (x , y) ∈ (E ∪ F) ∖ K0 × K0. Since X is
locally compact, there is an ε′ > 0 with ε′ ≤ ε/2 such that the closed ε′-neighborhood
N(K0 , ε′) of K0 is compact. _en we can choose a compact set K of X containing
N(K0 , ε′) such that d(x , y) < ε′ whenever (x , y) ∈ (E ∪ F) ∖ K × K.

We claim that d(x , y) < ε holds for every (x , y) ∈ (E ○ F) ∖K ×K. Given (x , y) ∈
(E ○ F) ∖ K × K, we can ûnd a z ∈ X such that (x , z) ∈ E and (z, y) ∈ F. Since
(x , y) ∉ K × K, either x ∉ K or y ∉ K holds. We ûrst consider the case when x ∉ K.
_en we see from (x , z) ∈ E ∖ K × K that d(x , z) < ε′. Since N(K0 , ε′) ⊂ K, we have
z ∉ K0, and in particular, (z, y) ∈ F ∖K0 ×K0. _is in turn implies that d(z, y) < ε/2,
and hence d(x , y) ≤ d(x , z) + d(z, y) < ε′ + ε/2 ≤ ε. Since the case when y ∉ K can
be treated in a similar way, condition (iv) is veriûed.

It is clear from the deûnition of the C0 coarse structure that every subset of X
with compact closure is bounded. To show the converse, let B ⊂ X be a bounded set
with respect to the C0 structure, and suppose that B does not have compact closure.
_en, in particular, there are two distinct points p, q ∈ B, and we set the distance
ε = d(p, q) > 0. Since B is bounded, the square B × B is controlled, and hence there
exists a compact set K ⊂ X such that d(x , y) < ε/2 whenever (x , y) ∈ B × B ∖ K × K.
Since the closure of B is not compact, B is not contained in K. Fix a point r ∈ B ∖ K
and observe that (p, r), (q, r) ∈ B × B ∖ K × K. _is implies that ε = d(p, q) ≤
d(p, r) + d(q, r) < ε/2 + ε/2 = ε, which is a contradiction.

We further assume that X is separable. To prove that the C0 structure is proper,
it remains only to show that there is a controlled neighborhood of the diagonal ∆X .
Since X is locally compact and separable metrizable, we can take a countable locally
ûnite open cover {Un ∣ n ∈ N} such that each Un has compact closure. _en we can
deûne a continuous function f ∶X → (0,∞) by

f (x) = ∑
i∈N

min{2−i , d(x , X ∖U i)}.

_en it is easy to see that the function f vanishes at inûnity; that is, for all ε > 0 there
is a compact set K ⊂ X such that 0 < f (x) < ε for every x ∉ K. _is implies that the
set

E = {(x , y) ∈ X × X ∣ d(x , y) < min{ f (x), f (y)}}
is a controlled neighborhood of ∆X .

Let X = (X ,E) be a coarse space. A bounded (not necessarily continuous) function
f ∶X → R is a Higson function on X if for every controlled set E ∈ E and ε > 0 there is
a bounded set B ⊂ X such that ∣ f (x) − f (y)∣ < ε whenever (x , y) ∈ E ∖ B × B. _e
Higson functions on X form a unital Banach algebra that is denoted by Bh(X).
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A coarse space is usually equipped with a topology, and it makes sense to speak
of continuous functions on the coarse space. Let X be a locally compact Hausdorò
coarse space, and let Ch(X) be the Banach algebra of continuousHigson functions on
X. Let e ∶ X → RCh(X) be an embedding into a product of lines deûned by e(x) =
( f (x)) f ∈Ch(X). _en the compactiûcation hX = clRCh(X) e(X) of X is homeomorphic
to the maximal ideal space of Ch(X). We call hX the Higson compactiûcation of X,
and its boundary νX = hX ∖ X is then called the Higson corona of X.

Remark 2.2 _eHigson compactiûcation of X is o�en deûned as themaximal ideal
space hCX of the C∗-algebra of complex-valued continuous Higson functions on X
(cf. [10]). _is compactiûcation hCX is, however, equivalent to hX. Indeed, it is easy
to show that a bounded real-valued continuous function on X is a Higson function if
and only if it has a real-valued continuous extension on hCX (cf. [1, 3.12.22(e)]).

_e next lemma connectsHigson functions and coarsemaps. _e proof is straight-
forward and le� to the reader.

Lemma 2.3 Let X and Y be coarse spaces and f ∶X → Y a coarse map. _en for every
Higson function ϕ on Y, the composition ϕ○ f is a Higson function on X. Consequently,
f induces a ring homomorphism f ∗∶Bh(Y) → Bh(X). If, moreover, f is continuous,
then f induces f ∗∶Ch(Y) → Ch(X).

Remark 2.4 In the deûnition of Higson functions we used the notion of bounded
set, which is a purely coarse one. In many cases a coarse space has a topology, and it
is natural to assume that the bounded sets have some relation with the topology. For
a locally compact Hausdorò coarse space X, we consider the following condition:

(2.1) A subset of X is bounded if and only if it has compact closure.

Herea�er we will consider the Higson corona of X only when this condition is
satisûed. Condition (2.1) is satisûed by the following coarse structures: the bounded
structures on proper metric spaces, the continuously controlled structures (deûned
below), the C0 structures on locally compact metric spaces (Proposition 2.1), and all
coarsely connected proper coarse spaces.

For a set X and subsets E ⊂ X × X and K ⊂ X, we deûne E[K] to be the set of
x ∈ X such that (x , y) ∈ E for some y ∈ K. _is set is the “image” of K under E, where
E is considered to be a multivalued function from the second coordinate to the ûrst
coordinate. Now assume that X has a topology. _en E ⊂ X × X is called proper if
each of E[K] and E−1[K] has compact closure for every compact subset K of X.

Let X be a locally compact Hausdorò space with a (Hausdorò) compactiûcation
X̃. Denote the boundary X̃ ∖ X by ∂X. _en since X is locally compact, X is open in
X̃ and hence ∂X is compact. A subset E ⊂ X × X is then deûned to be continuously
controlled by X̃ if one of (hence all of) the following three equivalent conditions is
satisûed:
(a) the closure of E in X̃ × X̃ intersects the complement of X ×X only in the diagonal

∆∂X = {(ω,ω) ∣ ω ∈ ∂X};
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(b) E is proper (in the sense deûned in the previous paragraph), and for every net
((xλ , yλ)) in E, if (xλ) converges to ω ∈ ∂X, then (yλ) also converges to ω;

(c) E is proper, and for every point ω ∈ ∂X and every neighborhood V of ω in X̃,
there is a neighborhood U ⊂ V of ω in X̃ such that E ∩ (U × (X ∖ V)) = ∅.

_en the collection of all continuously controlled subsets is shown to be a coarse struc-
ture called the continuously controlled coarse structure induced by X̃ (see [10, Section
2.2]).

Remark 2.5 For a continuously controlled structure, it is easy to see that condition
(2.1) is always satisûed, while it may happen that there is no controlled neighborhood
of the diagonal, even if the space is paracompact. _is means that such a structure
need not be proper. (In [10,_eorem 2.27], it is asserted that every continuously con-
trolled structure on a paracompact space is proper, but the proof given there is actually
incorrect, as pointed out by Berndt Grave; see [11].) As an example, let X = [0,∞)
and consider the Stone–Čech compactiûcation βX of X. Let U be any neighborhood
of ∆X in X × X. For each n ∈ N, let an = n and take bn so that 0 < bn − an < 2−1

and (an , bn) ∈ U are satisûed. _en A = {an ∣ n ∈ N} and B = {bn ∣ n ∈ N} are dis-
joint closed subsets in X, and hence there exists a continuous map f ∶X → [0, 1] with
f (A) = {0} and f (B) = {1}. _is f admits a continuous extension f̃ ∶ βX → [0, 1],
and we have clβX A ⊂ f̃ −1(0) and clβX B ⊂ f̃ −1(1). In particular, clβX A and clβX B are
disjoint. Since A is noncompact, there exists a point ω ∈ (clβX A)∖X and a net (anλ)
in A convergent to ω. _en the net (bnλ) has a subnet (bn′µ) convergent to some point
ω′ ∈ clβX B. _e corresponding subnet (an′µ) converges to ω. _en (an′µ , bn′µ) ∈ U
and (an′µ , bn′µ) → (ω,ω′) ∉ ∆βX∖X , showing that U is not controlled.

In the rest of this section, we discuss how a noncontinuous coarse map between
proper coarse spaces induces a continuous map between their Higson coronas. _e
results will be applied to prove our main theorem (_eorem 4.2).
For a proper coarse space X satisfying (2.1), let B0(X) denote the set of bounded,

real-valued functions that vanish at inûnity, in the sense that for all ε > 0 there ex-
ists a compact set K such that we have ∣ f (x)∣ < ε for all x ∈ X ∖ K. Let C0(X)
denote the subalgebra of all continuous functions in B0(X). _e Banach algebra
C(νX) of real-valued continuous functions of the Higson corona is then isomorphic
to Ch(X)/C0(X). _ere is a natural isomorphism Ch(X)/C0(X) ≅ Bh(X)/B0(X)
by [10, Lemma 2.40], and hence C(νX) ≅ Bh(X)/B0(X). Now let X and Y be two
proper coarse spaces satisfying (2.1) and let f ∶X → Y be a (not necessarily continu-
ous) coarse map. By Lemma 2.3 there is an induced map f ∗∶Bh(Y) → Bh(X), and
by the properness of f , we have f ∗(B0(Y)) ⊂ B0(X). _erefore, we have a map
f ∗∶C(νY) ≅ Bh(Y)/B0(Y) → Bh(X)/B0(X) ≅ C(νX). _en ν f ∶ νX → νY is de-
ûned as the continuous map corresponding to the last f ∗ by Gel’fand-Naimark dual-
ity. _is makes the operation ν a functor, called the Higson corona functor, from the
category of proper coarse spaces to the category of compact Hausdorò spaces.

Of course, we can expect the map ν f to be a “continuous extension” of f in some
sense. In fact, we have the following proposition.
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Proposition 2.6 Let f ∶X → Y be a coarsemap between proper coarse spaces satisfying
condition (2.1). _en the map ν f ∶ νX → νY is characterized by the property that f ∪
ν f ∶ hX → hY is continuous at each point of νX.

Proof Weûrst show that ν f ∶ νX → νY satisûes this property. Since ν f is continuous,
we need only to show that for each net (xλ) converging to a point ω ∈ νX, the net
( f (xλ)) converges to ν f (ω). If this is not the case, there exists a subnet (xλµ) of (xλ)
such that ( f (xλµ)) is convergent toω′ ∈ νY∖{ν f (ω)}. _en there exists a continuous
function ϕ̃∶ hY → R with ϕ̃(ν f (ω)) = 0 and ϕ̃(ω′) = 1, which restricts to a Higson
function ϕ = ϕ̃∣Y ∈ Ch(Y) ⊂ Bh(Y). _en since f is coarse, we have ϕ○ f ∈ Bh(X) by
Lemma 2.3. Using Tietze’s theorem, we can take a continuous extension ψ∶ hX → R
of ϕ̃ ○ (ν f )∶ νX → R. _e deûnition of ν f yields that ϕ ○ f − (ψ∣X) ∈ B0(X). _is
implies, by the continuity of ψ, that

lim ϕ ○ f (xλµ) = limψ(xλµ) = ψ(ω) = ϕ̃ ○ (ν f )(ω) = 0.

On the other hand, by the continuity of ϕ̃,

lim ϕ ○ f (xλµ) = ϕ̃(ω′) = 1,

which is a contradiction.
_e map ν f is uniquely determined by the property we have now demonstrated,

since every point of νX is a limit of some net in X. _is completes the proof.

Remark 2.7 _e above proposition means that ν f is characterized by the fact that
f ∪ ν f ∶ (hX , νX) → (hY , νY) is eventually continuous in the sense of [6, Deûni-
tion 1.14] and [12, Deûnition 2.4], or is ultimately continuous in the sense of [7, Sec-
tion 2]. _is observation is already made in the special case where both X and Y
are continuously controlled by some metrizable compactiûcations X̃ and Ỹ , respec-
tively [7]. In fact, the Higson compactiûcations hX and hY are equivalent to X̃ and
Ỹ in this special case [10, Proposition 2.48].

In some situation, it is also true that f must be coarse whenever f admits an ex-
tension as in the last proposition. For a precise statement we need the following no-
tion: a map f ∶X → Y between coarse spaces is called pre-bornologous if f (B) ⊂ Y is
bounded for every bounded set B ⊂ X. Notice that every bornologous map between
coarse spaces is pre-bornologous.

Proposition 2.8 Let X and Y be proper coarse spaces satisfying (2.1) and let f ∶X → Y
be a (not necessarily continuous) pre-bornologous map. Suppose that Y has the contin-
uously controlled coarse structure induced by some compactiûcation Ỹ of Y. _en f is
coarse if and only if there exists f̃ ∶ νX → νY (which is necessarily equal to ν f ) such that
f ∪ f̃ ∶ hX → hY is continuous at each point of νX.

Proof _e “only if ” part is Proposition 2.6. We prove the “if ” part. Suppose that
there is a map f̃ ∶ νX → νY as above. To see that f is proper, it is enough to show
that f −1(K) has compact closure in X whenever K ⊂ Y is compact, since both X and
Y satisfy condition (2.1). Let K be a compact subset of Y . If f −1(K) does not have
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compact closure in X, then there exists a point ω ∈ νX ∩ clhX f −1(K). _en we have
f̃ (ω) ∈ νY , but the continuity of f ∪ f̃ at ω implies f̃ (ω) ∈ clhY K = K ⊂ Y . _is is a
contradiction, which means that f −1(K) has compact closure in X.

To prove that f is bornologous, let E be a controlled subset of X × X and consider
the image F = ( f × f )(E) ⊂ Y × Y . It is straightforward to show that F is proper as a
subset of Y ×Y , using the fact that E is proper (see [10, Proposition 2.23]) and that f is
a proper, pre-bornologousmap. Let (( f (xλ), f (x′λ))) be a net in F with (xλ , x′λ) ∈ E
and f (xλ) → ω ∈ Ỹ ∖ Y . It remains to show that f (x′λ) → ω.

Suppose that this is not the case. _en there exist subnets (xλµ) and (x′λµ
) (with

the same index set) such that f (x′λµ
) → ω′ for some ω′ ≠ ω. We write xλµ = xµ ,

x′λµ
= x′µ to simplify notation. Choose a continuous function ϕ̃∶ Ỹ → [0, 1] such that

ϕ̃(ω) = 0 and ϕ̃(ω′) = 1, and let ϕ denote the restriction ϕ̃∣Y ∶Y → [0, 1] ⊂ R. By
[10, Proposition 2.45 (b)], there exists a continuous map π∶ hY → Ỹ that restricts to
the identity onY . _en the composition F = ϕ̃○π○( f ∪ f̃ )∶ hX → R gives an extension
of ϕ○ f over hX that is continuous at each point in νX. By Tietze’s theorem, there exists
a continuous extension G∶ hX → R of ϕ̃ ○ π ○ f̃ = F∣νX . _en we have G∣X ∈ Ch(X)
and (G − F)∣X ∈ B0(X), which in turn implies

ϕ ○ f = F∣X = G∣X − (G − F)∣X ∈ Ch(X) + B0(X) = Bh(X).
_is causes a contradiction, since it can also be shown that ϕ ○ f ∉ Bh(X), as follows.
Given a compact setK ⊂ X, we can take µ so large that ∣ϕ○ f (xµ)∣ < 1/3, ∣ϕ○ f (x′µ)−1∣ <
1/3, and xµ ∉ E[K]. _en x′µ ∉ K and it follows that (xµ , x′µ) ∈ E ∖ K × K and
∣ϕ ○ f (xµ) − ϕ ○ f (x′µ)∣ ≥ 1/3. _is shows that ϕ ○ f ∉ Bh(X).

3 C0 and Continuously Controlled Coarse Structures

In this section, all locally compact metric spaces are assumed to have the C0 coarse
structures. Controlled sets, coarse maps and Higson functions will be with respect to
the C0 structure. For such structures, we ûrst make clear how the notions of Higson
functions and coarse maps are related to uniform continuity (Proposition 3.1, Corol-
lary 3.5). _en we prove that the continuously controlled coarse structure induced by
the Higson compactiûcation is the original C0 structure (_eorem 3.6).

Proposition 3.1 Let (X , d) be a locally compact metric space. _en the continuous
Higson functions on X are exactly the bounded uniformly continuous functions on X.

Proof First assume that f ∶X → R is bounded and uniformly continuous. Take any
controlled set E in the C0 structure and ε > 0. _en we can choose a δ > 0 such that
d(x , y) < δ implies ∣ f (x) − f (y)∣ < ε, and then we can choose a compact set K such
that (x , y) ∈ E ∖ K × K implies d(x , y) < δ. _en ∣ f (x) − f (y)∣ < ε holds for every
point (x , y) ∈ E ∖ K × K. _is proves that f is a Higson function.

To show the converse, suppose that f is continuous but not uniformly continuous.
_e latter condition means that there are ε > 0 and sequences (xn)n∈N , (x′n)n∈N in
X such that d(xn , x′n) < 1/n and ∣ f (xn) − f (x′n)∣ ≥ ε. _en the set {xn ∣ n ∈ N}
is not contained in any compact set. Indeed, if it were contained in a compact set,
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then the closure of {xn , x′n ∣ n ∈ N} would be compact, where f must be uniformly
continuous, contrary to the choice of (xn) and (x′n). To show that f is not a Higson
function, we ûrst notice that the set E = {(xn , x′n) ∣ n ∈ N} is controlled, and take
any compact subset K of X. As seen above, the set {xn ∣ n ∈ N} is not contained in K.
_us, we can ûnd an N such that xN ∉ K. _is means (xN , x′N) ∈ E ∖ K × K, but we
have also that ∣ f (xN) − f (x′N)∣ ≥ ε. _erefore, f is not a Higson function.

_e Smirnov compactiûcation uX of a metric space X is deûned as the maximal
ideal space of the unital Banach algebra Cu(X) of real-valued bounded uniformly
continuous functions. _us, a bounded continuous function ϕ∶X → R is extendable
continuously over uX if and only if it is uniformly continuous, and any compactiûca-
tion with this property is equivalent to uX. Here, two compactiûcations γX and δX
of a space X are called equivalent if there exists a homeomorphism h∶ γX → δX such
that h∣X = id. Proposition 3.1 immediately implies the following corollary.

Corollary 3.2 For any locally compact metric space X, the Smirnov compactiûcation
uX of X is equivalent to the Higson compactiûcation of X with respect to the C0 coarse
structure.

In what follows, we give a characterization of coarse maps between locally com-
pact metric spaces without assuming continuity. We recall from the last section that
f ∶X → Y between coarse spaces is pre-bornologous if for every bounded B ⊂ X the
image f (B) is bounded. Since locally compact metric spaces satisfy condition (2.1) in
Remark 2.4 by Proposition 2.1, we obtain the following lemma.

Lemma 3.3 Let X and Y be locally compact metric spaces and let f ∶X → Y be a (not
necessarily continuous) map. _en f is proper if and only if f −1(K) has compact closure
for every compact set K of Y. Similarly, f is pre-bornologous if and only if f (K) has
compact closure for every compact set K of X.

Proposition 3.4 Let X and Y be locally compact metric spaces and let f ∶X → Y be a
(not necessarily continuous) proper, pre-bornologous map. _e following are equivalent:
(i) f is a coarse map.
(ii) For every ε > 0, there exist a compact set K ⊂ X and a δ > 0 such that

d( f (x), f (x′)) < ε whenever (x , x′) ∉ K × K and d(x , x′) < δ.

Proof (ii)⇒ (i): Assume (ii) and let f ∶X → Y be a proper, pre-bornologous map.
It is enough to show that f is bornologous. Take any controlled set E ⊂ X × X and
put F = ( f × f )(E). To show that F is controlled, take any ε > 0. By (ii), we can take
a compact set K ⊂ X and a δ > 0 such that d(x , x′) < δ and (x , x′) ∉ K × K imply
d( f (x), f (x′)) < ε. Since E is controlled, there is a compact set K′ ⊃ K such that
d(x , x′) < δ whenever (x , x′) ∈ E ∖ K′ × K′. _en by Lemma 3.3, L = clY f (K′)
is compact, since f is pre-bornologous. Let (y, y′) ∈ F ∖ L × L. _en (y, y′) =
( f (x), f (x′)) for some (x , x′) ∈ E ∖ K′ × K′. It follows that d(x , x′) < δ, and hence
d(y, y′) = d( f (x), f (x′)) < ε, since (x , x′) ∉ K × K.

(i)⇒ (ii): Assume that f ∶X → Y is proper and pre-bornologous, and that (ii) is
not the case. We then prove that f is not bornologous to obtain a contradiction. _ere
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exists r > 0 such that for each n ∈ N and each compact set K ⊂ X, we can take xK ,n and
x′K ,n , not both of which are inK, with d(xK ,n , x′K ,n) < 1/n and d( f (xK ,n), f (x′K ,n)) ≥
r. We may exchange xK ,n and xK′ ,n if necessary to assume that xK ,n ∉ K. Fix a locally
ûnite cover (Uλ) of X by open sets Uλ with compact closure Dλ = clX Uλ . Let K1 = ∅
and inductively, deûne Kn+1 as the union of all Dλ that intersects Kn ∪{xKn ,n , x′Kn ,n}.
Since (Dλ) is locally ûnite, we see by induction that Kn is compact for each n. Let us
deûne xn = xKn ,n and x′n = x′Kn ,n . Notice that Kn ⊂ Kn+1, xn ∉ Kn and xn , x′n ∈ Kn+1.

We show that the set E = {(xn , x′n) ∣ n ∈ N} ⊂ X × X is controlled. To see this, let
ε > 0. Take N ∈ N so large that 1/N < ε holds, and let K = KN . If (xn , x′n) ∉ K × K,
then it follows that n ≥ N , and hence d(xn , x′n) < 1/n ≤ 1/N < ε. _is shows that E is
controlled.

Next, we claim that the set {xn ∣ n ∈ N} is not contained in any compact set.
Indeed, if this set is contained in a compact set, then some subsequence (xnk) con-
verges to a point x∞ ∈ X, and Dλ is a neighborhood of x∞ for some λ. _en for a
large k, both xnk and xnk+1 are in Dλ . Since xnk ∈ Dλ , we have Dλ ⊂ Knk+1. _en
xnk+1 ∈ Dλ ⊂ Knk+1 ⊂ Knk+1 (using nk + 1 ≤ nk+1), which is contrary to xnk+1 ∉ Knk+1 .
_us, {xn ∣ n ∈ N} is not contained in any compact set.
Finally, we show that ( f × f )(E) = {( f (xn), f (x′n)) ∣ n ∈ N} is not controlled to

prove that f is not bornologous (and hence not coarse). To this end, take any compact
set K ⊂ Y . _en by Lemma 3.3, f −1(K) has compact closure, and hence there is some
n such that xn ∉ f −1(K) by the last paragraph, which implies ( f (xn), f (x′n)) ∉ K×K.
However, we have

d( f (xn), f (x′n)) = d( f (xKn ,n), f (x′Kn ,n)) ≥ r.

Notice that r > 0 is irrelevant to our choice of K. _is means ( f × f )(E) is not
controlled.

Since continuousmaps between coarse spaces satisfying (2.1) are pre-bornologous,
and are uniformly continuous on every compact set, we obtain the following corollary.

Corollary 3.5 A continuousmap between locally compactmetric spaces is coarse with
respect to the C0 coarse structures if and only if it is proper and uniformly continuous.

Let us consider the Higson compactiûcation h0X with respect to the C0 structure.
_en in turn, h0X induces a continuously controlled structure on X. As a generaliza-
tion of [5, Proposition 6], we assert that this is the same as the original C0 structure.

_eorem 3.6 _e C0 coarse structure on a locally compact metric space X is equal to
the continuously controlled structure induced by the Higson compactiûcation h0X.

To prove this theorem, the next lemma will be useful.

Lemma 3.7 Let X be a locally compact metric space and E a subset of X × X with
E = E−1. _en E is controlled if and only if d(xn , x′n) → 0 holds for every sequence
((xn , x′n))n∈N in E such that (xn) has no convergent subsequence.
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Proof _e “only if ” part is clear. To show the “if ” part, we use the construction in
the proof of Proposition 3.4 (i)⇒ (ii), as follows. First choose a locally ûnite cover-
ing (Uλ)λ∈Λ of X by open sets Uλ with compact closure Dλ = clX Uλ . Assume that
E = E−1 ⊂ X × X is not controlled. _en there exists ε > 0 such that for each compact
set K ⊂ X, we have d(xK , x′K) ≥ ε for some (xK , x′K) ∈ E∖K ×K. Here we can choose
(xK , x′K) so that xK ∉ K, since otherwise we can exchange xK and x′K using E = E−1.

Let K1 = ∅, and inductively, deûne Kn+1 to be the union of all Dλ that intersects
Kn ∪ {xKn}. Since (Dλ) is locally ûnite, it follows by induction that Kn is compact
for each n. Put xn = xKn and x′n = x′Kn

. _en, clearly, (xn , x′n) ∈ E. Moreover,
(xn) does not have a convergent subsequence. To see this, assume that a subsequence
(xnk) converges to a point x∞ ∈ X. _en there exists a λ such that Dλ is a compact
neighborhood of x∞. Take a large k such that both of xnk and xnk+1 belong to Dλ .
_en xnk+1 ∈ Dλ ⊂ Knk+1 ⊂ Knk+1 , which contradicts the choice of xnk+1 .

_e next lemma, also needed to prove _eorem 3.6, is valid for general metric
spaces.

Lemma 3.8 Let (xn) and (x′n) be sequences in a metric space X and assume that
d(xn , x′n) ≥ r for every n ∈ N. _en there exist subsequences (xnk) and (x′nk

) such that
d(A,A′) ≥ r/3, where A = {xnk ∣ k ∈ N} and A′ = {x′nk

∣ k ∈ N}.

Proof For n ∈ N deûne the subsets In , Jn of N as follows:

In = {i ∈ N ∣ d(xn , x′i) < r/3},
Jn = {i ∈ N ∣ d(x i , x′n) < r/3}.

_en for i , j ∈ In , we have

(3.1) d(x i , x′j) ≥ r/3.

Indeed, d(x′i , x′j) ≤ d(x′i , xn) + d(xn , x′j) < 2r/3, and hence d(x i , x′j) ≥ d(x i , x′i) −
d(x′i , x′j) ≥ r−2r/3 = r/3, as desired. Similarly, inequality (3.1) also holds for i , j ∈ Jn .
_us if In (or Jn) is inûnite for some n, the enumeration In = {nk ∣ k ∈ N} (or
Jn = {nk ∣ k ∈ N}) with n1 < n2 < ⋅ ⋅ ⋅ gives the desired subsequences (xnk) and (x′nk

).
We are le� with the case where In and Jn are ûnite for all n.

We inductively construct a sequence (nk) that will give the desired subsequences.
Let n1 = 1 and suppose that we have constructed n1 < ⋅ ⋅ ⋅ < nk−1 satisfying
d(xn i , x′n j

) ≥ r/3 for every i , j < k. Notice that the set S = ⋃i<k In i ∪ ⋃i<k Jn i is
ûnite. We deûne nk ∈ N so that nk does not belong to S and is greater than nk−1. _en
we have d(xnk , x′n i

) ≥ r/3 and d(xn i , x′nk
) ≥ r/3 for each i < k. _is completes the

inductive construction.

Proof of_eorem 3.6 By [10, Proposition 2.45(a)], every C0 controlled set is con-
tinuously controlled by h0X. To show the converse, let E ⊂ X × X be a subset contin-
uously controlled by h0X. We may replace E by E ∪ E−1 to assume that E = E−1. To
apply Lemma 3.7 to E, let ((xn , x′n)) be a sequence in E such that (xn) has no con-
vergent subsequence, and suppose that d(xn , x′n) → 0 does not hold. _en, passing
to subsequences, we can ûnd r > 0 such that d(xn , x′n) ≥ r for every n. By Lemma 3.8,
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we can further pass to subsequences to obtain d(A,A′) ≥ r/3, where A = {xn ∣ n ∈ N}
and A′ = {x′n ∣ n ∈ N}. Now deûne ϕ∶X → R by

ϕ(x) = d(x ,A)
d(x ,A) + d(x ,A′) .

Notice that ϕ(A) = {0} and ϕ(A′) = {1}. _e function ϕ is uniformly continuous
and bounded, and hence is a Higson function by Proposition 3.1. _us, ϕ admits a
continuous extension ϕ̃∶ h0X → R.

On the other hand, we can take a subnet (xnλ) of (xn) such that xnλ → ω for some
ω ∈ h0X ∖ X. Since E is continuously controlled by h0X, we have x′nλ

→ ω. However,
we then obtain

0 = lim ϕ(xnλ) = ϕ̃(ω) = lim ϕ(x′nλ
) = 1,

which is a contradiction.

Let usmake brief remarks on the controlled coarse structureswith respect tometri-
zable compactiûcations. _e following characterization of the Smirnov compactiûca-
tion is well known.

_eorem 3.9 ([13,_eorem 2.5]) Let γX be a (Hausdorò) compactiûcation of a met-
ric space X = (X , d). _en the following conditions are equivalent:
(i) γX is equivalent to the Smirnov compactiûcation uX,
(ii) for all subsets A, B ⊂ X, d(A, B) > 0 if and only if clγX A∩ clγX B = ∅.

_us, the continuously controlled coarse structure induced by a metrizable com-
pactiûcation γX can be considered as the C0 structure with respect to an admissible
metric on γX.

Corollary 3.10 For any compact metric space X = (X , d) and its dense subspace Y,
the space X coincides with the Smirnov compactiûcation uY. If, moreover, Y is locally
compact (or equivalently, open in X), then the C0 structure on Y coincides with the
continuously controlled structure induced from X, and X is the Higson compactiûcation
for this structure.

Proof _e ûrst half of the statement is immediate from _eorem 3.9. If Y is locally
compact, we can consider the C0 structure on Y with respect to the metric d induced
from X, as well as the continuously controlled structure on Y induced by X. _en,
by Corollary 3.2, X = uY is the Higson compactiûcation of Y for the C0 structure.
Finally, it follows from _eorem 3.6 that the continuously controlled structure on Y
induced by X = uY is equal to the C0 structure.

4 Equivalence of Categories

To state our main result, we deûne two categories. Let K be the category of compact
metrizable spaces and continuous maps. We deûne another category TB as follows:
the objects ofTB are totally bounded locally compactmetric spaceswith theC0 coarse
structures. _e set HomTB(X ,Y) of morphisms between objects X and Y consists of
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the equivalence classes of coarse maps by the equivalence relation ∼, where f ∼ g if f
and g are close (that is, {( f (x), g(x)) ∣ x ∈ X} is a controlled set). Such a category
can be deûned, since the closeness relation is compatible with composition from le�
and right.

Remark 4.1 _e category TB is related to continuously controlled structures. In-
deed, as seen from Corollary 3.10, the category TB is equivalent to the following cat-
egory CC: the objects of CC are the locally compact spaces with the continuously
controlled structures induced by metrizable compactiûcations, and the morphisms
between them are the coarse maps modulo closeness.

On the other hand, Cuchillo-Ibáñez, Dydak, Koyama, and Morón [5] considered
the category Z of Z-sets in the Hilbert cube Q and continuous maps, and they have
shown that Z is isomorphic to the category C0(Z) of the complements of Z-sets in Q
with the C0 coarse structures and coarse maps modulo closeness (here Q is assumed
to have a ûxed metric). Since every compact metrizable space is homeomorphic to
some Z-set in Q, the category K is equivalent to Z. It follows that the categories K,Z
and C0(Z) are equivalent to each other. _e next _eorem 4.2 implies that they are
equivalent to TB, and hence to CC.

Let us consider the Higson corona functor ν introduced before Proposition 2.6.
_is functor sends close coarse maps to the same continuous map (see [10, Propo-
sition 2.41]), and thus coarsely equivalent proper coarse spaces have homeomorphic
Higson coronas. Naturally, we can ask the converse, namely whether X and Y are
coarsely equivalent if νX and νY are homeomorphic. _is question has a negative
answer in general (see [10, Example 2.44, Proposition 2.45 (c)]), but the next theorem
states that we have an aõrmative answer for objects of TB.

If X is an object of TB, then the completion X̃ of X is compact, since X is totally
bounded. By Corollary 3.10, X̃ is the Higson compactiûcation of X and X̃ ∖ X is the
Higson corona. In particular, νX is compact and metrizable. _us, we can deûne a
functor ν∶TB→ K.

_eorem 4.2 _e functor ν∶TB→ K is an equivalence of categories.

Proof It is enough to show that ν is full and faithful, and that every object in K is
isomorphic to νX for some object X in TB.

We shall ûrst show that ν is full, namely that ν gives a surjective map from
HomTB(X ,Y) to the set HomK(νX , νY) of continuousmaps from νX to νY , for each
X and Y in TB. Let h∶ νX → νY be a continuous map. Recall that the completion X̃
of X gives the Higson compactiûcation hX = X ∪ νX of X, and the same holds for
hY . _us, we use the notation X̃ and Ỹ rather than hX and hY , and their metrics
extended from X and Y are denoted by d when necessary.

We construct (a representative of) a morphism f ∶X → Y in TB such that ν f = h.
_e basic idea here is as follows: for x ∈ X, we take a point a ∈ νX close to x and
deûne f (x) to be a point of Y close to h(a), to the same extent as x is close to a. We
explain this construction in detail. Let us deûneUn as the open 1/n-neighborhood of
νX in X̃ for n ∈ N, and let U0 = X̃. Using the compactness of νY , for each n ∈ N, take
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ûnitely many points yn ,1, yn ,2 , . . . , yn ,k(n) in Y such that νY ⊂ ⋃k(n)
i=1 B(yn , i , 1/n).

For convenience, let k(0) = 1 and let y0,0 be an arbitrarily ûxed point in Y .
To deûne f ∶X → Y , let x ∈ X and take the largest n ≥ 0 such that x ∈ Un . If n = 0,

then we deûne f (x) = y0,0. If n ≥ 1, choose x′ ∈ νX such that d(x , x′) = d(x , νX).
_en we can choose i ∈ {1, 2, . . . , k(n)} such that h(x′) ∈ B(yn , i , 1/n). We ûnally
deûne f (x) = yn , i ∈ Y .

We claim that f ∶X → Y is a coarse map and ν f = h. First, notice that f is pre-
bornologous, since C0 coarse structures satisfy condition (2.1) in Remark 2.4 and
f (X ∖ Un) is contained in the ûnite set {ym , i ∣ m < n, 1 ≤ i ≤ k(m)} for each
n ∈ N. By _eorem 3.6, the C0 coarse structure on Y is the continuously controlled
structure induced by Ỹ . Also, we easily see that f ∪ h∶X ∪ νX = X̃ → Ỹ is continuous
at each point in νX. _en it follows by Proposition 2.8 (and Proposition 2.6) that f is
coarse and ν f = h. _e fullness of ν is now proved.

Next we show that ν∶TB → K is faithful, namely, that ν maps each HomTB(X ,Y)
injectively to HomK(νX , νY). To see this, let f , g∶X → Y be coarse maps such that
ν f = νg. We have to show that f and g are close; in other words,

E = {( f (x), g(x)) ∣ x ∈ X} ⊂ Y × Y

is controlled. By _eorem 3.6, it is enough to show that E is continuously controlled
by Ỹ . To this end, take any (η, η′) ∈ E ∖ Y × Y , where E denotes the closure of E in
Ỹ×Ỹ . _en there exists a net (xλ) in X such that ( f (xλ), g(xλ)) → (η, η′). Since f is
proper, we can take a subnet (xλµ) of (xλ) such that xλµ → ω for someω ∈ νX = X̃∖X.
_en by Proposition 2.6, we have η = lim f (xλµ) = ν f (ω) = νg(ω) = lim g(xλµ) =
η′ ∈ νY = Ỹ ∖ Y , which shows that E is continuously controlled by Ỹ .
Finally, we have to show that every object inK is isomorphic to νX for some object

X in TB. To see this, let K be any compact metrizable space, and ûx any admissible
metric d on K × [0, 1]. Let X = K × (0, 1]. _en X = (X , d) is an object of TB and
K×[0, 1] is its Higson compactiûcation by Corollary 3.10. It follows that νX = K×{0}
and hence K is homeomorphic to νX. _e proof is completed.

_e following corollary is an immediate consequence of _eorem 4.2 (and Corol-
lary 3.10).

Corollary 4.3 Suppose that M1 and M2 are compact metric spaces and that Z1 ⊂ M1
and Z2 ⊂ M2 are closed nowhere dense subspaces. _en M1 ∖ Z1 and M2 ∖ Z2 are
coarsely equivalent as C0 coarse spaces if and only if Z1 and Z2 are homeomorphic.

Moreover, _eorem 4.2 and the above corollary translate to the language of cate-
gory CC introduced in Remark 4.1, in view of Corollary 3.10.

Corollary 4.4 _e Higson corona functor ν∶CC→ K is an equivalence of categories.
In particular, two metrizable compactiûcations X̃1 and X̃2 of a locally compact space
X determine coarsely equivalent continuously controlled coarse structures if and only if
their remainders are homeomorphic, X̃1 ∖ X ≈ X̃2 ∖ X.
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Corollary 4.5 Every object in CC is coarsely equivalent to an object in CC that is
contractible and whose Higson compactiûcation is also contractible.

Proof For any object X in CC, which has the continuously controlled structure in-
duced by a metrizable compactiûcation X̃, consider the remainder Z = X̃ ∖ X. Let
Ỹ be the cone over Z, which is compact metrizable and is a compactiûcation of the
open cone Y = Ỹ∖Z. We can then equip Y with the continuously controlled structure
induced by Ỹ . By Corollary 4.4, the coarse space Y is an object of CC coarsely equiv-
alent to X. Clearly, Y and Ỹ are contractible, and Ỹ is the Higson compactiûcation of
Y by Corollary 3.10.

Example 4.6 Applying Corollary 4.4, we can construct three proper coarse struc-
tures Ei(i = 1, 2, 3) on the same topological space X with E1 ⊂ E2 ⊂ E3 for which E1
and E3 are coarsely equivalent, but E2 fails to be equivalent to E1 (or E3). Indeed, it
suõces to take three metrizable compactiûcations γ iX of the same locally compact
space X that admit maps γ1X → γ2X → γ3X extending the identity, with the remain-
ders Z i = γ iX ∖ X satisfying Z1 ≈ Z3 but Z1 /≈ Z2. _en the continuously controlled
structures induced by γ iX(i = 1, 2, 3) give an example. It is easy to construct an ex-
plicit example where X = [0, 1] × [0, 1), Z2 is a circle and Z1 , Z3 are arcs.

We conclude this paper with results concerning embeddings of C0 coarse spaces,
stating that there is a “universal” C0 coarse space in which all object in TB can be
embedded. We say that a map f ∶X → Y between coarse spaces is a coarse embedding
if the map f ∶X → f (X) is a coarse equivalence. Here f (X) is assumed to have the
induced coarse structure {F ⊂ f (X) × f (X) ∣ F is controlled in Y}. _e proof of the
next lemma is straightforward.

Lemma 4.7 Let X be a locally compact metric space with the C0 coarse structure and
Y ⊂ X be a closed set. _en the induced coarse structure on Y coincides with the C0
structure for the locally compact metric space Y.

First, we consider coarse embeddings that are topological embeddings at the same
time.

Proposition 4.8 _ere exists a separable locally compact metric space X such that for
every object Y in TB admits a map f ∶Y → X that is simultaneously a topological and
coarse embedding.

Proof We can take X = Q × [0, 1), where Q = [0, 1]N is the Hilbert cube. We deûne
a metric on X as the restriction of any compatible metric on Q × [0, 1]. Let Y be
any object of TB and let Ỹ be its completion. We ûx a continuous function ϕ∶ Ỹ →
[0, 1] such that ϕ−1(1) = Ỹ ∖ Y and a topological embedding j∶ Ỹ → Q. _en the
map i∶ Ỹ → Q × [0, 1] deûned by i(y) = ( j(y), ϕ(y)) gives a topological embedding
such that i−1(X) = i−1(Q × [0, 1)) = Y . Let us show that f = i∣Y ∶Y → X is the
required map. _e maps f ∶Y → f (Y) and f −1∶ f (Y) → Y are proper, since they
are homeomorphisms and are uniformly continuous, since they are restrictions of
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continuous maps, namely i and i−1, deûned on compact metric spaces. We conclude
from Corollary 3.5 that f ∶Y → X is a coarse embedding.

If we admit coarse embeddings that are not topological embeddings (and not even
continuous maps), we have the following result by _eorem 4.2.

_eorem 4.9 For every noncompact locally compact separable metrizable space X,
there exists a compatible totally boundedmetric d on X such that every object inTB can
be coarsely embedded into (X , d) with respect to the C0 structure.

Corollary 4.5 turns every object inTB into a contractible space, which is “continu-
ous” in nature. _e next corollary of_eorem 4.9 is a result in the opposite direction,
saying that every object in TB can be expressed as a discrete metric space. Here, a
discretemetric space means a metric space whose topology is discrete.

Corollary 4.10 _ere exists a countable discrete metric space X such that every object
inTB can be coarsely embedded into X with respect to the C0 structures. Moreover, every
object in TB is coarsely equivalent to some countable discrete metric space with the C0
structure.

Proof _eûrst part readily follows from_eorem 4.9. _e second part follows from
the ûrst part using Lemma 4.7.

To prove_eorem 4.9 (and Corollary 4.10), we need some technical lemmas.

Lemma 4.11 Let X be a locally compact separable metric space with the C0 coarse
structure and A, B ⊂ X with the induced structures, where clX A = B. _en the inclusion
A→ B is a coarse equivalence.

Proof Let i∶A → B be the inclusion, which is clearly a coarse map. By Proposi-
tion 2.1, there exists a controlled neighborhood E0 of the diagonal ∆X in X × X. We
deûne h∶B → A by choosing a point h(b) ∈ Awith (b, h(b)) ∈ E0 for each b ∈ B. It is
easy to check that h∶B → A is also a coarse map. _en i ○ h is close to the identity idB ,
since the set {(b, h(b)) ∣ b ∈ B} is contained in E0 and hence is controlled. Similarly,
the other composition h ○ i is close to the identity idA. We conclude that i∶A → B is
a coarse equivalence.

Remark 4.12 Clearly, this lemma is true for a coarse space X equipped with a topol-
ogy for which there is a controlled neighborhood of the diagonal ∆X in X×X, in par-
ticular for all proper coarse spaces. Furthermore, if X is such a coarse space, subsets
A and B of X are coarsely equivalent with respect to the induced structures whenever
they have the same closure, clX A = clX B.

Lemma 4.13 Let X ,Y be spaces in TB and νX, νY be their Higson coronas with
respect to the C0 structures. Let j∶ νX → νY be a topological embedding. _en there
exists a coarse embedding f ∶X → Y such that ν f = j.
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Proof Let Ỹ = Y ∪ νY be the Higson compactiûcation that coincides with the com-
pletion. As shown in the proof of _eorem 4.2, there exists a coarse map f ∶X → Y
such that ν f = j. Let f (X) be the closure of f (X) in Y . By Proposition 2.6, it is
easy to see that clỸ f (X) = clỸ f (X) = f (X) ∪ j(νX). Hence by Corollary 3.10, we
have j(νX) = ν f (X). Let f0∶X → f (X) and j0∶ νX → j(νX) be the maps that are
equal to f and j respectively, with their ranges restricted. _en we have ν f0 = j0
by Proposition 2.6. Notice that f (X) is closed in Y ; hence, its C0 structure coin-
cides with the structure induced from Y by Lemma 4.7. Since j0 is a homeomor-
phism, f0∶X → f (X) is a coarse equivalence by_eorem 4.2. _e coarse equivalence
f0 factors as X → f (X) → f (X), and the second map is a coarse equivalence by
Lemma 4.11. _en it easily follows that the ûrst map X → f (X) is a coarse equiva-
lence, as desired.

Proof of_eorem 4.9 Recall that every compactmetrizable space can be embedded
into Q = [0, 1]N. In view of Lemma 4.13, to prove this theorem it is enough to notice
that there exists a metrizable compactiûcation γX of X with the remainder homeo-
morphic to Q. _en the restriction to X of any compatible metric on γX satisûes our
requirement (then γX is the Higson compactiûcation with respect to the C0 structure
by Corollary 3.10). For completeness, we explain how to construct γX. Since X is
noncompact and metrizable, there exists a sequence (xn)n∈N of distinct points in X
without convergent subsequences. Fix a countable dense subset {yn ∣ n ∈ N} in Q.
_e map {xn ∣ n ∈ N} → Q = [0, 1]N that sends each xn to yn can be extended to a
continuous map h∶X → Q by Tietze’s theorem. Let K be the product (X ∪{∞})×Q,
where X ∪ {∞} denotes the one-point compactiûcation. _e map i∶X → K deûned
by i(x) = (x , h(x)) is a topological embedding, and the closure of its image in K
is i(X) ∪ ({∞} × Q), which is clearly a metrizable compactiûcation of X with the
remainder homeomorphic to Q.
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