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On Extensions of Stably Finite
C*-Algebras (I1)

Hongliang Yao

Abstract. For any C*-algebra A with an approximate unit of projections, there is a smallest ideal I
of A such that the quotient A/I is stably finite. In this paper a sufficient and necessary condition for
an ideal of a C* -algebra with real rank zero to be this smallest ideal is obtained by using K-theory.

1 Introduction and Main Results

Let A be a C*-algebra. Denote by A, the set of all positive elements in A. We will
also use Ko (A), for the positive cone of the Ky-group, Ko(A), of 4, i.e., Ko(A)+ =
{[plo € Ko(A) : pisaprojection in A ® K}. Throughout this paper, by an ideal of
an arbitrary C*-algebra we will, unless otherwise specified, mean a closed two-sided
ideal. A C*-algebra A is called finite if it admits an approximate unit of projections
and all projections in A are finite. If A ® X is finite, then A is called stably finite.
Concerning extensions of stably finite C*-algebras, J. S. Spielberg [4, 1.5] obtained the
following important result.

Theorem 1.1  Let A be a C*-algebra, let I be an ideal in A, and suppose that I and AJI
are stably finite. Then A is stably finite if and only if 9(K1(A/I)) n Ko(I)4 = 0.

Let A be a C*-algebra with an approximate unit of projections, and let {I} } .5 be
a set of ideals of A. We proved [5] that if A/I, is a stably finite C*-algebra for each
A € A, then A/ Nyea I, is a stably finite C*-algebra. Thus, there is a smallest ideal I
of A such that the quotient A/I is stably finite. Throughout this paper, we denote this
smallest ideal of A by I(A). It is easy to see that for any stably finite quotient Q of A
there is a canonical surjective *-homomorphism from A/I(A) to Q.

Theorem 1.2 (1.3 [5]) Let A be a C*-algebra with an approximate unit of projections
and let I be an ideal of A which has real rank zero. If A/I is stably finite and for any
x € Ko(I), thereis an element y in 0(Ky(A/I))nKo(I), suchthatx < y, then = I(A).

At the end of [5], we left a question concerning the converse direction as follows:
let A be a C*-algebra which has real rank zero; for any x € Ko(I(A)), is there an
element y in 0(K;(A/I(A))) nKo(I(A)), such that x < y? The main purpose of this
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paper is to give a positive answer to this question. We will show the following main
result.

Theorem 1.3  Let A be a C*-algebra with real rank zero and let I be an ideal of A.
Then I = I(A) if and only if A/l is stably finite and for any x € Ko(I), there is an
element y in d(K1(A/I)) n Ko(I), such that x < y.

I do not know if the hypothesis of real rank zero is necessary in the above theorem.
The next result is an immediate corollary of Theorem 1.3.

Corollary 1.4 If A is a C*-algebra with real rank zero, then I(A) = A if and only
if Ko(A)+ is a group. Furthermore, if A is also unital, then I(A) = A if and only if
Ko(A)s = Ko(A).

Let A and B be C*-algebras. If ¢ is a *-homomorphism from A to B, then
¢(I(A)) c I(B). In fact, the image 7 o ¢(A) is stably finite where 7 is the canon-
ical map from B to B/I(B). Hence I(A) c ker(mo ¢) and so ¢(I(A)) c ker = = I(B).
It is easy to show that the following statement holds.

Corollary 1.5  For each sequence A; o A, e A; LI of C*-algebras,

iflim A, has real rank zero, then I(lim A,) = im I(A,).

2 Proofs

Before we prove the main result, let us introduce the following several lemmas. The
first lemma is a generalization of Lemma 3.3.6 of [3].

Lemma 2.1 (2.5([5]) IfBc A, isasubset of a C*-algebra A and p is a projection in
the ideal generated by B, then there are x1, ..., xy in A, and ay, . .., ay in B such that

k

*

p= ina,-xi .
i=1

Let A be a C*-algebra and let M, (A) denote the n x n matrices whose entries
are elements of A. For any a € M,(A) and b € M,,(A), a @ b refers to the matrix
diag(a,b) in M. (A). Let Moo (A) denote the algebraic limit of the direct system
(M, (A), ¢n), where ¢,,: M, (A) - M,.1(A) is given by

aHaO
0 0/

We will also use M, (A) to denote the set of all positive elements in M, (A). Given
a,b € Mo (A),, we say that a is Cuntz subequivalent to b, written a 3 b, if there is a
sequence {x, } 52, of elements of M, (A) such thatlim,_ |x,bx} — a| = 0. We say
that a and b are Cuntz equivalent (written a ~ b) if a 3 b and b 5 a. It is easy to see
that if p and q are projections, the definition of p 5 g is equivalent to there being a
partial isometry u € Mo, (A) with u*u = p and uu™ < q.
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Lemma 2.2 (2.4 [5]) Let Abea C*-algebra, a,be A,. Thena+b s a®b. If Ahas
real rank zero and alb (i.e., ab=0),thena+b ~a @ b.

Lemma 2.3 Let A be a C*-algebra with an approximate unit of projections. Let ] be
an ideal of A generated by

{q € A there is a hyponormal partial isometry v € A such that v¥v — vv™ = q} .

Then for any x = [plo in Ko(J)+ where p is a projection in ], there is an element y in
0(Ki(A/])) nKo(])+ such that x < y.

Proof Note that J is the ideal of A generated by
C = {q € A : there is a hyponormal partial isometry v € A such that vy —vv* = g}.

For any projection p in J, by Lemma 2.1, there are x;, ..., x4 in A and there are pro-
jections gy, ..., qx in C such that p = ¥ xiqix}. By Lemma 2.2,

k k
*
P3P xiqix; sPai.
i=1 i=1

So [p]o < £¥,[4:]0. Note that by the construction of C, Y5, [g;]o belongs to
A(Ki(AID) N Ko(])- .

Lemma 2.4 (2.2 [5]) Let A be a C*-algebra with an approximate unit of projections.

(i)  IfBis an ideal of A, with an approximate unit of projections, then I(B) c I(A).
(i) I(A) = I(A) where A is the unitization of A.
(i) I(Mn(A)) =M,(I(A)), I(A®XK) =I(A) ® K.

Proof of Theorem 1.3 It suffices to show the “only if” part of the statement. By
Lemma 2.4(iii), without any loss of generality we may assume that I, A, and A/I are
stable. Let 8 be the set of all ideals J in A that satisfy that ] ¢ I(A) and for any
x € Ko(J)+ there is an element y in d(K;(A/J)) n Ko(J)+ such that x < y. Then
(8,c) is a partially ordered set. The theorem will be proved by showing that I(A)
belongs to 8.

Let {J) }1ca be a chain in S and set K = U, J,. For each A the diagram

Ki(A/T)) —2> Ko(J))

Ki(A/K) — Ko(K)

commutes. For any x € Ko (K), thereare A in A and x" in K¢ (] )+ such that 1) (x") =
x. According to the definition of 8, there is an element y" in Kj(A/J;) such that
or(y") 2 x". Put y = nr(y'). Then o(y) = 12(91(y")) = 11(x") = x. Hence K is
an upper bound of the chain {J, } yco. Therefore by Zorn’s lemma there is a maximal
element M of 8.

We claim that M = I(A). Otherwise, M & I(A) and there is a hyponormal partial
isometryvin A/M. Let M, be the ideal in A/ M generated by v*v—vv*, and let 77 be the
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canonical mapping from C*-algebra A to A/M. Putting M; = {a € A: n(a) € My},
it is easy to see that M; c I(A). We get a commutative diagram.

0 z\f I A/M 0
0 M, I AlM, 0
0 — M;/M A/M AlM,; 0

where each row is exact. Therefore we have the following commutative diagram.

Ki(A/M) —L~ Ko(M)

Ki(A/My) —2— Ko (M)

Ky (A/My) TKO(MI/M)

For any x € Ko(M;)+, let x" = yo(x). Note that x” is in Ko(M;/M),. By Lemma 2.3,
there are a’ € Ko(M;/M), and b € Ki(A/M;) such that a’ > x" and 9'(b) = a’.
Set a = d(b). Since A has real rank zero, by [6], there is ¢ € Ko(M;), such that
Wo(c) =a’ —x'. Setd = ¢ + x. We then have d > x and yy(d) = a’. Since

Yyo(d-a)=a"-09'(b) =0,
there is d” € Ko(M) such that ¢o(d”) = d — a. Note that M have real rank zero,
and so Ko(M), — Ko(M), = Ko(M). Hence there are ¢’ and f” in Ko(M), such
that d” = " — f”. According to the definition of 8, there is g’ € K;(A/M) such that
0" (g") > e". Set g = my(g"). We obtain that

d(b+g)=a+¢o(d"(g")) >a+¢o(e")>a+¢o(d")=a+(d-a)=d=c+x>x.

Consequently, M; € 8 which contradicts the maximality of M. Therefore, M = I(A) €
8. This completes the proof of Theorem 1.3. ]
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