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Abstract

Synthetic controls (SCs) are widely used to estimate the causal effect of a treatment. However, they do not
account for the different speeds at which units respond to changes. Reactions may be inelastic or “sticky”
and thus slower due to varying regulatory, institutional, or political environments. We show that these
different reaction speeds can lead to biased estimates of causal effects.We therefore introduce a dynamic SC
approach that accommodates varying speeds in time series, resulting in improved SC estimates. We apply
our method to re-estimate the effects of terrorism on income (Abadie and Gardeazabal [2003, American
Economic Review 93, 113–132]), tobacco laws on consumption (Abadie, Diamond, and Hainmueller [2010,
Journal of the American Statistical Association 105, 493–505]), and German reunification on GDP (Abadie,
Diamond, and Hainmueller [2015, American Journal of Political Science 59, 495–510]). We also assess the
method’s performance using Monte Carlo simulations. We find that it reduces errors in the estimates of
true treatment effects by up to 70% compared to traditional SCs, improving our ability to make robust
inferences. An open-source R package, dsc, is made available for easy implementation.
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1. Introduction

Social scientists often seek to estimate the causal effects of treatments, such as events or interventions, on
various outcomes of interest. Researchersmay, for example, investigate the consequences of introducing
minimum wage legislation on unemployment, the influence of terrorist attacks on economic growth,
or the effect of electoral redistricting on legislative behavior. Typically, making such causal inferences
requires the construction of counterfactuals to infer what would have occurred in the absence of the
treatment.

An important tool for constructing counterfactuals is the synthetic control (SC) method, “arguably
themost important innovation in the policy evaluation literature in the last 15 years” (Athey and Imbens
2017). This method is designed to provide an accurate representation of the hypothetical outcome for
the treated unit without the treatment. It involves combining non-treated units, which, when given
appropriate weights, closely resemble the pre-treatment unit. This technique extends the difference-in-
difference approach, with the advantage of generating a close match to the unit of interest, even when
no single control unit would be appropriate on its own.

However, the SC approach does not account for the potentially different speeds at which units react
and adapt to changes. Changes in reactions to an event or a policy may be inelastic or “sticky” and
therefore take longer in one unit than in another. Consider the example of public opinion shifts following
major policy changes. While some segments of the public may quickly adjust their views in response to

©The Author(s), 2024. Published by Cambridge University Press on behalf of The Society for Political Methodology.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/
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new information or policy announcements, showing a “fast” response, while others might take longer to
process the new information or for the effects of the policy change to become apparent in their daily lives.
More generally, the speed at which yt moves reflects how quickly it mirrors changes in its underlying
latent process zt .This speed of reaction to changes may also vary within one unit over time: a previously
slow unit may now be fast, and vice versa. In addition, speed may also vary as a function of covariates.1

Variations in speed—how quickly units react to changes—have important consequences for our
ability to make inferences. We may, for example, conclude that a treatment had a large effect on treated
unit y1 compared to untreated units y2 and y3. However, the observed difference in reaction may
simply be due to the fact that y2 and y3 lag behind y1—there is in fact no treatment effect, and all
we observe is y1’s reaction to common shocks (not the treatment) ahead of y2 and y3. Conversely,
we may underestimate the effect on y1 if y2 reacts faster to these common shocks. Ignoring these
differences in speed creates further problems for SCs, as the donor2 and the treated units may be out
of synchronization, and what appears to be a good pre-treatment match may in fact be due to chance
rather than a true alignment. Another problem is that the varying speeds may prevent us from finding
a suitable SC at all, as there may be no linear combination of the donors that allows for a close match to
the treated unit.

Different units—states, cities, and people—may adjust and react at varying speeds for many reasons.
For instance, legal constraints in one state may slow down the speed at which economic decisions are
made compared to other states. Öztekin and Flannery (2012), for example, find that the speed with
which firms adjust their capital structure correlates with legal and financial norms. Additionally, the
speed of convergence—the rate at which a country’s per capita income approaches its steady state—
has also been shown to vary by country and over time (Barro et al. 1991; Canarella and Pollard 2004;
Rappaport 2000). Similarly, the effect of a policy may be slower to fully manifest itself in one instance
than in another. Thus, Alesina, Cohen, and Roubini (1992) find that the speed at which the deficit is
adjusted in election years may be slower than in other years. Moreover, the impact of a shock on, for
example, commodity prices, may be almost instantaneous in some markets but drag on in others.

To demonstrate the significance of these varying speeds for our ability to make inferences, suppose
that we aim to estimate the causal effect of a policy on an outcome, for example, the impact of cigarette
taxes on consumption or the introduction of a minimum wage on employment. We have artificial data
for three units (e.g., states) over time, as illustrated in Figure 1. During the observation period, one of
the units (y1) receives a treatment, while the other two (y2 and y3) do not, allowing them to be used as
potential donor units for counterfactual analysis.However, the researcher is not aware that the true effect
of the treatment is zero.3 In addition to the treatment, which applies exclusively to y1, we also assume
that all three units are subject to universal shocks represented by z. All units react to z at different speed.
As shown in 1, y2 adjusts slowly when y decreases but recovers fast. In contrast, y3 decreases fast but
recovers slowly. Unit y1 has a neutral speed.

To generate the synthetic unit, the standard SC approach constructs a weighted average of the two
available donor unitsy2 andy3 usingweightsw∗ = (w∗y2,w

∗

y3).w
∗ is selected such that the resulting SC,

which combines the non-treated units Y−1 as Y−1w∗, closely matches the pre-treatment sequence of
the treated unity1.4 Abadie andGardeazabal (2003) demonstrate that this approachproduces a plausible
counterfactual for the treated unit.

In the example of Figure 1, however, selecting weights that generate a suitable counterfactual is not
straightforward. Indeed, even in this simple case, there is no easily obtainable closed-form solution for
findingw. The standard linear approach results in the SC depicted by the blue curve. This curve poorly

1This concept of speed, detailed in Supplementary Appendix 1, is quantified here through the presence and order of nonzero
lag coefficients. A higher order of significant lag coefficients, for example, indicates a slower response rate of the outcome
variable to changes in the latent process.

2In SC, the untreated units are referred to as donors.
3This illustration is simplified and purposefully designed to emphasize the critical role and impact of response speed

variability in SC accuracy. More realistic examples follow below.
4In other words, we choosew∗ to satisfyw∗ = argminw∗ ∣∣y1−Y−1w∗∣∣2. For simplicity, we abstract away any predictors.
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Figure 1. The challenge of varying speeds. Consider a researcher aiming to quantify the effect of a treatment on unit y1. Unbeknownst

to them, no treatment effect actually exists. Employing conventional synthetic control (SC) methods with donor units y2 (slow) and

y3 (fast), they obtain a post-treatment estimate (blue curve) that diverges markedly from the true outcome (black curve), leading to

a significant bias in the estimated treatment effect. In contrast, dynamic synthetic controls, as elaborated below, produce a SC (red

curve) that more closely approximates the truth.

matches both the pre- and post-treatment unity1, and leads us to erroneously conclude that a treatment
effect exists (the post-treatment difference between the blue and black curves) when, in reality, the true
treatment effect is zero. Adding nonlinear terms or lags does not improve the situation much either (see
Figure A1 in Supplementary Appendix 2, which incorporates multiple lags and polynomial terms).

The approach’s challenge to generate a satisfactory approximation of the treated unit using untreated
units stems from the challenge of accounting for varying speeds. In this case, y2, y3, and y1 all exhibit
cycles that unfold at different rates. All three units display the same patterns, but prior to the treatment,
y2’s cycle is longer (i.e., slower) than y1’s, and y3 is faster than y1. Additionally, the differences in speed
fluctuate within each unit over time, so that a single speed adjustment parameter is insufficient. Lastly,
variations in speed might depend on unobservable variables or endogenous regressors. Unless we can
correctly account for the complex mechanisms and model the speed, the speed difference will cause
errors akin to omitted variable bias in SC estimation.5

In this paper, we introduce a new method, dynamic synthetic control (DSC), which accounts for
varying speeds within and across units. This approach operates by learning the differences in speed
between the series during the pre-treatment period. We do this by calculating a dynamic time warping
(DTW) path between them. The warping path subsequently provides a measure of speed differentials
across units and over time. We then use this warping path to warp the post-treatment donor units
to align their speed with that of the treated unit. As a result, we can assess the treatment effect while
controlling for the inherent varying speeds. As an illustration of the method’s capabilities, the red curve

5The nature of the omitted variable bias will be discussed in Section 2.
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in Figure 1 shows the outcome of applying DSC to this simple case. We observe that warping enables us
to more closely match the post-treatment unit compared to a standard SC. Importantly, the estimator
only removes speed differences that originate from the pre-treatment period; it does not remove speed
differences that are caused by the treatment. This, in turn, allows for a more precise inference of the
treatment effect’s magnitude.

The remainder of this paper demonstrates that this result extends beyond a simple example. In fact,
we show empirically that DSCs serve as a more efficient estimator of the treatment effect compared
to standard SCs. We substantiate these findings by replicating leading empirical work in this field and
illustrating how the results can be improved using DSC. Additionally, we generalize our results through
a Monte Carlo simulation.

2. Synthetic Controls and the Problem of Speed

Many of the questions of interest to social scientists revolve around estimating the effect of treatments
such as an event or an intervention (e.g., Becker and Klößner 2016; Brady and McNulty 2011; Card
and Krueger 2000; Chattopadhyay and Duflo 2004; Di Tella and Schargrodsky 2004). Difference-in-
differences, for example, leverages similarities between a treated unit and an untreated one to deduce the
treatment’s effect. However, the method potentially suffers from biased control selection and imprecise
case similarity—sometimes lacking a suitable comparison altogether.

The SC approach, pioneered byAbadie andGardeazabal (2003) and refined inAbadie, Diamond, and
Hainmueller (2010, 2015), aims to address such limitations by combining a basket of control cases to
mimic the pre-treatment scenario for the treated unit. This enables a more robust counterfactual study
of the treatment’s impact (see Abadie 2021 for a review; a refresher of the method is in Supplementary
Appendix 3).

However, in a wide class of situations, there is in fact no easy way to generate a good counterfactual
using standard SC method. Suppose that we observe a time series y1,t exposed to a treatment at time
T. We also observe a basket of time series yj,t,j ∈ (2,3,⋯,J +1) to be used as donors. All time series are
of length N. Assuming that the target time series y1,t depends not only on current yj,t , but also on lags
yj,t−l,l ∈ (1,2,⋯,t−1), then the model of interest for the behavior of y1 over time is

y1,t =
J+1
∑
j=2
[wj(yj,t +β1,j,tyj,t−1+β2,j,tyj,t−2+⋯+βt−1,j,tyj,1)]+εt, (1)

where βl,j,t is a time-dependent coefficient for the lag term yj,t−l, l refers to the order of the lag, j to the
donor unit, and t to the time.wj is a constant weight for donoryj and its lags, and εt is the error term.We
assume that all classical assumptions about εt apply.This model explores the speed problem by allowing
a varying number of lags of yj,t to influence the target time series y1,t . The higher order of lags that have
nonzero coefficients, the “slower” y1,t is relative to yj,t—that is, the more the past drags on.

Consider now the standard SC approach. As it only includes the current donor time series yj,t but
not the lags yj,t−l, the model used in estimating the weights wsc is not the one of Equation (2.1), but
rather

y1,t =
J+2
∑
j=2
(wjyj,t)+ηt =Y−1,twsc+ηt,

and the new error term ηt is

ηt =Y−1,LβLw+εt,

whereY−1,L are lag terms and βL are lag coefficients. Clearly, ignoring the lagged effects of the donor
time series results in omitted variable bias.This subsequently leads to a biased estimate of the treatment
effect and inflated standard errors (see Supplementary Appendix 4 for a proof).
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Various extensions of the SC method have been introduced to tackle the problems of poor pre-
treatment fits, but none are suitable for the varying speed problem. For example, Ben-Michael, Feller,
and Rothstein (2022) examine the SC method in scenarios where policies are implemented by different
units at distinct times. Other than SC methods, Goodman-Bacon (2021) discusses how improved
difference-in-difference estimators address the bias from time-varying treatment effects. While many
newly developed methods (Ben-Michael et al. 2022; Ferman, Pinto, and Possebom 2020; Goodman-
Bacon 2021) strive to enhance causal inference outcomeswhen the data requirements outlined inAbadie
and Cattaneo (2021) are not met, none specifically address the varying speed problem which involves
estimating the JNN lag coefficients.6

In a related paper, Becker and Klößner (2018) have improved the accuracy of the SC method. They
do so by accommodating varying time resolutions and introducing time-specific weights for donors
and predictors. This has broadened the applicability of the method in analyzing complex economic
phenomena with multiple dependent variables and predictors of differing temporal granularities. Our
methodology complements Becker and Klößner (2018) by addressing the challenge of differential
response speeds among units—an aspect of temporal variability not directly tackled by the focus on
time resolution in the work by Becker and Klößner (2018). By employing a warping technique on
the outcome time series yj, we enhance the alignment of treated and control units, beyond observable
characteristics or the temporal granularity of the data. This process effectively mitigates bias arising
from the varying speeds at which units respond to latent processes or external shocks, ensuring the
SC more accurately mirrors the counterfactual scenario. While the framework by Becker and Klößner
(2018) handles varying time resolutions and introduces time-specific weights for donors and predictors,
it does not explicitly address pre-treatment alignment of outcome series to manage differences in unit
response speeds. Our warping approach specifically fills this gap.7

In this paper, we address the speed problem by relying on DTW, a non-parametric method derived
from speech recognition (Vintsyuk 1968), which allows us to recover speed differences between
sequences. The DTW algorithm is widely used to find the optimal alignment between two time series
that may vary in speed. It obtains the alignment by warping the sequences in the time dimension, such
that the Euclidean distance between the warped and the target sequences is minimized. Determining
the best way to warp the series is equivalent to estimating the lag coefficient βs.

After estimating the lag coefficient βs, we combine the lag terms into a single time series

ywj,t =
t−1
∑

l=t−N
β̂l,j,tyj,t−l,

which we refer to as a “warped” time series. Then when applying SC, we replace the original donor
time series yj with the warped time series yw

j to mitigate the impact of the speed problem.8 We provide
details of DSC method below.

6(J donor time series) × (N time periods)× (N/2 backward lags+N/2 forward lags). Please see Supplementary Appendix 6
for a discussion of forward lags.

7More specifically, Becker and Klößner (2018) employ a generalized model that allows multiple dependent variables and
covariates at different time resolution, time aggregates, and lags. Importantly, it allows for time-specific weights for dependent
variables and covariates so that more weight can be put on the data closer to the treatment time.This reduces the errors caused
in estimating the weights of covariates (inner optimization) and thus yields better weights of donors (outer optimization) and
generates more accurate SC. By reducing the dimensionality of the optimization space by identifying “sunny”/“shady” donors,
Becker and Klößner’s (2018) method is potentially able to estimate the time-specific weights for all possible lags of the donors
(Y−1,L). However, formost applications, it would not be computationally efficient to do so, as each donor comes withN lagged
units. In addition, estimating all JNN coefficients is typically not feasible given limited data.

8DSC uses a non-parametric method, DTW, to estimate the time-specific coefficients for the lagged donor units the
covariates. By warping the donor units and the covariates, it reduces errors caused by speed difference in both inner and
outer optimizations. Since the method finishes the correction before the SC starts, it can be used with SC extensions such
as MSCMT (Becker and Klößner 2018), and further reduces bias caused by poor-performance optimizers. Together, these
methods generate better SCs.
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3. Accounting for Speed: Dynamic Synthetic Controls

The speed issue arises from two possible sources: those caused by the treatment itself and those
resulting from inherent speed differences (see Figure 1 and the previous section). Here, we introduce a
method designed to mitigate the inherent speed differences between treated and untreated units while
maintaining the effects induced by the treatment—whether in level or speed. As a result, we can attribute
any post-treatment differences between the two groups exclusively to the treatment. This approach
eliminates the influence of pre-existing speed disparities in the time series.

The DSC method introduced below addresses the issue of varying speeds across time and units.
It begins by warping the untreated units to minimize the speed differences between them and the
treated unit. The algorithm extracts information on speed differences from the pre-treatment period,
and adjusts the speed of the entire donor time series to align with the treated time series.9 This indirect
warping approach allows the remaining difference between the treated and donor units to be attributed
exclusively to treatment differences rather than inherent speed differences. After adjusting the series’
speeds, the standard SC method is applied.

The warping process comprises three steps (see Figure 2 and Algorithm A1 in Supplementary
Appendix 7). First, wematch the pre-treatment parts of the target (black) and the donor (red) time series;
second, we match the post-treatment and the pre-treatment parts of the donor time series; finally, we
combine the time alignments obtained in the previous two steps and create a warped donor time series
(blue) that minimizes the inherent speed difference between itself and the target time series (black). We
now discuss each step in detail.

Step 1. Matching Pre-Treatment Time Series
The DSC algorithm first estimates the speed relationship between the pre-treatment segments of the
target time series y1 and the donor time series yj. This is achieved by employing the DTW method to
align the pre-treatment portion of y1 with yj and storing the warping path matrix.

The warping path matrix stores the results of DTW alignments and is formally defined as follows:

Pj = [pj,υ,t], υ,t ∈ [1,N],

pj,υ,t =
⎧⎪⎪
⎨
⎪⎪⎩

1, if yj,υ matches y1,t,
0, otherwise.

As illustrated in Figure 3, the points of y1 are matched to the points of yj by DTW in a manner that
minimizes the total distance between the matched points.10 The warping path matrix Pj captures the
speed difference between y1 and yj.

We first match the pre-treatment target time series y1,1∶T to the donor time series yj (see the first
part of Figure 2). The point y1,T is matched to yj,C.11 Let yj,pre = yj,1∶C denote the pre-treatment part of
yj and yj,post = yj,C∶N the post-treatment portion. Similarly, we define y1,pre = y1,1∶T and y1,post = y1,T∶N .
Using DTW, we obtain a warping path from yj,pre→ y1,pre, which is stored in a C×T matrixPj,pre.

Thewarping pathPj,pre is used in step three towarp the time axis ofyj,pre with the goal ofminimizing
the speed difference between yj,pre and y1,pre. Additionally, it is employed along with the warping path
derived from step two to adjust the speed of yj,post .

Step 2. Matching Pre- and Post-Treatment Donor Time Series
Learning the warping path between the post-treatment segments yj,post and y1,post is more challenging.
We cannot directly align the two sequences, because their differences are due not only to their different

9Importantly, we avoid inferring speed differences from the post-treatment period, as it could conflate the effects of inherent
speed differences and treatment, leading to biased estimates.

10Formally,Pj = argminPj
(∑N

t=1∑N
υ=1

pj,υ,t ∣y1,t−yj,υ ∣
∑N

υ=1 pj,υ,t
).

11To ensure optimal matching, we do not impose an end rule. Consequently, the matched time series y1,1∶T and yj,1∶C may
have different lengths.
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Figure 2.Dynamic synthetic control (DSC). The warping process of the DSC algorithm operates in three key steps. First, it matches the

pre-treatment segments of yj and y1 to derive the warping path Ppre. Second, it aligns the pre- and post-treatment segments of yj ,

yielding PQ→R. Finally, yj is warped using both Ppre and Ppost to produce the time-warped series y
w
j .

y1,3

yj,5

yj,6

y1,13

y1,14

yj,14

yj

y1

DTW

1 1
1 1

1 1
1 1

1 1
1

1
1

1
1

1
1

1
1

y1,3

yj,5 yj,6

y1,14
y1,13

yj,14

yj

y 1

Warping Path

Figure 3. Warping path. The left figure shows data points matched in DTW, connected by dashed lines. The right figure displays the

corresponding warping path matrix, where only matched pairs (ones) are shown. The time series yj initially progresses at a rate 2×

slower (indicated in red) than y1 but later becomes 2× faster (in blue) than y1.
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speeds but also to the treatment effect. Aligning themwould artificially remove that treatment effect. So
the post-treatment warping pathPj,post , that is, the inherent differences in speed, must be learned from
the pre-treatment pathPj,pre.

To extract similar short-term sequences in yj,post and yj,pre and therefore infer the warping path
Pj,post fromPj,pre, we use a double-sliding window approach.12 In essence, the double-sliding window
serves as a dynamic “lens”—the first window scans through the post-treatment time series to identify
segments requiring alignment, while the second window sifts through the pre-treatment time series to
find the most similar segments, which facilitates optimal matching and warping of patterns between
the two time series. As illustrated in the second part of Figure 2, we slide a target window Qu in
yj,post and a reference window Ri in yj,pre. For each short-term sequence Qu in yj,post , we find the best-
matching sequence R∗ from yj,pre, and record the warping path Qu → R∗ as Pj,Qu→R∗ . We also extract
the corresponding pre-treatment warping pathPj,R∗ ∶R∗→y1 fromPj,pre. Next,Pj,R∗ is adjusted based
on Pj,Qu→R∗ to account for the differences between Qu and R∗. The resulting adjusted warping path is
Pj,Qu . Once the sliding target window Qu reaches the right boundary yj,N , we merge all the resulting
warping pathsPj,Qu to obtain the final warping pathPj,post for the post treatment donor time series.13

Step 3. Warping Donor Time Series
In the third step, the DSC algorithm uses the previously estimated warping pathPj,pre to warp the pre-
treatment donor seriesyj,pre. Similarly, it usesPj,post from the second step to warpyj,post .14 The resulting
time series are combined into a single warped donor time series yw

j :

yw
j = [y

w
j,pre,y

w
j,post]

= [Pj,pre(yj,pre),Pj,post(yj,post)].

After being warped, the inherent speed differences between yw
j and y1 are minimized, while the

differences caused by the intervention are unchanged. Finally, using the warped donor time series
yw
j ,j ∈ (2,3,⋯,J+1), we apply the SCmethod to construct a counterfactual ofy1 tominimize the impact

of the speed problem.15
All methods discussed in this paper have been implemented in an accompanying R package.16

4. Evaluating the Method

We showcase the advantages of our proposed method using two approaches. First, we create synthetic
data using a Monte Carlo simulation. This lets us design and know the treatment effect, in contrast to
real-world data where the true treatment effect is never known. This allows us to show that, across a

12Details on the double-sliding window approach can be found in Supplementary Appendix 8.
13To ensure that the resulting warping pathPj,post has the best accuracy, a threshold θ is applied to the DTW distances to

filter out any less desired matches. If for a target window Qu, we cannot find any matches that meet the standard θ, the target
window will be unchanged, that is, no warping will be given.

14To warp the time series using a warping path matrixPj, we first obtain estimates of lag coefficients β̂υ−t,j,t = pj,υ,t

∑N
υ=1 pj,υ,t

,

then combine the lag terms and obtain the warped time series ywj,t =∑t−1
l=t−N β̂l,j,tyj,t−l .

15TheDSCmethod, in linewith traditional SC and difference-in-differences approaches, operates under the assumption that
treatment effects can be distilled into an additive-separable scalar. This simplification facilitates the estimation of these effects
by comparing the outcomes of the treated unit to those of an SC constructed from donor units. However, we acknowledge
that this approach implicitly assumes the treatment’s exogeneity and does not systematically account for the endogeneity of
treatment or the potential complexity of treatment effects that may not be adequately captured by a single scalar measure.
Furthermore, the DSC method assumes negligible spillover effects from the treatment to the donor units. This assumption is
critical, as significant spillover effects would likely bias the SCmethods, especially if the donor units that aremost similar to the
treated unit are the ones affected.These spillover effects tend to lead to an underestimation of the true treatment effect—and to
inflated standard errors—because they imply that the control units are also impacted by the treatment. These considerations
reflect broader challenges within causal inference methodologies. Other threats to identification in our model are discussed
in Supplementary Appendix 5.

16The R package can be found in Supplementary Appendix 13.
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wide range of parameters, our estimate of the treatment effect is more efficient than the one obtained
using the standard SC approach.

Second, we apply the DSC method to data from three seminal articles on SCs: Abadie and Gardeaz-
abal’s (2003) data on the effect of terrorist attacks on GDP; Abadie et al.’s (2010) data on changes in
tobacco consumption in California; and Abadie et al.’s (2015) study of the economic impact of the 1990
German reunification. In each case, we demonstrate that our estimates of the placebos aremore efficient,
such that the statistical test of the effect of the treatment has greater power.

In each case, we make two main arguments. First, we argue that our method generates a better
counterfactual than the standard SC. Second, we demonstrate that our method enhances precision by
reducing uncertainty in the treatment effect estimate. A key issue in SC is the possibility that observed
effects occur by chance. Existing literature often shows that while SCs for untreated units (placebo units)
generally yield less extreme results than the treated unit, the confidence intervals remain wide. OurDSC
method effectively narrows these intervals, thereby improving estimator precision.

4.1. Monte Carlo simulation
We first use a Monte Carlo simulation to replicate the types of empirical challenges faced with real data.
We generate hundreds of artificial panel datasets, each containing time series for ten units observed over
100 periods. In each sample of 10 series, one time series is designated as the “treated” unit, while the
remaining nine serve as the donor pool to construct the SC (i.e., J = 9, N = 100).17

All 10 time series follow a common autoregressive integrated moving average (ARIMA) process
but exhibit differing speeds. A time series’ speed is either random or a function of the time series
direction (increasing or decreasing). The idea behind it is to capture the possibility that speed may vary
as a function of the direction of the underlying series. Economic crashes (i.e., a decreasing series), for
example, may unfold faster than recoveries (Reinhart and Rogoff 2014). A dataset-specific parameter
ψ ∈ (0,1) determines the extent to which this occurs. For instance, ψ = 0 implies that the speed will be
entirely governed by a random normal noise. Conversely, if ψ = 1, the speed will completely depend on
the direction of the time series.

For each dataset, we implement DSC and standard SC to construct counterfactuals for the treated
unit. A key advantage of the Monte Carlo simulation, as opposed to real observational data, is that we
know the true treatment effect and thus the true counterfactual. Consequently, we can assess how well
counterfactuals formed using different methods approximate the post-treatment series. In accordance
with common practice in the literature, we evaluate the performance of eachmethod over the 10 periods
following the treatment, that is, from t = 61 to t = 70.

To evaluate the quality of the SC generated by each method, we compute the 10-period post-
treatment mean squared error (MSE) for the estimated treatment effects. Specifically, the MSE for
dataset d is defined as: MSEd = 1

10∑
70
t=61(τ̂t,d − τt)

2, where τ̂t,d denotes the estimated treatment effects
using one of the two SC methods. A small MSE indicates that the estimated treatment effect closely fits
the true effect imposed during the data generation process. For each simulation, we calculate the MSE
for the standard SC approach—MSESC—and the MSE for our DSC approach—MSEDSC. The log ratio
of these two values yields a measure r representing the relative performance of each method, that is,
r = log(MSEDSC/MSESC). Negative log ratios suggest superior performance of our method via lower
MSE. We compute the log ratio r for each simulated dataset and conduct a t-test on the resulting 100
log ratios to assess whether the ratio is significantly different from 0 (p < 0.01).

The estimated treatment effects for all datasets are illustrated in Figure 4. We see that, in the 10
periods following the treatment, the average estimated treatment effects from the twomethods are close
to the true effects. However, the new method, DSC, produces a significantly smaller error area than
the standard method. Specifically, the average logged MSE for the standard SC method (log(MSESC))

17Detailed data generation method is shown in Supplementary Appendix 10.
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Figure 4. Results from the simulation study with 95% confidence intervals. The main graph showcases results drawn from Monte

Carlo simulations where ψ = 1. The gray-shaded region delineates the period over which performance is estimated. Red and blue

lines represent the distribution of estimated treatment effects for the dynamic synthetic control and synthetic control methods,

respectively. The true treatment effect is in black. An inset in the top-left corner demonstrates that largerψ values lead to improved

performance—as evidenced bymore negative t-values.

is 0.90, while the value for the DSC method (log(MSEDSC)) is −0.50.18 Moreover, our approach
outperforms the standard method 77% of the time (Wilcox test < 0.001). These results suggest a strong
expected benefit to using thismethod and are in line with our theory: Section 2 shows that the estimated
treatment effect from SC is potentially biased and has a larger variance. In the Monte Carlo study, we
do not directly observe bias because the biases around the true values tend to average out to zero. But it
is clear in the Monte Carlo results that the SC estimator has a higher variance, and hence that the DSC
estimator of the treatment effect is more efficient.

Finally, we also show that the results hold for all values ofψ—the parameter which controls the extent
to which speed varies as a function of the shape of the series (see the subfigure of Figure 4), although
larger ψs lead to more significance (more negative t value). When ψ = 1, the average log ratio of MSEs
is r̄ = −1.39. This value indicates that, on average, the DSC method reduces the MSE of the estimated
treatment effect by 75.19% when compared to the standard SC method (1− e−1.39 ≈ 75.19%).

4.2. Re-Evaluating Empirical Findings
We now show that these results are not limited to artificial data but extend to real-world empirical
data. Specifically, we apply our method to three seminal articles in the SC literature: Abadie and
Gardeazabal’s (2003) analysis of the economic costs of terrorism in the Basque country; Abadie et al.’s
(2010) assessment of the effect of Proposition 99—a large-scale tobacco control program implemented

18We use the log of the MSEs because outliers can take on too much weight in non-pairwise mean comparisons.
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in California in 1988; and Abadie et al.’s (2015) evaluation of the economic impact of the 1990 German
reunification on West Germany.19

One challenge, of course, is that we do not know the true treatment effect for themain unit of interest.
This effect must be estimated and, unlike in the Monte Carlo study, there is no way to argue that a
particular result is more accurate or less biased than another. However, we do know that there is no
treatment effect in the other (non-treated) units. Thus, we can assess the performance of the estimators
by comparing how well their respective synthetic controls approximate the true post-treatment period
for non-treated units. For example, we cannot know the true effect of the German reunification on
West Germany’s GDP, but we do know that there was no treatment in Canada, and can thus attempt to
match Canada’s post-1990 trajectory—as well as each of the untreated units.20 Due to the limited set of
untreated units, however, this is not enough to yield a sufficiently large set of estimates for comparison.
We therefore use jacknife resampling to generate more datasets in which we randomly remove one of
the countries.

We now review each of the three datasets and the results obtained using each method.

4.2.1. Terrorism and GDP per Capita in the Basque Country
Abadie andGardeazabal (2003) find that the outbreak of terrorism in the late 1960s significantly affected
per capita GDP in the Basque Country. When compared to an SC region without terrorism, the Basque
Country’s GDP declined by about 10 percentage points.

Our estimate of the effect on the Basque country is similar to the standard SC estimate. However,
when we build SCs for the untreated units themselves, we find that they are closer to the true trajectory
than is the standard SC. Figure 5 (top) displays the distribution of our estimated treatment effects for
all untreated units. Since these units did not receive a treatment, our SC should ideally be as close as
possible to the post-treatment values of the time series. In other words, the average difference between
the post-treatment series and the SC should deviate as little as possible from zero. Visually, we observe
that the band for our approach is narrower than the one for standard SC.

However, this plot does not capture the full extent of the true improvement, as we should be
comparing the pairwise performance of each algorithm (instead of the pooled comparison shown here).
Tomore formally demonstrate the improvement, we calculate theMSE for each SC compared to the unit
of interest. We then calculate a t-test of log(MSEDSC/MSESC). A negative value indicates that our MSE
is smaller than the one obtained with the standard approach. We find that this is indeed the case. The
log ratio of the MSEs is significantly less than zero (t = −7.91,p < 0.0001).21

In terms of our ability to make inferences, the observed reduction in MSE when employing the
DSC method suggests its superior efficiency compared to traditional SC methods. In short, our DSC
approach more closely approximates the true treatment effects and therefore enhances the robustness
and reliability of our causal inference.

4.2.2. The Effects of Proposition 99 on Tobacco Sales in California
Abadie et al. (2010) study the impact of Proposition 99, a large-scale tobacco control program imple-
mented in California in 1988. They show that by 2000, California’s per-capita cigarette sales were 26
packs fewer than would have been expected without Proposition 99.

19The role of covariates, xj, k, raises important considerations regarding their speed relative to the outcome variable, yj.While
covariates matching the outcome’s speed may not affect our conclusions significantly, it may be possible to mitigate the speed
differential in yj by weighting predictors more heavily, potentially bypassing the need for yj entirely (Becker and Klößner 2018;
Kaul et al. 2022). Our analysis here relies on un-warped covariates. However, we show in Supplementary Appendix 11 that the
results with warped covariates are very similar. We thank an anonymous reviewer for this suggestion.

20That is, we estimate the “treatment effect” for Canada using Japan, France, the United States, and so forth; we estimate the
treatment effect for France using Japan, Canada, Japan, and so on for all untreated units.

21The raw MSEs are as follows: log(MSESC) = 10.06, log(MSEDSC) = 9.88.
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Figure 5. Placebo tests, real data. We revisited the placebo tests reported in Abadie and Gardeazabal (2003), Abadie et al. (2010), and
Abadie et al. (2015). The plots report the placebo tests for each of these studies, using standard synthetic controls (SCs) (blue) and
dynamic synthetic control (red). In addition, the estimated treatment effects for the treated units—Basque Country, California State,

and West Germany—are shown as thick, brighter lines. For each study, find that our placebo estimates exhibit smaller variance than

those using standard SCs, which do not account for variations in speed.

Our analysis suggests that the effect might in fact be greater, with an estimated reduction of about
31 packs in cigarette sales. Although it is impossible to definitively determine which estimate is more
accurate, as the true treatment effect remains unknown, we do find that our estimates of the post-
treatment behavior of states other than California is closer to the true path than is the standard SC,
with smaller MSE ratios (t = −4.88, p < 0.001).22

4.2.3. The Effects of the German Reunification on West Germany’s GDP per Capita
Finally, Abadie et al. (2015) seek to estimate the economic impact of the 1990 German reunification on
West Germany. They find that the per-capita GDP of West Germany was reduced by on average about

22log(MSESC)= 4.08, log(MSEDSC)= 4.01.Note that the SCs generated by ourmethod are shorter than those of the standard
SC.This is due to the warping adjustments made to account for varying speeds. Some of the time series are warped to a shorter
length due to their slower speeds relative to the target time series (see Supplementary Appendix 12 for more detail).
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1,600USDper year over the 1990–2003 period, which is approximately 8% of the 1990 level. In 2003, the
last year of their study period, the estimated per-capita GDP in the synthetic data is about 12% higher
than in the real data.

In this replication, our estimate of the treatment effect on West Germany is similar to the one of
Abadie and Gardeazabal (2003), and visually the 95% quantile areas of the estimated treatment effect of
two SC methods on the untreated countries are also close. But in the pairwise comparison, we find that
the DSCmethod generally exhibits a reducedMSE in estimating treatment effects for control countries,
compared to the standard SC approach (t = −4.15, p < 0.001).23

Overall, our findings on all three empirical studies indicate that the DSC method offers significant
advantages when compared to the standard SC approach. In particular, DSC achieves closer approxi-
mations to the true trajectories of non-treated units, as evidenced by the observed reduction in MSE.
As a result, the DSC method provides a more accurate approximation of the true treatment effects. It is
a more efficient estimator of the treatment effects and mitigates the risk of biased estimates.

5. Conclusion

In this study, we tackle the issue of varying reaction speeds across different units when estimating causal
effects of treatments. This issue arises from the fact that units—such as states, cities, or people—may
adjust and react at different speeds due to amultitude of factors, including legal constraints, institutional
differences, and the nature of the treatment itself. Ignoring speed variations can bias estimates and
conclusions, weakening the validity of treatment effect analyses.

We introduce the DSC method, which extends the SC approach by integrating a DTW algorithm to
adjust for speed differences. By doing so, the DSC method enables researchers to construct counterfac-
tuals that more accurately represent the hypothetical outcomes for treated units without the treatment,
with improved precision and efficiency of treatment effect estimates compared to the standard SC
method.

ThroughMonte Carlo simulations and real-world datasets, we show that DSC outperforms standard
SC in treatment effect estimation. It reduces uncertainty and boosts test power, minimizing the risk of
false conclusions.These results highlight the value of our approach in addressing the speed problem and
improving the accuracy and precision of treatment effect estimates.

Future research will be needed to explore the applications of DSC in various settings, such as
assessing the impact of policies, interventions, or shocks across multiple dimensions and over different
time horizons. Additional research could also assess DSC’s sensitivity to unobservable variables and
endogenous regressors.

Funding. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 101002240).

Data Availability Statement. Replication code for this article has been published in Code Ocean, a computational
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7670710/tree/v1. A preservation copy of the same code and data can also be accessed via Dataverse at https://doi.org/10.7910/
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