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Abstract

Two subgroups Mg (G) and M;(G) of the Schur multiplier M(G) of a finite group G are
introduced: M (G) contains those cohomology classes [a] of M(G) for which every element
of G is a-regular, and M;(G) consists of those cohomology classes of M(G) which contain a
G-invariant cocycle. It is then shown that under suitable circumstances, such as when G has odd
order, that each element of M,(G) can be expressed as the product of an element of M (G)

and an element of the image of the inflation homomorphism from M (G/ G') into M(G).
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Introduction

Throughout this paper G will denote a finite group, Z 2( G, C*) the group of
normalized cocycles of G, and M(G) the Schur multiplier of G'. The reader
unfamiliar with the Schur multiplier is referred to [5] for basic definitions
and elementary results.

We begin by defining two subgroups of M(G).

1. Let a € Z 2(G, C"), then an element x of G is said to be a-regular
if a(x, g)=a(g, x) forall g e Cy(x).

We define Zé(G, C*) 10 be the subgroup of Z>(G, C*) containing those
cocycles for which every element of G is a-regular. Now since an element of
G is a-regular if and only if it is S-regular for any cocycle 8 cohomologous
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to a, we may define a subgroup of M(G) by
(G) = {[a] e M(G): aeZ: (G, CcH}.

2. G actson Z (G, C") via the action o — of , where of is the element
of Z%(G,C") defined by o®(x, y) = a(gxg™ ", gyg™") forall x, y€G.
We define Z ,2 (G, C*) to be the group of G-invariant elements of Z 2(G ,CY,
and M,(G) to be the subgroup of M(G) consisting of those cohomology
classes which contain an element of Z IZ(G ,CY).

The purpose of this note is to show how to calculate both M (G) and
M,(G), and to study the relationship between these two groups. In a previ-
ous paper [1], the author gave an example of a p-group for which M (G) is
non-trivial, thus negating an argument previously given by Mangold in [7].
The subgroup M,(G) has not been examined previously, probably because
its very definition relies on making a ‘clever’ choice of cocycle within a co-
homology class. Despite this we shall essentially show how to find M,(G)
given M(G/G') and M. £(G) , and then proceed to find these groups for some
specific examples.

4

1. Inflation of elements of M, (G)

Let @ € Z*(G, C*). Then we define a function f:GxG — C" by
f.(g,x)=a(gx, g—l)a(g, x)/a(g, g_l) . It is easy to check that for all «a,
BeZ*G,C*) andall g, h, x, yeG that

(1) fufy = Fgs
(2) fo(g,x) [, (g, y)a® (x,y) = [, (g, xy)alx,y);
(3) f,(8, %) f,(h, gxg™") = [, (gh, x).

Our first result describes the elements of Z ;(G, C™) and Z,2 (G,C") in
terms of f .

LEMMA L.1. (i) a € ZIZ(G, C") ifandonly if f, € P(G, G, C"), the group
of pairings of G in C*.

(ii) a € Z é(G, C*) if and only if there exists a function §: G — C* such
that f,(g,x)=68(x)/6%(x) forall g, x € G, where 6%(x) = 5(gxg™").

(iii) Mg (G) is a subgroup of M,(G).

ProoF. From (2) we have that a € Z,z(G, C*) ifandonlyif f (g, _) isa
linear character of G for each g € G. If the latter condition is true we obtain
in (3) that f,(h, gxg~') = f,(h, x), so that in fact f, € P(G,G,C").
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Now let a, B € Z 2 (G, C*) with [a]) =[B]. Then there exists a function
6: G — C” such that §(xp)B(x,y) = 6(x)6(¥)a(x,y) forall x, y e G,
and so Jg(x)[,,(g, x) =d(x)f (g, x) forall g, x € G. However if a is

a class-function cocycle then from (7.2.2) of [4], a € Z é(G , C*) if and only
if f(g,x)=1 forall g, x € G. The fact that M (G) is a subgroup of
M,(G) now follows from the above observations.

As an immediate consequence of this result we obtain a necessary condi-
tion for [a] € M,(G) which is independent of the choice of cocycle from

[o].

COROLLARY 1.2, Let o € Z,2 (G, C"). Then every element of G' is a-
regular.

PRrROOF. By 1.1 we have that f (g, x) =1 forall x € G andall geG.
Thusif x€ G and g€ Ci(x) we obtain that a(g, x)/a(x, g)=1.

Obviously from 1.2 if G is a perfect group then M,(G) = M (G). In
the particular case when G is the aliernating group 4, , it is straightfor-
ward to verify from (2.12.5) of [5] that every element in the centre of the
representation group of A, is a commutator, and hence we obtain that
Mg(A,) = {[1]} by applying the next result, which shows how to compute
M (G) for any group G. We also note that for the symmetric group S,,
M (S,) = Mg(S,) = {[1]}, since the restriction homomorphism from M(S,,)
into M(4,) is injective.

ProrosiTION 1.3. Let (H, n) be a finite central extension of G with
kern = A. Let tra: Irr(4) — M(G) be the transgression homomorphism,
and Com(H) denote the set of commutators of elements of H. Then tra(1) €
Mg(G) ifand only if Com(H)N A C kerA.

Proor. Let {r(g): g € G} with r(1) =1 be a transversal of 4 in H, so
that forall x, y € G, r(x)r(y) = A(x, y)r(xy) for some element A(x, y) €
A. Then Com(H)N A = {A(x, y)(A(y, x))—lz x,yeG with [x,y]=1}.

Now tra(d) = [a], where a(x, y) = A(A(x, y)) forall x, y € G. Hence
every element of G is a-regular if and only if Com(H)N A4 C kerA.

Our main result which describes how to find M, (G) is based upon the
following simple observation.

CoROLLARY 1.4. Let G be an abelian group. Then M, (G) = M(G) and
Mg (G) ={[11}.

Proor. Clearly any cocycle of G is G-invariant so that M,(G) = M(G).
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Now let [a] € M(G). Then there exists a finite central extension (H, «)
of G with kerm = H' and a faithful linear character A of H' such that
tra(A) = [a]. So by 1.3, tra(4) € M (G) if and only if H = G, that is if and
only if [a] =[1].

We have aiready shown in 1.2 thatif a € Z ,2 (G, C*) then every element of
G’ is a-regular, so we might conjecture that each such o is inflated from an
element of Z 2( G/G', C*). This unfortunately is false in general as shown in
[1]. However our main result shows that [a] can be ‘inflated’ from M (G/G')
if we allow a more liberal interpretation of the term inflation.

THEOREM 1.5. Let inf: M(G/G') — M,(G) be the inflation homomor-
phism, S denote the image of the Sylow 2-subgroup S of M(G/G') under
inf, and let n be the exponent of SM (G)/M(G). Then for each [a] €

M, (G) there exists [B] € M(G/G') and [y] € M, (G) with [y]z" € M (G)
such that [o] = inf([B])[7].

ProOF. Define F: M,(G) —» M, (G)/M(G) by F([a]) = [f,IM(G) for
a € Z,2 (G, C"), so that F is a well-defined homomorphism by 1.1 and (1).
Also

kerF = {[e]€e M, (G): (g, x)/a(x, §) = a(x, &) /a(g, x)
forall (g, x) € G x G with [g, x] =1}

={la) € M, (G) : [a]’ € My (G)}.

Now the function F induces homomorphisms f: M(G/G)—M(G/G)/S
and f: M, (G) —» M, (G)/SM(G) defined by f([B]) = [fﬂ]§ and f([a]) =
[£.ISML(G) for a € Z}(G,C"). In the former case M. (G/G') = {[1]}
from 1.4, so that ker7 =S, from which it follows that 7 is surjective. In
the latter case we have that if a € Z}(G, C*), then y(gG', xG') = £.(g, x)
for all g, x € G is a well-defined cocycle of G/G' from 1.1. Thus ker f =
{[a] € M;(G): [a]”" € M(G)}, since [£,]" = [f.,»] for a € Z}(G, C").

Finally inf induces a homomorphism I: M(G/G')/S - M (G)/SM.(G)
defined by I([1S) = inf([])SM(G). This mapping renders the following
diagram commutative

M(G/G) —ni, M, (G)

71 lf

M(G/G')/S —— M, (G)/SM,(G).
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Now let a € ZIZ(G, C"), then as shown above [fISMg(G) = I([y]S) for
some [y] € M(G/G'). Also since f is surjective we have that [y]S = [ fﬂ]§
for some [B] € M(G/G'). Thus we obtain that f(inf([])) = f([a]), and
hence inf([B])[a] ' € ker /.

There are a number of special cases of 1.5 which justify a separate state-
ment. The first is to just note that S is trivial if and only if G/G’ has a
cyclic Sylow 2-subgroup, and the second concerns an isomorphism implicitly
defined in 1.5. For an abelian group B, let B, ={b€ B: b" = 1}.

COROLLARY 1.6. Let T denote the image of M(G/G') under the inflation
homomorphism, S be the Sylow 2-subgroup of T, and n be the exponent of
SM(G)/M(G). Then

(M, (G) Mg (G)) | (M, (G) IM(G)),, = TMg(G) /[SM(G).

PrOOF. We may easily modify the commutative diagram in 1.5 to obtain
the following new commutative diagram

M(G/G') ——  M;(G)/Mg(G)

! J1

M(G/G')/S —— TMy(G)/SMy(G),

where f,([a]lM(G)) = [f,JSM(G) for a € Z}(G, C"), and the other ho-
momorphisms are defined similarly in terms of those in 1.5. Now the ho-
momorphisms on the left and bottom of the diagram are defined so as to
be surjective, and hence f, is also surjective by commutativity. Finally
ker f; = (M, (G)/Mg(G)),, -

We note in the context of 1.6 that T = M(G/G')/H,(G', C*) from the
Lyndon-Hochschild-Serre exact sequence of cohomology, where H,l (G,C
denotes the G-invariant elements of H 1(G' , C*). We also observe that if
G/G' is cyclic, then 1.6 yields that M, (G)/Mg(G) is an elementary abelian
2-group (possibly trivial).

The most interesting consequences of 1.5 occur when G is a group of
odd order, this situation is covered by the next result which summarizes the
information obtained so far.

CoroLLARY 1.7. Suppose that 2 does not divide the index of Mg(G) in
M,(G). Then for each [a] € M,(G) there exists [] € M(G/G') and [y] €
M (G) such that [o] = inf([B))[y]. In particular if M (G) = {[1]}, then
M(G/G)/H} (G, C") = M,(G).
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There is one further result concerning the inflation of elements of A/,(G)
and M (G) which was observed by the author in [1], and which we include
here for the sake of completeness. Let Proj(G, a) denote the set of irre-
ducible projective characters of G with cocycle «.

ProPosITION 1.8. Let a € ZZ(G, C"), and N be a normal subgroup of
G. Then [a] = inf([B]) for some [B]l € M(G/N) if and only if there exists a
G-invariant element of degree 1 in Proj(N, ay).

2. Examples

In this section we shall compute M (G), and where possible M,(G),
for some specific types of group G. We start by considering semidirect
products. Let G be the semidirect product of a normal subgroup N and a
subgroup T . Now let M (N )T denote the T-invariant subgroup of M_(N),
HE(G) denote the kernel of the restriction homomorphism from M. (G)
into M (T), and N=H'(N, C"). Then using this notation we obtain the
following result.

PROPOSITION 2.1. Let (jv be as above. Then
(1) Mg (G) = Mg (T) x M (G);
(ii) there is an exact sequence

{111} = H - M (G) S M (N)| — HY(T, V),

where H < Hl(T, N), and res: ﬁE(G) — ME(N)T is induced by the re-
striction homomorphism from M (G) into M(N).

ProoF. The proof of this result is practically identical to that given in
(2.2.5) of [5].

Since 2.1 is the direct analogue of the corresponding result for M(G),
we obtain the ‘standard’ corollaries to it. For example if N is a normal
Hall-subgroup of G, and T is a complement of N in G. Then M (G) =
M (T) x Mg(N)".

The situation however becomes considerably more interesting when we
consider direct products.

COROLLARY 2.2. Let N and T be finite groups. Then
M (N x T)= M, (N) x M. (T)
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and
M (NxT)=M, (N)xM,(T)x(N®T).

Proofr. From the proof of (2.2.5) of [5] we have that the group H of
2.1(i1) may be identified with those elements [a] of M £(G) which contain
a normal cocycle o with (7, T) = a(N, N) = 1. For such a cocycle we
must have a(t, n') = a(f', n) forall n, n € N, and all ¢, ' € T with
[nt,n'f}=1.

Here of course we have that [N, T] = {1}. Sosetting n =1, and ¢ =¢
we obtain that af(z, n') =1 forall t € T, and all n’ € N; and hence
a = 1. Thus H is trivial, and so it follows from 2.1 that M (N x T) =
M (N)x M (T).

An alternative proof is to just suitably adapt the proof of (2.3.13) of [4],
this technique also yields that M (N xT) = M,(N)x M,(T)x (N®T).

We now focus our attention on metacyclic groups.

PROPOSITION 2.3. Let G be a metacyclic group. Then M (G) = {[1]} and
M(G) = M(G/G')/H} (G, C).

PROOF. Let G=(a,b:ad" =1, b*=d", bab™' = d’), where the positive
integers m, r, s and ¢ satisfy » =1 (mod m), t|m, and m|t(r —1). Let
[o'] € M(G), then from the proof of (2.11.3) of [5], there exists a € [a]
with a(aibj , akbl) = M’ =Dir=1 , where ¢ is an nth root of unity and
m/(r—1, m) divides n, which in turn divides (1+---+r" "', t). Moreover
[a)=[1] ifand only if n=m/(r—1, m).

Now a‘ € Z(G), where ¢ = m/(r — 1, m); and hence a° is a-regular if
and only if c(r’ —1)/(r — 1) =0 (mod n) for all /. However taking /=1,
we obtain that n = m/(r — 1, m). Thus M (G) = {[1]}.

Finally suppose {a] € M,(G). Then from 1.2 every element of G is
a-regular, and hence from (1.10) of [1] and 1.8, [a] = inf([f]) for some
[B] € M(G/G'); from which the desired result follows.

For our final example we shall look at extra special p-groups and dihedral
groups, but consider where convenient only those cases for which M(G) is
non-trivial.

ProrosiTiON 2.4. (i) Let G be an extra special p-group of order pt.
Then M (G) = {[1]}, and

M(G), ifn>1,;

M (G) = { MOy, ifn=1.
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(ii) Let D be the dihedral group of order 4n. Then Mg (D)= {[1]}, and
M,(D) = { M(D), zfn z.s odd,
{11}, ifniseven.

PROOF. (i) Suppose a € Z2(G, C"), with [a] # [1]. Then G has p*" +
p — 1 conjugacy classes from (V.16.14) of [2]. Thus since each element of
Proj(G, ) has degree at least p we must have that (p2" +p— l)p2 < pz"+1 ,
which is clearly impossible. Hence M (G) = {[1]}.

Now since Z(G) = G' = C,, we have from 1.8 that [a] € M,(G) if and
only if [a] = inf([B]) for some [B] € M(G/G'). Here however the image of
inflation is isomorphic to
M(G), ifn>1;

{111y, ifn=1.

(ii)) Mg(D) = {[1]} is immediate from 2.3. Also from (1.10) of [1] and
1.8, [a] € M, (D) if and only if every element of D' is a-regular. However
from (3.7.3) of [4] every element of D' is a-regular if n is odd for all
[a] € M(D), whereas if n is even the element a” is a-regular if and only if
[a] = [1].

The reader may be somewhat disappointed at this stage that all the ex-
amples we have given have M (G) = {[1]}, however Macdonald in [6] has
shown how to construct examples of p-groups where this is certainly not
the case. Neither have we exploited the fact that if o € Z;(G, C"), then
Proj(G, ) behave similarly to Irr(G). We give here just one example of
this similarity to give a flavour of this type of result. Its proof is essentially
the same as that given for (6.34) of [3], provided we use (1.8) of [1].

M(G/G)/C, = {

LEMMA 2.5. Let G be a Frobenius group with Frobenius kernel N . Sup-
pose that every element of N is a-regular for some cocycle o of G, and that
there exists { € Proj(N, ay) which is G-invariant. Then

(i) if p €Proj(N, ay) with 9 #{, then p° € Proj(G, a);
(i) if £ € Proj(G, a) such that { is not a constituent of &, , then & = (pG
Jor some ¢ € Proj(N , a,).

References

[1] R. J. Higgs, ‘Projective characters of degree one and the inflation-restriction sequence’,
J. Austral. Math. Soc. Ser. A 46 (1989), 272-280.

https://doi.org/10.1017/51446788700030019 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700030019

9] Subgroups of the Schur multiplier 505

[2] B. Huppert, Endliche Gruppen 1 (Die Grundlehren der mathematischen Wissenschaften
in Einzeldarstellungen 134, Springer-Verlag, Berlin, Heidelberg, New York, 1967).

[3] L. M. Isaacs, Character theory of finite groups (Pure and Applied Mathematics, a series
of monographs and textbooks 69, Academic Press, New York, London, 1976).

(41 G. Karpilovsky, Projective representations of finite groups (Monographs and textbooks
in pure and applied mathematics 94, Marcel Dekker, New York, Basel, 1985).

[5] G. Karpilovsky, The Schur multiplier (London Mathematical Society Monographs, (N.S.)
2, Oxford University Press, Oxford, New York, 1987).

[6] L. D. MacDonald, ‘Commutators and their products’, Amer. Math. Monthly 93 (1986),
440-443.

[7] Ruth Mangold, ‘Beitrage zur Theorie der Darstellungen endlicher Gruppen durch Kol-
lineationen’, Mitt. Math. Sem. Giessen 69 (1966), (ii) 1-44.

University College Dublin
Belfield

Dublin 4

Ireland

https://doi.org/10.1017/51446788700030019 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700030019

