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Abstract

Two subgroups ME{G) and Mj{G) of the Schur multiplier M(G) of a finite group G are
introduced: ME(G) contains those cohomology classes [a] of M(G) for which every element
of G is a-regular, and Mt(G) consists of those cohomology classes of M(G) which contain a
G-invariant cocycle. It is then shown that under suitable circumstances, such as when G has odd
order, that each element of Mj{G) can be expressed as the product of an element of ME{G)
and an element of the image of the inflation homomorphism from M(G/G') into M(G).
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Introduction

Throughout this paper G will denote a finite group, Z2(G, C*) the group of
normalized cocycles of G, and M{G) the Schur multiplier of G. The reader
unfamiliar with the Schur multiplier is referred to [5] for basic definitions
and elementary results.

We begin by defining two subgroups of M{G).
1. Let a e Z2(G, C*), then an element x of G is said to be a-regular

if a(x, g) = a(g, x) for all g e CG(x).
We define Z^(G,C) to be the subgroup of Z2(G, C*) containing those

cocycles for which every element of G is a-regular. Now since an element of
G is a-regular if and only if it is ^-regular for any cocycle fi cohomologous
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498 R. J. Higgs [2]

to a , we may define a subgroup of M{G) by

ME (G) = {[a] € M(G): a e z\(G, C*)}.

2. G acts on Z2(<7, C*) via the action a>-* as , where a* is the element
of Z2(G, C*) defined by a*(jc. >>) = a (gx^~ ' , g j^" 1 ) for all x, y 6 (7.
We define ZJ(G, C*) to be the group of G-invariant elements of Z2(G, C*),
and Mj{G) to be the subgroup of M(G) consisting of those cohomology
classes which contain an element of zf(G,C*).

The purpose of this note is to show how to calculate both ME(G) and
Mj(G), and to study the relationship between these two groups. In a previ-
ous paper [1], the author gave an example of a p-group for which ME(G) is
non-trivial, thus negating an argument previously given by Mangold in [7].
The subgroup Mj{G) has not been examined previously, probably because
its very definition relies on making a 'clever' choice of cocycle within a co-
homology class. Despite this we shall essentially show how to find Mt(G)
given M(G/G') and ME(G), and then proceed to find these groups for some
specific examples.

1. Inflation of elements of M{(G)

Let a <E Z2(G, C*). Then we define a function / a : G x (7 -> C* by
fa(g, x) ^ a{gx, g'^aig, x)/a(g, g~x). It is easy to check that for all a,
P e Z2(G, C*) and all g, h , x, y e G that

(1) faf,=fa,:
(2) fjg,x)fa(g,y)a8(x,y) = f

(3) fa(g,x)fa(h,gxg-l) = f

Our first result describes the elements of z\{G, C ) and Z2{G,C) in
terms of fa.

LEMMA 1.1. (i) a e ZJ(G, C) if and only if fa e P{G, G, C), the group
of pairings of G in C*.

(ii) a e Z2(G, C ) if and only if there exists a function d: G —• C* such
that fa(g, x) = d(x)/dg(x) for all g, xeG, where S8(x) = 5{gxg~l).

(iii) ME{G) is a subgroup of Mj{G).

PROOF. From (2) we have that a € ZJ(G, C*) if and only if fa(g, ) is a
linear character of G for each g eG. If the latter condition is true we obtain
in (3) that fa(h, gxg-x) = fjh ,x),so that in fact faeP{G,G, C).

https://doi.org/10.1017/S1446788700030019 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030019


[3] Subgroups of the Schur multiplier 499

Now let a, /? e Z2(G, C ) with [a] — [/?]. Then there exists a function
5: G -* C* such that S(xy)fi(x,y) = d(x)S(y)a(x, y) for all x , y eG,
and so Sg(x)fp{g, x) = S(x)fa(g, x) for all g, x G G. However if a is
a class-function cocycle then from (7.2.2) of [4], a e ZE(G, C ) if and only
if fa(g-> x) = I for all g, x e G. The fact that ME(G) is a subgroup of
Mj(G) now follows from the above observations.

As an immediate consequence of this result we obtain a necessary condi-
tion for [a] e Mj{G) which is independent of the choice of cocycle from
[a].

COROLLARY 1.2. Let a e zf(G, C*). Then every element of G' is a-
regular.

PROOF. By 1.1 we have that fa(g, x) = 1 for all x e G' and all g eG.
Thus if x G G' and g G CG{x) we obtain that a(g, x)/a{x, g) = 1.

Obviously from 1.2 if G is a perfect group then M{(G) = ME(G). In
the particular case when G is the alternating group An, it is straightfor-
ward to verify from (2.12.5) of [5] that every element in the centre of the
representation group of An is a commutator, and hence we obtain that
ME(An) = {[1]} by applying the next result, which shows how to compute
ME(G) for any group G. We also note that for the symmetric group Sn ,
Mj(Sn) — ME{Sn) - {[1]} , since the restriction homomorphism from M(Sn)
into M(An) is injective.

PROPOSITION 1.3. Let (H, n) be a finite central extension of G with
ker7i = A. Let tra: \rr{A) —» M(G) be the transgression homomorphism,
and Com(H) denote the set of commutators of elements of H. Then tra(2) G
ME(G) if and only if Com{H) n A C ker X.

PROOF. Let {r(g): g eG} with r(l) = 1 be a transversal of A in H, so
that for all x, y e G, r(x)r(y) — A(x, y)r(xy) for some element A{x, y) e
A. Then Com{H)nA = {A(x, y)(A(y, x))~l: x, y e G with [x,y]=l}.

Now tra(A) = [a], where a(x, y) — X(A(x, y)) for all x, y e G. Hence
every element of G is a-regular if and only if Com(H) nAC. ker A.

Our main result which describes how to find Mj(G) is based upon the
following simple observation.

COROLLARY 1.4. Let G be an abelian group. Then Mt(G) — M{G) and
ME{G) = {[\\}.

PROOF. Clearly any cocycle of G is G-invariant so that Mj{G) = M{G).
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Now let [a] e M(G). Then there exists a finite central extension (H, n)
of G with kerrc = H' and a faithful linear character X of H' such that
tra(A) = [a]. So by 1.3, tra(A) e ME(G) if and only if H = G, that is if and
only if [a] = [ l ] .

We have already shown in 1.2 that if a 6 z]{G, C*) then every element of
G' is a-regular, so we might conjecture that each such a is inflated from an
element of Z2(G/G', C*). This unfortunately is false in general as shown in
[1]. However our main result shows that [a] can be'inflated'from M(G/G')
if we allow a more liberal interpretation of the term inflation.

THEOREM 1.5. Let inf: M(G/G') —> Mf(G) be the inflation homomor-
phism, S denote the image of the Sylow 2-subgroup S of M(G/G') under
inf, and let n be the exponent of SME(G)/ME(G). Then for each [a] e
Mj(G) there exists [p] e M(G/G') and [y] e M,(G) with [y]2n e ME(G)
such that [a] = inf([jl])[y].

PROOF. Define F: M,{G) - Mj(G)/ME(G) by F([a]) = [fJME(G) for
a e zf(G, C*), so that F is a well-defined homomorphism by 1.1 and (1).
Also

kerF ={[a]e M, (G) : a (g, x) / a (x, g) = a (x, g) / a (g, x)

for all (g,x)€GxG with [g, x] = 1}

= {[a] € M, (G) : [a]2 6 ME ((?)}.

Now the function F induces homomorphisms / : M(G/G')—>M(G/G')/S
and / : M,{G) - M,(G)/SME(G) defined by f{[fi]) = [ffi]S and /([a]) =

[fa]SME(G) for a e ZJ(G,C*). In the former case ME{G/G') = {[1]}
from 1.4, so that k e r / = S, from which it follows that / is surjective. In
the latter case we have that if a € ZJ(G, C*), then y(gG', xG') =fa(g, x)
for all g, x e G is a well-defined cocycle of G/G' from 1.1. Thus k e r / =
{[a] e Mj(G): [a]2n e ME(G)} , since [fjn = [/„„] for_a e ZJ(G, C).

Finally inf induces a homomorphism / : M(G/G')/S -> Mj(G)/SME(G)
defined by /([£]5) = inf([0])SME(G). This mapping renders the following
diagram commutative
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Now let a € ZJ(G, C*), then as shown above [fa]SME(G) = I([y]S) for
some [y] e M(G/G'). Also since / is surjective we have that [y]S = [fp]S
for some [0] € M(G/G'). Thus we obtain that f(inf([0])) = f([a]), and
hence inf{[fi])[a]~l <=ker/.

There are a number of special cases of 1.5 which justify a separate state-
ment. The first is to just note that 5" is trivial if and only if G/G' has a
cyclic Sylow 2-subgroup, and the second concerns an isomorphism implicitly
defined in 1.5. For an abelian group B, let Bm = {b € B: bm = 1} .

COROLLARY 1.6. Let T denote the image of M(G/G'') under the inflation
homomorphism, S be the Sylow 2-subgroup of T, and n be the exponent of
SME{G)/ME(G). Then

{Mj (G) IME (G)) I (M, (G) /ME (G))2n = TME (G) /SME (G).

PROOF. We may easily modify the commutative diagram in 1.5 to obtain
the following new commutative diagram

M{G/G') • Mj (G) /ME (G)

M(G/G')/S • TME (G) /SME (G) ,

where fx([a\ME(G)) = [fa]SME(G) for a e zf(G, C*), and the other ho-
momorphisms are defined similarly in terms of those in 1.5. Now the ho-
momorphisms on the left and bottom of the diagram are defined so as to
be surjective, and hence / , is also surjective by commutativity. Finally
leer/, = (MjiO/M^G))^ .

We note in the context of 1.6 that T = M(G/G')/H}(G', C ) from the
Lyndon-Hochschild-Serre exact sequence of cohomology, where HXj(G', C*)
denotes the G-invariant elements of HX(G', C*). We also observe that if
G/G' is cyclic, then 1.6 yields that M[(G)/ME(G) is an elementary abelian
2-group (possibly trivial).

The most interesting consequences of 1.5 occur when G is a group of
odd order, this situation is covered by the next result which summarizes the
information obtained so far.

COROLLARY 1.7. Suppose that 2 does not divide the index of ME(G) in
Mj(G). Then for each [a] e Mj(G) there exists [/?] e M(G/G') and [y] e
ME(G) such that [a] = inf([P])[y]. In particular if ME{G) = {[1]}, then
M(G/G')/HJ(G',C*) =
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There is one further result concerning the inflation of elements of Mj{G)
and ME(G) which was observed by the author in [1], and which we include
here for the sake of completeness. Let Proj(G, a) denote the set of irre-
ducible projective characters of G with cocycle a.

PROPOSITION 1.8. Let a e Z2(G, C*), and N be a normal subgroup of
G. Then [a] = inf([j3]) for some [)S] e M(G/N) if and only if there exists a
G-invariant element of degree 1 in ¥ro}{N,aN).

2. Examples

In this section we shall compute ME(G), and where possible Mj(G),
for some specific types of group G. We start by considering semidirect
products. Let G be the semidirect product of a normal subgroup N and a
subgroup T. Now let ME{N)T denote the r-invariant subgroup of ME{N),
ME(G) denote the kernel of the restriction homomorphism from ME(G)
into ME{T), and N = H\N, C*). Then using this notation we obtain the
following result.

PROPOSITION 2.1. Let GJbe as above. Then
(i) ME(G) = ME(T)xME(G);
(ii) there is an exact sequence

{ [ 1 ] } _ H _ ME (G) 3 ME (N)T -» H2{T, N),

where H < Hl(T, N), and res: ME{G) -> ME(N)T is induced by the re-
striction homomorphism from ME(G) into ME(N).

PROOF. The proof of this result is practically identical to that given in
(2.2.5) of [5].

Since 2.1 is the direct analogue of the corresponding result for M(G),
we obtain the 'standard' corollaries to it. For example if N is a normal
Hall-subgroup of G, and T is a complement of N in G. Then ME(G) =
ME(T) x ME(N)T.

The situation however becomes considerably more interesting when we
consider direct products.

COROLLARY 2.2. Let N and T be finite groups. Then

ME {NxT) = ME (N) x ME (T)
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and
Mj (NXT)^ MJ (N) X Mj (T) X (N ® T) .

PROOF. From the proof of (2.2.5) of [5] we have that the group H of
2.1(ii) may be identified with those elements [a] of ME(G) which contain
a normal cocycle a with a(T, T) = a(N, N) — 1. For such a cocycle we
must have a(t, n) — a(t', n) for all n, n e N, and all t, t' e T with
[nt, n't']= 1.

Here of course we have that [N, T] = {1} . So setting n = 1, and t' = t
we obtain that a(t, n) = 1 for all t e T, and all n' e N; and hence
a = 1. Thus H is trivial, and so it follows from 2.1 that ME{N x T) =
ME(N)xME(T).

An alternative proof is to just suitably adapt the proof of (2.3.13) of [4],
this technique also yields that Mj(N x T) £ M,{N) x Mj(T) x (N ® T).

We now focus our attention on metacyclic groups.

PROPOSITION 2.3. Let G be a metacyclic group. Then ME(G) = {[1]} and
Mj(G) £ M{G/G')/Hlj(G',C*).

PROOF. Let G = {a, b: am = 1, bs = a! , bab~l = ar), where the positive
integers m, r, s and t satisfy rs = 1 (mod m), t\m, and m\t{r- 1). Let
[a'] € M{G), then from the proof of (2.11.3) of [5], there exists a e [a1]

with a(a'bJ, a b ) — e ~ , where e is an «th root of unity and
m/(r - 1, m) divides n , which in turn divides (1 H 1- / ~ ' , t). Moreover
[a] - [1] if and only if n — m/(r - 1, m).

Now ac e Z(G), where c = m/(r - 1, m); and hence ac is a-regular if
and only if c(rl - \)/(r - 1) = 0 (mod n) for all / . However taking / = 1,
we obtain that n = m/(r - 1, m). Thus ME{G) = {[1]} .

Finally suppose [a] e Mj{G). Then from 1.2 every element of G' is
a-regular, and hence from (1.10) of [1] and 1.8, [a] = inf([/?]) for some
[/?] e M(G/G'); from which the desired result follows.

For our final example we shall look at extra special p-groups and dihedral
groups, but consider where convenient only those cases for which M(G) is
non-trivial.

PROPOSITION 2.4. (i) Let G be an extra special p-group of order p2n+l.
Then ME(G) = {[1]}, and

ifn>\;
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(ii) Let D be the dihedral group of order An. Then ME{D) — {[1]}, and

M(D), if n is odd;

{[1]} , ifn is even.

PROOF, (i) Suppose a e ZE(G, C*), with [a] ± [1]. Then G has p2" +
p - 1 conjugacy classes from (V.I6.14) of [2]. Thus since each element of
Proj((7, a) has degree at least p we must have that (p2n +p - \)p2 < p2n+l,
which is clearly impossible. Hence ME(G) = {[1]} .

Now since Z(G) = G' £ Cp , we have from 1.8 that [a] G Mr(G) if and
only if [a] = inf([/?]) for some [/?] G M(G/G'). Here however the image of
inflation is isomorphic to

j M(G), if n > 1;

" I {[1]} , if n = 1.

(ii) ME(D) = {[1]} is immediate from 2.3. Also from (1.10) of [1] and
1.8, [a] G Mj{D) if and only if every element of D' is a-regular. However
from (3.7.3) of [4] every element of D1 is a-regular if n is odd for all
[a] e M(D), whereas if n is even the element a" is a-regular if and only if

[«] = [!]•
The reader may be somewhat disappointed at this stage that all the ex-

amples we have given have ME(G) = {[1]}, however Macdonald in [6] has
shown how to construct examples of p-groups where this is certainly not
the case. Neither have we exploited the fact that if a G ZE(G, C*), then
Proj(G, a) behave similarly to Irr(G). We give here just one example of
this similarity to give a flavour of this type of result. Its proof is essentially
the same as that given for (6.34) of [3], provided we use (1.8) of [1].

LEMMA 2.5. Let G be a Frobenius group with Frobenius kernel N. Sup-
pose that every element of N is a-regularfor some cocycle a of G, and that
there exists £ G Proj(iV, aN) which is G-invariant. Then

(i) if (p G Proj(iV, aN) with (p ^ £, then (pG G Proj(G, a ) ;
(ii) if £ G Proj(G, a) such that £ is not a constituent of £N, then £ = <pG

for some q> G Proj(7V, a^ ) .
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