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Abstract

The known characterization of the Mathieu group Ml2 by the structure of the centralizer of
a 2-central involution is based on the application of the theory of exceptional characters and
uses in addition a block theoretic result which asserts that a simple group of order |A/12| is
isomorphic to Mn . The details of the proof of the latter result had never been published. We
show here that Mn can be handled in a completely elementary and group theoretical way.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 D 05, 20 D 08.

The object of this paper is to present a character theory free proof of the
following result.

THEOREM. Let G be a finite, nonabelian simple group which possesses an
involution such that its centralizer in G is isomorphic to the centralizer of
a 2-central involution in Mn . Then G is isomorphic to Ml2, the Mathieu
group on 12 letters.

The main point here is as in [7], that our proof will be completely free of
applications of the theory of group characters. Predecessors of this theorem
are [1, Theorem (6A)] and [12, Theorem]. The results of both papers had
been easily combined in [4] to show that the above theorem holds. However,
the proofs in [1] and in [12] rely upon a theorem of R. G. Stanton [8] which
asserts that a simple group of order 95,040 or 244,823,040 is isomorphic to
either Mn or M24.
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As a matter of fact, the Ph.D. thesis of R. G. Stanton, written under the
supervision of Richard Brauer, had not been published, and there is only
the short summary [8] available in which he describes his methods, which
are heavily block theoretical and computational. Thus, it seems worthwhile
to present an elementary and complete proof of the charctenzation of Ml2

by a 2-central involution. We remark that in [6] we had shown that the
characterization of M24 of [5] can be done without referring to the result of
[8]; moreover, the second author has shown that for the characterizations of
M22 and M2J, originally due to Z. Janko, one does not need recourse to the
theory of exceptional characters.

1. The centralizer of a 2-central involution in Mn

Denote by H the centralizer of a 2-central involution z( of Mn . Accord-
ing to [4], H can be generated by elements z , , z2, z3, a, b, c, d, where
all elements except c are involutions and c is an element of order 3. The
subgroup E generated by zx, z2, zi is elementary abelian of order 8 and
normal in H, and (a, b){c) is isomorphic to A4 such that cf = b, bc = ab .
The involution d inverts c. The action on E for the elements a, b, c, d
is described by the following matrices with entries from GF(2) with respect
to the basis {zx, z2, z3} of the "vector space" E over GF{2):

1 0 0 \ / I 0 0 \ / I 0 (T
0 1 0 1 , 6 — 1 1 0 I , ab-+\\ 1 0
1 0 1 / V O O l / l l O l

n ^ _ rr rr ft r\*\*\ M *v"We have a = zlz2a and b = zp
xz2z3ab, where /? e {0, 1}. Since d

inverts c, we get from a c c — a that fi = 1.
It is now a routine matter to calculate the conjugacy clases of H. The

results are listed in Table I.

2. The fusion of involutions and the possible orders for G

In what follows, G denotes a finite simple group possessing an involution
z such that C(z) is isomorphic to H. We put C(z) = H and use the
notation developed for H so far. Thus, in particular, z — zx, and since the
center of a 52-subgroup of H is cyclic, we see that zx is 2-central in G.
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TABLE I

X

1
z,
Z 2
a

z3a
z2z3a

c
d

z3d

bd
z3bd
zxc

x2

zi

Z2
Z2

z2z3a
zxz3a

o(x)
1
2
2
2
4
4
3
2
4
4
8
8
6

<z>
<z3a

{z2z3a

(•

(zi

CH(x)
H
H

E(a,d)
,z2,a,b)
, z2,b, z3d)
, z2, z3b, z3d)
(z,, c)

, z 3 a , z3rf)

II
(bd)

(z3bd)
( z i > c )

\cclH(x)\
1
1
6
12
6
6
32
24
12
12
24
24
32
192

(2.1) LEMMA. A S2-subgroup of C(a) has order 24.

PROOF. We have CH(a) = (a) x (z , , z2,b). Thus CH(a)' = (z,) . The
assertion follows.

(2.2) LEMMA. / / z, ~ z2 in G, then O(C(a)) = (1).

PROOF. Put K = O(C(a)) and act with the four-group (z,, z2) on K.
If x G (z,, z2)# , then C(a) n C(x) is a 2-group by the structure of H, and
so, x operates fixed-point-freely on K. Application of [9, 5.1.9] yields that
[K, zxz2\ - (1). We conclude that K = (1).

(2.3) LEMMA. If z, ~ z2 /« G, then C(a) = (a)xU, where U possesses
a subgroup of index 2.

PROOF. A result of W. Gaschiitz yields the existence of a subgroup U such
that C(a) = (a)xU. Clearly, P = {a, z , , z2 , b) n U is dihedral of order 8
with center equal to z, as CH(a)' = (z,) . We have that a S2-subgroup of U
is selfnormalizing in U. Application of a result of O. Grun [3, 7.4.2] yields
that P n U' is contained in (z{, z2); note that the elements of {z{, z2)*
are the only G-conjugates of z{ in (a, z , , z2, b). Now, from [3, 7.3.1] it
follows that U has a subgroup of index 2; use the fact that P/Pn U' = U/U*
for some normal subgroup U* of U. The lemma is proved.
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(2.4) LEMMA. The normalizer of E in G is H.

PROOF. By way of contradiction assume that N(E) D H. Then N(E)/E =
GL(3, 2); note that E is selfcentralizing. Thus, z, ~ z2 and a ~ d hold in
N(£) . It follows that G possesses precisely two classes of involutions. The
representatives of these classes are z, and a.

From (2.3) we know that C(a) = (a) xU, where U possesses a subgroup
Ul of index 2, and from (2.2) we get that O(C(a)) = (1). If a S2-subgroup of
i/j is cyclic then U is a 2-group by transfer results, and in this case C(a) =
CH(a). Assume that a 52-subgroup X of [/, is a four-group. If CH(a) c
C(a), then all involutions of £/, are conjugate in Ul as otherwise U{

would possess a normal 2-complement which is (1) by (2.2). It follows
that (N(*) n t/1)/(C(Ar) n (/,) has order 3. Clearly, the commutator sub-
group of C(a) lies in [/,. Since CH(a)' = (z,) , we get z, e £/, and this
implies that (z, , z2) is a S2-subgroup of C/t. Thus, C(X) nUl — X and
|N(JT) n C/,| = 22 • 3 . Note that (z, , z2> = Z(£(a, d)). Since N(£) /£ s
GL(3, 2), we see that N((z,, z2)) lies in N(£) and has order 26 • 3 . Thus
N((Zj, z2))nt/, c N(E). But then a would centralize an element of order 3
in N(E) which contradicts the structure of GL(3, 2). We have shown that
C(fl) = CH(a).

We know that G has precisely two classes of involutions and that if x
is an involution of N(£) then C(JC) C N(£) . Application of [10, Lemma
5.35] yields N(£) = G which contradicts the simplicity of G. The assertion
is proved.

(2.5) LEMMA. The involution z, is conjugate in G to an element of
H\(Zl).

PROOF. Assume by way of contradiction that G is 2-normal. Put T —
E(a, b,d). Since Z(T) = (z,) and T e Syl2(G), we get from O. Griin's
theorem [3, 7.5.2] that T n G' = T n H1. It would follow that G had a
normal subgroup of index 2. Therefore G is not 2-normal. This implies the
existence of an element g in G such that z, e T n T8 , but (z,) ^ Z(Tg).
The center of T8 is (zf), and so, zx ^ z8. Since zx & T8, we have
[z,, zf ] = 1. It foUows zf G H\(zr).

(2.6) LEMMA. In G we have zx ~ z2 ~ d and a is not conjugate to z , .

PROOF. We know that N(£) = H and that zx is not conjugate to a in
(?; remember that a 52-subgroup of C(a) has order 2 4 .
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By way of contradiction we suppose that d ~ a holds in G. From (2.5)
we get z, ~ z2 . In (a) x (z, , z2, b) there are precisely two elementary
abelian subgroups of order 8. Thus, as d ~ a, there are the following two
possibilities:

(i) (a, z , , z2) ~ (d, z , , z2);

(ii) {a, z , , b) ~ (d, z , , z2).

The possibility (ii) does not occur as in the group on the left there is only
one (7-conjugate of z{ whereas in the group on the right there are three
(/-conjugates of z{. Thus, we are in case (i). We get that the conjugation
(i) is performed by an element of N((z,, z2)). Denote the latter group by
N. Our assumptions imply that \N\ = 26 • 3 , since (z{, z2) = Z(E(a, d)).
Clearly, O2(N) = E(a, d) = C((zl, z2)). By a result of Baer-Suzuki [3,
3.8.2] there is an element k of order 3 in N which is inverted by b. We
may assume that k:zx —» z2 —* zxz2. The group {k, b) = Z3 acts on
E(a,d)/(zl, z2). Clearly, k £ N(£) as N(£) = H. We have o(z3) =
o(a) = o(d) = o(z3ad) = 2 and o(z3a) = o(z3d) = o{ad) = 4. Since k acts
fixed-point-freely on (z, , z2) , we see that k does not leave invariant any of
the following cosets: (z{, z2)z3a, {z{, z2)z3d, (z,, z2)ad. It follows that

k: (z, , z2)z3a -> (z, , z2)z3d -» (z,, z2)ad.

Furthermore, k: (z{, z2)z3 —> (z, , z2)a and k: (z, , z2)z3 —» (z ( , z2)c? are
both impossible as z{ ~ z2~ z3, a ~ d, and a is not conjugate to z, . But
also k: (z, , z2)z3 -> (z t , z2)z3ad cannot hold as Ead ~ Ed in H and all
involutions of Ed are conjugate. We have obtained a contradiction which
shows that d cannot be conjugate to a in G.

Thompson's transfer theorem [10, 5.38] gives d ~ z2 or d ~ z, . Suppose
that z, is not conjugate to z2 in G. Application of (2.5) yields that z{ ~ d
in G. Clearly, z2 is not conjugate to a in G by (2.1). Thus, in G there
are precisely three classes of involutions; representatives of these classes are
z , , z2, a. There is an element x in C(d) normalizing (z{, z2, d) such that
x1 e (z, , z2,d) and x £ (z, , z2, d). Note that all elements of (z{, z2)d
are conjugate, that z{ ~ rf, and that z2 ~ z tz2 -̂  zx. It follows that x
centralizes z , ; this, however, is not possible. The contradiction shows that
z, ~ z2 ~ d * a. The lemma is proved.

(2.7) LEMMA. C{a) = (a) x L, where L = 24 or L = LS. The group
(z, , z2)(y) is isomorphic to A4 and lies in L', here, y is an element of order
3ofN = N«z,, z2» .
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PROOF. We have CH(z2) = E(a,d) and Z(E((a,d)) = (z , , z2) . As
zi ~ Z2 ~ Ziz2> w e 8e t that JV = N((z, , z2)) has order 26 • 3 . Since
ft £ 02(iV), we get from the result of Baer-Suzuki that there is an element
k of order 3 in iV which is inverted by b. We know that N{E) = H,
and this implies that E is not normal in N. Hence, [k, z3] £ (zx, z2).
Obviously, (zx, z2)z3 cannot be mapped onto (z , , z2)a as all involutions
of E are conjugate and a is not conjugate to zx. Via b, the cosets Ed and
Ez3ad are conjugate; so, all involutions of Ed and Ead are conjugate to
zx in G. It follows that (z , , z2)a is kept fixed under the action of k in N.
Therefore, k centralizes a conjugate of a in (zx, z2)a. Clearly, (z,) is a
52-subgroup of C(c). If (k) was conjugate to (c) in G, then we would get
a~ zx, which is impossible. We have shown that in G there are at least two
classes of elements of order 3 and that 3 divides |C(a)|; note that c ~ c~x

in H.
Denote by y an element of order 3 of N which centralizes a; there is

such an element as all elements of {zx, z2)a are conjugate by the action of
(z3, d). Let H2 = C{a). We have that H2 3 (a, z , , z2 , y, b) and that a
52-subgroup of H2 is of type Z2xDs. Since y € N, we get (z , , z2)(y) = A4 .
We know from (2.1) and (2.3) that H2 = (a) x L and that a S2-subgroup
of L is dihedral of order 8. Moreover, L possesses a subgroup Lx of
index 2. Obviously, (z , , z2)(y) C Lx. Note that if x e (zx, z2)# then
C(x)r\Li = (zi,z2).

Let us assume that (z , , z2)(>>) c L , . As O(LX) is characteristic in L :

and hence normal in H2 , we get O(LX) — (1). Since C(z,) n L , = (z , , z2) ,
there is no normal 2-subgroup of Lx different from (1). Denote by K a
minimal normal subgroup of Lx. Then K has even order and is a simple
group. It follows from [9, p. 129] that K = A5. Thus, as K is normal in
L , , we get L, = K. It follows L = Z 5 . Clearly, if L, = AA then L = Z4 .
The lemma is proved.

In what follows we shall make use of J. G. Thompson's order formula [9,
5.1.7]. Thus, if x is an involution of G, we denote by a(x) the number of
pairs («, v) such that u ~ z , , v ~ a , and x € (MV) .

(2.8) LEMMA. The integer a(z,) is equal to 240.

PROOF. The roots of z, lie in the //-classes with the representatives
z , , z3a,
z2z3a, bd, z3bd, and z ,c .

Assume that uv = z , . Then M = z,u and v is conjugate to a in H.
But z ^ ~ a in / / and this shows that uv = z, is not possible.
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Assume that o(uv) = 4 . Then.MUMt; = zx , and so uv — zxu which
implies that v e NH{{zx, M))\C((Z, , «)). First, we handle the case u =
z2 . We have C((z,, z2)) = E{a,d), and therefore, v is an involution
of the coset E(a, d)b. The relevant cosets with respect to E containing
v are Eb, Eab. In EaU Eab there are 8 involutions conjugate to a.
Thus, if u = z2 , there are 8 possibilities for v. But z2 has precisely 6
conjugates in H, and therefore we get that there are 8 • 6 = 48 pairs (u, v)
such that o{uv) = 4 and w ~ z2 in / / . Now assume that u — d. Thus
v e (z, , z2, d)z3a. This coset contains precisely four involutions; these
involutions form (z, , z2)dz3a; but all these involutions are conjugate to zx

in G and we cannot find such a v . Thus, if O(MU) = 4, the number of pairs
(M, U) such that z, € (M, t>) is equal to 48.

Assume that o(uv) = 6. There is only one class of elements of order 6
in H; a representative for the class is z ,c . We have Cw(z,c) = (z,) x (c).
Thus Nff((z,c)) = (z,> x (c, rf). Let MV = zxc. Then v ~ a in H and u
inverts c. This is not possible as all involutions of (z{, d) are conjugate to
z, in G. We have shown that o(uv) — 6 is not possible.

Finally, we handle the case o(uv) — 8. In H there are exactly two classes
of elements of order 8; they are represented by bd and z3bd. The elements
of (bd) are 1, bd, z2z3a, z2z3abd, z , , zxbd, zlz2zia, ziz2z3abd. The
involutions inverting bd lie all in (bd)d and are the following elements:
d, b, z2z3ad, z2z3ab, zxd, zxb, zxz2ziad, zxz2z3ab. Let uv = fof.
Then ubd — v . We see that there are precisely four pairs (u, v) such that
uv = bd. Thus there are precisely 4 • 24 = 96 pairs (u, v) such that uv
lies in cclH(bd). Let uv — z3bd. The elements of (z3bd) are 1, z3bd,
zxzia, abd, zx, zxz3bd, z3a, zxabd. The involutions inverting z^bd
are d, z3b, zxz3ad, ab, zxd,zxz3b, z3ad, zxab. We have uz3bd = v,
and it is easy to compute that there are precisely four pairs (M , v) such that
uv — z3bd. Hence, there are precisely 4 • 24 — 96 pairs (M, V) such that
uv e cclH(z3bd). It follows that a(zx) = 48 + 96 + 96 = 240.

(2.9) LEMMA. / / L = Z4 then a{a) = 3.

PROOF. From (2.7) we get C(a) = (a, z , , z2, y, b) and (z,, z2)(y) =
A4 . The conjugacy classes of C(a) are listed in Table II.

Put H2 — C(a). Roots of the involution a are in the H2-classes with the
representatives a and ay.

All involutions of H2 conjugate to z, in G are conjugate to z, and H2 .
It follows that there are precisely three pairs (u, v) such that uv = a.

Assume that uv = ay. Clearly, u and v both invert y, and N({y))nH2 =
({a)x(y})(b'), where b' is an involution conjugate to a and G and inverting
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X

1
a

z i
azx

7
ay
b

ab
bz2

abz2

o(x)
1
2
2
2
3
6
2
2
4
4

TABLE II

C C ( a ) ( x )

( a , zx, z 2 , y , ^

II
(a, z , , z 2 ,6 )

||
(a) x (y)

II
(a, z , , 6)

||
{a, bz2)

II

group M\i

\cclC(a)(x)\

> 1
1
3
3
8
8
6
6
6
6

48

y. The involutions in (zx, z2) cannot invert y. Thus, there is no pair (u, v)
such that uv = ay. we have proved that a(a) = 3 .

(2.10) LEMMA. / / L = Z4, then \G\ = 26 • 33 • 7.

PROOF. We apply Thompson's order-formula and compute

|C7| = |C(^,)| - a(a) -I- |C(a)| • a ( ^ )

= 192-3 + 48-240= 12,096.

(2.11) LEMMA. / / L = Z5 then a(a) = 195.

PROOF. AS we have remarked in (2.7), the group (z, , z2)(y) is isomor-
phic to A4 and lies in l! which is isomorphic to A5. We know that
{a, zx, z2, b) G Syl2(C(a)). The element y of order 3 is centralized by
an involution b' of L\L', and it is clear that b' ~ a in G. Denote by w
an element of order 5 of L . The conjugacy classes of C(a) are listed in
Table HI.

Put H2 = C(a). The roots of a lie in the H2-classes with the representa-
tives a, ay, aw .

Assume that uv = a. Then u runs through the 15 elements of cc/C(a)(z,).
We have z{a ~ a in H. Thus, there are precisely 15 pairs (u, v) such that
o(uv) = 2 and a e(uv).

Assume that uv = ay. Clearly, u and v both invert y. We have C(y) n
H2 = {a, b', y), and there is an involution z conjugate to z, in L' which
inverts y and centralizes (a, b'). Thus, N((y)) C\H2 = ((a, b') x (y))(z).
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TABLE III

X

1
a
z,
y
w
b'y

h' n
z2b
azx
ay
aw
ab'y
ab

az2b

o(x)
1
2
2
3
5
6
2
4
2
6
10
6
2
4

(a) xL
||

(a, zx, z2, b)
(a, b', y)

(a, w)
(a, b', y)

(a,z[,b',y),z[~zl

(a, z2b)
{a, z , , z2, 6)

(a, *' , 7}
(a, w)

(a,b',fy) f

{a, zx,b,y'),y' ~y
(a, z2b)

\cclC{a)(x)\

1
1

15
20
24
20
10
30
15
20
24
20
10
30

240

There are precisely 12 involutions in N((y)) n H2 which invert y but only
three of which are conjugate to z, in G. These are z , yz ,y~{ z. We have
zay~l z = ay, yz-az = ay, y~l z-ayz — y~lay~l = ay. It follows that there
are precisely 3 • 20 = 60 pairs (u, v) such that o(uv) — 6 and a e (uv).

Assume finally that uv = aw; thus, o(uv) = 10. Clearly, u and v both
invert w . We have C(w) n H2 = (a, w). Thus, w, v e C*(w) n H2 =
((a) x (w;))(z), where z £ L' and ztuz = t/;~ .As z e L1, we have z ~ zt

in Z/. The involutions of C*(w)nH2 conjugate to zx in (? are precisely
the five elements in {w)z. Clearly, w'z • x = aw has the solution x —
z~xw~'aw and x ~ a in (7. It follows that there are precisely 5 • 24 = 120
pairs (w, v) such that o(uv) = 10. We conclude a(a) = 15+60+120= 195.
The lemma is proved.

(2.12) LEMMA. / / L = £5 then \G\ = \Mn\.

PROOF. Compute

|C(z,)| • a(a) + |C(a)| • a{zx) = 192 • 195 + 240 • 240

= 95,040 = 2 6 - 3 3 - 5 1 1 .
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3. The case £ = 24

We shall show that the group G with the title property does not exist.
Remember that G has at least two classes of elements of order 3, namely

those represented by c and y. Since (2,) is a S2 -subgroup of C(c),and {a}
is one of C(y), we see that both C(c) and C(y) have normal 2-complements.
Note that (zx, d) is a ^-subgroup of N((c)) and (a, b') is a ^-subgroup
of

(3.1) LEMMA. We have C{c) = Kc{z{), where Kc is a normal subgroup of

C(c) of order 32 or 3 3 , and N({c)) = Kc{zl, d). Also, C{y) = Ky{a), where

Ky is a normal subgroup of C{y) of order 32 or 3 3 , and N((y» = Ky(a, b').

PROOF. By a transfer result [3, 7.4.5] both C(c) and C(y) have normal 2-
complements. These normal 2-complements are normalized by four-groups.
Consider for instance C(c). Put K = Kc. Then K < K(zx, d). The Frattini
argument together with [9, 5.1.9] yields that K is a 3-group. As 33 divides
\G\, we get that |K| e {32, 33} .

(3.2) LEMMA. Denote by T a S^subgroup and by S a Srsubgroup of G.
Then \G: N(5)| e {64, 288} and \G: N(T)\ e {112, 448}. / / \G: N(5)j =
288, then C{S) = S. A Srsubgroup of G is not cyclic.

PROOF. From the order of G we get that G has no proper subgroup
of index smaller than 9. Thus, from Sylow's theorem, we get )G: N(5)| e
{36,64,288} and \G: N( r ) | e {16 ,28 ,64 ,112 ,488} . If \G: N(S)\ =
36, then |N(5")| = 2* • 3 • 7; but then an involution would centralize an
element of order 7 which is not the case.

Clearly, T is not cyclic, since (c) is not conjugate to (y) in G. If we had
\G: N(T)\ e {16, 64} , then an element of order 7 in G would centralize a
Sylow 3-subgroup which contradicts (3.1).

Suppose that \G: N(T)\ = 28. Then |N(JT)| = 24 • 3 3 . Assume that
T1 jt (1). Then | 7 ' | = 3 and an element of order 3 of G is centralized by
a group of order 8 which is not possible. Thus T1 = (1). If T was of type
(3, 9), then T had a characteristic subgroup of order 3, and again we get a
contradiction to the structures of centralizers of involutions in G. It follows
that T is elementary abelian. From (3.1) we get \C(c)\ = \C(y)\ = 2 • 3 3 .
Therefore, in N(T) there are 8 conjugates of c and 8 conjugates of y. By a
lemma of Burnside [3, 7.1.1], there is an element x of order 3 in T which
is not conjugate to c and not to 7 in G. Thus, x is not centralized by an
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involution. It follows that x has 16 conjugates in N(T); but 8 + 8+16+1 >
| T\ = 27. We have obtained a contradiction also in this case.

Assume finally that \G: N(5)| = 288. Then |N(5)| = 2-3-7. Let x be an
element of order 3 in C(5). Then, the order of C(x) is either 32 • 7 or 33 • 7;
note, that by (3.1), the element x cannot be centralized by an involution.
This contradicts the order of N(5). The lemma is proved.

We shall now rule out all four cases of Lemma (3.2).

Case 1. Here we have |N(5)| = 33-7 and |N(r) | = 22-33. By assumption,
an element of order 7 is centralized by a group of order 9. If T1 ^ (1), then
T' is centralized by an involution and by an element of order 7 which is
against (3.1). Thus T isabelian. Note that a 52-subgroup of N(T) has order
4. Application of (3.1) yields that a S2-subgroup of N(T) is conjugate in G
to {z{, d) and to {a, b'). But this contradicts the fact that z, ~ d ~ z{d
and a is not conjugate to z, in G. Case 1 is ruled out.

Case 2. Here we have |N(5)| = 33 • 7 and |N(r) | - 3 3 . From a transfer
result of Burnside we get T' ^ (1). By assumption, an element of order 7
centralizes a subgroup of order 9. Thus, we may assume that C(5) = S x R,
where R has order 9 and R c T. Evidently, T' C R C T. Put S = (a)
and T' = (£). As N(T) = T, we see that £ is not conjugate to its inverse;
clearly, $ is not centralized by an involution. Thus, \C(£)\ = 33 • 7. There
are six G-conjugates of c and six G-conjugates of y in T. Therefore, T
is generated by elements of order 3. From [3, 5.3.9] it follows that T has
exponent 3. Since |AutG(5)| = 3 , we see that a is not conjugate to a~l

in G. Let x, y be in R* and x ^ y. Then, xa and ya have order 21
and are not conjugate in G, since such a conjugation would be performed
in C(cr) which is abelian. Also, xa, xa~x, and ya~l lie in three pairwise
different G-classes as |Autc?(5')| = 3 . It follows that in S x R there are

representatives for 16 G-classes of elements of order 21. If x e R* , then
|C(*<r)| = ICOxer"1)! = 32 • 7. Our assumptions imply that |C(c)| = |C(y)| =
2 • 32 . As the centralizers of roots of involutions are known, we may write
down the conjugacy classes of G discussed so far, and we see that G has at
least 13,056 elements. Since |G| = 12, 096, we have shown that Case 2 does
not occur.

Case 3. Here we have |N(5)| = 2 - 3 - 7 and |N(T)| = 22 • 3 3 . If T
were abelian then we would get from (3.1) that (z, , d) and (a, b') are
conjugate in G which, however, is not the case. Therefore, T1 ^ (1) and
T' is centralized by an involution. Since T1 ~ (c) or T1 ~ (y), there is
a four-subgroup V in N(T). Acting with V on appropriate F-admissible
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sections of T/T1, we see that T = Q , ( r ) . Application of [3, 5.3.9] yields
that exp(T) = 3 .

Put N(T) = T(a, $), where (a, /?) is a four-subgroup of G. Then, all
involutions of (a, /?) are conjugate in G but fall into three N( r)-classes.
We know that |Cr(a) | = \CT(0)\ = \CT(afi)\ = 3 . Without loss of generality
we may set T' = C r ( a ) . The groups CT{fi) and CT(afi) are not conjugate
in N(T), since /? </- a/? holds in N(T). It follows that a generator for
Cr(/f) has precisely six conjugates in N(T); the same is true for a generator
for Cr(a/?). So far, we have got 14 elements of order 3 in T which are
conjugate to an element of order 3 in CG(a). There is an element of order
3 in T which is centralized by an involution which is not conjugate to a .
Such an element has precisely 12 conjugates in N{T). It follows that G has
precisely two classes of elements of order 3. In particular, either c or y is
3-central in G.

Writing down the complete table of the conjugacy classes of G, we get
|<7| = 10, 752. Therefore, Case 3 is ruled out.

Case 4. Here we have |N(5)| = = 2 - 3 - 7 and N(F) = T. By a result of
Burnside it is clear that T1 ^ (1). Hence T1 = Z(T) has order 3. We have
shown above that |C(5)| = 7. Clearly, T1 is not centralized by an involution
and |C(7^)| = 3 3 .|()|

Consider N((c)). This group has order 22 • 32 and (z, , d) as a 52-
subgroup with z, ~ d ~ zxd in G and dcd = c~x. From (3.1) and the
order of H we get that the 53-subgroup of N((c)) is elementary abelian.
Let {t, c) be the subgroup of order 9 of N((c)). We may assume that t is
3-central in G. Thus (t) is not normalized by a 2-subgroup of G different
from (1). In particular, t * t~x in G. It follows that t and t~x each
have four conjugates in N((c>). But c is not 3-central and has precisely two
conjugates under the action of N((c)). Since 1 + 2 + 4 + 4 = 11 > 9 , w e
have obtained a contradiction which shows that Case 4 does not occur.

Summarizing we get

(3.3) LEMMA. The case L = Z4 does not occur.

4. The case L s

From (3.3), (2.7), and (2.12) we conclude that L = £5 and that |G| =
26 • 33 • 5 • 11.

It is our aim to determine the structures of all Sylow normalizers and
to write down the uniquelydetermined table of the conjugacy classes for G.
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Further, we are interested in the normalizers of certain elementary subgroups
of order 9 of G.

(4.1) LEMMA. We have C(c) — Kc(z{), where Kc is a normal subgroup
ofC{c) of order 32 or 3 3 , and N({c))=Kc(zi, d). The four-group {a, b')
is a S2-subgroup of C(y).

PROOF. Clearly (z,) e Syl(C(c)). Thus C(c) has a normal 2-complement
Kc. Now, {z{, d) acts on Kc and all involutions of (z, , d) are conjugate in
G. Thus, the first assertion follows from [9, 5.1.9] and the Frattini argument.
As for the second assertion, note that all involutions of (a, b') are conjugate
in G.

(4.2) LEMMA. A Sylow 5-normalizer of G is contained in C(a).

PROOF. Denote by w an element of order 5 of C(a). We have C(a) n
C(w) — (a) x (w), and so (a) is a S2-subgroup of C(w). Thus C(w)
possesses a normal 2-complement K. There is an involution z € l! inverting
w . Therefore, from the action of {a, z) on K and from [9, 5.1.9] together
with the Frattini argument and (4.1) we get that |A:| € {5, 3 • 5, 32 • 5}.
From the structure of C(a) follows that in G there is precisely one class of
elements of order 5. Thus N((w))/C(w) = Z 4 . Since \C(w)\ = 2 • \K\, we
get from Sylow's theorem that C(w) = (a) x (w). The assertion follows.

(4.3) LEMMA. A Sylow 1 l-normalizer of G is a Frobenius group of order
55.

PROOF. Denote by e an element of order 11 in G. We know that \C(e)\
is neither divisible by 2 nor by 33 as |̂ TC| e {32, 33}. Also, there are no
elements of order 55 in G. Thus \C(e)\ e {11 ,3 - 11, 32 • 11}. From
a transfer result we get |AutG((e))| e { 2 , 5 , 10}. Application of Sylow's
theorem yields |N((e))| = 5 • 11. The assertion follows.

(4.4) LEMMA. A S^-subgroup of G is nonabelian.

PROOF. Assume by way of contradiction that a 53-subgroup T of G is
abelian. Since by (4.1) a four-group acts on T, we get that T is elementary
abelian. From the above results we get C(T) = T and N(T) D T. Since T
cannot have automorphisms of order 5 or 11, we get that N(T)/T is a 2-
group. From the order of GL(3, 3) it follows that \N(T)/T\ < 2 5 . Sylow's
theorem yields |N(T)| e {24 • 3 3 , 22 • 3 3 } . A lemma of Burnside implies
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that any two G-conjugate elements in T are conjugate under the action of
N(T). Let x, y e T such that x~c,y~y in G. Then C(x) has order
2 • 33 and lies in N(T). We consider first the case that |N(T)| = 24 • 3 3 .
Then x has precisely 8 conjugates in T. We have \C(y)\ = 22 • 3 3 , and so,
y has 4, 8, or 16 G-conjugates in T. Note that 1 + 8 + 16 = 25 < 27. In
T* there must be an element t which is not centralized by an involution.
Thus t has 16 conjugates in N(T). But 1 + 8 + 4 + 1 6 = 29 > 27 gives a
contradiction. Finally, consider the case |N(r) | = 22 • 3 3 . From (4.1) we get
that a S2-subgroup of N(T) is conjugate to (z, , d) in G. A result of W.
Gaschutz implies that C(y) — (y) x X, where \X\ = 22 • 3 2 ; remember that
(a, b') is a S2-subgroup of X. Since z, is not conjugate to a in G, we
see that a 53-subgroup of C(y) is not normal in C(y). If a minimal normal
subgroup of X is a 2-group or a group of order 3, then an involution of X
is centralized by a subgroup of order 9 of C(y). This contradiction proves
the lemma.

(4.5) LEMMA. A Sysubgroup T of G is nonabelian of exponent 3 and
2 3

PROOF. We know that C(T) = T1 = Z(T) from (4.1). For the order of
|N(T)| we get the following possibilities from Sylow's theorem: 3 3 , 22 • 3 3 ,
24 • 3 3 . The case |N(T)| = 24 • 33 is not possible as an element of order 3 is
not centralized by a group of order 8.

Let us assume |N(T)| = 3 3 . Put T' = {£). Then, by a lemma of Burnside,
£ is not inverted in G, and so, <̂  is neither conjugate to c nor to y in G.
Thus, in G there are at least four classes of elements of order 3.

To obtain a contradiction we write down the table for the conjugacy classes
of G obtained so far, and we get at least 105,600 elements in G. Thus, the
case that |N(T)| = 33 is ruled out.

We are left with the case |N(r) | = 22 • 3 3 . Since t ± (1), we get T1 ~ (c)
or T1 ~ (y). From the structure of C(a) it follows that a S2-subgroup of
N((y)) is elementary of order 8. Thus, a S2-subgroup of N(T) is elementary
abelian of order 4. From the orders of the centralizers of involutions it
follows that T is generated by elements of order 3. Since the nilpotency
class of T is 2, application of [3, 5.3.9] yields that T has exponent 3. The
lemma is proved.

(4.6) LEMMA. The element c is ^-central.

PROOF. Assume that there is a 53-subgroup T of G such that T1 =
(y). Then C(y) = T(a, b'). Consider the factor group X = T{a, b')/(y).
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From the orders of the centralizers of involutions and by the stabilizing-chain
argument [3, 5.3.2], we get that no involution of X centralizes an element
of order 3 of X. As this is not possible, we get that c is 3-central.

We are able to write down the uniquely determined table of the conjugacy
classes of the simple group G of order 95,040.

TABLE IV

X

1
zl

a
z3a

z2z3a
bd

z3bd
c

zxc

y
ay
w

aw
ex
e i

o(x)
1
2
2
4
4
8

8
3
6
3
6
5
10
11
11

|CC(*)|
95,040

26-3
24 • 3 • 5

25

25

23

23

2 -3 3

2-3
2 2 -3 2

22-3
2-5
2-5
11
11

\cclG(x)\

1
495
396

2970
2970
11880
11880
1760
15840
2640
7920
9504
9504
8640
8640

95,040

We see that Table IV is identical with the table for the Mathieu group
Mn.

(4.7) LEMMA. Let T e Syl3(G) such that t = (c). Then, N(T) =
r (Z j , d) and N(T) contains elementary abelian subgroups Ml, M2 such
that N(M() is a splitting extension of M{ by GL(2, 3) for i = 1, 2. Further,
Mx is not conjugate to M2 in G. There are two elementary abelian subgroups
of order 9 in T which are conjugate in N(JT) and have only two 3-central
elements each.

PROOF. Clearly N(T) = T(z{, d). Every involution of (zj, d) is con-
jugate to z, in G and centralizes a subgroup of order 3 of T; clearly
T = Cr(z,) -CT(d) -CT{zxd). Put CT(d) = (r), CT{zxd) = (s). Then
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c ~ r ~ 5 holds in G. Put M{ = (c, r) and M2 = {c, s). Evidently,
M{ is normal in N(!T), and so, MJ consists only of 3-elements which are
3-central. In T there are 12 conjugates of y, and this implies that Ml \JM2

contains all the 14 3-central elements of T. Clearly, {c, rs) ~ (c, rs~l) via
d and Mx is not conjugate M2 by a result of Burnside.

Since M, possesses precisely four subgroups of order 3, we get that Mt

is normalized by precisely four S3-subgroups of G, one of which is T.
Moreover, (z{, d) normalizes M{. Since C(M^) — Mi, we see that

is a (2, 3)-group. As |N(A/,.): N(Af,.) n N(r ) | = 4, we get |N(Af(.)| = 24 • 3 3 .
It follows that N(A/f.) is a splitting extension of Mi by GL(2, 3) as T has
exponent 3; i = 1, 2.

5. The identification of G with A/12

In what follows we shall change our notation completely, because we are
going to find generators and relations for G as given in [11, p. 421]. So, we
shall use from now on only the structural information obtained for G so far.

There is an elementary abelian subgroup M of order 9 of G, the normal-
izer of which is a splitting extension of M of GL(2, 3). Since C(M) = M,
we get that N(M) is uniquely determined.

Studying Todd's presentation for Mn , we see that we may put N(Af) =
(a2c, aca){a ,b,e,f) so that the relations between the generators of N(Af)
are those of Todd. Then, we have M = (a2c, aca) and (a, b, e, f) =
GL{2,3).

Clearly, (a, b, e, f) lies in C(a ) = H and a is a 2-central involution.
Since ef is an element of order 3 in H, it follows / e H\O2{H). We
know that (a, b) is a normal quaternion subgroup of H. We may thus add
a generator d for H so that Todd's relations hold between the generators
o f / / . W e get H = {a,b,d,e,f) and (d,e,f) = X4.

Thus, to prove G = Mn, it suffices to show that (cd)3 = 1.
Consider the diagram

o———o o o .
c d e f

All relations represented by the diagram are known except (cd)m — 1. It is
easy to see that all involutions occurring in the diagram are 2-central in G.

We have (a2,c,d)c C(/) = Hf. Since o(a2c) = 3 , we get that both a2

and c are contained in Hj\O2 3 ( ^ ) . The table of conjugacy classes of H
shows that all involutions of H\O2{H) are conjugate in H. It follows that

https://doi.org/10.1017/S1446788700030494 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030494


228 Dieter Held and Jorg Hrabfe de Angelis [ 17]

C(a2)r\Hf = (f, x2, a2) is elementary abelian of order 8, where ( / , x2, x3)
is the normal elementary abelian subgroup of order 8 of Hf.

Now d lies in (f,x2, a2). Assume first that d e ( / , x2). Then cd e
(f, x2, x3)c, and so the order of cd is 2 or 4.

Assume next that d e ( / , x2, a2)\(f, x2). Then, d = a2x with x e
( / , x2). It follows cd e ca2{f, x2, x3>, and as o(ca2) - o(a2c) = 3 , we
get that o{cd) € { 3 , 6 } . If o(cd) = 6, then the structure of H shows that

?
We have thus obtained the following possibilities for m: m e { 2 , 4 , 3 , 6 } .
First we shall eliminate the possibility m = 2 . This is easy as the as-

sumption o(cd) — 2 implies that in G the subgroup {d, e, f) which is
isomorphic to Z4 is centralized by the element a c of order 3. But this
contradicts the results of Table IV.

Next, we shall rule out the case m — 6. Assume that o(cd) = 6. Put
A = (c, d, e, f). The generators of A respect the diagram

o o o o

c d e f

plus the additional relation {cd)3 f = 1. Compute

[cd)edec = c
edecdedec = cdece = cedcdece = ecdcdc = efd.

It follows that the element efd of order 6 lies in the subgroup (d, e, f) of
G which is isomorphic to Z4 . This is a contradiction which shows that the
case m = 6 is not possible.

Finally, we treat the case o(cd) = 4 . Put A — (a2, c, d, e) and Y =
(a2, c, d). The generators of A respect the diagram

o o—-—o o.
a2 c d e

Therefore, A is an epimorphic image of the Coxeter group F4 (see, for
example, [2, Table 10]) and so, \A\ divides 26 • 3 2 . We know that Y has
order divisible by 2 • 3 and that Y is an epimorphic image of Z2 x I 4 ;
see [2, Table 10]. Thus, Y is isomorphic to £4 or to Z 2 x Z 4 . The case
|v4| = 24 is not possible as then Y = A . But in Z4 there is no element of
order 6. If \A\ = 24 • 3 , then A = Z2 x 2 4 which would imply e e Z(A) as
e centralizes the element a2c of order 3 of A . Thus, if 32 does not divide
\A\, then \A\ = 26 • 3 as \NA((a2c))\ = 22 • 3 ; note that a2c is 3-central in
G. If \A\ = 26 • 3 , then \O2(A)\ = 2 5 , and the element a2c centralizes the
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involution e which must lie in O2(A). This contradicts the fact that de has
order 3.

Assume now that 32 divides \A\. Then 23 • 32 divides \A\ and since I 4

is present, we see that A is not 3-closed.
First suppose that \A\ — 23 • 3 2 . A Sylow 2-subgroup of A is dihedral.

If O3(A) = (1), then O2(A) is a four-group which is centralized by a group
of order 3, contradicting O3(A) = (1). Thus, O3(A) has order 3. It follows
that A = (Z3 x A4)Z2 with A4Z2 = X4. But then, a non-2-central involution
of G would have a root of order 4 which is not the case.

We have proved that 24 • 32 divides \A\. Let X be a minimal normal
subgroup of ^ . Then A is not a 3-group as A is not 3-closed and no
element of order 3 of G is centralized by a subgroup of order 8. Hence,
1 ^ 6 {2, 2 , 2 } . From the structures of centralizers of involutions of G
we get that A!" is a four-group. As X is centralized by an element of order
3 we get that all elements of X* are non-2-central. Since a non-2-central
involution of G has no roots of order 4, we see that all involultions of
A centralize X. This implies that {a , c) centralizes X. But this is a
contradiction, since a c is 3-central. The case m = 4 has been ruled out.

It remains o(cd) = 3 . Thus G possesses elements a, b, c, d, e, f which
satisfy the Todd relations for a presentation of the simple Mathieu group
Ml2. Since |G| = \Ml2\, we get G = Ml2, and we have reached our final
goal.
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