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ON THE LINEAR INVARIANCE 
OF LINDELÔF NUMBERS 

JAN BAARS AND HELMA GLADDINES 

ABSTRACT. Let X and Y be Tychonov spaces and suppose there exists a continuous 
linear bijection from Cp(X) to CP(Y). In this paper we develop a method that enables us 
to compare the Lindelôf number of Y with the Lindelôf number of some dense subset 
Z of X. As a corollary we get that if for perfect spaces X and Y, CP(X) and Cp(Y) are 
linearly homeomorphic, then the Lindelôf numbers of Jf and Fare equal. Another result 
in this paper is the following. Let X and Y be any two linearly ordered perfect Tychonov 
spaces such that Cp(X) and Cp(Y) are linearly homeomorphic. Let fPbe a topological 
property that is closed hereditary, closed under taking countable unions and closed un­
der taking continuous images. Then XhsiS property fPif and only if Y has. As examples 
of such properties we consider certain cardinal functions. 

1. Introduction. LetXand 7 be Tychonov spaces. By C(X), we denote the set of all 
real-valued continuous functions onX We endow C(X) with the topology of pointwise 
convergence and we denote that by CP(X). The function space Cp(x) is a topological 
vector space which is a dense subspace of R* with the product topology. The topological 
and linear structure ofCp(X) have widely been investigated. Arkhangel'skiï's papers [1] 
and [3] and his book [4] contain a survey of results. 

Our main interest is in the question of which topological properties are ^-invariant. 
We say that a topological property !Pis ^-invariant if for all Tychonov spaces X and Y 
such that CP(X) and CP(Y) are linearly homeomorphic we have X has property fPif and 
only if Y has. Two function spaces CP(X) and CP(Y) are linearly homeomorphic if there 
exists a homeomorphism between them which is also linear. Among properties that are 
^-invariant are, for example, compactness, a-compactness and pseudocompactness (cf. 
[2]). Many other properties have been proved to be so as well (see for example [1] and 

[6]). 
In [1], ArkhangePskiï announced the result of Velicko that Lindelôfhess is an l-

invariant property. It seems that his proof cannot be generalized for higher Lindelôf 
numbers. In [5], it is shown that for the class of paracompact first countable spaces, 
the Lindelôf number is £-invariant. In the next section we will develop a method that 
allows us to decide that the Lindelôf number for another class of spaces is ^-invariant. 
We will show that the Lindelôf number is ^-invariant for the class of perfect Tychonov 
spaces. In fact we prove a much stronger result: Suppose CP(X) and CP(Y) are linearly 
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130 JAN BAARS AND HELMA GLADDINES 

homeomorphic. Let n be the Lindelôf number of Y and assume that in Y each closed 
subset can be written as the intersection of «-many open subsets of Y. Then the Lindelôf 
number ofXis less than or equal to K. 

In the last section of this paper we prove the following result. Let X and Y be any 
two linearly ordered perfect Tychonov spaces such that Cp(X) and Cp(Y) are linearly 
homeomorphic. Let fPbe a topological property that is closed hereditary, closed under 
taking countable unions and closed under taking continuous images. ThenXhas property 
(Pif and only if Y has. Of course there are many topological properties that satisfy these 
conditions. Section 4 will mention some specific cardinal functions that apply. 

2. The main tools. Let X and Y be Tychonov spaces, let </>: CP(X) —• CP(Y) be 
a continuous linear map and let y G Y be fixed. The map i/jy: CP(X) —> R defined by 
i^yif) = 4>(f)(y) is continuous and linear. So ipy G L(X), the dual of CP(X). Since the 
evaluation mappings ^x(x G X) defined by £*(/) = f(x) for/ G CP(X) form a Hamel basis 
for L(X) (cf. [4] or [6]), there are for ̂ y ^ 0, JCI , . . . ,x„ G Xmd Xx,..., Xn G R\{0} such 
that tpy = EJL i ̂ iùi • We define the support of y in X to be the finite set {x \,..., xn } Ç X. 
lfi/jy = 0, the support of y is defined to be the empty set (notice that whenever <f> is onto, 
ijjy ^ 0 for every y G Y). For A Ç Y we denote \JyeA

 suPP(y) by supp ,4. 

LEMMA 2.1 ([6]). Let X and Y be Tychonov spaces and let <f>: Cp(X) —» CP(Y) be a 
continuous linear map. Then for y G Y, 

(1) for every z G supp(y), there is Xy
z G R swc/z that <j>(f)(y) = EzesuppO) ̂ zf(z)> for 

every f e CP(X), 
(2) iff, g G CP(X) coincide on supp(y), then </>(f)(y) = <t>(g)(y). 

LEMMA 2.2 ([6]). Let X and Y be Tychonov spaces and let <j>\ CP(X) —+ CP(Y) be a 
continuous linear injective map. Then supp Y is dense in X.Ifcj) is a linear homeomor-
phism, then supp Y — X. 

LEMMA 2.3 ([6]). Let X and Y be Tychonov spaces and let </>: CP(X) —* CP(Y) be a 
continuous linear map. Then the set valued map supp: Y —• Œ>(X) is LSC. That is, for 
every open subset O ofX, the set ( y Ç 7 : supp (y) Pi O ^ 0} is open in Y. 

Let X and Y be Tychonov spaces and let 0: CP(X) —* CP(Y) be a continuous linear 
map. By card^, we denote the cardinality of a set ,4. For every n G N we define Yn = 
{y G Y : card{supp(y)} < n}. Clearly Yn Ç Yn+\ for all n G N. Since supp(y) is finite 
for all y G F, Y = (J^i *V N ° t e that if 0 is onto, then Y\ is the set of elements of F that 
have exactly one element in their support. 

LetX„ = supp Yn for all n G N. Then supp Y = \JT=\ xn màXn Ç Xn+l for all n G N. 

LEMMA 2.4. The set Yn is a closed subset of Y for all n G N. 

PROOF. Let;; G 7\F„.Thencard{supp(y)} > n.Letsupp(y) = {JCI,. .. ,xm}, where 
m> n and x, ^ Xj if / ^ y. Find open subsets Ot ( 1 < i < m) in X such that x/ G 0/ and 
0,. n Oj = 0 if/ ^y . Let Uj = {yeY: supp(y) n 0/ ^ 0} (1 < / < m). By Lemma 2.3, 
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Ui is open in F. Note that y G Uh Let U = fl/Li ^/- T n e n ^ i s °P e n i n ^ and y G U. If 
z e U, then supp(z)n<9/ ^ 0 for all I <i <m. Hence card{supp(z)} > m. We conclude 
that£/nr„ = 0. • 

Suppose that </> is onto. In that case, the map/i :Y\ —>X\ defined by/j (y) = x, where 
supp(y) = {x}, is well defined. 

LEMMA 2.5. 77*e mapf\ is continuous. 

PROOF. Let y G FI and let supp(y) = {x}. Take an arbitrary open O in X such that 
x G O. By Lemma 2.3, the set U = {y G Y : supp(y) n O ^ 0} is open in F. Note that 
yeU.lt easily follows that/i(£/ D Fj ) Ç 0. m 

Let « > 1 and let A be an arbitrary subset of Yn \ Y„-\. We define an equivalence 
relation ~ on A as follows: for y\9yi G ^ we have y i ~ yi if and only if supp(yi) = 
supp(y2). 

Let ^4/~ denote the quotient space and let q^ : A —+ A/~ denote the corresponding 
quotient map. Define 

BA = {(XI, . . . ,x„) G X" : 3y G A, supp(y) = {xu... ,x„}} 

and define/?^: BA —> ^4/~ by /^(xi , . . . ,x„) = ^(y) where y EAis such that supp(y) = 
{xi,. . . ,xw}. The mappA is well defined. Note that if <r:{l,...,n} —» {1, . . . ,«} is a 
permutation, then j ^ (x i , . . . ,x„) = pA(xa(\), • • • ,*a(«)) and that the fibers of points are 
finite. 

LEMMA 2.6. The mappA satisfies the following conditions: 
(a) pA is closed. 
(b) PA is open. 
(c) PA is locally injective. 

PROOF. For (a) let F be an arbitrary closed subset of BA and suppose y G A is such 
that qA(y) G pA[F\ \PA[F\. Since y G Yn \ Fw_!,card{supp(y)} = n. So supp(y) = 
{xi,.. . ,xn} wherex/ ^ x7 for / ^j. For every permutation a: {1, ...,«}—> {1, . . . ,«} it 
follows that^Cx^i),... ,xCT(W)) = qA(y) so (x^i),... ,xa(ny) £ F. Hence we can find open 
sets U\9...9U„ inXsuch thatx, G £// for every 1 < i < n, Uj D Uj = 0 for / 7̂  y 
and for every permutation a: {1, . . . , / * } — • {1, . . . ,«} , £/a(i) x • • • x ^ ( „ ) D / 7 = 0. Let 
Ot = {z G F : supp(z) D £// 7̂  0} for every 1 < / < n. By Lemma 2.3, 0/ is open in F 
and y G 0/. So 0 = f|?=i ^ *s °P e n i*1 ^ andy G 0. 

CLAIM. q?[qA[0]] = 0. 

Let z G ĝ "1 [<^[0]]. Then there is w G 0 such that g^(z) = ^(w). Hence supp(z) = 
supp(w). Since supp(w) n £// ^ 0 for every 1 < / < n we get the same for supp(z). This 
gives z G 0 which proves the claim. 

The claim gives us that g^[0] is open inA/~. Since ^(y) G ^ [O] , ^[OJfï/?^ [F] ^ 
0. Let z G 0 and (zj , . . . ,z„) G F be such that qA(z) = pA(z\,... 9z„). Hence supp(z) = 
{zi,. . . ,z„}. Since supp(z) Pi Ut ^ 0 for every ! < / < « , z,- ^ Zj and £/; D U}• = 0 for 
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every / ^ j9 there exists a permutation a: {1, . . . ,«} —> {1,. . . ,« } such that (z\,...,z„) G 
£4(i) x • • • x i7CT(„). But then {z\,... ,z„) ^ F. This completes the proof of part (a) of this 
lemma. 

For (b) let O be an arbitrary open subset of BA. Put U = / ^ [ / ^ [ O ] ] . Then {/ is 
also an open subset of BÀ9 because if {x\9... ,x„) G £/, then there exists a permuta­
tion tr: { 1 , . . . , «} —> {1, . . . ,«} such that (x^i) , . . . ,x^)) G <9. We can find open sets 
U\9...9Un inXsuch thatxt G £// for every 1 < i < n, £// Pi £7, = 0 for / ^ y and 
(f/^i) x • • • x Ua{n)) DBA Ç 0. Then (t/i x • • • x Un) H BA C t/. It is clear that 
/^[£7] = PA[0]; hence it suffices to prove thatPA[U] is an open subset ofA/~. By part 
(a), (A/ ~) \PA[BA \ £/] is open in v4/~. To finish the proof of part (b), observe that 
(A/~)\pA[BA\U]=pA[U]. 

For (c) let (x\,...,xn) G BA and let 0 be open in BA such that (JCI, . ..,x„) G (9. We 
can find open sets U\9...9Un'mX such that xt G [/,- for every 1 < / < n, Ut n £7,= 0 for 
/ 7^7 and {U\ x • • • x Un)DBA Q O. We claim that/?^|(t/,x-x(/n)^ is injective. Suppose 
pA(z\,..., zn) = pA(w\, • •., w„), where (zi , . . . , zn) and (w{,..., w„) are elements of U\ x 
• • • x UnD BA- Then there exists a permutation cr: { 1 , . . . , n} —* {1,..., n} such that 
(zi, . . . ,z„) = (vtV(i), • • • > w<r(w))- But since the sets Ut are pairwise disjoint we must have 
that G is the identity. • 

We emphasize that the map PA is not continuous in general. We do not use property 
(b) and (c) of Lemma 2.6 in this paper, but we think these properties are interesting in 
themselves. 

Let IT A denote the restriction of BA of the projection TT-.X1 —> X onto the first coordi­
nate. 

LEMMA 2.7. IfA = Yn\ Yn-h thenXn \Xn-\ C TTA[BA] Q Xn. 

PROOF. The set TTA[BA] is obviously contained in X„. Let x G Xn \ Xn-\. Then 
x G supp(y) for some y E Yn\ Yn-\. Let supp(y) = {x\9... ,xn}9 where x\ = x. Then 
(xu... 9x„) epA

l{qA(y)) andx = TIA{XÏ9. .. 9xn). Hence* G irA [pA\qA(y))\ m 

3. Results on Lindelôf numbers. We will use the notation of the previous section 
without explicit reference. The following well known lemma will be used in our first 
results. Recall that the Lindelôf number 1{X) of a topological spaceX is defined to be the 
smallest cardinal K > Ko such that each open cover of X has a subcover of cardinality 
less than or equal to K. 

LEMMA 3.1. Let X and Y be topological spaces and let/ be a closed map ofX onto 
Y such thatf~x(y) is compact for every y G Y. Then 

(a) X is a-compact if Y is, 
(b) 1{X) < 1{Y). 

A continuous map having the properties of this lemma is usually called a perfect map 
{cf. [7]). We want to emphasize that when we apply Lemma 3.1 in this paper we usually 
don't deal with a continuous map. 

Recall that a topological space X is perfect if every closed subset of X is a G& in X. 
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THEOREM 3.2. Let X and Y be Tychonov spaces and let </>: Cp(X) —> CP(Y) be a 
continuouslinearbijection. Suppose that Y is a perfect a-compact space. Then X contains 
a dense a-compact subset. 

PROOF. Since <j> is injective it suffices to show, by Lemma 2.2, that supp(7) is a-
compact. We will do that by showing that each Xn is a-compact. Lemma 2.4 gives us 
that Y\ is a-compact. Then, since <j> is onto, Lemma 2.5 implies that X\ is cr-compact. 
Let n > 1 and suppose we showed that X„-\ is cr-compact. Since Y is perfect, Y„-\ is a 
Gs subset of Y. Hence Yn \ Y„-\ is an FCT-subset of Y so that Yn \ Yn-\ is cr-compact. Let 
A = Yn \ Y„-\. Then^4/^ is also cr-compact. By Lemma 3.1 (a), BA is cr-compact; hence 
nA(BA) is a cr-compact subspace ofX. Then Lemma 2.7 shows thatXn = Xn-\ U 7rA[BA] 
is a-compact. • 

In [2], Arkhangel'skiï showed that a-compactness (and also compactness) is an £-
invariant property. 

For a cardinal function/ we denote sup{f(A) : A CX}by hf(X). 

THEOREM 3.3. Let X and Y be Tychonov spaces and let <j>\ CP(X) —> CP{Y) be a 
continuous linear bijection. Then X contains a dense subset Z such that l(Z) < hl(Y). 

PROOF. We follow the same strategy as in the previous theorem by showing that for 
each n G N, l(Xn) < hl(Y). It then easily follows that /(supp Y) < hl(Y). Lemma 2.5 
shows us that l(X\) < l(Y\) < hl(Y). Let n > 1 and suppose we showed that l(X„-\) < 
hl(Y). Let A = Y„\ Yn.{. Then l(A/~) < 1(A) < hl(Y). Lemma 3.1 (b) then gives 
KBA) < hl(Y); hence l(irA(BAj) < hl(Y). Since X„ = Xn-X U irA[BA] it follows that 
l(Xn) < hl(Y). m 

COROLLARY 3.4. Let Xand Y be Tychonov spaces and let </>: CP(X) —* Cp(Y) be a 
continuous linear bijection. If Y is hereditary Lindelôf then X contains a dense Lindelôf 
subset. 

Let X be a topological space and let K > Ho be a cardinal. A subsets of Zis of type 
GK if A is the intersection of n many open subsets ofX Then hl(X) < n if and only if 
l(X) < K and in X every closed subset is of type GK. Note that X is perfect if and only if 
each closed subset of Xis of type G$(= G#0). 

COROLLARY 3.5. Let X and Y be Tychonov spaces and let </>: CP(X) —> CP(Y) be a 
continuous linear bijection. Let n = l(Y) and suppose in Y every closed subset is of type 
GK. Then Xcontains a dense subset Z such that l(Z) < n. 

COROLLARY 3.6. Let X and Y be Tychonov spaces and let <j>: CP(X) —• CP(Y) be 
a continuous linear bijection. If Y is a perfect Lindelôf space, then X contains a dense 
Lindelôf subset. 

If Z is a dense subset of a paracompact space X, then l(X) = /(Z) (cf. [7]). This 
observation gives us four other corollaries. 

https://doi.org/10.4153/CMB-1996-017-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1996-017-0


134 JAN BAARS AND HELMA GLADDINES 

COROLLARY 3.7. LetX and Y be Tychonov spaces and let <j>: Cp(X) —* CP(Y) be a 
continuous linear bijection. If X is paracompact, then l(X) < hl(Y). 

COROLLARY 3.8. LetX and Y be Tychonov spaces and let 0: CP(X) —> CP(Y) be a 
continuous linear bijection. If Y is hereditary Lindelôf and X is paracompact, then X is 
Lindelôf. 

COROLLARY 3.9. LetX and Y be Tychonov spaces and let <j>\ CP(X) —» CP(Y) be a 
continuous linear bijection. Let K = 1{Y) and suppose in Y every closed subset is of type 
GK. If X is paracompact, then l(X) < n. 

COROLLARY 3.10. LetXand Y be Tychonov spaces and let </>: CP(X) —> CP(Y) be a 
continuous linear bijection. If Y is a perfect Lindelôf space and X is paracompact, then 
X is Lindelôf 

THEOREM 3.11. Let X and Y be Tychonov spaces such that CP(X) and CP(Y) are 
linearly homeomorphic. Then 1{X) < hl(Y) and l(Y) < hl(X). 

PROOF. Let (f>: CP(X) —» CP(Y) be a linear homeomorphism. In the proof of Theorem 
3.3 we showed that /(supp Y) < hl(Y). Lemma 2.2 gives us l(X) < hl(Y). m 

COROLLARY 3.12. LetX and Y be Tychonov spaces such that CP(X) and CP(Y) are 
linearly homeomorphic. Let K = max{/(X), l(Y)} and suppose that in X and Y every 
closed subset is of type G^. Then l(X) = l(Y). 

COROLLARY 3.13. Let X and Y be perfect Tychonov spaces such that CP(X) and 
CP{Y) are linearly homeomorphic. Then l(X) = l(Y). 

In [1], Arkhangel'skiï announced the following theorem proved by Velicko: Lin-
delomess is an £-invariant property. His proof doesn't seem to generalize to higher Lin­
delof numbers. Corollaries 3.12 and 3.13 show that the Lindelôf number is ^-invariant 
in at least a class of spaces that contains all perfect Tychonov spaces. In [5], it was 
shown that the Lindelôf number is ^-invariant for the class of first countable paracompact 
spaces. 

4. Other results. In this section we consider a class of spaces for which topologi­
cal properties that are closed hereditary, closed under countable unions and continuous 
images, are ^-invariant. The class of spaces under consideration is the class of all lin­
early ordered perfect Tychonov spaces. There are many topological properties that are 
closed hereditary, closed under countable unions and continuous images: for example, 
the properties we considered in the previous section. Those are not of special interest for 
the above class of spaces since they are now known to be ^-invariant in a larger class of 
spaces, the class of all perfect Tychonov spaces. There are however properties for which 
it is unknown if they are ^-invariant for all perfect Tychonov spaces, but for which we 
can show that they are for the class of all linearly ordered perfect Tychonov spaces. Of 
course this leaves some open questions. We will mainly be interested in certain cardinal 
functions, that is, the spread, the extent, the cellularity, the hereditary density and the 
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hereditary Lindelôf number. Note that all these cardinal functions do not increase under 
taking closed subsets, countable unions and continuous images. Of course there are many 
other cardinal functions that satisfy our assumptions: for example the width, the depth 
and the height of a topological space. For a survey of cardinal functions we refer to [8]. 

Again we use the notation of Section 2 without explicit reference. In addition if Xis 
a Tychonov space, if n G N and if 1 < i < n, then 717 : X" —•» X denotes the projection 
on the z'-th factor. Let J? be a subclass of the class of all Tychonov spaces. A Tychonov 
space Y is related to JA if 

for all X G JA, for all continuous linear bijections <j>: CP(X) —+ CP(Y) and for all 
n > 1, if A = Yn\ y„_i, then there exists a continuous map rA:A —> BA such that 
XnXX^ÇUl^orAiïA]. 

LEMMA 4.1. Let X and Y be Tychonov spaces and let <f>: CP(X) —> CP{Y) be a con­
tinuous linear bijection. Suppose that Y is related to some class JAfor which X G 2L Let 
(Pbe a topological property that is hereditary, closed under taking countable unions and 
continuous images. If Y has property (P, then X contains a dense subset that has property 
T. 

PROOF. We will show that supp Y has property fP. Since (P is closed under taking 
countable unions it suffices to show that for each n G M,Xn has property (P. Since fPis 
closed under taking continuous images and since Y\ has property !P, Lemma 2.5 gives us 
that X\ has property fP. For n > 1, suppose that Xn-\ has property !P. Let A — Yn\ 7„_i 
andletr^:^ —> BA be a continuous map such that Xn \X„-\ Ç \J"=l(7Ti o rA)[A], Since (P 
is hereditary and closed under taking continuous images, it follows that for all 1 < / < 
n, (7Ti o rA)[A] has property (P. Since ^Pis also closed under taking countable unions, we 
are done. • 

COROLLARY 4.2. Let fA.be a class of Tychonov spaces. Let X and Y be elements of 
fA that are both related to fA and such that CP(X) and CP(Y) are linearly homeomorphic. 
Let Œ*bea topological property as in Lemma 4.1. Then X has property T if and only if Y 
has. 

For perfect Tychonov spaces, Lemma 4.1 and Corollary 4.2 also hold for topological 
properties that are closed hereditary instead of hereditary. In general we have 

LEMMA 4.3. Let X and Y be Tychonov spaces and let (j>: CP(X) —* CP(Y) be a con­
tinuous linear bijection. Suppose that Y is related to some class JAfor which X G fA. Let 
K >:^obe a cardinal and suppose that in Y each closed subset is of type GK. Let (Pbe 
a topological property that is closed hereditary, closed under taking n-many unions and 
continuous images. If Y has property (P, then X contains a dense subset that has property 
T. 

PROOF. Note that by the assumptions on fP, all layers Yn \ 7„_i have property IP 
Hence we can proceed as in the proof of Lemma 4.1. • 
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COROLLARY 4.4. Let Abe a class of Tychonov spaces. Let X and Y be elements of 
A that are both related to A and such that CP(X) and CP(Y) are linearly homeomorphic. 
Let K > Ho be a cardinal and suppose that in X and Y each closed subset is of type GK. 
Let The a topological property as in Lemma 4.3. Then X has property T if and only if Y 
has. 

Corollary 4.4 applies to the class of all linearly ordered Tychonov spaces. 

LEMMA 4.5. Tychonov spaces are related to the class of all linearly ordered Ty­
chonov spaces. 

PROOF. Let (X, <) be a linearly ordered Tychonov space and let Y be an arbitrary 
Tychonov space. Let </>: CP(X) —> CP(Y) be a continuous linear bijection, let n > 1 
and let A = Yn\ Y„-\. Define h\\A —* X by h\(y) = the first element of supp(y). 
We claim that h\ is continuous. Let y E A and let xi < • • < xn in X be such that 
supp(y) = {xi,. . . ,xw}. So h\(y) = x\. Let (/be an arbitrary open neightborhood of x\. 
Find disjoint open intervals U\,...,Un in X such that U\ Ç U and such that for each 
1 < i < n, xt e Ut. Let O = ( X i ( z e A : suPP00 n ut ¥" 0}- T n e n O is an open 
neightborhood of y such that h\[Q] Ç U. So actually h\ is a continuous selection of 
the LSC map supp. If we define hi,...,hnby hiiy) = x/5 i.e., ht(y) is the z'-th element 
of supp(y), then we have in the same way that h2,...,hn are continuous, and moreover 
that for each y e A, supp(y) = {h\(y),...9h„(y)}. Define rA\A —> BA by rA(y) = 
(h\(y),... ,/zw(y)). Then clearly rA is a well defined continuous mapping. We have to 
show that Xn \X„-\ Ç U/LiO1"/ ° rA)[A]. For that, letx G Xn \Xn-\. By Lemma 2.7, there 
is (xi , . . . , x„) E 5^ such that TTA ((xi , . . . , x„)) = x. Hence x = x\. Let j ; G 4̂ be such that 
supp(y) = {x\,... ,x„}. There exists a permutation <J: { 1 , . . . , n} —> {1,..., n} such that 
for each I <i<n, ha{i)(y) = xz. So x G ( ^ i ) o rA)(y). m 

LEMMA 4.6. Let X be a linearly ordered Tychonov space and let Y be an arbitrary 
Tychonov space. Let </>: CP{X) —> CP(Y) be a continuous linear bijection. Let *P be a 
topological property as in Lemma 4.1. If Y has property <£, then X contains a dense 
subset that has property T. 

PROOF. Apply Lemmas 4.1 and 4.5. • 

COROLLARY 4.7. Let X and Y be linearly ordered Tychonov spaces such that CP(X) 
and CP(Y) are linearly homeomorphic. Let *Pbe a topological property that is hereditary, 
closed under taking countable unions and continuous images. Then X has property Tif 
and only if Y has property *P. 

LEMMA 4.8. Let X be a linearly ordered Tychonov space and let Y be an arbitrary 
Tychonov space in which each closed subset is of type GK, where tz > Ko is a cardinal. 
Let <f>: CP(X) —> CP(Y) be a continuous linear bijection. Let !Pbe a topological property 
as in Lemma 4.3. If Y has property &, then X contains a dense subset that has property 

PROOF. Apply Lemmas 4.3 and 4.5. • 
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COROLLARY 4.9. Let X and Y be linearly ordered Tychonov spaces such that CP{X) 
and CP(Y) and linearly homeomorphic. Let K > &o be a cardinal and suppose that 
in X and Y each closed subset is of type GK. Let (P be a topological property that is 
closed hereditary, closed under taking n-many unions and continuous images. Then X 
has property <P if and only if Y has property T. 

COROLLARY 4.10. Let X and Y be linearly ordered perfect Tychonov spaces such that 
CP(X) and CP(Y) are linearly homeomorphic. Then the spread, the extent, the cellularity, 
the hereditary Lindelof number and the hereditary density number of X and Y are equal. 

In [10], Tkachuk already showed that cellularity is ^-invariant for the class of all 
Tychonov spaces, so this corollary does not give us anything new on cellularity. We 
finish this paper by posing some open questions 

QUESTION 4.11. Are the spread, the hereditary Lindelôf number and the hereditary 
density number I -invariant properties for all Tychonov spaces? For all perfect Tychonov 
spaces ? 

In [9], Okunev gave an example of two Tychonov spaces Xand Y such that CP(X) and 
CP(Y) are linearly homeomorphic, but with unequal extents for X and Y. Both spaces are 
pseudocompact, but one of them is not normal. This example and Corollary 4.10 imply 
the following question 

QUESTION 4.12. For which class of spaces is the extent of ^-invariant property? For 
the class of normal spaces? For all perfectly normal spaces? 
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