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Abstract  

Machine learning is increasingly being utilized across various domains of nutrition research 

due to its ability to analyse complex data, especially as large datasets become more readily 

available. However, at times, this enthusiasm has led to the adoption of machine learning 

techniques prior to a proper understanding of how they should be applied, leading to non-

robust study designs and results of questionable validity. To ensure that research standards do 

not suffer, key machine learning concepts must be understood by the research community. 

The aim of this review is to facilitate a better understanding of machine learning in research 

by outlining good practices and common pitfalls in each of the steps in the machine learning 

process. Key themes include the importance of generating high-quality data, employing 

robust validation techniques, quantifying the stability of results, accurately interpreting 

machine learning outputs, adequately describing methodologies, and ensuring transparency in 

reporting findings. Achieving this aim will facilitate the implementation of robust machine 

learning methodologies, which will reduce false findings and make research more reliable, as 

well as enable researchers to critically evaluate and better interpret the findings of others 

using machine learning in their work.   

Introduction  

Machine learning has gained substantial interest in nutritional sciences over the last decade 
1
. 

A PubMed search using the terms “nutrition” and “machine learning” shows the number of 

articles with title and abstract matches increasing exponentially from 2013 onwards (Figure 

1). Examples of applications of machine learning can be seen in various areas of nutrition 

research, including precision nutrition 
2
, malnutrition 

3
, obesity 

4
, food intake assessment 

5
, 

diet recommendation 
6
 and chatbots for nutritional support 

7
.  

The growing interest in machine learning can be attributed to its appealing properties. 

Machine learning has the capability to automate tasks that would otherwise be performed 

manually, thereby freeing up human resources for other activities. Additionally, the different 

approaches and focuses involved in machine learning compared to traditional statistical 

methods bring the possibility to analyse data in new ways, which could lead to new scientific 

discoveries and ultimately improve individual and population health 
8,9

. 

As with any research tool, proper use is essential to ensure the validity of the findings. 

Unfortunately, the enthusiasm around machine learning has led to adoption preceding a 

proper understanding of its workings by those applying it 
10,11

. This has become apparent in 
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various ways, including the application of machine learning on datasets to which it is not 

suited, inappropriate methodological choices in data processing steps, non-robust validation 

schemes, misinterpretation of results, and inadequately described methodology 
11

. The 

consequences of these issues and similar ones include false findings, models that do not 

generalize to unseen data (i.e., overfitting), and ultimately a reduction in the quality of the 

literature in the nutrition field.  

Claims about the properties of machine learning are used to justify its use, with the 

considerations behind these claims sometimes neglected. For example, it is often claimed that 

machine learning techniques are more flexible and make fewer assumptions about the data 

than traditional statistical methods 
12

. However, this does not mean that careful 

methodological planning and data processing are no longer necessary 
9,13

. Even if fewer 

statistical assumptions are made by some of the algorithms, improper data processing can still 

lead to suboptimal results. 

Machine learning approaches are also praised for their ability to handle high-dimensional 

datasets 
12,14

. For example, ordinary least squares regression cannot be fit when the number of 

predictors exceeds that of the number of observations because a unique solution to the 

problem cannot be found (Montgomery et al., 2021). In contrast, machine learning regression 

algorithms generally allow this without any apparent problem, even though this can lead to 

overfitting and unstable feature importance estimates, which may go unnoticed unless 

checked by the analyst 
14

. Indeed, the ease with which machine learning experiments can be 

performed by certain programmes or software libraries and the way in which the outputs are 

presented can give a false sense of certainty about the results that are generated. Without a 

better understanding of machine learning and its capabilities and limits, issues will persist in 

the literature. 

To shed light on some of these issues, this review briefly discusses the concept of machine 

learning before going through steps in the machine learning process and describing good 

practices and common pitfalls or misconceptions in each. In light of the “new data” theme, 

there was a focus on concepts of machine learning as it tends to be applied to modern datasets 

observed in the nutrition sciences, such as large cohorts and omics datasets. The goal was to 

increase awareness on important details of the machine learning process, promoting robust 

methodologies in research and enabling a better understanding when interpreting the work of 

others using machine learning. 
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Machine Learning Overview and Advantages  

Machine learning is a subdivision of artificial intelligence (AI) that learns patterns in a 

dataset to perform a given task without being explicitly programmed to do so 
16

. Different 

types of machine learning exist, within which tasks are performed to achieve an objective.  

The two most common types of machine learning in nutrition research are supervised and 

unsupervised machine learning. In supervised learning, data come with labels and thus the 

target is known. Either regression or classification are the tasks that are completed to predict 

the output labels, with algorithms including logistic regression, decision trees, random forest, 

and support vector machine being used to do this. In unsupervised learning, labels are not 

available and instead patterns or similarities within the data structure are sought. Tasks 

include clustering and dimensionality reduction, with example algorithms including k-means 

clustering and principal component analysis (PCA).  

In semi-supervised learning, some of the data (usually a small portion) have labels whereas 

others (usually a large portion) do not. A combination of both supervised and unsupervised 

tasks and algorithms may be applied. Reinforcement learning is the final type of learning in 

which the algorithm updates its behaviour based on feedback from a dynamic environment. 

Reinforcement learning is currently less often seen in nutrition research but is involved in 

chatbots and recommendation systems 
17–19

 and will likely become more common as 

personalised nutrition grows and chatbots improve. Detailed descriptions of machine learning 

types and the algorithms used to complete the tasks within them can be seen in Kirk et al.
1
. 

Machine learning approaches have certain attractive properties which have motivated their 

inclusion in scientific research methodologies. Being able to learn for themselves how to 

complete tasks without explicit programming brings the possibility of continuous 

improvement with the addition of new data 
20

. Additionally, the principles of machine 

learning are not limited to single domains, which means that machine learning can be applied 

to many different problem areas (provided the data are suitable).  

Machine learning can automate the jobs that have historically been undertaken by humans, 

particularly repetitive ones and those with elements of pattern recognition. One example of 

this is the research area involved in tracking food intake to improve the accuracy of food 

intake assessment while simultaneously reducing the burden for those doing so 
5
. Many 

studies in this area make use of machine learning to model unstructured data such as videos 

of subjects eating 
21

, pictures of food 
22

 or audio-based approaches 
23

. Machine learning 

https://doi.org/10.1017/S0029665124007638 Published online by Cambridge University Press

https://doi.org/10.1017/S0029665124007638


Accepted manuscript 
 
solutions are usually also much faster and can be permanently available, unlike human 

counterparts that may perform similar duties. For example, ChatGPT not only provided 

answers to common nutrition questions that scored higher than those from dietitians but could 

also do so instantly and at any moment of the day 
24

.   

In comparison to traditional descriptive statistical methods, there is usually a focus on 

prediction on unseen data in machine learning 
12

. Hence, in problem areas where prediction is 

more important than a detailed understanding of the contribution of a set of variables to an 

outcome, machine learning may be preferable. Unsupervised machine learning can be used 

for uncovering relationships within complex data structures even in the absence of predefined 

hypotheses. For example, clustering is often used to group individuals with similar 

characteristics who might have similar physiological responses to foods or nutritional 

interventions, such as in metabotyping studies 
25

. However, key characteristics of the groups 

such as which features define them, how many there might be and if they even exist at all is 

not known beforehand.  

Finally, machine learning techniques and traditional statistical methods are sometimes pitted 

against one another to compare which performs in a certain problem area 
26–32

. Whilst such 

studies might be well-intentioned and simply wish to inform on the effectiveness of a given 

method, machine learning and traditional statistics should not be thought of rivals competing 

for the same space. Instead, they should be seen as complementary tools with significant 

overlap, though also with distinct properties and use cases 
12,33,34

. This is perhaps exemplified 

by techniques which could belong to either category depending on how they are used, such as 

Lasso 
35

.  When the goal is inference, where the focus is on drawing conclusions about a 

population sample and describing underlying relationships within the data, this is a case for 

traditional statistical methods. When the goal is predictive performance on unseen data, 

machine learning techniques would be used 
12

.  

Steps in Machine Learning 

The machine learning process is composed of a series of steps which start with collecting the 

data and end with deployment. These steps are described below, although in the context of 

research, interpreting (Interpretation) and describing the methodology and results 

(Reporting) are discussed in place of deployment. At each step, key points, good practices 

and common misconceptions or pitfalls within them are addressed, as summarised in Table 1. 
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Step 1. Data Collection  

Data collection is arguably the most important step in the machine learning process because 

of its influence in determining the quantity and quality of the data available for modelling 
16

. 

Broadly, data collection can be done either with a research question in mind, for which data 

are required to investigate, or a dataset in mind, which can be used to investigate a variety of 

questions.  

In the case of the former, it should be ensured that data collected are relevant to the problem 

and that the collection methods are capable of generating data of a sufficient quality 
11

. Whilst 

machine learning algorithms may be able to learn structures in datasets that are not apparent 

to humans, they cannot produce meaningful results from poor-quality data (akin to “garbage 

in, garbage out”). Similarly, machine learning algorithms require an adequate number of 

instances from which to learn, making sample size an important factor. The number of data 

points (i.e., individual observations or instances containing unique information) required to 

achieve adequate performance and reliable results varies depending on data quality, signal to 

noise ratio, and the machine learning task being performed. In general, however, sample sizes 

below around 100 are considered small for many supervised and some unsupervised machine 

learning approaches in nutrition research using biological data and may not provide enough 

instances from which the algorithms can learn. It is also important that the sample is 

representative of the population for which the final model is intended. When this is not the 

case, models may fail to generalise or struggle upon encountering observations with data that 

were absent in their training (e.g., Naïve Bayes) 
36

. 

Alternatively, data may also be collected without a specific research question in mind and 

where the goal is to create a dataset of sufficient size and depth to answer a broad array of 

questions and remain relevant over a long period 
37

. It remains important that the sample is 

representative of the population of interest, meaning inclusion criteria must be carefully 

thought out 
38

. For example, the inclusion and exclusion criteria for a large cohort study must 

ensure that participants are representative of the target population and recruitment techniques 

must be selected in a way that minimises biases 
39

. Various types of data should be collected 

to permit investigating questions on a broad range of topics and the methods used in their 

collection should be documented in detail 
40

. Important considerations include the longevity 

of the data collected, questionnaire wording and response options, which data (variables) will 
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be collected, data storage (both physically and digitally), privacy and ethical considerations, 

and documentation and metadata, amongst others.  

There has been much focus in recent decades on improving machine learning algorithms or 

developing new ones 
40

. Great strides have been made in this regard, and there are now many 

algorithms available for various machine learning tasks and problem areas 
41

. Despite this, 

data quality remains the most important limiting factor on the performance of most machine 

learning applications. It is unlikely that future breakthroughs will occur solely through the 

development of new and improved algorithms; rather, there must be a focus on improving 

data quality through rigorous methods of data collection and processing (discussed below) 
40

.  

 

Step 2. Data Processing 

Once collected, data usually require processing. The methodological decisions made during 

data processing influence the data that is eventually used for modelling. This section 

describes common data processing steps that should be considered in a machine learning 

experiment. Importantly, some data processing steps should be performed within validation 

steps and not applied to the whole dataset in order to avoid information leakage (see below: 

Internal validation schemes in Step 3. Modelling). Attention is brought to these situations 

below.  

Selecting observations 

It is possible that not all of the observations in the dataset are suitable to be included in the 

analysis. Reasons for this could include outliers, repeated measures (from which only one is 

required) or subgroups with few observations, such as males in a predominantly female 

sample. Decisions regarding which observations should be included and excluded should 

justified (e.g., based on good statistical grounds or findings from previous studies) and well 

documented when the methodology is described. 

Pre-selecting features & dimensionality reduction 

Whilst classic feature selection makes use of the outcome and uses statistical techniques to 

determine which features to include (see below: Step 3. Modelling), the analyst may also 

have to decide which features (or groups of features) are potentially relevant to the problem 

and therefore should be included for data processing. Where possible, domain knowledge 
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should be used to justify the elimination of variables that are not expected to be relevant to 

the problem 
9,42

. For example, when investigating cardiovascular disease risk using a large 

cohort, specific biochemical measures may be included, whereas others deemed insufficiently 

relevant are excluded. Importantly, any feature selection steps that make use of the outcome 

variable must be performed within validation loops (see below: Internal validation schemes 

in Step 3. Modelling).  

Dimensionality reduction refers to reducing the number of features irrespective of the 

outcome variable (i.e., unsupervised approaches), such as through identifying redundancies in 

the data 
43,44

. Reducing the dimensionality of a dataset can be desirable by reducing model 

complexity, computation time, problems related to collinearity, and overfitting 
42

. Low-

variance features may not contain enough information to be useful to the problem and are 

sometimes removed or combined with other features, if appropriate 
16

. However, this should 

be done with caution since loss of information is possible. For example, in microbiome 

studies it is common to see bacteria present in fewer than a given proportion of the sample 

removed (e.g., <5%). However, in some cases the presence of a given bacterium in a small 

group of individuals may be informative for healthy outcomes or the problem being 

investigated. Such findings may be lost due to low-variance filtering.   

Techniques for identifying similarities or redundancies within the data can also be employed, 

such as correlation-based approaches, PCA and variable clustering 
45,46

. It is commonly 

believed that it is not necessary to perform such unsupervised data reduction techniques 

within validation steps and, instead, that they can be safely applied to the entire dataset. This 

belief is based on the understanding that these techniques do not make use of the outcome 

variable, thus minimizing the risk of information leakage 
14,16

. However, recent findings 

suggest that unsupervised dimensionality reduction steps on the whole dataset can still 

introduce bias 
47

. Whilst more work is needed on the topic, analysts may consider repeating 

analyses where dimensionality reduction is confined within training splits of validation steps 

to assess the sensitivity of results to the timing of these steps.  

Processing missing data  

Missing data is common in many datasets and comes in different forms, including missing 

completely at random (MCAR), missing at random (MAR) and not missing at random 

(NMAR) 
48

. Each reflects different underlying mechanisms: MCAR implies that the 

missingness is unrelated to any data, MAR suggests that the missingness is related to 
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observed data but not the missing data themselves, and NMAR indicates that the missingness 

is related to the unobserved data 
48

. These distinctions are crucial because they influence the 

methods used to handle missing data and the conclusions derived from the results.  

One approach to missing data is to simply restrict the analyses to complete cases. This may 

be justified in certain circumstances, such as when data are MCAR and the number of 

observations with missing data is relatively small, however, when data are NMAR, removing 

observations with missing data can bias the results, and verifying the type of missing data in 

question is not always possible 
49

.  

An alternative is to impute the missing data in various ways. Single imputation approaches 

with the mean, mode or other summary statistics are simple to implement, although they are 

almost never optimal and can distort the distribution of the features of the dataset and the 

relationships between them 
50,51

. In contrast, multiple imputation uses distributions of the 

observed data to provide multiple plausible complete datasets, thus accounting for uncertainty 

in the missing values 
49

. Analyses are repeated on each dataset and the results are pooled to 

account for the variability due to imputation.  

Finally, model-based approaches, such as regression and machine learning techniques (e.g., 

neural networks, k-nearest neighbours and random forest) use the observed data to predict 

missing values 
52,53

. Various packages exist which facilitate the implementation of imputation 

techniques 
54

. Imputation of missing data should be done within validation steps.   

Processing outliers  

Outliers can arise due to a variety of reasons, including equipment malfunction, human error 

during data entry, or extreme (but valid) data measurements 
55

. Regardless of their origin, the 

presence of outliers should be investigated during exploratory data analysis and, if necessary, 

appropriate action should be taken to account for them 
9
. Outliers can sometimes be detected 

through manual observation of features through descriptive characteristics or plots 
56

. For 

example, if the median LDL cholesterol levels in a sample were 2.5mmol/L, with an 

interquartile range of 1mmol/L but a maximum value of 25mmol/L, it would be likely that 

one or some values were unrealistically high, possibly reflecting a mistake during manual 

entry or measuring equipment malfunction. Other times, however, what defines an outlier is 

less clear, and even in cases where extreme values are found, it is not always the case that 

some type of treatment is required.  
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Whilst general approaches based on statistical properties can simple and easy to implement 

(e.g., values greater than the third quartile plus 1.5 *interquartile range) 
55

, they often do not 

consider the characteristics of the data or the problem at hand and are unjustified in many 

situations. For example, a small number of people may report a much higher income than the 

rest in a sample; however, these may be perfectly valid observations that do not require 

corrective action, despite their appearance in descriptive statistics or plots. Whenever possible, 

domain knowledge and additional related information should be used to guide decision-

making for identifying and processing outliers, and this should be documented in the 

methodology. 

If observations are determined to be outliers, if and how they should be dealt with should be 

based on logical grounds and on a case-by-case basis, whenever possible. When this is not 

possible, such as when features cannot be easily interpreted or in high-dimensional settings, 

identifying and dealing with outliers should be done carefully to avoid loss of information or 

risk of introducing bias.  

Finally, the processing of outliers may be done on either the whole dataset or within 

validation steps, depending on the purpose. For instance, approaches to correcting genuine 

errors in the dataset, such as mistaken data entries, can be performed on the whole dataset as 

there is little risk of introducing bias. However, if characteristics of the data are used to 

identify and correct potential outliers, this should be done within validation steps.  

Transforming features   

Feature transformation, such as normalisation or standardisation, is another common data 

processing step and may be required by some algorithms when the features are on different 

scales. Examples include the regularized regression techniques Lasso and Ridge regression, 

where the scale of the features is relevant to the penalty term 
35

, and k-nearest neighbours, 

where the scale of the features is relevant is relevant to distances calculations 
57

. Whether 

transformation is required for the algorithms used for data analysis should be known by the 

analyst beforehand. However, it should be noted that the choice of transformation technique 

used can have a significant impact on the results and should not be an arbitrary decision
58–60

. 

Hence, if transformation techniques are required, it may be warranted to investigate how the 

results change with different transformation techniques in order to assess the sensitivity of the 

findings. Transformations such as normalisation should be performed within validation steps 

to prevent data leakage.  
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Discretisation of continuous features 

This refers to converting features on a continuous scale to categorical ones. A common 

example in nutrition is the conversion of BMI in kg/m
2
 to underweight, healthy weight, 

overweight and obese. Despite the dangers of this practice being well-documented and long-

known 
43,61–65

, it remains widespread in the literature.  

Discretisation almost inevitably leads to a loss of information, which can hinder the 

predictive capacity of the model 
61,64

. The fewer the number of levels (or bins) in the newly 

formed category, the greater the loss of information. Another consequence of discretisation is 

the introduction of step functions where the response “jumps” when moving from one level to 

the next within a category 
43

. Unless this is justified (e.g., the pH at which a biological 

reaction occurs), such situations are usually undesirable and, in biological settings, may be 

unrealistic 
65

.  

The decision regarding the number of bins to use (“binning”) and the numerical limits which 

define them is also problematic 
64

. This is sometimes done in terms of quantiles (e.g., 

quartiles) or groups that make sense to humans (e.g., age groups of 40-49 years, 50-59 years, 

etc.), despite that such groups may not make sense to the problem at hand 
62,63

. An additional 

problem related to binning concerns the sensitivity of the results to the limits defining the 

bins. In the absence of well-defined cut-points based on prior work 
61

, this decision is left in 

the hands of the analyst. Unintentionally or otherwise, this can lead to cut-points being 

selected that support hypotheses or iteratively trying enough combinations of bins and cut-

points until favourable results are found. The consequences of such practices include an 

increased chance of spurious findings, false positives and biased results 
61,65,66

.  

Finally, discretisation of the outcome variable can influence the information that can be 

obtained from the results. Vastly different observations may be grouped together, whereas 

observations with only minimal differences may end up in different levels 
61,63

. For example, 

discretising blood pressure measurements into levels of hypertension (e.g., normotensive, 

pre-hypertension and hypertension) could lead to individuals with dangerously high blood 

pressure and those who are barely hypertensive being classified into the same group, whereas 

those only 1 mmHg apart could be assumed to have different risks 
61

. This can have important 

consequences for the conclusions derived from the results, resource allocation and treatment 

or intervention options.  
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Step 3. Modelling 

The algorithms suitable for a specific problem depend on the machine learning task it 

involves. Various options exist for regression, classification, clustering, dimensionality 

reduction, and reinforcement learning, and some algorithms can be used for multiple tasks 
41

.  

The myriad options available can be overwhelming, and it is usually difficult to deduce on 

purely theoretical grounds which methods will perform best on a given problem beforehand 

16
. For this reason, it is common to implement different ones and compare their performances 

67
. One important consideration in doing this is making sure that hyperparameter tuning 

(discussed below) takes place on a level playing field. Failure to ensure this risks providing 

an unfair representation of the results since some algorithms may perform comparatively well 

with little or no tuning (e.g., random forest 
68

), whereas others can be more sensitive to this. 

Similarly, the data used for training and testing should be the same for each candidate 

algorithm.   

Sometimes the performance between different models may differ only slightly and be of little 

practical relevance. Whilst a given model may achieve the best performance in a given 

experiment, a certain amount of variability should always be expected and the possibility that 

the performance of the other models used for comparison could have been different had a 

different data sample been used cannot be ruled out. Hence, analysts should avoid 

overemphasising small performance differences and instead set an acceptable limit of 

tolerance (determined in the context of the problem and possibly set in advance and described 

in the methodology) within which various models could be considered. If formal testing is 

preferred, statistical tests can also be used to compare the performance of different machine 

learning models 
69

. 

Prediction quality on scoring metrics, such as accuracy or mean squared error (see below: 

Step 4. Evaluation), is an important factor in selecting a machine learning model, but it is 

not the only one. Interpretability and calculation speed can also motivate the selection of 

machine learning algorithms. For example, ensemble methods are a group of algorithms that 

combine the results of many individual learners as their final output 
70

, with notable examples 

including random forest
71

 and XGBoost
72

. By aggregating multiple individual learners, 

ensemble methods are less sensitive to the errors that individual learners make and thus tend 

to have lower variance and, in general, perform well on unseen data compared to methods 

which only rely on single learners 
73

. However, this comes at the cost of longer fitting times 
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and lower interpretability, which may motivate the selection of simpler methods (even if 

predictive accuracy is lower).   

Hyperparameter tuning  

Hyperparameters are modifiable parameters that affect the learning process of an algorithm. 

Examples include maximum depth on decision trees and the learning rate in neural networks. 

How these hyperparameters are tuned can have a significant impact on model performance. 

The tuning process involves fitting many different models, each with different 

hyperparameter configurations, to see which set of configurations leads to the best 

performance. Grid search and random search 
74

 are relatively basic optimization techniques 

and are commonly implemented in nutrition research literature, though more advanced 

techniques also include Bayesian Optimization, Hyperband, and evolution strategies 
75

.  

Feature selection  

Feature selection aims to reduce the initial feature space by eliminating features which less 

important to the model output, ideally whilst preserving predictive performance 
76

. This is 

increasingly sought-after as data in the modern world are being collected on a wide range of 

variables, sometimes from only a small number of samples. For example, thousands of 

microbes can be collected from each individual in gut microbiome studies, yet such studies 

rarely have so many participants.  

Many feature selection approaches exist 
77,78

, although the difficulty of the task of feature 

selection in the high-dimensional setting is often underappreciated 
79

. Especially when the 

number of features is much higher than the number of observations, identifying features 

which generalise to unseen data and distinguishing those that are relevant to the problem 

from those that are not can be challenging 
79–81

.  

An additional challenge is feature selection stability, which refers to how sensitive the 

selected features are to perturbations of the data 
82

. Ideally, the feature subset would contain 

features that are selected across multiple repeats of feature selection, each using different 

splits of the data for training and testing. Feature selection stability can be estimated by 

repeating feature selection across multiple different subsamples of the data, as part of robust 

internal validation schemes 
81,82

 (as described below). 
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Internal validation schemes  

Many techniques for hyperparameter tuning, feature selection and data processing steps make 

use of the outcome variable, meaning there is risk of information leakage 
83,84

. Information 

leakage describes the situation in which the same observations in a dataset are used to both 

construct and evaluate the model, resulting in an optimistic evaluation of model performance 

on unseen data 
83,84

.  

To minimise information leakage, robust internal validation schemes preserve an entirely 

unseen portion of the data that was not involved in data processing or model-building for 

validation. Various approaches exist for this and are discussed below (see below: Step 4. 

Evaluation), though in general they involve splitting the data for training, where data 

processing, hyperparameter optimisation and feature selection are performed, and testing, 

where evaluation is performed. This procedure is then repeated multiple times to estimate 

uncertainty and stability in the results 
85

. This can protect against spurious findings and make 

the results more robust. A visual representation of how a robust internal validation scheme 

might look can be seen in Figure 2. Examples of machine learning experiments with good 

internal validation schemes can be seen in 
86,87

. 

Step 4. Evaluation  

The purpose of model evaluation is to assess how well the model has performed its task, 

usually with a focus on performance on unseen data. Internal validation approaches divide the 

dataset into different portions for model-building and evaluation and would, ideally, be 

followed by external validation, where the models developed on the original dataset are 

validated on an unrelated dataset 
1
. Below, some common validation techniques are 

introduced, along with metrics by which optimisation occurs and model performance is 

evaluated.  

Metrics  

The metrics by which machine learning modes are evaluated are important since they not 

only reveal how a model performs from different perspectives but also determine how they 

are optimised 
88

. Hence, it is important that metrics are chosen that reflect the desired 

performance of the models with respect to the problem 
11

. In some cases, performance with 

respect to some metrics may be more important than others. For example, in a classification 

problem, it may be more important that all true cases are correctly identified even at the 
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expense of incorrectly labelling true negatives as positives (i.e., high sensitivity, low 

specificity), such as in identifying children at risk of obesity for targeted advertisement for 

events at a local sports centre. In other circumstances, false positives can be costly, such as 

when cases predicted as positive are selected to undergo surgery. In this case, a low 

specificity could lead to unnecessary surgery and related complications. Alternatively, if there 

is no particular preference for one metric over others, composite metrics which consider 

multiple aspects of performance (e.g., F1 score 
88

) may be preferred.  

Similar differences exist for metrics in regression. For example, mean-squared error (MSE) 

and root MSE (RMSE) punish larger errors more than mean absolute error (MAE), which can 

be desirable in some cases 
89

. The coefficient of determination, R-squared, on the other hand, 

measures the proportion of the variation in the outcome that is explained by the features 
90

. 

Because R-squared is limited between 0 and 1, it is easier to compare performance between 

different datasets that may have different variables on different scales 
90

. However, it should 

be noted that it is not always the case that optimal performance with respect to one single 

metric is desired; instead, models may be evaluated across different metrics with each 

evaluating different aspects of performance 
90

.  

Whereas in supervised machine learning labels are available for the data, providing a ground 

truth on which to score predictions, this is not the case with unsupervised machine learning, 

which uses different metrics for assessing model performance. The exact metrics depend on 

the specific unsupervised task and often involve measures of homogeneity or dissimilarity. 

For example, for clustering, one of the most common unsupervised machine learning tasks, 

metrics include silhouette score, Calinski-Harabasz coefficient, and Dunn index 
91

. The 

different ways in which these metrics determine the quality of clustering can lead them to 

arrive at different optimal solutions. Hence, unless there is rationale to prefer one over 

another, it may be interesting in unsupervised approaches to explore how results differ across 

different metrics and how this influences the eventual conclusions drawn from the machine 

learning experiment.  

Validation procedures  

Train-test split 

Splitting the dataset into a portion for training (model-building) and a portion for testing 

(evaluating model performance) is the most basic way in which a model can be evaluated 
1
. 
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The data may be split entirely randomly or in a way that maintains certain aspects of the data 

characteristics in each portion, such as ensuring the same proportion of cases and controls in 

the training and test data. The cost of this simplicity is that the results obtained from a train-

test split can be highly dependent on how the dataset was split, which can lead to significant 

variability in performance metrics, especially with smaller datasets. While train-test splits are 

more reliable on large datasets or those with good signal-to-noise ratios, alternative methods 

such as cross-validation (discussed below) offer a more robust evaluation of model 

performance. If train-test splits are to be used, they should be repeated in order to increase the 

stability of the results 
92

.  

The importance of repeating validation techniques with different subsamples of the data is 

shown in Figure 3, which uses a decision tree classifier with the Pima Indians Diabetes 

dataset 
93

 to demonstrate the effect of validation technique, the number of times it is repeated, 

and sample size on the stability and uncertainty of the results. The code for the analysis and 

location of the dataset can be seen in the supplementary code. Figure 3 makes clear the 

importance of repeating validation techniques on smaller datasets in order to increase the 

certainty of the results. However, this is not always observed in the literature, despite the fact 

that relatively small samples are often used in machine learning experiments.  

Cross-validation  

Cross-validation approaches are a group of resampling procedures that can be used for model 

selection and to estimate the generalisability of the model 
14

. In k-fold cross-validation, the 

dataset is split into k folds so that each observation is used once for testing and k-1 times for 

training 
14

. The number of folds k is often chosen based on computational efficiency and a 

suitable bias-variance trade-off, with values generally between 5 and 10 being used in 

practice 
92

. Different variations of cross-validation exist, such as leave-one-out cross-

validation and stratified and grouped cross-validation (see Kirk et al.
1
). Unlike train-test split, 

there are k number of test score results, which may be presented individually (as in Figure 3) 

or aggregated into summary statistics (e.g., mean across all test folds). Different varieties of 

cross-validation exist to allow stratified cross-validation or account for dependent 

observations.  

Cross-validation is an improvement over train-test split because all of the data are used for 

training and testing, making it less sensitive than a single split in the data. Even so, cross-

validation can still be sensitive to how the data is split within each fold and test scores 
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between each fold can differ greatly, especially with smaller datasets. To account for this, 

cross-validation can be repeated multiple times over, ensuring that on each repeat different 

splits of the data are used within each fold (Figure 2) 
85,92

.  

Nested cross-validation 

One concern with cross-validation is that data processing steps, hyperparameter tuning and 

feature selection are performed on the same data used to evaluate the model performance. 

Nested cross-validation deals with this by adding another cross-validation loop (known as the 

inner loop) within the training data of each fold of the outer loop (see Figure 2). The inner 

loop is used for tuning hyperparameters and feature selection, and this is then validated on the 

test data of the outer loop (for details see 
94

). This ensures a portion of the data that was not 

involved in any part of the model-building process is available to estimate performance on 

unseen data.  

Nested-cross validation reduces the chance of information leakage and allows for an unbiased 

estimation of model performance 
95

. However, in doing so it greatly increases computational 

time, and whether this justifies the reduction in bias has been called into question 
94

. Analysts 

may prefer to first perform traditional cross-validation and then, if the results appear 

promising, validate that the findings are not the result of optimism due to information leakage 

by using nested cross-validation. This can circumvent wasting time and computer resource on 

machine learning experiments that would not be fruitful anyway.  

Calibration 

An important yet often overlooked concept for supervised classifiers is calibration, which 

refers to the alignment between the predicted probabilities and the observed outcomes 
96

. For 

example, a classifier that is trained to predict diabetes would be well-calibrated if the 

observed occurrence of diabetes was close to 10% for those whose predicted probabilities 

were close to 10%. Model miscalibration may not always be apparent in internal validation, 

but low calibration can mislead expectations and be problematic when looking at high or low-

risk groups (where it may be needed most) or external datasets 
97

. This can have important 

implications for the action taken in response to the predictions made by the model. 

In contrast to predicting class labels directly, there are advantages to working with predicted 

probabilities 
97

. Firstly, it is often more relevant to know the chance of an event occurring 

rather than a class label without further context. For example, whilst two individuals may 
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both be predicted to belong to the same class, the probability for one being 55% and the other 

being 95% shows a clear difference in the confidence of their predicted membership. This can 

have important implications, such as how resources are allocated in response to model 

predictions (e.g., children with a higher predicted probability of malnutrition are prioritised 

for corrective nutritional intervention). Using probabilities also means that custom thresholds 

can be more easily set and adjusted, which can be desirable when the cost or benefit of 

correct classification is not the same as that for misclassification. Finally, probabilities are 

also inherently more interpretable than class labels, which is a desired property of machine 

learning procedures 
98

. 

Miscalibration may occur due to the data or the model used to fit the data (i.e., overfitting) 
97

. 

It is most often diagnosed by plotting the predicted probabilities against the observed 

frequencies (known as calibration curves or reliability plots), with a straight-line y=x 

representing perfect calibration 
99

. Due to differences in how they operate, some models drive 

probabilities away from 0 and 1 (e.g., support vector machines), whereas others more readily 

predict probabilities at the extremes (e.g., Naïve Bayes) and others still are naturally well-

calibrated (e.g., logistic regression) 
100,101

. Following the identification of miscalibration, 

calibration correction techniques can be used. Two well-known approaches are Platt scaling 

102
, which is used for those with S-shaped calibration curves, such as those seen for support 

vector machines, and isotonic regression, which is capable of modelling more complex 

shapes but with an increased risk of overfitting 
101

.  

External validation  

A primary goal of machine learning applications is to make predictions using new data that 

were not available during training. While good internal validation schemes provide an 

estimate of how well prediction models do this, they can still be optimistically biased 
11,103

. 

External validation involves validating the generalisability of the model on a dataset that 

reflects the target population but comes from another source 
11,96,103–107

.  

External datasets may differ in key characteristics such as the location, time and methods of 

data collection, as well as the individuals responsible for collecting the data. However, it is 

crucial that key features remain constant. For instance, when externally validating a model 

predicting disease outcomes, it is imperative that the disease is defined in the same way in 

both datasets to prevent differences in model performance reflecting disease definitions rather 

than generalisability. To further enhance robustness and reduce the chance of optimistic bias, 
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external validation may be performed by an independent research group that was not 

involved in model development or data collection for the initial dataset 
11

. 

It is worth noting that some studies sometimes erroneously claim that external validation was 

used, when in fact their “external validation” set is simply a test set or an extension of the 

original dataset (e.g.,
108

). This is sometimes a semantic issue rather than intentional 

misrepresentation 
107

, but care should be taken when interpreting such results because 

external validation is a stronger sign of generalisability than internal validation with a larger 

dataset. Even still, it should be kept in mind that good external validation performance does 

not prove generalisability 
105,109,110

. External validation performance is still dependent on the 

external dataset used and conclusions made must bear the characteristics of this dataset (e.g., 

location, time, sample characteristics, etc.) in mind. As external validation is repeated on a 

greater number of external datasets that are more different from the dataset used to develop 

the model, confidence in the generalisability of the model increases 
109,110

. 

Step 5. Interpretation  

Metrics by which machine learning models are optimised were introduced in Step 4. 

Evaluation, though it is also important that they are correctly interpreted and presented. For 

example, the simplest and most common metric for evaluating classifier performance is 

accuracy; however, accuracy can be deceptive. This is particularly evident in imbalanced 

datasets (i.e., where the proportion of one class is much higher than the other), where a 

classifier which always predicts the majority class (irrespective of the data it receives) can 

score highly on accuracy, despite having no predictive capacity 
88

. Similar considerations 

exist for other metrics, such as MSE for regression, which is dependent on the scale of the 

outcome variable, and Area Under the Receiver Operating Characteristic Curve (AUC-ROC), 

for which scores of around 0.65 are sometimes viewed positively, despite 0.5 being what 

could be expected with random guessing.   

The interpretation of machine learning results can be made complicated when using complex 

validation schemes. For example, in comparison to a single train-test split, in which metrics 

from one portion of test data can be easily understood and reported, machine learning 

experiments which involve multiple repeats of train-test split or cross-validation can have 

scores from many test sets which may need to be summarised concisely to be understood. 

Summary statistics on the results can be useful, such as reporting the mean, median, range 

and interquartile range, provided there are enough test scores for such statistics to be 
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meaningful. Plots of results, such as those seen in Figure 3, can also be useful to present 

many results at once without loss of information. 

Feature importance  

It is often desirable to know which features were important for machine learning models in 

generating their output, despite that there is usually no ground truth for feature importance 

and the concept itself is poorly defined 
111

. Different approaches estimate feature importance 

in different ways, often arriving at different conclusions 
112

, though popular approaches with 

good statistical properties include SHAP 
113

, Lime 
114

, and permutation-based feature 

importance 
115

, amongst others 
111

. 

Some algorithms can provide feature importance estimates as part of their architecture (so-

called “built-in” feature importance). Such built-in feature importance estimates, whilst 

convenient, can come with significant drawbacks. This is particularly well-described for 

random forest 
71

, which can provide biased results based on the scale of continuous features 

and number of categories in categorical ones, as well as when multicollinearity is present 
116–

118
. While no feature importance method is perfect 

111
, it is concerning how often random 

forest-derived feature importances are reported in scientific literature without consideration 

for their potential limitations or how the results may be different had other feature importance 

techniques been used 
2
, creating a false sense of certainty for features importance estimates 

calculated with this approach.  

Inappropriately calculated feature importance estimates can lead to both false positives (i.e., 

unimportant features falsely identified as important) and false negatives (i.e., important 

features falsely identified as unimportant), both of which reduce the quality of the literature. 

In response to this, analysts should first think carefully about how their choice of feature 

importance technique relates to their data 
112

. It should be known if there are feature 

interactions or collinearity present, and how the chosen feature importance techniques may be 

affected by this 
111

. Analysts should also be open to comparing results across various suitable 

techniques and place their findings in the context of the model and explainable AI technique 

used 
119

, rather than making conclusions about feature importance in a general sense.  

Additionally, an important but sometimes underappreciated fact is that feature importance 

estimates on models with poor predictive performance cannot be trusted, and analysts should 

resist reporting feature importance estimates in such cases 
112,120

. Moreover, similarly to the 
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results from predictions generated by machine learning models, feature importance estimates 

may also be dependent on how the dataset was split for training and testing 
121,122

. It can be 

informative to estimate the stability of feature importances by seeing how they change across 

many repeats of model fitting on different splits of the data 
111,121,122

. Finally, the subfield of 

explainable AI is not without issues and has been criticized for the consequences of unfaithful 

explanations, complex explanations, failing to consider that important features may change 

over time, and ambiguity regarding terminology 
123–125

. Hence, researchers should be aware 

of the shortcomings of explainable AI techniques they decide to use and the potential costs of 

these in the context of the problem.  

Step 6. Reporting 

Reporting refers to describing both the methodology of the machine learning experiment and 

reporting the results obtained. There have been numerous concerns raised about the 

reproducibility of published work in the health field 
126–129

 and, unfortunately, the growing 

use of machine learning in research may further exacerbate this issue 
130

. This is owed in part 

to difficulties involved in the machine learning process, such as minor details in data 

processing, modelling, and evaluation that may go undocumented, along with other factors 

such as randomness, software versions, data availability, biased methodologies, and selective 

reporting of optimistic results 
130,131

. Because of this, it is crucial that studies using machine 

learning in their research describe their methodology and report their results in appropriate 

detail.  

The methodology in studies using machine learning should be described as thoroughly as 

possible, in a way that another analyst would be able to obtain the same results if they had 

access to the same dataset 
131,132

. In this regard, publishing code can be helpful because most, 

if not all, steps of the analysis can be automatically documented within this. Another 

advantage of publishing code is that it may still be interpreted and understood even without 

access to the data, and if the data is made available at some point in the future, investigating 

reproducibility is made much easier. When code is not available it becomes more important 

that each step, in their correct order, is described in adequate detail.  

It is not uncommon to see data processing steps described in insufficient detail 
132

. For 

example, if there were any missing data or outliers present in the initial dataset, their 

processing should be described in sufficient detail to allow an external party to perform 

exactly the same steps on the relevant data points. If there were no missing data outliers, then 
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this should be mentioned, otherwise, it can be inferred that some level of data processing 

occurred that was not documented, which brings into question the validity of the whole 

experiment.  

The same applies to many other steps in the machine learning process, such as optimising 

hyperparameters, model validation schemes and feature selection. To ensure reproducible 

work, these and other steps should be described in adequate detail with respect to the 

complexity of the procedure, with accompanying random states or random seeds provided 
131

. 

Statements such as “hyperparameters were optimised” or “cross-validation was used” should 

not be acceptable without further specification of how this was done.  

When reporting the results of machine learning experiments, it is important to be transparent 

about the findings 
10,85

. It can be tempting to report only those results that make the 

experiment seem successful, such as reporting only favourable results and ignoring those 

which make the findings seem less convincing 
85

. However, all findings can be interesting 

and may provide different information, which can be useful for informing future work based 

on the results. For example, the consequence of omitting findings which expose instability in 

the results could be that money and time are wasted on validation studies. It is particularly 

important that any changes to the data processing or modelling steps that were informed by 

the outcome variable are documented, otherwise, results can be become biased, similar to p-

hacking with traditional statistical methods 
133

.   

Conclusion  

Machine learning has the potential to be a valuable tool in nutrition research. For this 

potential to be realised, it is imperative that researchers have sufficient understanding of 

machine learning concepts to be able to interpret the results of others and apply well-designed 

machine learning methodologies themselves. Failure to achieve this will lead to a reduction in 

the quality of the literature, missed opportunities, and wasted resources in unproductive 

efforts to validate or extend upon existing work.  

By going through each of the key steps in the machine learning process, this review and the 

conference proceedings which it documents aimed to provide an overview on good practices 

and highlight common misconceptions and pitfalls of using machine learning in nutrition 

research. Nutrition researchers using machine learning in the coming years should focus on 

the generation of high-quality data, robust validation techniques, quantifying the stability or 
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uncertainty of results, proper interpretation of machine learning outputs, adequately described 

methodologies, and transparency when reporting results.   
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Figures 

 

Figure 1: The number of publications by year returned in PubMed with the search terms 

""machine learning" nutrition" from 2001 (the first year containing a publication with these 

search terms) to 2024. Date of search: 20
th

 August 2024, 11:13 BST. 
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Figure 2: A robust internal validation scheme using nested cross-validation. Data are first split 

using cross-validation (outer loop; step 1). In each fold of the outer loop, cross-validation is 

used on the training data (dark blue) for data processing, hyperparameter optimisation and 

feature selection. This is known as the inner loop (grey box; step 2). The performance of the 

model selected in the inner loop is then validated on the outer fold test data (dark orange; step 

3). This process is depicted in the large, light blue box, and is repeated in each fold of the 

outer loop (step 4). The whole process is then repeated multiple times to account for 

instability of the results depending on how the dataset is split (step 5).  
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Figure 3: The effect of validation technique, the number of times it is repeated, and sample 

size on the stability and uncertainty of the results. One repeat of cross-validation (second row) 

is an immediate improvement over one repeat of train-test split (first row) because the 

perturbation in the training and test data in each fold provide an indication of the stability of 

the AUC-ROC scores. Repeating the validation procedure multiple times with different 

subsamples also allows stability to be estimated, with this being more effective in cross-

validation (fourth row) than train-test split (third row) because there are more test scores. 

Both instability and uncertainty tend to decrease as sample size increases.  
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Table 1: A summary of key points and common pitfalls in each step in the machine learning 

procedure for research. 

Step  Key points Common pitfalls  

1. Data Collection  - Data quality should be a priority    

- Sample should be representative of 

target population and adequately 

sized  

- Data longevity, questionnaire 

wording, variables collected, data 

storage, ethical considerations, and 

documentation and metadata are 

important when constructing a 

dataset  

 

- Variables potentially relevant to the 

problem are not collected  

- Sample size is too small to provide 

reliable results  

- Variables become unusable or 

irrelevant (i.e., questionnaire 

questions) over time 

2. Data Processing  - Data processing steps should be 

meticulously documented  

- Data processing steps that make use 

of the outcome should be performed 

within validation steps  

 

- Including or excluding features 

based on their relationship with the 

outcome variable 

- Imputing missing values with the 

mean, median or mode 

- Defining outliers based on general 

rules without regard for the specific 

characteristics of the data 

- Discretising continuous variables 

  

3. Modelling - Different algorithms can be used, 

and their results compared  

- Predictive performance, speed and 

interpretability are key factors in 

determining algorithms to be 

considered  

- Hyperparameters should be tuned to 

optimise performance  

- Optimising the hyperparameters of 

some but not all algorithms being 

compared  

- Overstating the relevance of small 

differences in predictive capacity 

between models 

- Information leakage during data 

processing, hyperparameter tuning 
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- Robust internal validation schemes 

should be used to improve the 

reliability of the results  

 

and feature selection  

4. Evaluation  - Metrics should be chosen based on 

their relevance to the problem and 

the intended application of the 

model 

- Different metrics evaluate 

performance from different 

perspectives 

- Clustering can be repeated with 

different metrics and the results 

compared  

- Validation procedures should be 

repeated multiple times to account 

for instability in the results 

 

- The metrics used are inappropriate, 

or provide an incomplete or biased 

evaluation of model performance  

- Validation procedures are applied 

only once and not repeated, 

meaning the stability of the results 

cannot be known  

- Validation techniques do not 

account for imbalanced data or 

dependent observations 

 

5. Interpretation  - Evaluation metrics must be properly 

understood to allow proper 

interpretation of the results  

- Multiple test scores may be 

described with summary statistics or 

presented on plots  

- Feature importance can be estimated 

in multiple ways; there is no single 

best approach 

- Metrics are misinterpreted  

- One single score from cross-

validation is reported; how 

individual test scores were 

aggregated is not described 

- Default feature importance 

methods are used 

- Explainability AI techniques that 

are not suitable for the dataset are 

used  

- Multicollinearity is not accounted 

for during feature importance 

estimation  

- Feature importance estimates from 

poorly fit models are reported 
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- Feature importance estimates are 

derived from one split of the data; 

feature importance instability is not 

accounted for 

 

6. Reporting  - All steps, from obtaining the data to 

reporting the methodology and 

results, should be described 

completely and transparently  

- If possible, code should be published  

 

- Parts of the data processing, 

modelling or evaluation are 

missing or incompletely described  

- Code is unavailable or difficult to 

read  

- Only positive findings are reported, 

and those that make the results 

seem less convincing are omitted  
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