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In the present study, the shape of a two-dimensional cylinder is optimised to minimise
the mean drag in laminar unsteady flow under a noisy environment. A small inline
stochastic oscillation in the free-stream velocity, which follows the Ornstein–Uhlenbeck
process, is considered for the noise. The small noise is found to yield a large random
fluctuation in instantaneous drag of the cylinder due to the effect of added mass. Subject
to the strong random fluctuation of drag, the shape optimisation is performed using an
ensemble-variation-based method (EnVar), as the conventional adjoint-based optimisation
is not applicable to such a flow environment with unknown free-stream noise. The
optimised cylinder geometry is found to be a nearly-symmetric slender oval at a low
Reynolds number. As the Reynolds number is increased, two optimal shapes emerge: one is
identical to the oval obtained at the low Reynolds number, and the other is an asymmetric
oval, the rear side of which is more slender than the front side, reminiscent of an aerofoil.
Despite the large random fluctuation in the instantaneous drag, the optimal cylinder shapes
obtained for different levels of the upstream noise are found to be almost identical. It is
shown that the robust nature of the optimal cylinder shape originates from the limited
influence of the small upstream noise on the mean flow properties of the cylinder wake.
Finally, the optimised cylinder primarily reduces the pressure component of the drag,
associated mainly with vortex shedding in the wake, and this is achieved by marginally
increasing the viscous drag through the shape change.
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1. Introduction

The wake behind a bluff body is an important canonical flow encountered in many
engineering applications. Vortex shedding in the near-wake region is the main cause
of drag, vibration and noise generation. Significant efforts have been made to control
and mitigate vortex shedding. Depending on the presence of energy input given to the
wake, the efforts may be classified into two categories (Choi, Jeon & Kim 2008): active
and passive controls. Active control typically requires an actuation mechanism of mass
and/or momentum to the flow, with consumption of the related energy. The examples
include basebleed (Bearman 1967; Wood 1967), rotary and transverse oscillations of a
cylinder (Tokumaru & Dimotakis 1991; Baek & Sung 1998; Blackburn & Henderson 1999;
Choi, Choi & Kang 2002), and steady blowing/suction at the wall (Min & Choi 1999;
Arcas & Redekopp 2004; Mao, Blackburn & Sherwin 2015). On the contrary, passive
control does not require such an actuation mechanism, thereby not requiring extra energy
input. The examples include a splitter plate (Roshko 1955; Bearman 1965; Kwon & Choi
1996), a secondary cylinder placed in the near-wake region (Strykowski & Sreenivasan
1990), spanwise geometrical undulation of the cylinder (Tombazis & Bearman 1997;
Bearman & Owen 1998; Darekar & Sherwin 2001), and small spanwise localised tabs
(Park et al. 2006). Given that the passive control does not need any sophisticated apparatus
implementing any actuation mechanisms, it is more practical and robust than the active
counterpart, providing a more pragmatic solution to many engineering applications.

An ultimate form of passive flow control is optimal shape design, which deforms the
geometry of the cylinder to maximise or minimise the given objective functional. A
well-established approach to optimal shape design is based on the calculus of variation
utilising adjoint variables (see e.g. Pironneau 1974; Mohammadi & Pironneau 2009).
This approach is basically identical to that used in optimal control (e.g. Abergel &
Temam 1990; Bewley, Moin & Temam 2001), and the adjoint variables appear as the
Lagrange multiplier characterising the gradient (or sensitivity) of the given objective
functional. The approach and its variants have been employed previously for the design
of a two-dimensional diffuser using a Reynolds-averaged Navier–Stokes model (Lim &
Choi 2004), steady blowing/suction in a circular cylinder wake (Min & Choi 1999; Mao
et al. 2015), structural sensitivities of the cylinder wake to small perturbations such as a
secondary cylinder (Giannetti & Luchini 2007; Marquet, Sipp & Jacquin 2008), evaluation
of the shape sensitivity of linear global mode in a circular cylinder wake (Brewster &
Juniper 2020), and shape optimisation of a baffle to suppress turbulence in transitional pipe
flow (Marensi, Willis & Kerswell 2020). Despite the successful examples, it is generally
challenging to apply the adjoint-based optimisation for fluid systems subject to external
noise and turbulent flows. In the former case, the objective functional may well be sensitive
to external noise or disturbances in a certain flow configuration. Therefore, it may be
possible that the optimisation performed under noise-free conditions does not necessarily
provide a robust solution, implying that the given optimal solution may not be reliable in
practice. In the latter case, where the given flow is turbulent, the adjoint-based optimisation
approach is known to be technically problematic. The well-known ‘butterfly effect’ in
such a chaotic system (i.e. the sensitivity dependence on initial conditions) means that the
linearised Navier–Stokes equations about a turbulent state lead the solution to blow up
in time due to unstable leading Lyapunov exponents. Given that the equations for adjoint
variables share the same stability properties with the linearised Navier–Stokes equations,
this implies that the adjoint equations are ill-posed for the evaluation of the gradient of
the given objective functional because their solution would also blow up in time. To
overcome this difficulty, several algorithms have been proposed recently (e.g. Wang, Hu &
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Shape optimisation for a stochastic cylinder wake

Blonigan 2014; Lasagna 2018; Lasagna, Sharma & Meyers 2019; Ni et al. 2019). However,
the proposed algorithms are computationally highly demanding. Importantly, it has been
shown recently that the leading Lyapunov exponent grows faster than the inverse of the
Kolmogorov time scale with Reynolds number (Mohan, Fitzsimmons & Moser 2017),
making their applications practically not attractive at high Reynolds numbers.

The ensemble variation (EnVar) is an alternative data-driven approach bypassing this
technical difficulty in the optimisation of chaotic dynamical systems. It is a stochastic
optimisation method, which refers to an approach that generates and uses random
numbers for the formulation of the optimisation problem. For an introductory overview on
stochastic optimisation methods, the reader may refer to Spall (2003). While the utilisation
of random numbers can exist in any step of the given optimisation method, in the case of
EnVar, a Monte Carlo method is forged inherently to approximate efficiently the gradient
of the given objective functional. This approach originates from data assimilation adopted
widely in meteorology (e.g. Lewis, Lakshmivarahan & Dhall 2006; Evensen 2009), and
it has been popular increasingly in fluid mechanics (Colburn, Cessna & Bewley 2011;
Suzuki 2012; Kato et al. 2015; Mons et al. 2016; Jahanbakhshi & Zaki 2019; Mons,
Du & Zaki 2021). The ensemble variation is based on a data set (i.e. ensemble) from a
large number of realisations (i.e. simulations or experiments), which are then exploited
to approximate the given objective functional in the subspace spanned by the ensemble.
Therefore, the given optimisation problem can be tackled in the subspace spanned by the
ensemble, without solving the adjoint equations to evaluate the gradient of the objective
functional. This feature is particularly useful to optimise the flow in the presence of noise
and turbulent flow. Indeed, several recent studies have employed this approach successfully
in several fluid mechanics problems, showing some promising performance for wider
applications: for example, design of an ensemble Kármán filter (Colburn et al. 2011;
Suzuki 2012), ensemble-variation-based optimal control (Yang et al. 2015), data-driven
flow reconstruction (Kato et al. 2015; Mons et al. 2016), nonlinear optimal perturbation for
boundary-layer transition (Jahanbakhshi & Zaki 2019), and subgrid-scale stress modelling
for large-eddy simulations (Mons et al. 2021).

The objective of the present study is to apply the ensemble variation to shape
optimisation problems. In particular, we will consider a two-dimensional laminar cylinder
wake subject to free-stream noise. It is evident that this problem cannot be tackled with the
classical adjoint-based optimisation technique, as the free-stream noise has to be assumed
to be unknown in practical applications. Importantly, almost every flow control strategy
for bluff-body wakes mentioned earlier was designed and tested in a highly controlled
flow environment, i.e. well-resolved numerical simulations or well-controlled laboratory
experiments (see Choi et al. 2008). Therefore, the robustness of the flow control strategies
to external noise largely remains unexplored, even though it would be very common that
many flow control devices in practical applications would experience such external noise.
Indeed, accounting for robustness of a given control strategy (i.e. disturbance rejection) has
been an important subject in modern control theories for linear dynamical systems (e.g.
H∞-looping shape, LQG control, etc.; see Zhou, Doyle & Glover 1996). In this respect,
it is now timely to consider the effect of external noise on flow control and optimisation,
and the ensemble-variation-based optimisation considered here would provide a solution
for this type of problem.

This paper is organised as follows. In § 2, an ensemble-variation-based optimisation
used in this study is introduced briefly with the formulation of the shape optimisation
problem of the cylinder and the corresponding numerical method. The optimisation result
is reported in § 3 with discussions on the robustness and the physical processes involved.
The paper concludes in § 4.
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2. Problem formulation

2.1. Ensemble-based variational optimisation
The ensemble-based variational method is a data-driven approach that approximates the
gradient of an objective functional with respect to the desired design parameters using the
outcomes of numerical simulations or experiments. Let us consider a dynamical system
with the state vector q (i.e. velocity and pressure from the Navier–Stokes equations):

q = N (c, s), (2.1)

where c ∈ R
ND is the vector-valued optimisation control parameter with the number of

degrees of freedom ND, and s represents other system parameters, including the initial
and boundary conditions. The objective functional J is often defined in terms of the state
vector q, such that

J (c) = F(q(c, s)). (2.2)

From the combination of (2.1) and (2.2), the following general constrained optimisation
problem may be formulated:

min
c

J(c) subject to

q = N (c, s),

g(c) = m,

h1(c) ≤ d1, . . . , hNie(c) ≤ dNieq,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.3)

where the third line represents a vector form of equality constraints with g, m ∈ R
Neq , and

the fourth line indicates inequality constraints with their number Nieq.
Now we describe the solution procedure of (2.3). We first consider Nen, the number

of simulation or experimental data points obtained by randomly varying the control
parameter c around its mean c(e) (or the initial guess of the solution to (2.3)). Without
loss of generality, the control vector around c(e) is expressed as a weighted sum:

c = c(e) + E′w, (2.4a)

where w ∈ R
Nen is the weight vector, and E′ ∈ R

ND×Nen is the deviation matrix, which
contains the deviations of the ensemble members c(r) from their mean c(e), i.e.

E′ = [
c(1) − c(e) . . . c(r) − c(e) . . . c(Nen) − c(e)

]
. (2.4b)

Equation (2.4a) now approximates the control vector c around c(e) in terms of the weight
vector w – this is to convert the optimisation problem defined in terms of c into one in
terms of w using the ensemble member (or data) c(r). For ‖E′w‖2 � 1, where ‖·‖2 is the
standard l2-norm, the state vector in (2.1) is approximated as

q � q(e) + ∂N
∂c

∣∣∣∣
c(e)

E′w, (2.5)

where q(e) = N (c(e), s). Similarly, substitution of (2.5) into (2.2) yields

J(c(w)) � F(q(e)) + Hw, (2.6a)

where

H = ∂F
∂q

∣∣∣∣
q(e)

∂N
∂c

∣∣∣∣
c(e)

E′. (2.6b)
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Here, it is useful to mention that the matrix H can be approximated directly from the given
objective functional instead of applying the chain rule in (2.6b):

H = [F (
q(1)

) − F (
q(e)) . . . F (

q(r)) − F (
q(e)) . . . F (

q(Nen)
) − F (

q(e))] ,

(2.6c)

where q(r) = N (c(r), s).
Now, from (2.6a), the objective functional is given explicitly in terms of the weight

vector w. This can then be used to approximate the gradient (or the leading-order variation)
of the objective functional J with respect to the control vector c, such that

∂J
∂c

∣∣∣∣
c(e)

E′ � H , (2.7)

subject to the given equality and inequality constraints.
Some remarks on (2.7) are also useful here. First, like a typical gradient-based

optimisation algorithm, the gradient of the objective functional approximated in (2.7) can
now be used to iteratively find the solution to the optimisation problem (2.3). Typically,
at each iteration, the control vector is updated combining the gradient in (2.7) with a
suitable step size of the control vector determined using a line search algorithm. However,
this procedure may be replaced conveniently by searching for the local optimum of the
optimisation problem (2.3) within the small neighbourhood of c(e) (with ‖w‖2 � 1) at
each iteration step. Indeed, for ‖w‖2 � 1 and ‖Hw‖2 � 1 expected from ‖E′w‖2 � 1,
(2.3) can be converted into a convex optimisation problem using (2.7). For example, the
nonlinear objective functional may be approximated as a linear function of w, i.e.

J(c(w)) � J(c(e)) + ∂J
∂c

∣∣∣∣
c(e)

E′w � J(w = 0) + ∂F
∂G

∣∣∣∣
o(e)

Hw. (2.8)

Similarly, the equality and inequality constraints in (2.3) may also be converted into linear
or quadratic constraints with respect to the weight vector w. Then this ‘local’ optimisation
problem defined for ‖w‖2 � 1 can be solved to obtain the optimal weight vector w by
means of a wide variety of methods available (e.g. the interior point algorithm; see
Nocedal & Wright 2006). Once the optimal weight vector is found by solving the local
optimisation problem, it is updated as a new mean control vector for the next iteration
as in the other gradient-based optimisation algorithms. This process can be repeated
until the full solution of (2.3) is finally found. This solution procedure was proposed by
Jahanbakhshi & Zaki (2019) and is employed in the present study.

Second, in the EnVar algorithm of this study, the optimal control vector is searched
within the subspace spanned by the column vectors in E′. Therefore, the control vectors
c(r) need to be generated by satisfying the constraints in (2.3). Furthermore, given
ND degrees of freedom of the control vector, the minimum number of simulation or
experimental data points Nen for a well-defined local optimisation problem (2.3) is required
theoretically to be

Nen = ND − Neq. (2.9)

Such a situation occurs when all the column vectors in E′ are linearly independent
and the sampled data satisfy the given inequality constraints. However, in practice, Nen
of simulation or experimental data is not always required, because the gradient of the
objective functional J at each iteration step may well be approximated with degrees
of freedom smaller than Nen. Indeed, the important low-dimensional subspace of the
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Figure 1. Schematic representation of the control volume. The cylinder surface has been generated using 36
random Fourier coefficients.

control vector providing a good approximation for the gradient of the given objective
functional may well be identified by applying the singular value decomposition to E′
with Nen < ND − Neq, as suggested by Jahanbakhshi & Zaki (2019). This procedure was
adopted in the present study, although the number of samples for each ensemble is set
to satisfy (2.9) (see § 3.1). The procedure generating the control vectors c(r) also follows
Jahanbakhshi & Zaki (2019), and the reader may refer to that study for further details.

2.2. Optimal shape design for stochastic cylinder wake
We consider a two-dimensional laminar flow over a cylinder with an arbitrary shape to
find the optimal geometry that minimises the mean drag. To introduce noise to the flow,
a time-dependent free-stream velocity U(t) is considered with its time average Ū. The
equations of motion are made dimensionless using the mean free-stream velocity Ū and
the length scale defined as the diameter of an equivalent circular cylinder of the same
cross-sectional area, L = 2

√
A/π, with A being the area of the cylinder. The Reynolds

number is then defined as Re = ρŪL/μ, where ρ is the fluid density and μ is the dynamic
viscosity. Figure 1 shows a schematic sketch of the given flow configuration with the
boundary conditions

u = v = 0, on ∂Ωwall, (2.10a)

u = U(t)
Ū

, v = 0, on ∂Ωinlet, (2.10b)

∂u
∂y

= v = 0, on ∂Ωtop ∪ ∂Ωbottom, (2.10c)

∂u
∂x

= ∂v

∂x
= 0, on ∂Ωoutlet, (2.10d)

where x and y are the dimensionless streamwise and transverse directions, and u and v

are the corresponding dimensionless velocities. The free-stream velocity U(t) is generated
to satisfy the Ornstein–Uhlenbeck process by solving the following stochastic differential
equation:

dU = β(Ū − U) dt + σ dW, (2.11)

where W denotes the Wiener process, σ represents the strength (or level) of the noise, and
β (> 0) is the inverse of a time scale at which U(t) approximately reaches the mean value.
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The cylinder geometry is set to be symmetric about the transverse coordinate of its
centre of mass, and the surface is parametrised using a Fourier series expansion. The
radius of the cylinder is then expressed as

r (θ) = a0 +
N∑

i=1

ai cos (iθ), for 0 ≤ θ < 2π, (2.12a)

where ai are the Fourier coefficients that form the control vector c in § 2.1. We note that,
including the zeroth coefficient, (2.12a) leads the number of degrees of freedom of the
control vector to be ND = N + 1. The cylinder surface is subsequently given by

(xw, yw) = (r(θ) cos θ, r(θ) sin θ), for 0 ≤ θ < 2π, (2.12b)

in the Cartesian coordinates, while its origin, defined at r = 0, is located at (x, y) = (0, 0).
The mean drag coefficient is introduced to be the objective functional of interest:

CD = 1
T

∫ T

0
CD(t) dt, (2.13)

where T is a sufficiently long time interval for the average, and the instantaneous drag
coefficient CD(t) is given by

CD(t) = 2
[∮

∂Ωwall

{
−pI + 1

Re

(∇u + ∇uT)} · n dl
]

· i. (2.14)

Here, n is the unit vector normal to the surface ∂Ωwall, and i is the unit vector in
the streamwise direction. To formulate a well-posed and practically viable optimisation
problem, several constraints are also considered. First, we fix the cross-sectional area of
the cylinder A, implying that

A = 1
2

∫ 2π

0
(r(θ))2 dθ = πa2

0 + π

2

N∑
i=1

a2
i (2.15)

is a constant. From a viewpoint of practical applications, this constraint is to secure the
same internal space of the cylinder. Second, we set the energy content of ai for i /= 0 to be
smaller than a certain value, such that

N∑
i=1

a2
i ≤ B, (2.16)

where 0 < B < A from (2.15). This constraint is necessary to have a geometrically
well-defined cylinder surface. For example, in an extreme case where a0 = 0, (2.12a)
evidently leads to a negative radius (i.e. r(θ) ≤ 0) at some θ , generating geometrically
ill-posed cylinder surfaces. Third, we impose an upper bound for the streamwise length of
the cylinder, such that

r(θ = 0) + r(θ = π) ≤ C, (2.17a)

and this is equivalent to

a0 + a2 + · · · + aj + · · · + aN ≤ C/2. (2.17b)

We note that if the viscous drag of the cylinder is assumed to be negligibly smaller than
the pressure drag, then the obvious solution to the optimisation problem would be a very
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long slender body, the cross-sectional area of which is A. Therefore, this constraint is
introduced to avoid reaching such an obvious solution. Finally, the desired cylinder surface
is required to be sufficiently smooth, considering a manufacturing perspective, and this is
implemented by introducing a penalty term in the objective functional, i.e. the Tikhonov
regularisation.

In summary, the formulated optimisation problem is written as follows:

min
a

J(a), where J(a) ≡ CD(a) + λaTbbTa, (2.18a)

with a = [a0 a1 a2 a3 . . . aN]T and b = [0 1 2 3 4 . . . N]T, subject to

aTQa = 2A
π

, (2.18b)

aTRa ≤ B, (2.18c)

dTa ≤ C
2

, (2.18d)

where Q = diag[2 1 1 . . . 1], R = diag[0 1 1 . . . 1] and d = [1 0 1 0 . . .]T. Here, the term
aTbbTa in (2.18a) is the penalty term introduced to ensure a sufficiently smooth cylinder
surface with a positive scalar-valued regularisation parameter λ. We note

aTbbTa ∼
(

dr(θ)

dθ

)2

. (2.18e)

Therefore, if λ = ∞, the optimisation problem (2.18) yields a trivial solution, a0 = 0.5
and ai = 0 for i /= 0 (i.e. the circular cylinder).

2.3. Numerical methods
The Navier–Stokes equations for the flow over a two-dimensional cylinder are solved
using the open-source partial differential equation solver FreeFEM (Hecht 2012), based
on the finite element method. We have fixed the number of elements to nt = 37 584
for all the simulations. The velocity and pressure fields (u, v, p) are discretised using
the Taylor–Hood elements (P2, P2, P1), where (P2, P2) correspond to quadratic
elements, and (P1) corresponds to linear elements. The inlet boundary condition is
implemented by solving (2.11) using the Euler–Maruyama method. The time evolution of
the Navier–Stokes equations is treated using the characteristic Galerkin method with the
time step �t = 0.01. At Re = 100, the mean drag coefficient CD = 1.364 for the circular
cylinder differs by only 1.2 % from that found by Blanchard, Bergman & Vakakis (2020).
Finally, for each EnVar iteration, the optimisation problem (2.18) is solved using an interior
point method (Wright et al. 1999) implemented through the function fmincon in MATLAB.

3. Results and discussion

3.1. Optimisation
The optimisation problem formulated in § 2.2 is first solved for the parameters listed in
table 1 with the noise level given by σ/Ū = 0.01. The time average for the mean drag
(2.13) in the objective functional is obtained by considering T = 50, which was found
to be sufficiently long for its accurate computation through a running-average analysis.
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Shape optimisation for a stochastic cylinder wake

lx ly λ Re A B C σ/Ū β

70 30 10 100 π/4 0.04 3 0–0.01 0.7

Table 1. Problem parameters: lx and ly are the dimensionless lengths of the computational domain in the x and
y directions, with x ∈ [−20, 50] and y ∈ [−15, 15]; A is the cross-sectional area of the cylinder that represents
the volume constraint; Re is the Reynolds number based on the characteristic length L = 2

√
A/π; B and C are

the parameters associated with the inequality constraints in (2.18c) and (2.18d); and σ and β are the parameters
of the stochastic differential equation (2.11).
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Figure 2. Shape optimisation of a two-dimensional cylinder (σ = 0.01/Ū, λ = 10, N = 35): (a) convergence
of the cost functional; (b) initial (i = 0) and final (i = 15) optimised geometries.

The number of simulations for each iteration is chosen to be Nen = 35. Figure 2 shows
the convergence of the optimisation algorithm. The initial guess of the optimisation is
considered to be an arbitrary cylinder shape obtained by generating a set of random
Fourier modes satisfying the constraints. As the iteration number i (figure 2a) increases,
the objective functional J gradually decreases, and its change becomes very small for
i � 10. The stopping criterion is (Ji − Ji−1)/Ji < 10−2. The algorithm converges in 15
iterations and is able to reduce the cost function by 96 % with respect to the initial value.
The cylinder shape obtained at i = 15 is close to an oval. The optimality of this solution
is checked further by perturbing it with two small arbitrary vectors in opposite directions.
As expected, the perturbed solutions yield the increased values of the objective functional
from the optimal one, confirming the optimality.

Further iterations do not significantly reduce the objective functional any further, as
shown in figure 3(a). However, small fluctuations are observed in the objective functional
for i � 15, and there are two possible reasons for this. First, the local optimiser used for
the update of the control vector at each iteration step is supposed to depend slightly on the
generated ensemble. This is because the local optimisation is performed by approximating
the objective functional for small w. Although a sufficiently small ‖w‖2 was considered
in the generation process of the random ensemble by carefully examining the algorithm,
a small approximation error for the objective functional still exists in the optimisation
algorithm. Second, the evaluation of the objective functional is expected to depend slightly
on the finite time interval T defined for the objective functional in (2.13), as CD(t)
fluctuates randomly in time. Nevertheless, the maximum fluctuation of the normalised
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Figure 3. Convergence of the objective functional (σ = 0.01/Ū, λ = 10, N = 35): (a) convergence history
for 0 ≤ i ≤ 30; (b) the cylinder shapes obtained at i = 15 (sample 1) and i = 30 (sample 2), and their average.
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Figure 4. (a) Optimal cylinder shape for different values of the penalty parameter λ (σ/Ū = 0.01, N = 35).
(b) The corresponding mean drag coefficient.

objective functional was found to be only 2.7 × 10−3 for i > 15, suggesting that the
optimisation errors are controlled well. Finally, it is worth mentioning that the small
difference in the cylinder shapes for i > 15 has been found to be associated mainly with
random slight streamwise shifts, as shown in figure 3(b).

The effect of the other optimisation parameters is also examined. Figure 4 shows how
the control penalty introduced to ensure a smooth cylinder (i.e. the term with λ in (2.18a))
affects the optimisation results. For large values of λ (e.g. λ = 40), the optimisation leads
to the cylinder shape close to a circular cylinder with a large mean drag coefficient (see also
the discussion in § 2.2). On decreasing λ, the cylinder becomes closer to a slender body,
and the mean drag coefficient decreases accordingly. However, for λ � 10, the surface of
the cylinder begins to become irregular, suggesting that the smooth surface penalty does
not function very well. Furthermore, the drag reduction obtained by sacrificing the smooth
surface is no longer considerably large (figure 4b). From this observation, throughout the
present study, a marginal value of the penalty λ = 10 is chosen to ensure a smooth cylinder
surface.
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Figure 5. (a) Optimal cylinder shape for different numbers of Fourier coefficients N (σ/Ū = 0.01, λ = 10).
(b) The corresponding mean drag coefficient.

The convergence of the optimal cylinder shape in terms of the number of Fourier modes
N (see (2.15)) is examined in figure 5 for λ = 10. As N is increased, the optimised cylinder
shape is found to be closer to a slender body, and the corresponding mean drag is reduced
further. For N � 35, the optimised cylinder shape does not exhibit a significant change
(figure 5a) and a very small amount of mean drag reduction is obtained accordingly
(figure 5b). We note that the change in the optimal shape also appears to be associated
with a small streamwise shift, indicating that the difference reported in figure 5(a) might
be associated with the small error discussed with figure 2. From this observation, N = 35
is considered throughout the present study. It is also worth mentioning that N = 35 implies
that the number of degrees of freedom in the control vector discussed in (2.9) is ND = 36
from the definition of the control vector a in the optimisation problem defined in (2.18).
Given Neq = 1 from an equality constraint in (2.18b) and Nen = 35 chosen, this satisfies
(2.9).

Finally, the effect of B in the constraint (2.16) is tested and reported in figure 6. As
the value of B is increased, the Fourier modes determining the shape can have larger
amplitudes from (2.16), allowing the cylinder to be more slender. Indeed, the streamwise
cylinder length Lc is found to increase with B: Lc = 1.067 for B = 0.004; Lc = 1.150 for
B = 0.04; Lc = 1.176 for B = 0.4. However, we note that none of the streamwise lengths
Lc reaches the length constraint given by C (= 3) in (2.17a), indicating that this constraint
also plays a role of the length constraint.

3.2. Optimal cylinder and upstream noise
Now the optimal geometry is obtained, and we compare the flow around the optimal
cylinder with that around a circular cylinder of the same cross-sectional area.
Figure 7 shows the drag and lift coefficients for both the circular and optimal cylinders
with the noise level σ/Ū = 0.01. Here, the lift coefficient is defined as

CL(t) = 2
[∮

∂Ωwall

{
−pI + 1

Re

(∇u + ∇uT)} · n dl
]

· j, (3.1)

where j is the unit normal vector in the transverse direction. We first observe that
considerably large random fluctuations are present in the time trace of the drag coefficient
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Figure 6. Effect of the value of B in (2.16) on the optimal solution (σ/Ū = 0.01, λ = 10, N = 35, Re = 100).
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Figure 7. Instantaneous (a) drag and (b) lift coefficient of the circular and optimal cylinders after saturation
at noise level σ/Ū = 0.01.

due to the stochastic forcing for both circular and optimal cylinders (figure 7a).
The fluctuations for the optimal cylinder are strong enough for CD(t) to occasionally reach
close to zero for the strongest noise considered (σ/Ū = 0.01). On the contrary, the random
fluctuations in the lift coefficient appear to be more modest (less than 3 %), although they
do appear in the time trace (see figure 7(b), where the peak values of CL(t) are seen to
change slightly in time). We note that the standard deviation of the random u at the inlet
is less than 1 % of the mean streamwise velocity, i.e. SDU = 0.0085 (≡ [σ 2/(2βŪ2)]1/2)

from the Ornstein–Uhlenbeck process in the limit of t → ∞. Thus the large variation
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Figure 8. (a) Optimal cylinder shape for different noise levels. (b) The corresponding time evolution of the
drag coefficient.

Cylinder σ/Ū 0.01 0.005 0.001 0.0005 0.0001

Circular CD 1.3622 1.3627 1.3633 1.3633 1.3634
SDCD 0.3347 0.1674 0.0341 0.0181 0.0076

Optimal CD 1.0420 1.0432 1.0446 1.0427 1.0482
SDCD 0.2918 0.1461 0.0292 0.0150 0.0067

Table 2. Mean drag coefficient and standard deviation of the circular and optimal cylinders for different noise
levels.

of CD appears to be odd at first glance. However, this is a consequence of added mass,
because the given flow configuration is identical to that of flow over a randomly oscillating
cylinder in the streamwise direction subject to a constant free-stream velocity Ū – this can
be shown with a coordinate transformation defined by x′ = x − (U/Ū − 1)t. Indeed, the
effect of the added mass on the drag coefficient is expected to be of the order of du/dt at the
inlet. Given du/dt ∼ O(SDU/�t) in the present numerical setting, this gives du/dt ∼ O(1)

for σ/Ū = 0.01 and �t = 0.01, consistent with the observation in figure 7(a). Finally,
figure 7 exhibits that the mean drag coefficient and the amplitude of the lift coefficient of
the optimal case are less than those of the circular one, indicating that vortex shedding is
likely to be weakened.

The optimisation is repeated for noise levels ranging from σ/Ū = 0.01 to σ/Ū =
0.0001. The optimal geometries and their associated evolution of the drag coefficient are
presented in figure 8. All the optimal geometries found with the noise levels considered
in this study are very similar to each other (figure 8a), despite the noise level having a
direct effect on the time evolution of the drag coefficient (figure 8b). This suggests that the
cylinder shape optimised at a given noise level remains very close to the optimal shape at
different noise levels, indicating the robustness of the optimal cylinder shape obtained in
the present study.

That being said, it is interesting to note that the mean drag coefficient of the optimal
cylinders remains almost the same at all the noise levels (figure 8b), especially given that
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Figure 9. Instantaneous vorticity field and the time-averaged recirculation zone for (a,c) the circular cylinder,
and (b,d) the optimal cylinder: (a,b) σ/Ū = 0; (c,d) σ/Ū = 0.01. Here, the thick solid line indicates the
isocontour of ū = 0.

the shape of the optimised cylinder changes very little with the upstream noise level.
Table 2 further reports the mean drag coefficients and the standard deviation for the
circular cylinder and the cylinders optimised at different noise levels. In fact, similarly
to the optimised cylinder, the mean drag coefficients of the circular cylinder barely change
with an elevation of the upstream noise level, despite a significant increase in the standard
deviations. This suggests that the upstream noise does not appear to have a significant
influence on the flow around the cylinder itself. This is supported further in figure 9,
where instantaneous snapshots of spanwise vorticity field are visualised for both circular
and optimal cylinders with the mean recirculation zone. For both the circular and optimal
cylinders, the sizes of the mean recirculation zones are almost identical, and the spanwise
vorticity fields seem to be almost unaffected by two different noise levels σ/Ū = 0 and
σ/Ū = 0.01. In fact, the only notable feature in figure 9 is that the vortex shedding
in the optimal cylinder wake (figures 9b,d) is weaker than that in the circular cylinder
(figures 9a,c) regardless of the noise level, consistent with the increased length of the
recirculation zone in the optimal cylinder wakes.

The insensitive nature of many flow properties observed in the present study is
reminiscent of the early discussion on the cylinder wake in terms of oscillator versus
noise amplifier (see e.g. Huerre & Monkewitz 1990; Chomaz 2005). The cylinder wake at
Re = 100 is an oscillator flow, in which external noise is known to play a limited role in the
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linear evolution of the instability related to vortex shedding. While the noise-insensitive
nature of the flow properties observed in the present study might well be viewed as typical
behaviours of the oscillator flow, we note that the classification of a flow in terms of
oscillator versus noise amplifier was made based on a linear stability theory. In contrast,
the insensitive flow properties discussed in this study are ‘time-averaged ones’ of ‘fully
nonlinear’ vortex shedding. Furthermore, the original discussion on the noise insensitivity
of oscillator flows in Huerre & Monkewitz (1990) was on the ill-posedness of the solution
to the classical linear signalling problem (Huerre & Monkewitz 1985) in absolutely or
globally unstable flows rather than on the effect of external noise in the fully nonlinear
regime.

Therefore, to clarify these observations further, we perform a perturbation analysis.
Given that the standard deviation of the imposed upstream noise is sufficiently small (less
than 1 % of Ū), the flow at the inlet boundary may be written as u|∂Ωinlet = 1 + ε U1(t)/Ū,
where U1(t) = (U(t)/Ū − 1)/ε, with ε ∼ O(σ/Ū) � 1. This allows the velocity and
pressure fields to be expanded as u(t, x, y) = u0(t, x, y) + ε u1(t, x, y) + O(ε2) and
p(t, x, y) = p0(t, x, y) + ε p1(t, x, y) + O(ε2). Then the following equations of motion are
obtained at O(1):

∂u0

∂t
= NS(u0, p0), (3.2a)

with
u0|∂Ωinlet = 1, (3.2b)

where NS is the Navier–Stokes operator. At the next order (i.e. O(ε)),

∂u1

∂t
= ∂NS

∂u

∣∣∣∣
u0

[u1 p1]T, (3.3a)

with
u1|∂Ωinlet = U1(t) (3.3b)

where ∂NS/∂u|u0 is the linearised Navier–Stokes operator about u0. We note that
this operator should be stable in the two-dimensional wake at Re = 100, as the first
three-dimensional instability appears at a considerably higher Reynolds number (see e.g.
Barkley & Henderson 1996; Williamson 1996). Therefore, (3.3) provides a well-posed
(non-blowing-up) solution with u1 ∼ O(1) and p1 ∼ O(1) from the driving mechanism
imposed in (3.3b).

The analysis above now suggests that the flow field at the leading order is identical to
that without noise, and the difference caused by the upstream noise is expected to remain at
O(ε). This is consistent with the time trace of CL(t) in figure 7(a) and the snapshots of the
spanwise vorticity reported in figure 9. However, this is not the case for the instantaneous
drag given by

CD(t) = CD(u0, p0) + ε CD(u1, p1) + · · · , (3.4)

where CD(u, p) is the drag coefficient obtained using (2.14). As discussed already,
CD(u1, p1) ∼ �t−1 due to the effect of added mass. Therefore, even for a small noise
level resulting in ε (∼ O(σ/Ū)) ∼ �t, the fluctuations in CD(u1, p1) become O(ε−1) and
cannot be ignored due to the added mass effect – note that this is the case of figure 7(a)
where ε ∼ 0.01 and �t = 0.01. Nevertheless, it is important to note that the objective
functional in the present study is a time-averaged quantity. Given that CD(u, p) is a linear
functional of u and p, we have CD(u1, p1) = CD(ū1, p̄1). Also, since u1 and p1 are of order

959 A7-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

12
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.122


J. Lorente-Macias, Y. Bengana and Y. Hwang

CD CDν CDp SDCD

Circular 1.3622 0.3465 1.0157 0.3347
Optimal 1.0420 0.3587 0.6833 0.2918

Table 3. Mean drag coefficient and standard deviation of circular and optimal cylinders for σ/Ū = 0.01. Here,
the subscripts ν and p refer to the viscous and pressure components of the drag coefficient, respectively.

unity, so are ū1 and p̄1, resulting in CD(u1, p1) ∼ O(1). Therefore, the time-averaged drag
CD, the objective functional in this study, would be affected at most by the size of the small
upstream noise considered, i.e.

CD(u, p) = CD(u0, p0) + O(ε), (3.5)

consistent with the values of CD reported in table 2. This also explains why the optimal
cylinder shapes obtained for the different noise levels are almost unchanged (figure 8a),
despite the large fluctuations in CD(t), especially for the highest level of upstream noise
considered (see figure 8(b) for σ/Ū = 0.01).

3.3. Drag reduction mechanism
Finally, we discuss briefly the drag reduction mechanism by which the optimal geometry
is able to reduce the mean drag. Table 3 reports the breakdown of the drag of the optimal
cylinder into the pressure and viscous components, and it is compared with that of the
circular cylinder retaining the same area. Here, the noise level reported is σ/Ū = 0.01, and
the result in table 3 changes little for the different noise levels considered in this study, as
discussed above. It is seen that the drag reduction originates mainly from the reduction in
the pressure drag component, consistent with the considerably weakened vortex shedding
observed in the optimal cylinder wake (see figure 9). On the contrary, the optimal cylinder
exhibits an elevated viscous drag compared to the circular cylinder, and this is because
the optimal cylinder is more slender than the circular cylinder, while retaining the same
internal area. However, the amount of the elevated viscous drag is quite small, as it is
only approximately 1 % of the total drag of the circular cylinder. This implies that the
optimal cylinder minimises the increase of the viscous drag, while it significantly reduces
the pressure drag more directly related to the vortex shedding in the wake.

To better understand the reduced pressure drag of the optimal cylinder, figure 10 reports
the time-averaged surface pressure distribution of the circular cylinder and the optimal
cylinder with/without the upstream noise. As expected from the analysis in § 3.2, the
noise affects the time-averaged pressure very little. The optimal cylinder exhibits a smaller
pressure drop than the circular cylinder in the region where the near-wall flow would be
accelerated (120◦ � θ ≤ 180◦), and its base region (θ � 0◦) has higher pressure recovery
than that of the circular cylinder, exhibiting a pressure drag reduction.

3.4. Effect of Reynolds number
The effect of the Reynolds number is explored finally by considering further Re =
150, 200. We note that the three-dimensional instability of vortex shedding takes place
for Re � 188 for the circular cylinder (Barkley & Henderson 1996; Williamson 1996).
Here, this effect is suppressed artificially by performing two-dimensional flow simulations.
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Figure 10. Time-averaged pressure distribution over the azimuthal angle θ at the cylinder surface at Re = 100,
for (a) σ/Ū = 0, (b) σ = 0.01/Ū, for the cases with stochastic noise. The pressure is normalised by its value
near the stagnation point (θ = 0◦) that is identical in all the cases.

The shape optimisation for three-dimensional turbulent flows is possible if enough
computational resource is available, but this is beyond the scope of the present study.
Instead, here we mainly explore the effect of inertial force in the given fluid flow by
increasing the Reynolds number.

Figure 11 reports two optimal shapes found for Re ≥ 150: one is the global minimiser of
the objective functional (figure 11a), and the other is a local minimiser (i.e. suboptimum;
figure 11b). We note that the suboptimal shapes obtained at Re = 150, 200 have been tested
as initial conditions for the given optimisation algorithm at Re = 100 to check if there exist
similar suboptimal shapes at that Reynolds number. However, the optimisation yields the
shape identical to the global minimiser found in § 3.1, suggesting that such a suboptimal
shape is unlikely to exist at Re = 100. The other interesting feature of the suboptimal
shapes is that they retain smaller CD, while having slightly larger values of the objective
functional: for example, J = 1.1671 and CD = 0.9769 for the global optimum, and J =
1.2444 and CD = 0.9689 for the suboptimum at Re = 200. Indeed, the suboptimal shape
at Re = 200 exhibits a relatively slender base, reminiscent of an aerofoil. This suggests that
the aerofoil-like suboptimal shape is likely the effect of inertial force (i.e. high Reynolds
number), and it also implies that a delicate formulation of the optimisation constraints may
yield this aerofoil-like suboptimal shape as the global optimum.

4. Conclusions

In the present study, the shape of a two-dimensional cylinder in a noisy laminar flow has
been optimised to minimise its time-averaged drag. The noise is implemented by a small
inline stochastic oscillation of the free-stream velocity obeying the Ornstein–Uhlenbeck
process, and it leads to a large random fluctuation of instantaneous drag due to the effect
of added mass. Under such a strong random fluctuation of drag, a shape optimisation is
formulated using an ensemble-variation-based method (EnVar) to bypass the difficulty that
the conventional adjoint-based optimisation faces in this problem. The geometry has been
parametrised using a Fourier series, and the optimisation problem is formulated subject to
an equality constraint imposing the same internal area and an inequality constraint limiting
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Figure 11. Effect of Reynolds number on the optimal cylinder geometry (σ = 0.01/Ū, λ = 10, N = 35):
(a) global optimum; (b) suboptimum.

its streamwise length. Furthermore, to ensure a sufficiently smooth cylinder surface, a
Tikhonov regularisation is implemented on the objective functional. It is found that the
optimised cylinder geometry is close to a nearly symmetric slender oval at Re = 100. As
Re is increased, two optimal shapes are found: one is identical to the oval shape obtained
at Re = 100, and the other is an asymmetric oval, the rear side of which is more slender
than the front side, like an aerofoil. Despite the large random fluctuation in drag due to the
added-mass effect, the optimal cylinder shapes obtained for different levels of upstream
noise are found to be almost identical. Using a perturbation analysis, it is further shown
that this robust nature of the optimal cylinder shape to the upstream noise is associated
with the limited influence of the small upstream noise on the mean flow properties of the
cylinder wake. Finally, the optimal cylinder is found to primarily reduce pressure drag
associated mainly with vortex shedding in the wake. This comes at a cost of marginally
increasing the viscous drag associated with the shape change.

It is finally worth mentioning that the EnVar used in this study is particularly useful
for the optimisation in the presence of unknown biased noise and/or turbulence, which
prevent the utilisation of the well-established adjoint-based method. However, this comes
at a large computational cost – the adjoint-based optimisation requires only single run of
direct and adjoint simulations to evaluate the gradient of an arbitrary objective functional,
whereas the EnVar requires a number of direct simulations comparable to the degrees
of freedom of the objective functional. Hence, because of a methodological element, the
EnVar is computationally more expensive than the adjoint-based approach, although the
adjoint-based approach may require large computer memory to store the full flow field
information in time and space – typically rectified by applying a checkpoint algorithm.
The key success in the application of the EnVar would therefore lie in how one would
effectively approximate the gradient of the given objective functional by minimising the
number of direct simulations, and this will be an important issue to study in the future.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Javier Lorente-Macias https://orcid.org/0000-0001-8723-427X;

959 A7-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

12
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-8723-427X
https://orcid.org/0000-0001-8723-427X
https://doi.org/10.1017/jfm.2023.122


Shape optimisation for a stochastic cylinder wake

Yacine Bengana https://orcid.org/0000-0001-8993-1714;
Yongyun Hwang https://orcid.org/0000-0001-8814-0822.

REFERENCES

ABERGEL, F. & TEMAM, R. 1990 On some control problems in fluid mechanics. Theor. Comput. Fluid Dyn.
1 (6), 303–325.

ARCAS, D. & REDEKOPP, L. 2004 Aspects of wake vortex control through base blowing/suction. Phys. Fluids
16, 452–456.

BAEK, S. & SUNG, H.J. 1998 Numerical simulation of the flow behind a rotary oscillating circular cylinder.
Phys. Fluids 10, 869–876.

BARKLEY, D. & HENDERSON, R.D. 1996 Three-dimensional Floquet stability analysis of the wake of a
circular cylinder. J. Fluid Mech. 322, 215–241.

BEARMAN, P.W. 1965 Investigation of the flow behind a two-dimensional model with a blunt trailing edge and
fitted with splitter plates. J. Fluid Mech. 21, 241–255.

BEARMAN, P.W. 1967 The effect of base bleed on the flow behind a two-dimensional model with a blunt
trailing edge. Aeronaut. Q. 18, 207–224.

BEARMAN, P.W. & OWEN, J.C. 1998 Reduction of bluff-body drag and suppression of vortex shedding by
the introduction of wavy separation lines. J. Fluids Struct. 12, 123–130.

BEWLEY, T.R., MOIN, P. & TEMAM, R. 2001 DNS-based predictive control of turbulence: an optimal
benchmark for feedback algorithms. J. Fluid Mech. 447, 179–225.

BLACKBURN, H. & HENDERSON, R. 1999 A study of two-dimensional flow past an oscillating cylinder.
J. Fluid Mech. 385, 255–286.

BLANCHARD, A., BERGMAN, L.A. & VAKAKIS, A.F. 2020 Vortex-induced vibration of a linearly sprung
cylinder with an internal rotational nonlinear energy sink in turbulent flow. Nonlinear Dyn. 99 (1), 593–609.

BREWSTER, J. & JUNIPER, M. 2020 Shape sensitivity of eigenvalues in hydrodynamic stability, with physical
interpretation for the flow around a cylinder. Eur. J. Mech. (B/Fluids) 80, 80–91.

CHOI, H., JEON, W.-P. & KIM, J. 2008 Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40, 113–139.
CHOI, S., CHOI, H. & KANG, S. 2002 Characteristics of flow over a rotationally oscillating cylinder at low

Reynolds number. Phys. Fluids 140, 2767–2777.
CHOMAZ, J.M. 2005 Global instabilities in spatially developing flows: nonnormality and nonlinearity. Annu.

Rev. Fluid Mech. 37, 357–392.
COLBURN, C.H., CESSNA, J.B. & BEWLEY, T.R. 2011 State estimation in wall-bounded flow systems. Part

3. The ensemble Kalman filter. J. Fluid Mech. 682, 289–303.
DAREKAR, R.M. & SHERWIN, S.J. 2001 Flow past a square-section cylinder with a wavy stagnation face.

J. Fluid Mech. 426, 263–295.
EVENSEN, G. 2009 Data Assimilation: The Ensemble Kalman Filter. Springer.
GIANNETTI, F. & LUCHINI, F. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid

Mech. 581, 167–197.
HECHT, F. 2012 New development in FreeFem++. J. Numer. Maths 20 (3–4), 251–265.
HUERRE, P. & MONKEWITZ, P.A. 1985 Absolute and convective instabilities in free shear layers. J. Fluid

Mech. 159, 151–168.
HUERRE, P. & MONKEWITZ, P.A. 1990 Local and global instabilities in spatially developing flows. Annu.

Rev. Fluid Mech. 22, 473–537.
JAHANBAKHSHI, R. & ZAKI, T.A. 2019 Nonlinearly most dangerous disturbance for high-speed

boundary-layer transition. J. Fluid Mech. 876, 87–121.
KATO, H., YOSHIZAWA, A., UENO, G. & OBAYASHI, S. 2015 A data assimilation methodology for

reconstructing turbulent flows around aircraft. J. Comput. Phys. 283, 559–581.
KWON, K. & CHOI, H. 1996 Control of laminar vortex shedding behind a circular cylinder using splitter

plates. Phys. Fluids 8, 478–496.
LASAGNA, D. 2018 Sensitivity analysis of chaotic systems using unstable periodic orbits. SIAM J. Appl. Dyn.

Sys. 17 (1), 547–580.
LASAGNA, D., SHARMA, A. & MEYERS, J. 2019 Periodic shadowing sensitivity analysis of chaotic systems.

J. Comput. Phys. 391, 119–141.
LEWIS, J.M., LAKSHMIVARAHAN, S. & DHALL, S.K. 2006 Dynamic Data Assimilation: A Least Squares

Approach. Cambridge University Press.
LIM, S. & CHOI, H. 2004 Optimal shape design of a two-dimensional asymmetric diffuser in turbulent flow.

AIAA J. 42 (6), 1154–1169.

959 A7-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

12
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-8993-1714
https://orcid.org/0000-0001-8993-1714
https://orcid.org/0000-0001-8814-0822
https://orcid.org/0000-0001-8814-0822
https://doi.org/10.1017/jfm.2023.122


J. Lorente-Macias, Y. Bengana and Y. Hwang

MAO, X., BLACKBURN, H.M. & SHERWIN, S.J. 2015 Nonlinear optimal suppression of vortex shedding
from a circular cylinder. J. Fluid Mech. 775, 241–265.

MARENSI, E., WILLIS, A.P. & KERSWELL, R.R. 2020 Designing a minimal baffle to destabilise turbulence
in pipe flows. J. Fluid Mech. 900, A31.

MARQUET, O., SIPP, D. & JACQUIN, L. 2008 Sensitivity analysis and passive control of cylinder flow. J. Fluid
Mech. 615, 221–252.

MIN, C. & CHOI, H. 1999 Suboptimal feedback control of vortex shedding at low Reynolds numbers. J. Fluid
Mech. 401, 123–156.

MOHAMMADI, B. & PIRONNEAU, O. 2009 Applied Shape Optimization for Fluids. Oxford Scholarship
Online.

MOHAN, P., FITZSIMMONS, N. & MOSER, R.D. 2017 Scaling of Lyapunov exponents in homogeneous
isotropic turbulence. Phys. Rev. Fluids 2 (11), 114606.

MONS, V., CHASSAING, J.-C., GOMEZ, T. & SAGAUT, P. 2016 Reconstruction of unsteady viscous flows
using data assimilation schemes. J. Comput. Phys. 316, 255–280.

MONS, V., DU, Y. & ZAKI, T.A. 2021 Ensemble-variational assimilation of statistical data in large-eddy
simulation. Phys. Rev. Fluids 6, 104607.

NI, A., WANG, Q., FERNANDEZ, P. & TALNIKAR, C. 2019 Sensitivity analysis on chaotic dynamical systems
by finite difference non-intrusive least squares shadowing (FD-NILSS). J. Comput. Phys. 394, 615–631.

NOCEDAL, J. & WRIGHT, S.J. 2006 Numerical Optimization, 2nd edn. Springer.
PARK, H., JEON, W.-P., CHOI, H. & YOO, J.Y. 2006 Drag reduction in flow over a two-dimensional bluff

body with a blunt trailing edge using a new passive device. J. Fluid Mech. 563, 389–414.
PIRONNEAU, O. 1974 On optimum design in fluid mechanics. J. Fluid Mech. 64, 97–110.
ROSHKO, A. 1955 On the wake and drag of bluff bodies. J. Aeronaut. Sci. 22, 12.
SPALL, J.C. 2003 Introduction to Stochastic Search and Optimization: Estimation, Simulation and Control.

Wiley.
STRYKOWSKI, P.J. & SREENIVASAN, K.R. 1990 On the formation and suppression of vortex ‘shedding’ at

low Reynolds number. J. Fluid Mech. 218, 71–107.
SUZUKI, T. 2012 Reduced-order Kalman-filtered hybrid simulation combining particle tracking velocimetry

and direct numerical simulation. J. Fluid Mech. 705, 249–288.
TOKUMARU, P.T. & DIMOTAKIS, P.E. 1991 Rotary oscillation control of a cylinder wake. J. Fluid Mech.

224, 77–90.
TOMBAZIS, N. & BEARMAN, P.W. 1997 A study of three dimensional aspects of vortex shedding from a bluff

body with a mild geometric disturbance. J. Fluid Mech. 330, 85–112.
WANG, Q., HU, R. & BLONIGAN, P. 2014 Least squares shadowing sensitivity analysis of chaotic limit cycle

oscillations. J. Comput. Phys. 267, 210–224.
WILLIAMSON, C.H.K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477–539.
WOOD, C.J. 1967 The effect of base bleed on a periodic wake. J. Aeronaut. Soc. 68, 477–482.
WRIGHT, S. & NOCEDAL, J. 1999 Numerical optimization. Springer Sci. 35 (67–68), 7.
YANG, Y., ROBINSON, C., HEITZ, D. & MÉMIN, E. 2015 Enhanced ensemble-based 4DVar scheme for data

assimilation. Comput. Fluids 115, 201–210.
ZHOU, K., DOYLE, J.C. & GLOVER, K. 1996 Robust and Optimal Control. Prentice Hall.

959 A7-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

12
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.122

	1 Introduction
	2 Problem formulation
	2.1 Ensemble-based variational optimisation
	2.2 Optimal shape design for stochastic cylinder wake
	2.3 Numerical methods

	3 Results and discussion
	3.1 Optimisation
	3.2 Optimal cylinder and upstream noise
	3.3 Drag reduction mechanism
	3.4 Effect of Reynolds number

	4 Conclusions
	References

