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Abstract

The Krasnosel’skiı̆–Mann (KM) iteration is a widely used method to solve fixed point problems. This
paper investigates the convergence rate for the KM iteration. We first establish a new convergence rate
for the KM iteration which improves the known big-O rate to little-o without any other restrictions. The
proof relies on the connection between the KM iteration and a useful technique on the convergence rate of
summable sequences. Then we apply the result to give new results on convergence rates for the proximal
point algorithm and the Douglas–Rachford method.
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1. Introduction

Let H be a real Hilbert space endowed with the inner product 〈·, ·〉 and norm ‖ · ‖, and
consider the following fixed point problem:

Find u ∈ H such that T (u) = u, (1.1)

where T is a nonexpansive mapping on H. Henceforth, the set of fixed points, Fix(T ),
of T is always assumed to be nonempty. An iterative procedure for solving (1.1) is the
Krasnosel’skiı̆–Mann (KM) iteration, which was first proposed in [14, 17]. Consider
the following KM iteration: for any initial point x0 ∈ H,

xk+1 = (1 − αk)xk + αkT (xk), k = 0, 1, 2, . . . , (1.2)

where {αk} ⊂ [0,1] is a sequence of relaxation parameters. To simplify the notation, we
let σk :=

∑k
j=0 α j(1 − α j) (k ∈ N). The KM iteration can be specified as the proximal

This work was supported in part by the Ministry of Education, Culture, Sports, Science, and Technology
(grant number 16K05280).
This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.
c© 2017 Australian Mathematical Publishing Association Inc. 0004-9727/2017 $16.00

162

https://doi.org/10.1017/S000497271600109X Published online by Cambridge University Press

https://doi.org/10.1017/S000497271600109X


[2] Krasnosel’skiı̆–Mann iteration 163

point algorithm [18, 21], the Douglas–Rachford method [8, 16], the alternating
direction method of multipliers [10, 16] and a three-operator splitting [6]. The
convergence of (1.2) is well studied (see [1, 20]). In particular, under the assumption
that limk→∞ σk = ∞, the sequence generated by (1.2) weakly converges to a point in
Fix(T ) [20, Theorem 2].

In this paper, we focus on analysing the convergence rate of {xk}. Throughout, we
use the quantity

‖(I − T )(xk)‖ (1.3)

as a measure of the convergence rate since ‖(I − T )(x)‖ = 0 if and only if T (x) = x
and the property limk→∞ ‖(I − T )(xk)‖ = 0 always holds when Fix(T ) , ∅. Recently,
Cominetti et al. [3] showed that (1.3) converges to zero at a rate of O(1/

√
σk)

(big-O) when limk→∞ σk = ∞. Similar big-O results were also considered in [15].
Little-o rates of convergence for (1.3) were established by Davis and Yin [5] when
ε > 0 and {αk(1 − αk)} ⊂ (ε,∞). They showed that (1.3) converges to zero at a rate
of o(1/

√
k + 1) (little-o), which means that limk→∞

√
k + 1‖(I − T )(xk)‖ = 0. More

precisely, ‖(I − T )(xk)‖2 = o(1/(k + 1)) [5, Theorem 1]. However, it is not clear
whether the big-O rate in [3] can be improved to little-o.

The purpose of this paper is to show that (1.3) converges to zero at a rate of
o(1/

√
σk) when limk→∞ σk =∞. To achieve this goal, we consider a useful technique

on the convergence rates of summable sequences which appeared in [7, Lemma 3.2].
We show that this technique can be applied to the KM iteration and establish that
‖(I − T )(xk)‖ = o(1/

√
σk). This result improves the existing convergence rate [3]

without any other restrictions.
The KM iteration generalises several other methods. In particular, we apply our

result to analyse the proximal point algorithm and the Douglas–Rachford method.
Recently, some results on convergence rates for these methods were established
in [4, 11] by using constant relaxation parameters. We establish improved convergence
rates for the proximal point algorithm and the Douglas–Rachford method under mild
assumptions.

The rest of this paper is organised as follows. In Section 2, some preliminaries
are presented. In Section 3, we improve the convergence rate of the KM iteration.
Then, we discuss convergence rates for the proximal point algorithm and the Douglas–
Rachford method in Sections 4 and 5, respectively.

2. Preliminaries

The following notation will be used in this paper: R denotes the set of real numbers;
N denotes the set of nonnegative integers; H denotes a real Hilbert space: for any
x, y ∈ H, 〈x, y〉 denotes the inner product of x and y and, for any z ∈ H, ‖z‖ denotes
the norm of z, that is, ‖z‖ =

√
〈z, z〉; for any C ⊂ H and mapping U : C → C, Fix(U)

denotes the fixed point set of U, that is, Fix(U) = {x ∈ C : U(x) = x}; for any set-
valued mapping A : H → 2H , D(A) = {x ∈ H : A(x) , ∅} denotes the domain of A,
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R(A) =
⋃
{A(x) : x ∈ D(A)} denotes the range of A and G(A) = {(x, x∗) : x∗ ∈ A(x)}

denotes the graph of A; and the set of zero points of A is denoted by A−1(0), that
is, A−1(0) = {z ∈ D(A) : 0 ∈ A(z)}.

A mapping U : C → C is said to be:

(i) firmly nonexpansive if

‖U(x) − U(y)‖2 ≤ 〈x − y,U(x) − U(y)〉 (x, y ∈ C);

(ii) nonexpansive if
‖U(x) − U(y)‖ ≤ ‖x − y‖ (x, y ∈ C).

A set-valued mapping A : H → 2H is said to be:

(i) monotone if
〈x − y, x∗ − y∗〉 ≥ 0 ((x, x∗), (y, y∗) ∈ G(A));

(ii) maximal monotone if A is monotone and A = B whenever B : H → 2H is a
monotone mapping such that G(A) ⊂ G(B).

The maximal monotonicity of A implies that R(I + rA) = H for all r > 0. To simplify
the notation in this paper, we let r := 1. Then we can define the resolvent JA of A by

JA(x) = {z ∈ H : x ∈ z + A(z)} = (I + A)−1(x)

for all x ∈ H. The reflected resolvent RA of JA is defined by 2JA − I (see [1, 23]).
Let A : H→ 2H and B : H→ 2H be maximal monotone set-valued mappings. Then

JA : H → H is firmly nonexpansive and RA : H → H is nonexpansive and

Fix(JA) = Fix(RA) = A−1(0); (2.1)
JA(Fix(RBRA)) = (A + B)−1(0) ⊂ Fix(RBRA); (2.2)

1
2 (I + RBRA) = JB(2JA − I) + (I − JA). (2.3)

See [1, 2] for more details.
The following result will be the key to deducing convergence rates for the KM

iteration.

Lemma 2.1 [7, Lemma 3.2]. Let {bk}, {ck} be sequences of positive numbers. Assume
that the sequence {bk} is nonsummable, the sequence {ck} is decreasing and

∞∑
i=0

bici <∞.

Then

ck = o
(
1
/ k∑

i=0

bi

)
,

where the o-notation means that sk = o(1/tk) if and only if limk→∞ sktk = 0.

Remark 2.2. Dong [7] used Lemma 2.1 to analyse the proximal point algorithm.
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3. Krasnosel’skiı̆–Mann iteration

In this section, we study the convergence rate for the KM iteration in a Hilbert
space. Using Lemma 2.1, we prove the following result.

Theorem 3.1. Let C be a nonempty closed convex subset of H, let T : C → C be a
nonexpansive mapping such that Fix(T ) , ∅ and let {xk} be the sequence generated
by (1.2), where x0 ∈ C, and {αk} is a sequence in [0, 1] such that σk :=

∑k
j=0 α j(1 − α j)

for k ∈ N and limk→∞ σk =∞. Then the convergence rate estimate

‖(I − T )(xk)‖ = o(1/
√
σk)

holds, that is, limk→∞
√
σk ‖(I − T )(xk)‖ = 0.

Proof. Let u ∈ F(T ). By virtue of [1, Theorem 5.14], the following properties hold.

(i) For any k ∈ N,

‖xk+1 − u‖2 ≤ ‖xk − u‖2 − αk(1 − αk)‖(I − T )(xk)‖2. (3.1)

(ii) The sequence {‖(I − T )(xk)‖} is decreasing, that is, for any k ∈ N,

‖(I − T )(xk+1)‖ ≤ ‖(I − T )(xk)‖.

Rearranging (3.1) as αk(1 − αk)‖(I − T )(xk)‖2 ≤ ‖xk − u‖2 − ‖xk+1 − u‖2 and summing
from j = 0 to l implies that

l∑
j=0

α j(1 − α j)‖(I − T )(x j)‖2 ≤ ‖x0 − u‖2.

By taking l→∞, we see that
∞∑
j=0

α j(1 − α j)‖(I − T )(x j)‖2 <∞.

Since limk→∞ σk = ∞, the assumptions of Lemma 2.1 hold with bk := αk(1 − αk)
and ck := ‖(I − T )(xk)‖2 and hence

‖(I − T )(xk)‖2 = o(1/σk).

We can therefore conclude that ‖(I − T )(xk)‖ = o(1/
√
σk). �

Remark 3.2.

(a) Theorem 3.1 improves the known big-O rate in [3, Proposition 11] to little-o
without any other restrictions.

(b) Let ε > 0. The condition {αk(1 − αk)} ⊂ (ε,∞) implies that limk→∞ σk = ∞.
But the reverse implication does not hold. An example of {αk} satisfying the
conditions

∑∞
j=0 α j(1 − α j) =∞ and infk αk(1 − αk) = 0 is αk := 1/(k + 1).

(c) Under the assumptions that ε > 0 and {αk(1 − αk)} ⊂ (ε,∞),√
ε(k + 1)‖(I − T )(xk)‖ ≤

√
σk‖(I − T )(xk)‖,

so the o(1/
√

k + 1) rate in [5, Theorem 1] follows from Theorem 3.1.
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4. Proximal point algorithm

We consider the convergence rates for the proximal point algorithm. Theorem 3.1
can be applied directly to derive new convergence rates.

The proximal point algorithm is an algorithm for solving the inclusion problem,
0 ∈ A(u), where A is a maximal monotone set-valued mapping on H. This algorithm
was first introduced by Martinet [18] and further developed by Rockafellar [21]. It is
known that the sequence generated by the proximal point algorithm weakly converges
to a point in A−1(0) under mild assumptions in the infinite-dimensional Hilbert spaces.

The framework of the generalised proximal point algorithm for a maximal
monotone set-valued mapping A is as follows: given x0 ∈ H, set

xk+1 = (1 − βk)xk + βk JA(xk), k = 0, 1, 2, . . . , (4.1)

where {βk} ⊂ [0, 2] is a sequence of relaxation parameters and JA is the resolvent of A.
The convergence of (4.1) under some conditions has been discussed in [2, 9, 12, 13,
19, 21]. Using the definition of RA, we can write (4.1) equivalently as

xk+1 =

(
1 −

βk

2

)
xk +

βk

2
RA(xk), k = 0, 1, 2, . . . . (4.2)

To simplify the notation, we let

σk :=
k∑

j=0

β j

2

(
1 −

β j

2

)
(k ∈ N). (4.3)

Since RA is nonexpansive, (4.2) can be viewed as the KM iteration and {xk} weakly
converges to a point in Fix(RA) (= A−1(0)) when limk→∞ σk =∞ and Fix(RA) , ∅.

Remark 4.1. Since JA is (firmly) nonexpansive, (4.1) can also be viewed as the KM
iteration. In order to apply the KM iteration to (4.1), it is necessary to restrict {βk} in
[0, 1].

Using Theorem 3.1, we obtain new estimates of convergence rates for (4.1).

Theorem 4.2. Let A be a maximal monotone set-valued mapping on H such that
A−1(0) , ∅, let {xk} be the sequence generated by (4.1) and define σk by (4.3). If
limk→∞ σk =∞, then

‖(I − RA)(xk)‖ = o(1/
√
σk) (4.4)

and

‖(I − JA)(xk)‖ = o(1/
√
σk). (4.5)

Proof. Together, (2.1) and (A)−1(0) , ∅ imply that Fix(RA) , ∅. Using (4.2), (4.4)
follows directly from Theorem 3.1. Since I − RA = 2(I − JA), (4.5) follows
from (4.4). �
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Remark 4.3. The estimate (4.5) is better than the corresponding result in [4,
Theorem 3.1]. Using constant relaxation parameters, Corman and Yuan have analysed
convergence rates for (4.1). Under the assumptions that β ∈ (0, 2) and βk := β (k ∈ N),
we have limk→∞ σk =∞ and√

β

2

(
1 −

β

2

)
(k + 1) ‖(I − JA)(xk)‖ =

√
σk‖(I − JA)(xk)‖.

Thus, the o(1/
√

k + 1) rate in [4, Theorem 3.1] follows from Theorem 4.2.

5. Douglas–Rachford method

We next consider the Douglas–Rachford (DR) method. Theorem 3.1 can also be
applied to improve the convergence rate for the DR method.

The DR method is a fundamental algorithm for solving the inclusion problem
0 ∈ (A + B)(u), where A and B are maximal monotone set-valued mappings on H.
This method was first introduced by Douglas and Rachford [8] and further developed
by Lions and Mercier [16] and Eckstein and Bertsekas [9].

The framework of the DR method for maximal monotone set-valued mappings A
and B is as follows: given x0 ∈ H, set

xk+1 = xk + γk(JBRA(xk) − JA(xk)), k = 0, 1, 2, . . . , (5.1)

where {γk} ⊂ [0, 2] is a sequence of relaxation parameters. Under appropriate
assumptions, the sequence generated by (5.1) weakly converges to a point x∗ ∈ H such
that x∗ ∈ Fix(RBRA) and JA(x∗) ∈ (A + B)−1(0) (see [1, 2, 9, 16]). Using (2.3), we can
write (5.1) in the equivalent form

xk+1 =

(
1 −

γk

2

)
xk +

γk

2
RBRA(xk), k = 0, 1, 2, . . . . (5.2)

To simplify the notation, we let

σk :=
k∑

j=0

γ j

2

(
1 −

γ j

2

)
(k ∈ N). (5.3)

Since RBRA is nonexpansive, (5.2) can be viewed as the KM iteration and {xk} weakly
converges to a point in Fix(RBRA) when limk→∞ σk =∞ and Fix(RBRA) , ∅.

Note that it is not guaranteed that the sequence {xk} generated by (5.2) weakly
converges to a point in (A + B)−1(0). Svaiter [22] showed that the shadow sequence
{JA(xk)} weakly converges to a point in (A + B)−1(0) when γk := 1 (k ∈ N) and
(A + B)−1(0) , ∅. By using the demiclosed principle, Bauschke and Combettes [1,
Proposition 25.17] showed weak convergence of {JA(xk)} when

∑∞
j=0 γ j(2 − γ j) =∞.

On the other hand, the worst-case convergence rate of {JA(xk)} has been recently
analysed. He and Yuan [11, Theorem 3.1] showed that ‖JA(xk+1) − JA(xk)‖ converges
to zero at a rate of O(1/

√
k) when H is finite dimensional, γ ∈ (0,2) and γk := γ(k ∈ N).
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They used the quantity ‖JA(xk+1) − JA(xk)‖ to estimate the convergence rate, since
{JA(xk)} strongly converges to a point in (A + B)−1(0). In infinite-dimensional spaces,
however, the strong convergence of {JA(xk)} is not guaranteed.

In order to estimate the convergence rate of {JA(xk)}, the following result is useful.

Lemma 5.1. If ‖JA(x) − JBRA(x)‖ = 0, then JA(x) ∈ (A + B)−1(0).

Proof. Using the definition of the resolvent and JA(x) = JBRA(x),

x ∈ JA(x) + A(JA(x)) and RA ∈ JA(x) + B(JA(x)).

From these two inclusions, 0 ∈ A(JA(x)) + B(JA(x)) and hence JA(x) ∈ (A + B)−1(0). �

Remark 5.2. Let {xk} be the sequence generated by the DR method. By applying
Lemma 5.1, if ‖JA(xk) − JBRA(xk)‖ = 0, then JA(xk) is in (A + B)−1(0), so the quantity
‖JA(xk) − JBRA(xk)‖ is a convenient estimator for the convergence rate of {JA(xk)}.

Using Theorem 3.1, we obtain new estimates of convergence rates for {xk} and
{JA(xk)}.

Theorem 5.3. Let A and B be maximal monotone set-valued mappings on H such that
(A + B)−1(0) , ∅, let {xk} be the sequence generated by (5.1) and define σk by (5.3). If
limk→∞ σk =∞, then

‖(I − RBRA)(xk)‖ = o(1/
√
σk) (5.4)

and

‖JA(xk) − JBRA(xk)‖ = o(1/
√
σk). (5.5)

Proof. Together, (2.2) and (A + B)−1(0) , ∅ imply that Fix(RBRA) , ∅. Using (5.2),
(5.4) follows directly from Theorem 3.1.

From Lemma 5.1, we can use the quantity ‖JA(xk) − JBRA(xk)‖ to measure the
proximity of {JA(xk)} to a point in (A + B)−1(0). From (2.3),

(I − RBRA)(xk) = 2(JBRA − JA)(xk)

and hence
‖(I − RBRA)(xk)‖ = 2‖(JBRA − JA)(xk)‖.

Therefore, (5.5) follows from (5.4). �

Remark 5.4.

(a) The estimate (5.4) is better than the corresponding result in [11] even in the
special case considered there. Indeed, using constant relaxation parameters (for
example, γ ∈ (0, 2) and γk := γ (k ∈ N)), (5.4) is equivalent to

‖(I − RBRA)(xk)‖ = o(1/
√

k + 1).

This rate improves on the known big-O rate [11, Theorem 3.1].
(b) To the best of our knowledge, (5.5) is a new estimate for the convergence rate of

{JA(xk)}.
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