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Causality and the Cauchy problem
in general relativity

The study of the Cauchy problem in general relativity was initiated by the

seminal work by Fourès-Bruhat (1952). The extensions and refinements of

this work and, in particular, the analysis of the existence of maximal Cauchy

developments by Choquet-Bruhat and Geroch (1969) bring to the forefront

the delicate interplay between geometry and the theory of partial differential

equations arising in Einstein’s theory of general relativity.

This chapter provides a discussion of two aspects of the Cauchy problem in

general relativity: (i) the connection between the notions of causality originating

from the theory of symmetric hyperbolic equations and those derived from the

existence of a Lorentzian metric on the underlying spacetime manifold – the

so-called Lorentzian causality, and (ii) the existence and uniqueness of a so-

called maximal Cauchy development of an initial value problem for the Einstein

field equations. This chapter sets the context for the discussion in Part IV of

this book where asymptotically simple spacetimes are constructed by means of

suitably posed initial value problems.

14.1 Basic elements of Lorentzian causality

In Section 2.5 some basic notions of Lorentzian geometry have already been

introduced. These ideas are now further elaborated to present the notions of

Lorentzian causal theory . The summary presented here is adapted from the

discussion in Ringström (2009).

In what follows, the discussion is restricted to four-dimensional Lorentzian

manifolds (M̃, g̃) which are orientable and time orientable. In particular, time

orientability is equivalent to the existence of a smooth timelike vector t; see

Section 2.1. The Lorentzian manifold (M̃, g̃) is not assumed to satisfy the

Einstein field equations.
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14.1 Basic elements of Lorentzian causality 391

Chronological future, causal future, and so on

A vector v ∈ T (M̃) is said to be causal if v �= 0 and v is either timelike or null.

Consistent with the discussion of Section 2.5, v is said to be future pointing if

g̃(v, t) > 0 and past pointing if g̃(v, t) < 0. A future-pointing causal curve

on (M̃, g̃) is one for which its tangent vector is everywhere future pointing causal.

The notion of past-pointing causal curve is defined in an analogous manner.

Causal curves can be used to define order relations between points of the

manifold M̃. Given p, q ∈ M̃, one writes p ≺≺ q if there is a future-pointing

timelike curve in M̃ from p to q; p ≺ q if there is a future causal curve from

p to q; and p � q if either p = q or p ≺ q. Given a subset U ⊂ M̃ one defines the

chronological future and chronological past of U , respectively, as

I+(U) ≡
{
p ∈ M̃ | q ≺≺ p for some q ∈ U

}
,

I−(U) ≡
{
p ∈ M̃ | p ≺≺ q for some q ∈ U

}
.

Moreover, the causal future and causal past of U are defined, respectively, as

J+(U) ≡
{
p ∈ M̃ | q � p for some q ∈ U

}
,

J−(U) ≡
{
p ∈ M̃ | p � q for some q ∈ U

}
.

A schematic depiction of the sets I±(U) and J±(U) is given in Figure 14.1. The

sets I+(U) and I−(U) can be shown to be open. No general statements of this

type can be made about J+(U) and J−(U). However, one has that I+(U) ⊆
J+(U) and I−(U) ⊆ J−(U).

Global hyperbolicity

The natural class of spacetimes for which an initial value problem can be

formulated is that of globally hyperbolic ones.

A spacetime (M̃, g̃) without closed timelike curves is called causal . A causal

spacetime (M̃, g̃) is said to be globally hyperbolic if for any pair of points p, q ∈
M̃ with p ≺ q the causal diamond J+(p)∩ J−(q) is compact; see Figure 14.2.

The classical definition of global hyperbolicity as given, for example, in Wald

U

I+(U)

I−(U)

U

J+(U)

J−(U)

Figure 14.1 Schematic representation of the sets I±(U) and J±(U) for a subset

U ⊂ M̃.
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392 Causality and the Cauchy problem in general relativity
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p

J+(p)∩J−(q)

Figure 14.2 The causal diamond J+(p) ∩ J−(q): the points p, q ∈ M̃ satisfy
p ≺ q. In a globally hyperbolic spacetime any such diamond is compact.

p γ

q–
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Figure 14.3 The edge of a closed achronal set A: for the point p ∈ A there
exists an open neighbourhood O containing p and q+ ∈ I+(p), q− ∈ I−(p)
such that q− and q+ can be joined by a timelike curve γ not intersecting A.

(1984), makes use of the stronger notion of strongly causal spacetimes, that

is, the non-existence of “almost closed” causal curves. The classical definition

and the one given here have been shown to be equivalent in Bernal and Sánchez

(2007).

In physical terms, global hyperbolicity is closely connected to the idea of

classical determinism, that is, the prediction or retrodiction of future or past

states, respectively, from a set of initial conditions. Pathologies like the existence

of closed timelike curves are not present in globally hyperbolic spacetimes.

Cauchy surfaces

A subset A of a Lorentzian manifold (M̃, g̃) is said to be achronal if there is

no pair of points p, q ∈ A that can be connected by a timelike curve. Spacelike

hypersurfaces are examples of achronal sets. For A closed and achronal, one

defines its edge as the set of points p ∈ A such that every open neighbourhood

O of p contains points q+ ∈ I+(p), q− ∈ I−(p) and a timelike curve γ from q−
to q+ which does not interset A; see Figure 14.3.

Given A ⊂ M̃ achronal, the future domain of dependence of A is the

set D+(A) of all points p ∈ M̃ such that every past inextendible causal curve

through p intersects A. The past domain of dependence of A is defined in an

analogous manner by considering future inextendible causal curves. The (full)
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J−(A)

D+(A)

D−(A)

Figure 14.4 Domain of dependence of an achronal set A and its relation to
the causal past and future J±(A).

domain of dependence of A is then defined as

D(A) ≡ D+(A) ∪D−(A).

In some accounts, the sets D+(A) and D−(A) are called, respectively, the future

and past Cauchy development of A. The reason for these alternative names is

clarified by the discussion in Section 14.2. It can be verified that A ⊂ D+(A) ⊂
J+(A); see Figure 14.4. From the achronality of A it follows that D+(A) ∩
I−(A) = Ø.

Since information travels along causal curves, a point p ∈ D+(S) receives

information only from S. Accordingly, if physical laws are causal – as in the case

of general relativity – initial data should determine the physics in D+(S) – and,

in fact, in all of D(S).
A Cauchy hypersurface in M̃ is a hypersurface S̃ such that

D(S̃) = M̃.

Cauchy hypersurfaces are characterised by the fact that they are intersected

exactly once by every inextendible timelike curve in M̃; see, for example,

Ringström (2009). Cauchy hypersurfaces are continuous three-dimensional sub-

manifolds of the spacetime manifold M̃; see, for example, Wald (1984). Cauchy

hypersurfaces provide an alternative description of globally hyperbolic space-

times: any globally hyperbolic spacetime possesses a Cauchy hypersurface. Global

hyperbolicity restricts the topology of a spacetime. More precisely, one has that:

Proposition 14.1 (topology of globally hyperbolic spacetimes) Let (M̃, g̃)

denote a connected, time-oriented globally hyperbolic Lorentzian manifold and let

S̃ be a Cauchy hypersurface thereof. Then

M̃ ≈ R× S̃.

In other words, M̃ can be foliated by Cauchy hypersurfaces. Moreover, if S̃ ′ is

another Cauchy hypersurface, then S̃ ≈ S̃ ′.
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394 Causality and the Cauchy problem in general relativity

The above result is complemented by the following:

Proposition 14.2 (existence of a global time function) Let (M̃, g̃) be an

oriented, time-oriented, connected and globally hyperbolic spacetime and let S̃ be

a Cauchy hypersurface thereof. Then there is a smooth function t on M̃ such

that dt is timelike and future directed everywhere and satisfies the property that

t−1(T•) is a Cauchy hypersurface for every T• ∈ R. Furthermore, t−1(0) = S̃
and for every inextendible causal curve γ : (s−, s+) → M̃ one has t(γ(s)) → ±∞
as s → s±.

For a proof of these results, see, for example, Ringström (2009), proposition

11.3 and theorem 11.27. Finally, one has the following:

Proposition 14.3 (asymptotic simplicity and global hyperbolicity) An

asymptotically simple and empty spacetime (M̃, g̃) is globally hyperbolic.

The reader interested in a proof is referred to Hawking and Ellis (1973),

proposition 6.9.2.

Cauchy horizons

In what follows let D+(A) denote the closure of the future domain of dependence

of an achronal set A ⊂ M̃. This set is characterised by the fact that for

p ∈ D+(A) every past inextendible timelike curve from p intersects A; see

proposition 8.3.2 in Wald (1984). The achronal set A is not necessarily a

Cauchy hypersurface. To characterise how much A deviates from being a Cauchy

hypersurface, it is convenient to introduce the set

H+(A) ≡ D+(A) \ I−
(
D+(A)

)
,

the so-called future Cauchy horizon of A. The past Cauchy horizon is

defined in an analogous manner as H−(A) ≡ D−(A) \ I+
(
D−(A)

)
. It can

be shown that H+(A) is achronal. Moreover, one has that A ⊂ D+(A) and

∂D+(A) = H+(A) ∪ A; see Figure 14.5. Similar properties hold for D−(A).

The (full) Cauchy horizon is then defined as H(A) ≡ H+(A)∪H−(A). It

can be proved that H(A) = ∂
(
D(A)

)
and that the achronal set A is a Cauchy

surface for (M̃, g) if and only if H(A) = Ø; see proposition 8.3.6 and its corollary

in Wald (1984).

The following property of Cauchy horizons will be used at various points in

this book (cf. theorem 8.3.5 in Wald (1984)):

Proposition 14.4 (structure of Cauchy horizons) Every point p ∈ H+(A)

lies on a null geodesic contained entirely in H+(A) which is either inextendible

or has a past endpoint on the edge of A.
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A

D+(A)

H+(A)H+(A)

Figure 14.5 The Cauchy horizon of an achronal setA. Observe that ∂D+(A) =
H+(A) ∪ A.

S̃

R

D+(S)˜

D+(R)

Figure 14.6 Schematic representation of the causal domains of Theorem 14.1.
The hypersurface S̃ is a Cauchy hypersurface and R ⊆ S̃ is a region within
such that u = 0.

14.2 PDE causality versus Lorentzian causality

Two different notions of causality have been discussed so far in this book:

partial differential equation (PDE) causality based on the uniqueness of solutions

to symmetric hyperbolic systems – Theorem 12.1 – and Lorentzian causality,

discussed in the first sections of this chapter. These notions of causality are

conceptually different from each other. However, they are linked by the following

result (see also Figure 14.6):

Theorem 14.1 (the relation between PDE and Lorentzian causalities)

Let (M̃, g̃) be a connected, oriented, time-oriented, globally hyperbolic spacetime

and let S̃ be a smooth spacelike Cauchy hypersurface. Let R ⊆ S̃and let U be

an open set containing D+(R). Assume that u : U → CN solves the symmetric

hyperbolic system

Aμ(x,u)∂μu+B(x,u) = 0.

Moreover, assume that the above equation has a characteristic polynomial which

contains the factor (g̃μνξμξν) where g̃μν denotes the contravariant components of

the metric g̃. If u vanishes on R, then u vanishes on D+(R). There is a similar

statement for D−(R).
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D+(R)
p

J−(p)∩J+(R)

R

Figure 14.7 Schematic representation of the causal domains in the proof
of Theorem 14.1. On D+(R) one considers for arbitrary p ∈ D+(R) the
associated domain D(p) ≡ J−(p) ∩ J+(R).

The interested reader is referred to chapter 12 of Ringström (2009) for

a detailed account of the proof of an analogous result for quasilinear wave

equations. It is, nevertheless, useful to discuss some of the ideas behind the proof.

Theorem 12.1 and its Corollary 12.1 – ensuring the uniqueness of solutions to

symmetric hyperbolic systems – can be applied only on lens-shaped domains. The

main idea behind Theorem 14.1 is then to construct a cover of D+(R) consisting

of lens-shaped domains. The metric g̃ provides a natural way of constructing the

required cover. Accordingly, the Lorentzian metric allows the introduction of the

notions of Lorentzian causality discussed in the first sections of this chapter.

One begins by considering points p ∈ D+(R) which are suitably close to R
and aims to conclude that u = 0 on D(p) ≡ J−(p) ∩ J+(R);—see Figure 14.7.

By means of the exponential map expp : T |p(M̃) ⊃ V̄ → V ⊂ M̃ – see Section

11.6.2 – the metric g̃ allows the introduction of normal coordinates in some

neighbourhood of p – these coordinates can be seen as providing a diffeomorphism

between a neighbourhood V̄ of the origin in T |p(M̃) to a neighbourhood V of p.

By considering p sufficiently close to R one can ensure that D(p) is compact and

completely contained in V. On T |p(M̃) one can define a function f̄ : T |p(M̃) → R

via f̄(v) = g̃(v,v). Hence, for the present purposes, the neighbourhood V can

be regarded as a subset of the Minkowski spacetime coordinatised by standard

Cartesian coordinates. One also defines f : V → R such that f ≡ f̄ ◦exp−1
p . Now,

given a constant c > 0, the condition g̃(v,v) = c defines (spacelike) hyperboloids

on V. More precisely, for given c, the locus of points in V corresponding to the

hyperboloid is given by f−1(c) ≡ {q ∈ V | g̃(exp−1
p (q), exp−1

p (q)) = c} – observe

that both f̄ and f are not injective so that f−1 is a set consisting of more

than a single point. Now, f−1(c) has two components: one associated to future-

directed vectors and the other associated to past-directed vectors. For c > 0, let

Qc(p) denote the component of f−1(c) associated to past-directed vectors and

let Q0(p) denote the past null cone through p. One can use the hyperboloids
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p

Dc(p)

R

D(p)

Qc(p)

Q(p)

Figure 14.8 Schematic representation of the causal domains in the proof
of Theorem 14.1. Given p ∈ D+(R), the sets Q(p) and D(p) describe,
respectively, the past light cone through p and the region between the light
cone and R. For c > 0, the set Qc(p) describes a hyperboloid inside the past
light cone of p, while Dc(p) is the region between the hyperboloid and R. The
set Dc(p) is a lens-shaped domain. See the main text for further details.

Qc(p) to foliate the interior of the past light cone passing through p. One defines

Dc(p) ≡ J−(Qc(p))∩J+(R). The domain Dc(p) describes the region between the

hyperboloid Qc(p) and R, while D(p) describes the region between the past light

cone and R; see Figure 14.8. Now, D(p) can be shown to be compact. Moreover,

it can be seen that Qc(p) ⊂ I−(p) for c > 0 so that J−(Qc(p)) ⊂ J−(p) and, in

addition, that Dc(p) ⊂ D(p). A further argument allows one to verify that Qc(p)

for c > 0 is a lens-shaped domain on which, modulo some technical details, Corol-

lary 12.1 can be applied. Thus, if u = 0 onR, one concludes that u = 0 on Dc(p).

To show that u = 0 on D(p) one now considers a sequence {cl}, l ∈ N, of

positive numbers converging to zero. It can then be shown that

intD(p) ⊂ ∪lDcl(p) ⊂ D(p)

– intuitively, by choosing smaller and smaller cl’s one obtains hyperboloids which

are, successively, “closer” to the light cone Qp thus “filling” D(p). From this

observation and given that u = 0 on each of the Dcl(p) one can conclude that,

indeed, u = 0 on D(p).

Now, an adaptation of Proposition 14.2 ensures the existence of a time function

t on D+(R). Given c > 0, t−1([0, c]) denotes a slab in D+(S̃) ⊃ D+(R).

Considering points suitably close to S̃, it is possible to construct a slab Kε ≡
t−1
(
[0, ε]

)
∩ D+(R) in D+(R) for some ε > 0 – this slab can be thought of as

the union of domains of the type D(p) on each of which one already knows that

u = 0. The top of the slab, t−1(ε)∩D+(R) – on which u = 0 – can now be used

as a new initial surface from which one constructs a further slab. The rest of the

proof consists of showing that D+(R) can be fully covered by slabs of the type

described above so that u = 0 everywhere on D+(R).
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Remark. An important observation is that

D+(R) ∩ I+(S̃ \ R) = Ø.

Accordingly, the value of u on D+(R) is determined only by the data on R
– that is, whatever data is prescribed on S̃ \ R, it has no influence on the

behaviour of u on D+(R). The proof of this statement follows by contradiction:

let q ∈ D+(R)∩ I+(S̃ \R); on the one hand we have that q ∈ I+(S̃ \R) so that

there exists a future timelike curve γ from p ∈ S̃ \ R to q. On the other hand

q ∈ D+(R) so that every past inextendible causal curve through q intersects R.

As a consequence one has that p ∈ R. This is a contradiction since p ∈ S̃ \ R.

14.3 Cauchy developments and maximal Cauchy developments

For ease of presentation, the subsequent discussion is restricted to the case of

standard Cauchy initial value problems where initial data is prescribed on a

Cauchy hypersurface S̃. For a detailed account of the Cauchy problem in general

relativity the reader is referred to the monograph by Ringström (2009).

As discussed in Section 11.3, the (say, vacuum) Einstein field equations imply

on S̃ a set of constraint equations: the so-called Hamiltonian and momentum

constraints for a Riemannian metric h̃ and a symmetric trace-free tensor K̃.

Assume one is given a solution (h̃, K̃) to the Hamiltonian and momentum

constraint Equations (11.13a) and (11.13b) on S̃. To discuss the relation between

a solution to the Einstein constraint equations and a solution to the Einstein field

equations one needs to introduce the notion of a Cauchy development :

Definition 14.1 (Cauchy development) A Cauchy development of the

initial data set (S̃, h̃, K̃) consists of a solution (M̃, g̃) of the vacuum Einstein

field equations, an embedding ϕ of S̃ into M̃ and a choice of a unit normal vector

such that ϕ(S̃) is a Cauchy hypersurface and the pull-backs by ϕ of the induced

metric and the second fundamental form for the prescribed unit normal coincide

with h̃ and K̃.

The seminal work in Fourès-Bruhat (1952) has shown that, given a solution

to the constraint equations on S̃, it is always possible to obtain a Cauchy

development. More precisely, one has the following (see also Figure 14.9):

S̃

Figure 14.9 Schematic representation of a Cauchy development (in gray) of

some initial data set (S̃, h̃, K̃) for the Einstein field equations.
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Theorem 14.2 (existence of a development of an initial data set) Given

an initial data set (S̃, h̃, K̃) for the Einstein field equations it is always possible

to find a corresponding development.

The above result is a cornerstone of the mathematical study of the Einstein

field equations as it shows that it is meaningful to formulate a Cauchy problem

for the Einstein field equations. The original proof of the theorem used the

hyperbolic reduction of the Einstein field equations based on wave coordinates ;

see the Appendix to Chapter 13. The hyperbolic reductions for the conformal

Einstein field equations discussed in Chapter 13 readily lead to an alternative

proof which is briefly sketched for completeness.

Proof The proof of the theorem amounts to a local existence result for the

Cauchy problem for the Einstein field equations. For convenience, consider the

spinorial version of the standard conformal Einstein field equations; see Section

8.3.2. Setting Ξ = 1 and ΦAA′BB′ = 0 one obtains a spinorial representation

of the vacuum Einstein field equations. For these equations, the hyperbolic

reduction procedure summarised in Proposition 13.1 shows that given a choice

of coordinate and frame gauge source functions Fa(x) and FAB(x), the Einstein

field equations imply a symmetric hyperbolic system for the frame coefficients,

connection coefficients and the Weyl spinor. Smooth initial data u� for these

evolution equations can be obtained from the pair (h̃, K̃) using the procedure

leading to Lemma 11.1. The basic existence and uniqueness result for symmetric

hyperbolic systems given in Theorem 12.2 ensures the existence of a solution

u to the evolution equations in a slab of the form M̃T ≡ (−T, T ) × S̃ for

some T > 0. In what follows, for conceptual clarity, the Riemannian 3-manifold

S̃ regarded as a submanifold of M̃T will be denoted as S̃�; that is, one has

S̃� = ϕ(S̃). On S̃� the solution u coincides with the initial data u�. In view of

the homogeneous structure of the subsidiary evolution equations as described

in Proposition 13.2, the solution u implies a solution to the conformal Einstein

field equations with Ξ = 1 and ΦAA′BB′ = 0. From the components of u one

can construct a Lorentzian metric g̃ which will be a solution to the Einstein

field equations on M̃T ; compare Proposition 8.1. To conclude, it is observed

that the hyperbolic procedure leading to the evolution equations is based on an

adapted frame tetrad {ea} such that e0 on S̃� gives the unit normal of the initial

hypersurface; see Section 11.4. From this observation it follows that the pull-back

of g̃ to S̃� coincides with the Riemannian metric h̃. Moreover, by construction,

the extrinsic curvature of S̃� coincides with the tensor K̃. Accordingly (M̃T , g̃)

provides the required Cauchy development.

An important aspect of the notion of a Cauchy development is its non-

uniqueness. A different choice of gauge source functions will, in general, lead

to a different Cauchy development for the same initial data. Observe, however,

that as one is constructing solutions to tensorial equations in the regions where

two different Cauchy developments (M̃, g̃) and (M̃′, g̃′) overlap M̃ ∩ M̃′, these
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must be related to each other by a diffeomorphism, that is, a coordinate

transformation. This non-uniqueness of Cauchy developments of a given initial

data creates a tension with the notion of geometric uniqueness, that is, the

expectation that a given initial data set should give rise to a unique solution to

the Einstein field equations. To deal with this issue one introduces the notion of

a maximal Cauchy development :

Definition 14.2 (maximal Cauchy development) Let (S̃, h̃, K̃) be an initial

data set for the vacuum Einstein equations. A Cauchy development (M̃, g̃) with

embedding ϕ : S̃ → M̃ of this data is said to be maximal if for any other

Cauchy development (M̃′, g̃′) with embedding ϕ′ : S̃ → M̃′, there is a smooth

map ψ : M̃′ → M̃ which is a diffeomorphism onto its image such that ϕ = ψ ◦ϕ′

and ψ∗g̃ = g̃′.

The maximal Cauchy development describes the biggest spacetime that can be

recovered from a given initial data set for the Einstein field equations. Any other

Cauchy development must be contained in it. For this notion to be of utility

it should satisfy some existence and uniqueness properties. Indeed, one has the

following result, first proven in Choquet-Bruhat and Geroch (1969):

Theorem 14.3 (existence of a maximal Cauchy development) Given

some initial data (S̃, h̃, K̃) for the Einstein field equations, there exists a maximal

Cauchy development which is unique up to isometries.

The original proof of this theorem famously relies on Zorn’s lemma. Alternative

proofs not depending on this axiom of set theory have been given more recently

in Sbierski (2013) and Wong (2013).

Remark. The maximal Cauchy development of an initial data set is, in general,

different from the so-called maximal analytic extension of the solution to

the initial value problem, that is, the biggest spacetime that can be associated

to a given metric allowing for analytic changes of coordinates. As an example,

compare the Penrose diagram of the maximal analytical extension of the

Reissner-Nordström spacetime given in Figure 6.14 and the Penrose diagram

of its maximal Cauchy development in Figure 14.10.

The characterisation and construction of the maximal Cauchy development

of an arbitrary initial data set (S̃, h̃, K̃) is a challenging endeavour. It requires

controlling the evolution dictated by the Einstein field equations under very

general conditions. Generically, one expects the following to be true:

Conjecture 14.1 (strong cosmic censorship) The maximal Cauchy devel-

opment of generic initial data for the vacuum Einstein field equations is

inextendible.
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H +

H +

H −

H −

I+

I−

Figure 14.10 Maximal Cauchy development of the Reissner-Nordström space-
time. In this case, the spacetime extends only up to the Cauchy horizon H −.
Notice that the timelike singularities of the spacetime do not appear in the
diagram.

A concise discussion of the above conjecture and its various caveats can be

found in Chruściel (1991), Rendall (2008) and Ringström (2009).

14.4 Stability of solutions

A problem simpler than cosmic censorship is the construction of the development

of initial data sets which are, in some sense, close to initial data for some exact

solution (the background solution) whose global structure is well known.

Such initial data are called a perturbation of the initial data for the

exact solution. Under suitable circumstances one expects the maximal Cauchy

development of the perturbed initial data to have a global structure similar to

that of the maximal Cauchy development of the exact solution. The resulting

spacetime is called a perturbation of the exact solution. This notion of

perturbations is a non-linear one: the perturbed solutions are required to satisfy

the Einstein field equations without any approximation – as opposed, say, to

linearised perturbations where one considers solutions to evolution equations

which are linearised with respect to some background exact solution. The

underlying strategy behind the analysis of non-linear perturbations is to use

the knowledge of the global properties of a solution to the equations of general

relativity to infer the existence of other solutions with analogous properties. This

point of view leads to the notion of stability.

When discussing the stability of solutions to the Einstein field equations one

typically distinguishes between the notions of orbital and asymptotical stability.

A solution is said to be orbitally stable if the global geometry of the perturbed

evolution exhibits the same features as the original (background) solution –

for example, the existence of a complete null infinity. The stronger notion
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of asymptotic stability requires, in addition, that the perturbed solution

converges to the background solution for late times. The stability results to

be discussed in the remainder of this book will be of the orbital type.

Remark. Although the notion of stability has a strong physical motivation –

see, for example, the discussion in Section 12.3.2 – the precise formulation of

closeness to a certain exact solution is dictated by the details of the PDE theory

used to analyse the evolution equations – for example, Sobolev norms – and it

may be difficult to provide it with a direct physical interpretation. In particular,

statements about closeness may not be gauge independent.

14.5 Causality and conformal geometry

Let (M, g) denote a conformal extension of a physical spacetime (M̃, g̃) with

g = Ξ2g̃. As a Lorentzian manifold in its own right, the unphysical spacetime

(M, g) gives rise to its own causal notions. The causal notions in (M̃, g̃) and

(M, g) are, however, related to each other – it is not hard to see that the causal

notions introduced in Section 14.1 are conformally invariant. More precisely, if

p, q ∈ M̃ are connected to each other via some particular causal relation with

respect to the metric g̃ (e.g. p ≺ q, p � q or p ≺≺ q), then they are also

causally related in the same way with respect to the metric g. Special care is

needed, however, when discussing points which lie on the conformal boundary

of the conformal extension (M, g) as these points do not exist in the physical

spacetime manifold M̃. Moreover, any compact set in the unphysical manifold

(M, g) which intersects the conformal boundary will be, from the perspective

of the physical manifold M̃, non-compact. This observation is of importance for

the notion of global hyperbolicity as it is formulated in terms of compactness of

domains in the physical spacetime (M̃, g̃).

A further cautionary note concerns Cauchy horizons in the unphysical

spacetime (M, g) which may not correspond to domains in M̃. The prototypical

case of this situation arises in the discussion of Minkowski-like spacetimes.

From the point of view of (M, g), the conformal boundary of these spacetimes

corresponds to the Cauchy horizon of hyperboloidal hypersurfaces – which from

the conformal point of view are compact domains. From the physical perspective

of (M̃, g̃) the hyperboloids are non-compact and there are no Cauchy horizons.

The correspondence between the conformal boundary and Cauchy horizons for

Minkowski-like spacetimes is analysed in some detail in Section 16.3.

Penrose diagrams provide a convenient way of visualising the causal properties

of spacetimes. For example, an inspection of the Penrose diagram of the anti-

de Sitter spacetime, Figure 14.11, readily shows that the spacetime cannot be

globally hyperbolic: causal diamonds intersecting the conformal boundary of

the conformal representation correspond to non-compact causal diamonds in

the physical spacetime. Alternatively, by looking at the Penrose diagram it

is easy to draw a timelike curve which does not intersect a putative Cauchy
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Figure 14.11 Non-global hyperbolicity of the anti-de Sitter spacetime. To the
left: causal diamonds intersecting the conformal boundary are non-compact in
the physical picture. To the right: given a putative Cauchy hypersurface S, it
is always possible to find a timelike curve γ not intersecting S.
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Figure 14.12 Examples of some domains of dependence in the de Sitter
spacetime.

hypersurface S – it is only necessary that in the conformal picture the curve

starts at some point of the conformal boundary which lies in the future of S.
A second example of the insights provided by the inspection of the Penrose

diagrams involves the de Sitter spacetime; see Figure 14.12. A peculiarity of

this spacetime is that there exist regions in the spacetime whose domain of

dependence is non-compact – to see this, it is only necessary to consider domains

which are, from the conformal point of view, sufficiently close to the conformal

boundary I .
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14.6 Further reading

Detailed accounts of the theory of Lorentzian causality can be found in

Hawking and Ellis (1973), chapter 6; O’Neill (1983), chapter 5; or Wald (1984),

chapter 8.

An extensive discussion of the Cauchy problem in general relativity can be

found in Ringström (2009). A concise presentation is given in Rendall (2008).

A related discussion is contained in Friedrich and Rendall (2000). A discussion of

various aspects of strong cosmic censorship as well as a number of ancillary results

concerning the Cauchy problem can be found in the monograph by Chruściel

(1991).

https://doi.org/10.1017/9781009291347.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.018

