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Abstract

Introduction: Contrast media are frequently used during radiation therapy simulation.
However, there are concerns about dosimetric variations when dose calculation is done on con-
trast-enhanced computed tomography (CT). This study evaluates the dosimetric effect of oral
contrast during three-dimensional conformal radiotherapy (3D-CRT) and volumetric modu-
lated arc radiotherapy (VMAT) planning.
Methods: Rectal cancer patients were consecutively enrolled. For each patient, one unenhanced
CT and one contrast-enhanced CT were taken using oral and intravenous contrast. Then, a
3D-CRT plan and an Intensity-modulated radiation therapy (IMRT)/VMAT plan were gener-
ated in the enhanced CT, and the dose distribution was recalculated in the respective unen-
hanced CT. The beam intensities were kept the same as for the enhanced CT plans. Finally,
the unenhanced and enhanced plans were compared by calculating the gamma index.
Results: For 3D-CRT plans, there were statistically significant differences in second phase
planning target volume (PTV) D2% (Mean difference (MD) between unenhanced and
enhanced CT 0·01 Gy, 95% CI [0·003 to 0·02 Gy]) and in maximum doses to the bladder
(MD 0·26 Gy, 95% CI [0·05 to 0·47 Gy]). For IMRT/VMAT plans, there were statistically
significant differences in small intestine V45 Gy (MD 3·1 cc, 95% CI [0·81 to 5·4 cc]), blad-
der V45 Gy (MD 2·9%, 95% CI [1·4 to 4·3%]) and maximum dose to the bladder (MD
0·65 Gy, 95% CI [0·46 Gy to 0·85 Gy]). In addition, for PTV D98% the MD between unen-
hanced and enhanced CT was 0·22 Gy 95% CI [0·05 to 0·39].
Conclusions: For most of the dose metrics, the differences were not clinically meaningful. The
greatest differences were found in VMAT plans, especially in V45Gy of the small intestine. This
difference could lead to an underestimation of dose–volume metrics when the plan is based on
an enhanced CT. The use of small bowel oral contrast does not significantly influence dose
calculations and may not affect the acceptability of plans when adhering to constraints.

Introduction

Radiation therapy, based on simulation computed tomography (CT), is a core activity in the
treatment planning process. Contrast agents are frequently used during CT to characterise both
healthy and tumour tissues more accurately.1,2 Treatment planning systems (TPS) convert the
Hounsfield Unit (HU) values of different tissues or materials in the CT to electron or mass den-
sities, depending on the algorithm used for planning. As contrast agents have elements with
higher atomic numbers than most of the human tissues, they increase HUs, which could result
in changes in calculated doses.3 Therefore, if the dose calculation is performed in a contrast-
enhanced CT, there is a concern of dosimetric deviation because the treatment is administered
in the absence of contrast.1,4

In order to avoid this problem, it is a common practice to obtain two CT scans during the
same simulation session: one unenhanced and one enhanced.5 However, it has been described
that performing two CT scans during the simulation not only exposes the patient to additional
radiation but also reduces the optimisation of resources in the radiation oncology department by
extending the simulation time.6 Consequently, waiting times for radiotherapy increase. This
problem is even more serious in low-resource countries where access to radiotherapy treatment
is already very limited.

Some authors have reported tolerances for changes in HU that could be set to achieve less
than 1% dose change: ±20 HU for soft tissue and ±50 HU for lung.3,7 These limits could explain
why some researchers have described that, even if contrast agents cause noticeable increase in
HU values, these changes are clinically insignificant.1,8–11 In spite of that, there are few studies
assessing dosimetric differences in pelvis.1,4,12–16
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The present study evaluates the effect of oral contrast on dose
distribution calculation for rectal cancer patients, using three-
dimensional conformal radiation therapy (3D-CRT) and volumet-
ric modulated arc radiotherapy (VMAT) planning.

Methods

A prospective dosimetric study was conducted as a before-and-
after study. This study was approved by the institutional
Human Research Ethics Committee prior to conducting this study.

Patient selection

The sample size was calculated, accepting an alpha risk of 0·05 and
a beta risk of 0·2 in a bilateral contrast, and 26 subjects were
required to detect a difference in dose target coverage equal to
or greater than 0·45 units, as reported in previous studies.15

Consecutive patients, older than 18 years, admitted to our radio-
therapy unit with a diagnosis of non-metastatic rectal cancer were
enrolled. They were referred for radiotherapy management
between August 2018 and September 2019. The exclusion criteria
were as follows: a) patients with hypersensitivity to oral or intra-
venous iodinated contrast agents, b) with a history of kidney dis-
ease and c) at risk of intestinal perforation.

Image acquisition

Unenhanced and enhanced CT scans for each patient were
acquired, in the same position and with the same coordinates.
One hour before the simulation, patients were instructed to evacu-
ate their bladders, and then drink 500 mL of water, to maintain a
comfortably full bladder. Following unenhanced scanning, patients
remained in the same immobilisation device in order to minimise
any positioning differences. Then, the patients were instructed to
ingest 250mL every 10min of 1 L of oral contrast preparation. This
mixture contained 15mL of iopamidol iodinated contrast (Scanlux
370 mg of iodine per ml) diluted in 985 cc of water.

According to our institutional protocol, contrast was infused
through a rectal tube as well. Ten minutes after finishing oral con-
trast administration, the IV automatic injector was connected to the
patient. The enhanced scan started 60 s after the IV contrast injec-
tion. The total dose of the IV contrast media was 1·2 mL/kg body
weight or about 90 mL for patients with a body weight of over
60 kg. The same scanning technique and the same coordinate origin
were used for unenhanced and enhanced CT scans. The
reconstruction of the images was performed with a slide width
of 5 mm.

Treatment planning

After the acquisition of CTs, two expert radiation oncologists
delineated target volumes and organs at risk, according to our
institutional protocol. For each patient, a medical physicist created
a 3D-CRT and an IMRT/VMAT plan, based on the enhanced CT.

Threemedical physicists generated the plans according to a pre-
established protocol. Previously, a pilot study was conducted to
ensure the standardisation of the planning process. The intraclass
correlation coefficient between planners was 0·94 (p= 0·04) for
3D-CRT plans and 0·78 (p= 0·007) for VMAT plans.

All plans were generated with Eclipse TPS (Eclipse v15·1,
Varian Medical Systems, Palo Alto, CA) and with Acuros XB
version 15·1 dose calculation algorithm. Dose prescription for
3D-CRT plans was 45 Gy in 25 fractions, in a first phase, and then,

5·4 Gy in three fractions, in a second phase. For VMAT, the pre-
scription was 50·4 Gy in 25 fractions, with integrated boost tech-
nique; for this, three full coplanar arcs were used.

Planning objectives for each of the treatment modalities,
including dose prescription, coverage and dose limits for organs
at risk, are described in Tables 1 and 2, for 3D-CRT and IMRT/
VMAT plans, respectively.

Finally, dose distribution was recalculated on the correspond-
ing unenhanced CT. The same beam weights were kept as for the
enhanced CT plans. The entire planning process is shown in
Figure 1.

Statistical analysis

In order to compare calculated doses in unenhanced versus
enhanced CT plans, a paired t-test was used when the distribu-
tion of the difference between groups was normally set apart.
Otherwise, the non-parametric Wilcoxon signed-rank test was
used. The dose metrics compared were those detailed in plan-
ning objectives including coverage, and dose limits for organs
at risk, described in Tables 1 and 2, for 3D-CRT and IMRT/
VMAT plans, respectively. Furthermore, the gamma index
was calculated to compare the IMRT/VMAT unenhanced and
enhanced plans.

The gamma passing rate is defined as the percentage of points
satisfying the condition gamma index < 1.17 For evaluation, the
following criteria were used: a gamma passing rate of ≥95%, with
2%/2 mm, and ≥90%, with 2%/2 mm global normalisation.

All statistical tests were two-tailed, and a p-value ≤0·05 was
considered statistically significant. The analyses were conducted
on the Statistical Package for Social Sciences software version 22·0.

Table 1. Treatment planning objectives used for 3D-CRT plans

Volume Planning objectives 3D-CRT

PTV 45 (1st phase) D98% > 44·10 Gy

D2% < 48·15 Gy

PTV 5·4 (2nd phase) D98% > 5·1 Gy

D2% < 5·78 Gy

Bladder (sum) Dmax< 50·4 Gy, Dmean < 49·0 Gy

D20% < 49·5 Gy

Small bowel (sum) V45 Gy < 195 cc

Femoral head (sum) Dmax< 50 Gy

Table 2. Treatment planning objectives used for IMRT/VMAT plans

Volume Planning objectives IMRT/VMAT

PTV 50 D98%> 47·88 Gy

D2%< 53·93 Gy

PTV 45 D98%> 44·1 Gy

D15%< 47·25 Gy

Bladder Dmax< 50 Gy, V40 Gy< 40%,

V45Gy< 15%

Small bowel V45 Gy< 195 cc

Femoral head Dmax< 50 Gy
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Results

Twenty-nine patients fulfilled inclusion criteria. Three patients
were excluded due to significant differences in position between
the two sets of CTs. Finally, 26 patients were included.

The mean age of the included patients was 62·4 years, (standard
deviation (SD) = 12·4). Fifteen patients were women (57·6%), and
11 were men (42·3%). Most of the patients were treated with neo-
adjuvant intention (80%), and five patients were treated in an adju-
vant setting (19·2%). In relation to1 clinical stage, 11 patients had
locally advanced rectal cancer (42·3 %), eight patients had early
stages (30·7%), and, for seven patients, the clinical stage was not
available (26·9%).

Table 3 shows the differences in mean values of target coverage
and dose metrics to organs at risk, as well as the mean differences
(MD) when paired sample t-test was done between unenhanced
and enhanced 3D-CRT plans. Analysing3D-CRT plans, there were
statistically significant differences in PTV D2% from the second
phase (MD 0·01 Gy, 95% CI [0·003 to 0·02 Gy] and in maximum
doses to bladder (MD 0·26 Gy, 95% CI [0·05 to 0·47 Gy]. There
were no statistically significant differences in the other assessed
dose metrics.

In the case of VMAT plans, differences in dose metrics between
unenhanced and enhanced plans are shown in Table 4. There were
statistically significant differences in PTV D98% (MD 0·22 Gy,
95% CI [0·05 to 0·39 Gy]) as well as in PTV D2% (median of
52·52 Gy for non-enhanced and 52·22 Gy for enhanced, Z-4·45
p< 0·0001), volume of small intestine receiving more than

45 Gy (3·1 cc, 95% CI [0·81 to 5·4 cc]), percentage of bladder vol-
ume receiving 45 Gy (MD 2·9%, 95%CI [1·4 to 4·3%]) and maxi-
mum dose to bladder (MD 0·65 Gy, 95% CI [0·46 Gy to 0·85 Gy]).

Using the gamma index criteria of 2%/2 mm, the mean passing
rate was 95·2% (95% CI [94·1 to 96·36%]) for IMRT/VMAT plans
of the entire group. In 25 patients, out of 26, the passing rate was
greater than 90%, and, in 15, it was greater than 95%. In Figure 2a,
gamma analysis is shown as an example.

Discussion

The small bowel is one of the most important dose-limiting organs
in pelvic radiotherapy. Some studies confirmed that the irradiated
bowel volume is closely related to the toxicity caused by pelvic
radiotherapy.18–20 Herbert et al reported a significant decrease in
the incidence of acute and chronic small bowel toxicity using oral
contrast as well as a change in the location of the treatment field
with the use of small bowel contrast, indicating that planning with
contrast leads to changes in the delivery of radiotherapy.21

In spite of the advantages of using oral contrast, there is concern
about possible dosimetric deviations if the dose calculation is per-
formed in the contrast-enhanced CT.1,4 To avoid these theoretical
deviations, it is a common practice to obtain two CT scans during
the same simulation session: one unenhanced and one enhanced.5

However, the promotion of high-value practices in radiation
oncology should be a priority because of the increasing costs of
cancer care and the increasing expense of ever-advancing

Figure 1. Flow chart showing planning process.
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technologies. This necessity is more important in countries with
difficult access to radiation treatment and very long waiting lists.22

This is the reason why this study examines if planning in an
enhanced CT causes a dosimetric deviation from an unenhanced
plan, which is large enough to justify the practice of performing
two CT sets.

Minimal differences were found for the dose metric D2% in the
PTV, in the second phase, and for maximum doses to bladder in
3D-CRT plans, although statistically significant. For the remaining
parameters, there were no statistically significant differences. In the
case of IMRT/VMAT plans, the biggest difference was found in
small intestine volume, receiving 45 Gy in enhanced plans, that
was 3·1 cc smaller than in non-enhanced, and in maximum doses
to bladder with a MD of 0·65 Gy (95%CI [0·46 to 0·85 Gy]), which
means a change of 1·6%. There was a statistically significant differ-
ence in the dose covering 98% of the PTV of 0·4% of the prescribed
dose; however, this difference may not be clinically meaningful.

Our findings are consistent with those reported by other studies
that had been conducted in this field. For instance, Elawadi et al
conducted a review of 22 studies. Most of the results of these stud-
ies suggest a clinically insignificant effect of contrast agents on
radiotherapy dose calculations. Anyhow, the majority of these
studies assessed the effect of intravenous contrast.1

Only a few studies investigate the effect of oral contrast in the
treatment planification for patients with rectal cancer.
Heydarheydari et al reported the results of six patients with rectal
cancer, and they found that the relative mean dose and MU (mon-
itor units) differences were less than 2%.16 Joseph et al examined
the effect of oral contrast in 13 patients with rectal cancer, and they

reported <0·1% deviation in the dose ratio for all volumes of inter-
est for 3D-CRT plans, while, for IMRT plans, the differences were
in the order of 1% for the mean dose.15 Rankine et al reported the
impact of oral contrast in three patients and found that dose
increase at the isocenter was less than 2·1%.23

The study of Jing et al is the only one which concludes that oral
contrast agents caused clinically significant changes in the dose cal-
culations for the targets and critical structures, especially for bowel
doses.4 They reported data from VMAT plans of 33 rectal cancer
patients, and they argued that the bowel volume receiving ≥50 Gy
was dramatically increased, when oral contrast within the bowel
was absent (MD 0·9 cc ± 0·93 cc).4 Considering that our study also
found differences, even greater than that reported by Jing et al
(3·1 cc), additional efforts should be done to determine if this dif-
ference could be clinically significant. Jing et al explain these
differences in patients in which greater volume of enhanced intes-
tine is overlapping or near to the PTV. They concluded that the
larger the volume of the enhanced bowel near the path of the
beams, the more significant is the dose underestimation in the
calculation.4

In our study, using gamma index evaluation, 96% of the
included patients satisfied the 2% and 2 mm criteria, in accor-
dance with the study of Elawadi et al, which evaluated the gamma
index between unenhanced and enhanced CTs from 226 cancer
patients of different locations. Their analysis revealed that 94% of
plans satisfied this recommendation, but oral contrast was used
just in a few patients. Additionally, they found that bowel move-
ment induced differences in two of three of the included rectal
cancer patients.1

Table 3. Mean differences in target coverage and doses to small intestine and bladder in 3D-CRT plans. Dose metrics are reported according with our institutional
dose constraints

Mean values (SD)

Mean difference (95% CI) p-value paired t-test/Wilcoxon signed rank testaPre-contrast Post-contrast

PTV D98% 1th phase 43·82 Gy (±0·53) 43·82 Gy (±0·52) 0·002 Gy (−0·13 to 0·14) 0·96

PTV D98% 2nd phase 5·22 Gy (±0·07) 5·22 Gy (±0·06) 0·0006 Gy (−0·01 to 0·01) 0·93

PTV D2% 1th phase 47·67 Gy (±0·64) 47·62 Gy (±0·57) 0·05 Gy (−0·06 to 0·17) 0·33

PTV D2% 2nd phase 5·68 Gy (±0·08) 5·67 Gy (±0·08) 0·01 Gy (0·003 to 0·02) 0·011

Small intestine V45 cc 28·7 cc (range 114·5) 34·1 cc (range 537·4) na Z− 0·6 0·54b

Bladder V45 % 71·5 % (±16·4) 70·4% (±15·7) 1·06% (−0·79 to 2·9%) 0·24

Bladder maximum dose 52·75 Gy (±0·9) 52·49 Gy (±0·89) 0·26 Gy (0·05 to 0·47) 0·017

aPaired t-test was used except data with b.
bWilcoxon signed-rank test was used.

Table 4. Mean differences in target coverage and doses to small intestine and bladder in IMRT/VMAT plans

Mean values (SD)

Mean difference (95% CI) p-value paired t-test/Wilcoxon signed rank testaPre-contrast Post-contrast

PTV D98% 48·99 Gy (±0·75) 48·77 Gy (±0·75) 0·22 Gy (0·05–0·39) 0·011

PTV D2% 52·52 Gy (range 3·2) 52·22 Gy (range 2·7) na Z-4·45< 0·0001b

Small intestine V45 cc 23·5 cc (±21·3) 20·37 cc (±22·2) 3·1 cc (0·81–5·4) 0·010

Bladder V45 % 29·6 % (±10·6) 26·7% (±10·8) 2·9% (1·4–4·3%) <0·0001

Bladder maximum dose 51·32 Gy (±0·74) 50·66 Gy (±0·62) 0·65 Gy (0·46–0·85) <0·0001

aPaired t-test was used except data with b.
bWilcoxon signed-rank test was used.
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The present study has some strengths. Firstly, unlike all the
aforementioned studies, the unenhancement was not simulated.
A more comprehensive method was used, using a quasi-experi-
mental approach, in which patients were prospectively included
in a protocol designed to scan these patients in the same position
twice: once before and once after oral contrast application, trying
to avoid differences in positioning. On the other hand, expert radi-
ation oncologists conducted the process of target delineation very
carefully, following an institutional protocol. Furthermore, a pilot
study was conducted among participating medical physicists, to
ensure standardisation of the planning process. Finally, the gamma
index evaluation was used as an additional method to evaluate the
volumetric dose difference between enhanced and non-
enhanced CT.

Some limitations could be mentioned about our study. As oral
contrast takes time to reach the intestine, we waited 40 min
between unenhanced and enhanced CTs. This fact introduced var-
iations in OARs volumes that could explain some changes in dosi-
metric parameters. Still, this methodology is more accurate than
the methodology used by studies which simulate unenhancement.
As the present study is basically dosimetric, it is difficult to decide
which differences in doses are clinically meaningful. Studies
exploring clinical outcomes may be helpful in this issue; however,
this kind of studies has not been done to our knowledge. Finally, in
the present study the volume of PTV overlapping with enhanced
intestine was not measured, which could be large since five oper-
ated patients were included. Some studies have reported that the
volume of enhanced intestine within the PTV, or overlapping with
the PTV, was significantly correlated with changes in the doses.4,15

Conclusion

For most of the assessed outcomes, there were no clinically mean-
ingful differences, between unenhanced and enhanced CT, in tar-
get coverage and OARs dose limits for 3D-CRT and IMRT/VMAT
plans. The most important difference was found in small bowel
dose metrics limits. This difference could lead to an underestima-
tion of the volume of the small intestine receiving 45 Gy when the
planning is performed directly on an enhanced CT. However, after
assessing concordance of unenhanced and enhanced plans with
gamma index, overall, the use of small bowel oral contrast does
not significantly influence dose calculations.

These observations indicate that in general, dose calculation
performed on an oral contrast-enhanced CT produces reliable
plans for most patients, as long as they adhere to protocols with
pre-established coverage parameters and OARs dose limits.

Cautions should be taken in specific situations as when a con-
siderable volume of enhanced intestine is overlapping or near to
the PTV or when treatment planning dose–volume constraints
are very close to being met. In these scenarios, planning in an
enhanced CT could be problematic.
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