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Abstract

The extremes of a univariate Markov chain with regularly varying stationary marginal
distribution and asymptotically linear behavior are known to exhibit a multiplicative
random walk structure called the tail chain. In this paper we extend this fact to Markov
chains with multivariate regularly varying marginal distributions in R

d . We analyze both
the forward and the backward tail process and show that they mutually determine each
other through a kind of adjoint relation. In a broader setting, we will show that even for
non-Markovian underlying processes a Markovian forward tail chain always implies that
the backward tail chain is also Markovian. We analyze the resulting class of limiting
processes in detail. Applications of the theory yield the asymptotic distribution of both
the past and the future of univariate and multivariate stochastic difference equations
conditioned on an extreme event.
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1. Introduction

Consider a discrete-time, R
d -valued random process {Xt : t = 0, 1, 2, . . .} defined by the

recursive equation
Xt = �(Xt−1, εt ), t = 1, 2, . . . , (1.1)

where

(C1) ε1, ε2, . . . are independent and identically distributed (i.i.d.) random elements of a mea-
surable space (E, E) and independent of X0, and

(C2) � is a measurable function from R
d × E to R

d .

If the process {Xt } happens to be stationary, it will be assumed to be defined for all integer t .
The distribution of X0 is assumed to be multivariate regularly varying.

The aim of this paper is to analyze the special structure of weak limits of the finite-dimen-
sional distributions of the process conditional on ‖X0‖ being large, where ‖ · ‖ denotes the
Euclidean norm. More precisely, we will investigate the weak limits, called the forward tail
chain, of vectors of the form (X0, . . . , Xt ) given that ‖X0‖ exceeds a high threshold. In
addition, if the process is stationary we will extend this to find the so-called back-and-forth
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1134 A. JANSSEN AND J. SEGERS

tail chain, which corresponds to the weak limits of vectors of the form (X−s , . . . , Xt ) given
that ‖X0‖ is large. A close relation of these processes to multivariate regular variation of the
whole process has been analyzed in Basrak and Segers (2009). In this paper we are interested
in the special form of the processes, in particular the Markovian structure of both the forward
and the backward process and how they necessarily determine each other.

The process {Xt } is obviously a discrete-time homogeneous Markov chain. On the other
hand, every homogeneous discrete-time Markov chain {Xt } on R

d can be represented as in
(1.1), (C1), and (C2), as shown by Kifer (1986). Of course, for a given Markov chain {Xt }
the above representation is not unique. The way in which Markov chains are defined is often
through a recursive equation; all the examples in Goldie (1991, pp. 126–127), for instance, are
of this type. The chain is stationary if and only if the random vectors X1 = �(X0, ε1) and X0
are equal in law.

In Smith (1992) and Perfekt (1994), excursions of a univariate Markov chain over a high
threshold following an extreme event are shown to behave asymptotically and under quite gen-
eral conditions as a (multiplicative) random walk. The theory has been extended to multivariate
Markov chains in Perfekt (1997) and to higher-order Markov chains in Yun (1998), (2000).
More recently, Resnick and Zeber (2013) analyzed the topic with a focus on the convergence of
Markov kernels, adding a criterion to distinguish between extreme and nonextreme states of a
Markov chain as the threshold rises. The random walk representation is useful from a statistical
perspective because it gives an understanding of how to model the extremes of certain time
series (Bortot and Coles (2000), Coles et al. (1994), Smith et al. (1997)). A useful and widely
investigated class of processes, for which the random walk structure is quite revealing, are the
stationary solutions to certain stochastic difference equations, including squared (generalized)
autoregressive conditionally heteroskedastic (ARCH/GARCH) processes as a special case (see
Basrak et al. (2002b), Gomes et al. (2004), and de Haan et al. (1989)).

One limitation of the theory of Smith (1992), Perfekt (1994), and Resnick and Zeber (2013)
is that it is specialized to univariate, nonnegative Markov chains. Similarly, Perfekt (1997)
considers only the upper extremes of a multivariate Markov chain. When extending the theory
to real-valued and higher-dimensional chains, we have to keep in mind that the extremes may
be both positive or negative and that extreme values of Xt may depend not only on ‖Xt−1‖ but
also on Xt−1/‖Xt−1‖. We will focus on the simplest case of the extension, which deals with
real-valued univariate Markov chains, where an extreme value of Xt may depend on the sign
of Xt−1. This can be seen, for instance, in the time series of logreturns of prices of financial
securities in periods of high volatility. The observation of this so-called leverage effect has
lead to the formulation of asymmetric extensions of GARCH models (compare, for example,
Zivot (2009)). For such Markov chains with a tail-switching potential, the random walk
representation of excursions over high thresholds breaks down in the sense that the distribution
of the multiplicative increment now depends in general on the sign of the chain in the previous
step. In Bortot and Coles (2003), a more general representation is postulated that involves four
transition mechanisms rather than one, corresponding to the four cases of transitions to and
from upper or lower extreme states.

The novelty of this paper is two-fold: firstly, to explicitly state the random walk repre-
sentation in the general R

d -valued case; and, secondly, in the stationary case, to study the
joint distribution of the forward and backward tail chain, coined the back-and-forth tail chain.
Throughout, some remarkable simplifications in the (univariate) real-valued case will be studied
in more detail. In particular, in the univariate case the backward tail chain is again a random
walk which is, in some sense, dual the forward tail chain. Besides the assumption that the

https://doi.org/10.1239/jap/1421763332 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1421763332


Markov tail chains 1135

distribution of X0 is regularly varying, the only condition is a relatively easy-to-check statement
on the asymptotic behavior of �(x, · ) for large ‖x‖.

The outline of the paper is as follows. The forward tail chain of a possibly nonstationary
R

d -valued Markov chain is studied in Section 2. In Section 3 we examine the backward
tail chain, where, for stationary Markov chains, the tail chain can be extended backwards in
time. Section 4 describes a kind of adjoint relation between distributions which is motivated
by a general property of tail processes of stationary processes. In Section 5 we show that
a certain class of processes, coined back-and-forth tail chains, which are derived from this
adjoint distribution, form exactly the class of tail processes which arise in our Markovian
setting. Finally, Section 6 provides some examples of the theory, including an application to
stationary solutions of (multivariate) stochastic difference equations.

To conclude this section, let us fix some notation. We write (x)+ = max(x, 0) for the
positive part of x ∈ R and (x)− = min(x, 0) for the negative part. The transpose of a matrix A

is denoted by A�. The law of a random vector X is denoted by L(X) and weak convergence
of probability measures is denoted by ⇒. The probability measure degenerate at a point x is
denoted by δx , and Unif(E) denotes the uniform distribution on a compact set E. The indicator
of an event A is denoted by 1A(·). We write R̄ for R∪{−∞, ∞}, S

d−1 for {x ∈ R
d : ‖x‖ = 1},

and 0 for a vector (of suitable dimension) which consists of all 0s. Let Z be the set of integers
and N0 be the set of nonnegative integers.

2. Forward tail chains

Let X0, X1, X2, . . . be a homogeneous Markov chain as in (1.1), (C1), and (C2), but not
necessarily stationary. The focus of this section is on the weak limits of the finite-dimensional
distributions of the process conditionally on ‖X0‖ being large (Theorem 2.1). Two conditions
are required: Condition 2.1 on the tails of X0, and Condition 2.2 on the asymptotics of x 	→
�(x, e) for large ‖x‖. See, for instance, Resnick (2007) for details on multivariate regular
variation.

Condition 2.1. The distribution of X0 is multivariate regularly varying on R̄
d \ {0}, that is,

there exists a nondegenerate probability measure ϒ on S
d−1 (called the spectral measure) and

an α > 0 such that

lim
x→∞ P

(
‖X0‖ > ux,

X0

‖X0‖ ∈ S | ‖X0‖ > x

)
= u−αϒ(S)

for all Borel sets S ⊂ S
d−1 which satisfy ϒ(∂S) = 0 and u ≥ 1.

The second condition states that the function � in (1.1) is asymptotically homogeneous in
x for large values of ‖x‖.

Condition 2.2. There exists a measurable map φ : S
d−1 × E 	→ R

d such that, for all e ∈ E,

lim
x→∞ x−1�(xs(x), e) = φ(s, e) whenever s(x) → s in S

d−1. (2.1)

Moreover, if P(φ(s, ε1) = 0) > 0 for some s ∈ S
d−1 then P(ε1 ∈ W) = 1 also, where W is

a measurable subset of E such that, for all e ∈ W,

sup
‖y‖≤x

‖�(y, e)‖ = O(x), x → ∞. (2.2)
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We extend the domain of the limit function φ in (2.1) to R
d × E by setting

φ(v, e) =
{

‖v‖φ(
v

‖v‖ , e
)

if v �= 0,

0 if v = 0.
(2.3)

Lemma 2.1. If Condition 2.2 holds then

lim
x→∞ x−1�(xv(x), e) = φ(v, e) (2.4)

whenever v(x) → v ∈ R
d \ {0} and e ∈ E. If P(φ(s, ε1) = 0) > 0 for some s ∈ S

d−1 then
(2.4) also holds for v(x) → v = 0 and e ∈ W.

Proof. If v(x) → v ∈ R
d \{0} then both ‖v(x)‖ → ‖v‖ and v(x)/‖v(x)‖ → v/‖v‖. Thus,

lim
x→∞

�(xv(x), e)

x
= lim

x→∞ ‖v(x)‖�(x‖v(x)‖(v(x)/‖v(x)‖), e)
x‖v(x)‖ = ‖v‖φ

(
v

‖v‖ , e

)

which, by (2.3), gives (2.4). The case v(x) → 0 follows from (2.2).

Theorem 2.1. Let {Xt : t ∈ N0} be given by (1.1), (C1), and (C2). If Conditions 2.1 and 2.2
hold, then for every integer t ≥ 0, as x → ∞,

L

(‖X0‖
x

,
X0

‖X0‖ ,
X1

‖X0‖ , . . . ,
Xt

‖X0‖
∣∣∣∣ ‖X0‖ > x

)
⇒ L(Y, M0, M1, . . . , Mt )

with
Mj = φ(Mj−1, εj ), j = 1, 2, . . . , (2.5)

and

(i) Y, M0, ε1, ε2, . . . are independent with εt as in (1.1) and (C1),

(ii) P(Y > y) = y−α for y ≥ 1,

(iii) L(M0) = ϒ .

We call {Mt : t ∈ N0} the forward tail chain of {Xt : t ∈ N0}.
Proof. The argument is by induction on t . The t = 0 case is a straightforward consequence

of Condition 2.1. So let t be a positive integer and let f : R × (Rd)t+1 → R be bounded and
continuous. We have to show that

lim
x→∞ E

[
f

(‖X0‖
x

,
X0

‖X0‖ , . . . ,
Xt

‖X0‖
) ∣∣∣∣ ‖X0‖ > x

]
= E[f (Y, M0, . . . , Mt )]. (2.6)

By (1.1), if X0 �= 0,

Xt

‖X0‖ = �(Xt−1, εt )

‖X0‖ = �(x((‖X0‖/x)(Xt−1/‖X0‖)), εt )

x(‖X0‖/x)
.

Hence,

(2.7)E

[
f

(‖X0‖
x

,
X0

‖X0‖ , . . . ,
Xt

‖X0‖
) ∣∣∣∣ ‖X0‖ > x

]

= E

[
gx

(‖X0‖
x

,
X0

‖X0‖ , . . . ,
Xt−1

‖X0‖
) ∣∣∣∣ ‖X0‖ > x

]
, (2.8)
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where

gx(y, x0, . . . , xt−1) = E

[
f

(
y, x0, . . . , xt−1,

�(xyxt−1, εt )

xy

)]
(2.9)

(note that the expectation is taken with respect to the distribution of εt ). Define

g(y, x0, . . . , xt−1) = E[f (y, x0, . . . , xt−1, φ(xt−1, εt ))]. (2.10)

By (2.5),
E[f (Y, M0, . . . , Mt )] = E[g(Y, M0, . . . , Mt−1)]. (2.11)

In view of the identities (2.8) and (2.11), the limit relation in (2.6) will follow if we can show
that

E

[
gx

(‖X0‖
x

,
X0

‖X0‖ , . . . ,
Xt−1

‖X0‖
) ∣∣∣∣ ‖X0‖ > x

]
→ E[g(Y, M0, . . . , Mt−1)] (2.12)

as x → ∞. In turn, (2.12) will follow from the induction hypothesis and an extension of the
continuous mapping theorem (van der Vaart (1998, Theorem 18.11)) provided

lim
x→∞ gx(y(x), x0(x), . . . , xt−1(x)) = g(y, x0, . . . , xt−1) (2.13)

whenever y(x) → y and xi(x) → xi as x → ∞ with (y, x0, . . . , xt−1) ranging over a set
E ⊂ R × (Rd)t with P((Y, M0, . . . , Mt−1) ∈ E) = 1. From the definitions of gx and g in
(2.9) and (2.10), respectively, (2.13) is implied by

lim
x→∞

�(xw(x), v)

x
= φ(w, v) (2.14)

whenever limx→∞ w(x) = w and where w and v range over sets that receive probability one
by the distributions of Mt−1 and ε1, respectively. Since (2.14) is ensured by Condition 2.2 and
Lemma 2.1, the statement follows. This concludes the proof.

3. Backward tail processes

From now on, the process {Xt } in (1.1), (C1), and (C2) is assumed to be strictly stationary.
A necessary and sufficient condition for stationarity is that

L(�(X0, ε1)) = L(X0). (3.1)

It may be highly nontrivial to find the law for X0 that solves (3.1). But even when the stationary
distribution does not admit an explicit expression, its tails may, in many cases, be found by
the theory originally developed in Kesten (1973), Letac (1986), and Goldie (1991). For recent
results on specific models; see, for instance, Klüppelberg and Pergamenchtchikov (2003),
(2004), De Saporta et al. (2004), Mirek (2011), Buraczewski et al. (2012), and Collamore and
Vidyashankar (2013).

If the process {Xt } is stationary, then by Kolmogorov’s extension theorem and changing the
probability space if necessary, the range of t can without loss of generality be assumed to be
the set of all integers, Z; recall that we are interested in distributional properties only, and not
in almost-sure properties.

Our aim is to extend Theorem 2.1 and find the asymptotic distribution of the random vector
(X−s , . . . , Xt ) conditionally on ‖X0‖ > x as x → ∞, for all integer s and t (Corollary 5.1).
According to Basrak and Segers (2009, Theorem 2.1), if the underlying process is stationary,
the existence of a forward tail process (t ∈ N0) is enough to guarantee the existence of the tail
process as a whole (t ∈ Z).
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Proposition 3.1. Let {Xt : t ∈ Z} be a stationary Markov chain with distribution determined
by (1.1), (C1), (C2), and (3.1). If Conditions 2.1 and 2.2 hold then there exists a process
{Mt : t ∈ Z} such that, as x → ∞,

L

(
X−s

‖X0‖ , . . . ,
X0

‖X0‖ , . . . ,
Xt

‖X0‖
∣∣∣∣ ‖X0‖ > x

)
⇒ L(M−s , . . . , M0, . . . , Mt )

for all integers s, t ≥ 0.

Proof. The proof follows from our Theorem 2.1 and Theorem 2.1 in Basrak and Segers
(2009), combined with a continuous mapping argument.

We call the process {Mt : t ∈ Z} the spectral (tail) process of {Xt : t ∈ Z}, in accordance
with the definition of the process {	t : t ∈ Z} in Basrak and Segers (2009).

Basrak and Segers (2009) also state an important property of the limiting process.

Proposition 3.2. Let {Xt : t ∈ Z} be a stationary Markov chain with distribution determined
by (1.1), (C1), (C2), and (3.1), and spectral process {Mt : t ∈ Z}. Then for all s, t ≥ 0 and
for all bounded and measurable f : (Rd)s+t+1 → R satisfying f (y−s , . . . , yt ) = 0 whenever
y−s = 0,

E[f (M−s , . . . , Mt )] = E

[
f

(
M0

‖Ms‖ , . . . ,
Ms+t

‖Ms‖
)

‖Ms‖α1{Ms �=0}
]
. (3.2)

Proof. It follows directly from our Proposition 3.1 and Theorem 3.1 in Basrak and Segers
(2009) that

E[f (M−s−i , . . . , Mt−i )] = E

[
f

(
M−s

‖Mi‖ , . . . ,
Mt

‖Mi‖
)

‖Mi‖α1{Mi �=0}
]

(3.3)

holds for all bounded and continuous f : (Rd)t+s+1 → R satisfying f (y−s , . . . , yt ) = 0
whenever y0 = 0 (instead of y−s = 0) and all i ∈ Z. We have added the indicator function
on the right-hand side for greater clarity. Let s, t , and f be the same as in the statement of
Proposition 3.2. Apply (3.3) to the indices (s, t, i) = (0, t + s, s) to arrive at (3.2); note that
s + 1 + t = s + 1 + t and f (x−s , . . . , xt ) = 0 as soon as x0 = 0. Thus, for functions f which
are additionally assumed to be continuous, the statement follows directly.

For the general case, we set for abbreviation A
∗ := (Rd)s+t+1 \ ({0} × (Rd)s+t ). Fur-

thermore, let μ denote the restriction of the law of (M−s , . . . , Mt ) to A
∗ and let ν denote the

measure on A
∗ defined by

ν(f ) = E

[
f

(
M0

‖Ms‖ , . . . ,
Ms+t

‖Ms‖
)

‖Ms‖α1{Ms �=0}
]

for all bounded and continuous f on A
∗. In order to show (3.2) for a general bounded and

measurable f with f (y−s , . . . , yt ) = 0 if y−s = 0 it is sufficient to show that μ and ν

coincide. The closed sets of (Rd)s+t+1 which are bounded away from {0} × (Rd)s+t are a
π -system generating B(A∗). Indicator functions of closed sets A can be written as pointwise
limits of continuous functions with values in [0, 1]. If A is bounded away from {0} × (Rd)s+t

we can choose these approximating continuous functions in such a way that they vanish on
{0} × (Rd)s+t . Thus, by dominated convergence μ(A) = ν(A) for all sets A of a generating
π -system and, therefore, μ = ν on the Borel sets of A

∗ (Billingsley (1968, Theorem 2.2)),
concluding the proof.
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By Lemma 2.2 in Basrak and Segers (2009) it follows that the distribution of {Mt : t ∈ Z}
is uniquely determined by the distribution of {Mt : t ∈ N0} (and α > 0). We will use (3.2)
to analyze the structure of the spectral process with a special focus on the backward process
{M−t : t ∈ N0}. At the heart of the connection between the forward and backward processes
is an adjoint relation between the laws of (M0, M1) and (M0, M−1), which we will examine in
the next section.

4. An adjoint relation between distributions

A special case of the equality (3.2) is

E[f (M−1, M0)] = E

[
f

(
M0

‖M1‖ ,
M1

‖M1‖
)

‖M1‖α1{M1 �=0}
]

(4.1)

for all f : (Rd)2 → R satisfying f (y0, y1) = 0 whenever y0 = 0. Starting from a given
distribution of (M0, M1) we will characterize the distributions of (M−1, M0) which satisfy (4.1).
For such an adjoint distribution to exist, the distribution (M0, M1) cannot be chosen arbitrarily
from the distributions on S

d−1 × R
d . We therefore introduce the following set of ‘admissible’

distributions.

Definition 4.1. For α ∈ (0, ∞), let Mα = Mα,d be the set of all probability measures P on
S

d−1 × R
d such that∫

Sd−1×(Rd\{0})
1S

(
m

‖m‖
)

‖m‖α
P(ds, dm) ≤ P(S × R

d) (4.2)

for every Borel set S ⊂ S
d−1. We call Mα the set of admissible distributions for α > 0.

Note that for P ∈ Mα we have∫
Sd−1×Rd

‖m‖α
P(ds, dm) ≤ 1.

Now we make the aforementioned notion of an ‘adjoint’ distribution more concise.

Definition 4.2. For P ∈ Mα , define a signed Borel measure P
∗ on S

d−1 × R
d by

P
∗(S × {0}) = P(S × R

d) −
∫

Sd−1×(Rd\{0})
1S

(
m

‖m‖
)

‖m‖α
P(ds, dm), (4.3)

P
∗(E) =

∫
Sd−1×(Rd\{0})

1E

(
m

‖m‖ ,
s

‖m‖
)

‖m‖α
P(ds, dm), (4.4)

for Borel sets S ⊂ S
d−1 and E ⊂ S

d−1 × (Rd \ {0}). We call P
∗ the adjoint measure of P

in Mα .

Lemma 4.1. Let P ∈ Mα and let P
∗ be the same as in Definition 4.2.

(i) P
∗ is a probability measure and the marginal distributions induced by P and P

∗ on S
d−1

are the same.
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(ii) For every measurable function f : S
d−1 × (Rd \ {0}) → R,∫

Sd−1×(Rd\{0})
f (s∗, m∗)P∗(ds∗, dm∗)

=
∫

Sd−1×(Rd\{0})
f

(
m

‖m‖ ,
s

‖m‖
)

‖m‖α
P(ds, dm) (4.5)

in the sense that if one integral exists then so does the other, and they are the same.

(iii) P
∗ ∈ Mα .

(iv) (P∗)∗ = P.

Proof. (i) By (4.2), P
∗ is a nonnegative Borel measure. Let S be a Borel subset of S

d−1.
We have

P
∗(S × R

d) = P
∗(S × {0}) + P

∗(S × (Rd \ {0})).
Applying (4.3) to the first term on the right-hand side and applying (4.4) with E = S×(Rd \{0})
to the second term on the right-hand side yields

P
∗(S × R

d) = P(S × R
d).

It follows that P
∗ is a probability measure (take S = S

d−1) on S
d−1 × R

d inducing the same
marginal distribution on S

d−1 as P.

(ii) By (4.4), Lemma 4.1(ii) holds for indicator functions 1E of Borel subsets E of S
d−1 ×(Rd \

{0}). The extension to general bounded, measurable functions follows from the definition of
the integral.

(iii) Let S be a Borel subset of S
d−1. We will apply Lemma 4.1(ii) to the function

f (s, m) = 1S

(
m

‖m‖
)

‖m‖α for (s, m) ∈ S
d−1 × (Rd \ {0}).

We find that ∫
Sd−1×(Rd\{0})

1S

(
m∗

‖m∗‖
)

‖m∗‖α
P

∗(ds∗, dm∗)

=
∫

Sd−1×(Rd\{0})
f (s∗, m∗)P∗(ds∗, dm∗)

=
∫

Sd−1×(Rd\{0})
f

(
m

‖m‖ ,
s

‖m‖
)

‖m‖α
P(ds, dm)

=
∫

Sd−1×(Rd\{0})
1S

(
s/‖m‖

‖(s/‖m‖)‖
)∥∥∥∥ s

‖m‖
∥∥∥∥

α

‖m‖α
P(ds, dm)

= P(S × (Rd \ {0}))
≤ P(S × R

d)

= P
∗(S × R

d),

where we applied (i) in the last step.

(iv) Let Q = (P∗)∗. We already know that Q is a probability measure on S
d−1 × R

d , that
Q ∈ Mα , and that the marginal induced by Q on S

d−1 coincides with the one of P
∗ and thus
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with the one of P. Let f be a nonnegative, measurable function on S
d−1 × (Rd \ {0}). Define

the nonnegative, measurable function g on S
d−1 × (Rd \ {0}) by

g(s, m) = f

(
m

‖m‖ ,
s

‖m‖
)

‖m‖α for (s, m) ∈ S
d−1 × (Rd \ {0}).

We have

g

(
m

‖m‖ ,
s

‖m‖
)

‖m‖α = f

(
s/‖m‖

‖(s/‖m‖)‖ ,
m/‖m‖

‖(s/‖m‖)‖
)∥∥∥∥ s

‖m‖
∥∥∥∥

α

‖m‖α = f (s, m). (4.6)

By Lemma 4.1(ii) applied first to Q and f and then to P
∗ and g, we have∫

Sd−1×(Rd\{0})
f (s, m)Q(ds, dm)

=
∫

Sd−1×(Rd\{0})
f

(
m∗

‖m∗‖ ,
s∗

‖m∗‖
)

‖m∗‖α
P

∗(ds∗, dm∗)

=
∫

Sd−1×(Rd\{0})
g(s∗, m∗)P∗(ds∗, dm∗)

=
∫

Sd−1×(Rd\{0})
g

(
m

‖m‖ ,
s

‖m‖
)

‖m‖α
P(ds, dm)

=
∫

Sd−1×(Rd\{0})
f (s, m)P(ds, dm),

where we used (4.6) in the last step. It follows that Q and P coincide on S
d−1 × (Rd \ {0}).

As Q and P also induce the same marginal distributions on S
d−1, it follows that they must also

coincide on S
d−1 × {0}. As a consequence, Q is equal to P.

The next lemma shows that the class Mα and the adjoint relation on it arise naturally in the
context of regularly varying Markov chains.

Lemma 4.2. Let {Xt : t ∈ Z} be a stationary Markov chain with distribution determined by
(1.1), (C1), (C2), and (3.1). If Conditions 2.1 and 2.2 hold then L(M0, M1) belongs to Mα

and its adjoint is equal to L(M0, M−1).

Proof. To prove admissibility, we have to show that

E

[
1S

(
M1

‖M1‖
)

‖M1‖α

]
≤ P(M0 ∈ S) for every Borel set S ⊂ S

d−1. (4.7)

Let f be a bounded, nonnegative and continuous function on S
d−1. We will show that

E

[
f

(
M1

‖M1‖
)

‖M1‖α

]
≤ E[f (M0)]. (4.8)

Equation (4.8) implies (4.7) for closed sets S because the indicator function of a closed set S

can be written as the pointwise limit of a decreasing sequence of continuous functions taking
values in the interval [0, 1]. From this we arrive at (4.7) for an arbitrary Borel set S by invoking
an increasing sequence of closed sets Sn contained in S such that E[1Sn(M1/‖M1‖)‖M1‖α]
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and P(M0 ∈ Sn) converge to E[1S(M1/‖M1‖)‖M1‖α] and P(M0 ∈ S), respectively (see, for
instance, Theorem 1.1 in Billingsley (1968, p. 7)).

Let δ > 0. By stationarity of {Xt : t ∈ Z} and by definition of the spectral process {Mt : t ∈
Z}, we have

E[f (M0)] = lim
x→∞ E

[
f

(
X1

‖X1‖
)

| ‖X1‖ > x

]

≥ lim sup
x→∞

E

[
1{‖X0‖>δx}f

(
X1

‖X1‖
)

| ‖X1‖ > x

]

= lim sup
x→∞

P[‖X0‖ > δx]
P[‖X1‖ > x] E

[
f

(
X1

‖X1‖
)

1{‖X1‖>x} | ‖X0‖ > δx

]

= δ−α
E

[
f

(
M1

‖M1‖
)

1{Y‖M1‖>δ−1}
]
.

In the last line, Y is a Pareto(α) random variable, independent of M1. As P(Y‖M1‖ = δ−1) = 0
by continuity of the law of Y , the last equality in the above display follows from the continuous
mapping theorem.

Since the distribution of Y−α is uniform on the interval (0, 1), we have

δ−α
E

[
f

(
M1

‖M1‖
)

1{Y‖M1‖>δ−1}
]

= δ−α
E

[
f

(
M1

‖M1‖
)

1{δα‖M1‖α>Y−α}
]

= δ−α
E

[
E

[
f

(
M1

‖M1‖
)

1{δα‖M1‖α>Y−α} | M1

]]

= δ−α
E

[
f

(
M1

‖M1‖
)

min(δα‖M1‖α, 1)

]

= E

[
f

(
M1

‖M1‖
)

min(‖M1‖α, δ−α)

]
.

We obtain that for every δ > 0,

E[f (M0)] ≥ E

[
f

(
M1

‖M1‖
)

min(‖M1‖α, δ−α)

]
.

Take the limit as δ → 0 and apply the monotone convergence theorem to obtain (4.8).

Next we show that the adjoint of L(M0, M1) is equal to L(M0, M−1). We have to check
the two equations

(4.9)P((M0, M−1) ∈ S × {0}) = P(M0 ∈ S) − E

[
1Rd\{0}(M1)1S

(
M1

‖M1‖
)

‖M1‖α

]
,

P((M0, M−1) ∈ E) = E

[
1Rd\{0}(M1)1E

(
M1

‖M1‖ ,
M0

‖M1‖
)

‖M1‖α

]
, (4.10)

for all Borel sets S ⊂ S
d−1 and E ⊂ S

d−1×(Rd \{0}). Since the first component M0 is common
to both laws it is sufficient to check only the second equation, (4.10). Set f (m−1, m0) =
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1E(m0, m−1) on R × S
d−1. Note that f (0, m0) = 0. Apply (4.1) to f , to obtain

P((M0, M−1) ∈ E) = E[f (M−1, M0)]
= E

[
f

(
M0

‖M1‖ ,
M1

‖M1‖
)

‖M1‖α1{M1 �=0}
]

= E

[
1Rd\{0}(M1)1E

(
M1

‖M1‖ ,
M0

‖M1‖
)

‖M1‖α

]
,

which gives (4.10) as required.

Remark 4.1. The determination of the adjoint measure is particularly simple for probability
measures P such that ∫

Sd−1×Rd

‖m‖α
P(ds, dm) = 1, (4.11)

since in this case P
∗(Sd−1 × {0}) = 0 by (4.3) and P

∗ is completely described by (4.4).

Remark 4.2. We call a measure P ∈ Mα self-adjoint if P
∗ = P. An example for such a

distribution in the case of d = 1 and α = 1 is given by P = L(1, Y ), where Y = exp(X − 1
2 )

for a standard normally distributed X (compare Segers (2007, Example 3.2)).

Definition 4.2 and Lemma 4.1 generalize Proposition 3.1 in Segers (2007) to the multivariate
case. Examples 3.2–3.4 in Segers (2007) illustrate the adjoint relation for laws on {−1, +1}×R.
We conclude the section with a multivariate example.

Example 4.1. Let α > 0 and let P be the law of (C, RQC), with C, R and Q independent,
C taking values in S

d−1, R a positive random variable with E[Rα] = 1, and Q a random
orthogonal d × d matrix, that is Q� = Q−1 almost surely; also assume that the laws of C and
QC are the same (compare Example 6.1). We easily verify that P ∈ Mα and (4.11) holds, so
that the adjoint law P

∗ is concentrated on S
d−1 × (Rd \ {0}). Thus, from (4.4) we derive that

for Borel sets S ⊂ S
d−1 and T ⊂ R

d \ {0},

P
∗(S × T ) = E

[
1S(QC)1T

(
C

R

)
Rα

]
. (4.12)

Additionally, if we assume that C is uniformly distributed on S
d−1 (which readily implies

L(C) = L(QC) for any law of Q), then

E[1S(QC)1T (C)] = E

[∫
Rd×d

1S(qC)1T (C)PQ(dq)

]

= E

[∫
Rd×d

1S(C)1T (q ′C)PQ(dq)

]
= E[1S(C)1T (Q′C)]

and it follows from (4.12) that P∗ is the law of (C∗, R∗Q∗C∗), with C∗, R∗, and Q∗ independent,
L(C∗) = L(C), L(Q∗) = L(Q′), and the law of R∗ > 0 given by E[f (R∗)] = E[f (1/R)Rα]
for measurable functions f on (0, ∞).
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5. Back-and-forth tail chains and the spectral process

In this section we will analyze a certain class of discrete-time processes which are constructed
from a pair of adjoint distributions. We will see that this class of processes fulfills (3.2) for all
s, t ≥ 0.

Definition 5.1. A d-dimensional discrete-time process {Mt : t ∈ Z} is called a back-and-forth
tail chain with index α > 0, notation BFTC(α), if the following properties hold.

(i) L(M0, M1) and L(M0, M−1) belong to Mα and are adjoint.

(ii) The forward process {Mt : t ∈ N0} is a Markov chain with respect to the filtration
σ(Ms, −∞ < s ≤ t), t ≥ 0, and the Markov kernel satisfies

P(Mt ∈ · | Mt−1 = xt−1) =
{

δ0(·) if xt−1 = 0,

P

(
‖xt−1‖M1 ∈ ·

∣∣∣M0 = xt−1
‖xt−1‖

)
if xt−1 �= 0.

(iii) The backward process {M−t : t ∈ N0} is a Markov chain with respect to the filtration
σ(M−s , −∞ < s ≤ t), t ≥ 0, and the Markov kernel satisfies

P(M−t ∈ · | M−t+1 = x−t+1)

=
{

δ0(·) if x−t+1 = 0,

P

(
‖x−t+1‖M−1 ∈ ·

∣∣∣M0 = x−t+1
‖x−t+1‖

)
if x−t+1 �= 0.

Clearly, {Mt : t ∈ Z} is a BFTC(α) if and only if {M−t : t ∈ Z} is a BFTC(α). The
distribution of a BFTC(α) is completely determined by an admissible law of (M0, M1) (and
α > 0).

The fact that the distributions P = L(M0, M1) and P
∗ = L(M0, M−1) are adjoint in Mα

implies that for every measurable function f : R
d × S

d−1 → R such that f (0, s) = 0 for all
s ∈ S

d−1, we have

(5.1)E[f (M−1, M0)] =
∫

Sd−1×(Rd\{0})
f (m, s)P∗(ds, dm)

=
∫

Sd−1×(Rd\{0})
f (s/‖m‖, m/‖m‖)‖m‖α

P(ds, dm)

= E

[
f

(
M0

‖M1‖ ,
M1

‖M1‖
)

‖M1‖α1{M1 �=0}
]
, (5.2)

in the sense that if one expectation exists, then so does the other, the two expectations being
equal. This corresponds to (4.1) which originally motivated the definition of an adjoint
distribution. The above formula is the special case s = 1 and t = 0 of the following result.

Proposition 5.1. Let {Mt : t ∈ Z} be a BFTC(α). For all integers s, t ≥ 0 and for all
measurable functions f : (Rd)s+1+t → R vanishing on {0} × (Rd)s+t , the s + 1 numbers

E

[
f

(
M−s+i

‖Mi‖ , . . . ,
Mt+i

‖Mi‖
)

‖Mi‖α1{Mi �=0}
]
, i = 0, . . . , s, (5.3)

are all the same, in the sense that if one integral exists then they all exist and they are equal.
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Proof. For s = 0 there is nothing to prove, so assume that s ≥ 1. By definition of the integral,
it is sufficient to consider the case where f is nonnegative, in which case the expectations in
(5.3) are always well defined, possibly equal to ∞.

Reduction to the case i ∈ {0, 1}. Suppose first that we can show that the numbers corre-
sponding to i = 0 and i = 1 in (5.3) are equal, that is (note that ‖M0‖ = 1),

E[f (M−s , . . . , Mt )] = E

[
f

(
M−s+1

‖M1‖ , . . . ,
Mt+1

‖M1‖
)

‖M1‖α1{M1 �=0}
]
. (5.4)

Take arbitrary i = 0, . . . , s − 1. Note that

E

[
f

(
M−s+i

‖Mi‖ , . . . ,
Mt+i

‖Mi‖
)

‖Mi‖α1{Mi �=0}
]

= E[g(M−s+i , . . . , Mt+i )]

for a measurable function g : (Rd)s+1+t → R that vanishes as soon as its first d-tuple of
arguments is 0. By (5.4) applied to s̃ = s − i and t̃ = t + i, we find

E[g(M−s+i , . . . , Mt+i )] = E

[
g

(
M−s+i+1

‖M1‖ , . . . ,
Mt+i+1

‖M1‖
)

‖M1‖α1{M1 �=0}
]
.

By definition of g, if M1 �= 0 then

g

(
M−s+i+1

‖M1‖ , . . . ,
Mt+i+1

‖M1‖
)

= f

(
M−s+i+1/‖M1‖
‖(Mi+1/‖M1‖)‖ , . . . ,

Mt+i+1/‖M1‖
‖(Mi+1/‖M1‖)‖

)∥∥∥∥ Mi+1

‖M1‖
∥∥∥∥

α

1{Mi+1 �=0}

= f

(
M−s+i+1

‖Mi+1‖ , . . . ,
Mt+i+1

‖Mi+1‖
)‖Mi+1‖α

‖M1‖α
1{Mi+1 �=0}.

Combine the previous three displays to see that

E

[
f

(
M−s+i

‖Mi‖ , . . . ,
Mt+i

‖Mi‖
)

‖Mi‖α1{Mi �=0}
]

= E

[
f

(
M−s+i+1

‖Mi+1‖ , . . . ,
Mt+i+1

‖Mi+1‖
)

‖Mi+1‖α1{M1 �=0,Mi+1 �=0}
]
.

By definition of the forward chain (Mt)t≥0, we have Mi+1 = 0 as soon as M1 = 0. As a
consequence, we may suppress the event {M1 �= 0} in the indicator function on the right-hand
side, and, thus,

E

[
f

(
M−s+i

‖Mi‖ , . . . ,
Mt+i

‖Mi‖
)

‖Mi‖α1{Mi �=0}
]

= E

[
f

(
M−s+i+1

‖Mi+1‖ , . . . ,
Mt+i+1

‖Mi+1‖
)

‖Mi+1‖α1{Mi+1 �=0}
]
.

We conclude that in order to show (5.3), it is enough to show (5.4). We will show (5.4) by
induction on s ≥ 1.
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Proof of (5.4) if s = 1. We have to show that

E[f (M−1, . . . , Mt )] = E

[
f

(
M0

‖M1‖ , . . . ,
Mt+1

‖M1‖
)

‖M1‖α1{M1 �=0}
]
. (5.5)

We will proceed by induction on t ≥ 0.
The t = 0 case is nothing more than the adjoint relation between the laws of (M0, M1) and

(M0, M−1); see (5.2).
Let t ≥ 1 and let (5.5) be fulfilled for t − 1. By the Markov property,

E[f (M−1, . . . , Mt )] = E[g(M−1, . . . , Mt−1)]
with

g(m−1, . . . , mt−1) = E[f (m−1, . . . , mt−1, Mt ) | Mt−1 = mt−1].
As g(0, m0, . . . , mt−1) = 0, we can apply the induction hypothesis, yielding

E[g(M−1, . . . , Mt−1)] = E

[
g

(
M0

‖M1‖ , . . . ,
Mt

‖M1‖
)

‖M1‖α1{M1 �=0}
]
.

The defining property of a BFTC implies that for every c > 0, for every integer r ≥ 1, and for
every nonnegative, measurable function h on R

d ,

E

[
h(cMr)

∣∣∣∣Mr−1 = m

c

]
=

⎧⎨
⎩

h(0) if m = 0,

E

[
h(‖m‖M1)

∣∣∣∣M0 = m
‖m‖

]
if m �= 0,

(5.6)

the right-hand side not depending on the scaling constant c nor on the time index r . It follows
that if m1 �= 0,

g

(
m0

‖m1‖ , . . . ,
mt

‖m1‖
)

= E

[
f

(
m0

‖m1‖ , . . . ,
mt

‖m1‖ , Mt

)∣∣∣∣Mt−1 = mt

‖m1‖
]

= E

[
f

(
m0

‖m1‖ , . . . ,
mt

‖m1‖ ,
Mt+1

‖m1‖
)∣∣∣∣Mt = mt

]
.

We find that, on the event {M1 �= 0}, by the Markov property,

g

(
M0

‖M1‖ , . . . ,
Mt

‖M1‖
)

= E

[
f

(
M0

‖M1‖ , . . . ,
Mt

‖M1‖ ,
Mt+1

‖M1‖
)∣∣∣∣M0, . . . , Mt

]
.

We can conclude that

E[f (M−1, . . . , Mt )] = E[g(M−1, . . . , Mt−1)]
= E

[
g

(
M0

‖M1‖ , . . . ,
Mt

‖M1‖
)

‖M1‖α1{M1 �=0}
]

= E

[
f

(
M0

‖M1‖ , . . . ,
Mt

‖M1‖ ,
Mt+1

‖M1‖
)

‖M1‖α1{M1 �=0}
]
,

as required.
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Proof of (5.4) for general s ≥ 1. The case s = 1 was treated above. So let s ≥ 2 and let
(5.4) hold for s − 1. By the Markov property, we have

E[f (M−s , . . . , Mt )] = E[g(M−s+1, . . . , Mt )]
with g : (Rd)s+t → R a nonnegative, measurable function defined by

g(m−s+1, . . . , mt ) = E[f (M−s , m−s+1, . . . , mt ) | M−s+1 = m−s+1].
Conditionally on M−s+1 = 0, we have M−s = 0, and, thus, f (M−s , . . .) = 0 too. It follows
that g(0, m−s+2, . . . , mt ) = 0. By the induction hypothesis, we therefore have

E[g(M−s+1, . . . , Mt )] = E

[
g

(
M−s+2

‖M1‖ , . . . ,
Mt+1

‖M1‖
)

‖M1‖α1{M1 �=0}
]
.

As for the forward chain in (5.6), we have for every nonnegative, measurable function h on R
d

and every c > 0,

E

[
h(cM−r )

∣∣∣∣M−r+1 = m

c

]
=

⎧⎨
⎩

h(0) if m = 0,

E

[
h(‖m‖M−1)

∣∣∣∣M0 = m
‖m‖

]
if m �= 0,

the right-hand side not depending on the scaling constant c > 0 nor on the time index r =
1, 2, . . .. It follows that for m1 �= 0, we have

g

(
m−s+2

‖m1‖ , . . . ,
mt+1

‖m1‖
)

= E

[
f

(
M−s ,

m−s+2

‖m1‖ , . . . ,
mt+1

‖m1‖
)∣∣∣∣M−s+1 = m−s+2

‖m1‖
]

= E

[
f

(
M−s+1

‖m1‖ ,
m−s+2

‖m1‖ , . . . ,
mt+1

‖m1‖
)∣∣∣∣M−s+2 = m−s+2

]
.

Invoking the Markov property again, we conclude that

E[f (M−s , . . . , Mt )] = E[g(M−s+1, . . . , Mt )]
= E

[
g

(
M−s+2

‖M1‖ , . . . ,
Mt+1

‖M1‖
)

‖M1‖α1{M1 �=0}
]

= E

[
f

(
M−s+1

‖M1‖ , . . . ,
Mt+1

‖M1‖
)

‖M1‖α1{M1 �=0}
]
,

as required. This concludes the proof of Proposition 5.1.

The following proposition connects BFTCs and spectral processes.

Proposition 5.2. Let {Yt : t ∈ Z} be an R
d -valued process and let {Mt : t ∈ Z} be an R

d -valued
BFTC(α). If

L(Y0, . . . , Yt ) = L(M0, . . . , Mt ) for all t ≥ 0 (5.7)

and if

E[f (Y−s , . . . , Yt )] = E

[
f

(
Y0

‖Ys‖ , . . . ,
Ys+t

‖Ys‖
)

‖Ys‖α1{Ys �=0}
]

(5.8)

https://doi.org/10.1239/jap/1421763332 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1421763332


1148 A. JANSSEN AND J. SEGERS

for all s, t ≥ 0 and for all bounded and measurable f : (Rd)s+t+1 → R satisfying f (y−s , . . . ,

yt ) = 0 whenever y−s = 0, then

L(Y−s , . . . , Yt ) = L(M−s , . . . , Mt ) for all s, t ≥ 0. (5.9)

Proof. The proof relies on the fact that both the process {Yt : t ∈ Z} which satisfies (5.8) and
the BFTC(α) are uniquely determined by their forward process. Our proof is by induction on
s. For s = 0, (5.9) is equal to the assumption (5.7) for all t ≥ 0. For the induction step, assume
that (5.9) holds for a fixed value of s̃ = s − 1 ≥ 0 and all t ≥ 0. Let f : (Rd)s+t+1 → R be a
bounded continuous function. Write

f (y−s , . . . , yt ) = f1(y−s , . . . , yt ) + f2(y−s , . . . , yt )

with
f1(y−s , . . . , yt ) = f (0, y−s+1, . . . , yt ),

f2(y−s , . . . , yt ) = f (y−s , y−s+1, . . . , yt ) − f (0, y−s+1, . . . , yt ),

and note that f2(0, y−s+1, . . . , yt ) = 0, while the value of f1 does not depend on the first
coordinate of the argument. Then

E[f (Y−s , . . . , Yt )]
= E[f1(Y−s , . . . , Yt )] + E[f2(Y−s , . . . , Yt )]
= E[f1(Y−s , . . . , Yt )] + E

[
f2

(
Y0

‖Ys‖ , . . . ,
Ys+t

‖Ys‖
)

‖Ys‖α1{Ys �=0}
]

= E[f1(M−s , . . . , Mt )] + E

[
f2

(
M0

‖Ms‖ , . . . ,
Ms+t

‖Ms‖
)

‖Ms‖α1{Ms �=0}
]
,

where both the induction hypothesis and (5.8) and (5.9) have been used. Since {Mt : t ∈ Z} is
a BFTC(α), we may apply Proposition 5.1 for i = s and i = 0 (note that ‖M0‖ = 1), so that
the above expression is equal to

E[f1(M−s , . . . , Mt )] + E[f2(M−s , . . . , Mt )] = E[f (M−s , . . . , Mt )],
which completes the induction step and the proof.

Remark 5.1. Proposition 5.2 can be read in the following way: every spectral process {Mt : t ∈
Z} with a forward process (meaning: {Mt : t ∈ N0}) which has a BFTC(α) structure, automat-
ically has a BFTC(α)-backward-distribution as well. This means that a Markovian structure in
the forward spectral process (which may also arise in settings where the underlying process is
non-Markovian) is enough to secure a Markovian structure of the backward spectral process as
well.

Corollary 5.1. Let {Xt : t ∈ Z} be a stationary Markov chain with distribution determined
by (1.1), (C1), (C2), and (3.1). Then the corresponding spectral process {Mt : t ∈ Z} is a
BFTC(α).

We call {M−t : t ∈ N0} the backward tail chain of {Xt : t ∈ Z} and {Mt : t ∈ Z} the tail
chain of {Xt : t ∈ Z}.

Proof. The existence of a corresponding spectral process follows from Proposition 3.1.
Furthermore, it follows from Theorem 2.1 that the forward process {Mt : t ∈ N0} is equal in
law to the forward process of a BFTC(α). By Proposition 5.2 the statement follows.
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Remark 5.2. Since the forward and backward tail chains of a process {Xt : t ∈ Z} are uniquely
determined by the laws of (M0, M1) and (M0, M−1), respectively, it follows that the backward
tail chain is equal in distribution to the forward tail chain if and only if the law of (M0, M1) is
self-adjoint (compare Remark 4.2). This is, for example, the case if the process {Xt : t ∈ Z} is
a time reversible Markov chain and fulfills the assumptions of Corollary 5.1.

More generally, since the existence of a forward tail process ensures joint regular varia-
tion of (X0, X1) (compare Basrak and Segers (2009, Corollary 3.2)), the resulting limiting
spectral measure of the 2d-dimensional vector (X0,1, . . . , X0,d , X1,1, . . . , X1,d ) and the law
of (M0, M1) uniquely determine each other. Therefore, the backward tail chain is equal in
distribution to the forward tail chain if and only if the spectral measure of (X0,1, . . . , X0,d ,

X1,1, . . . , X1,d ) is equal to the spectral measure of (X1,1, . . . , X1,d , X0,1, . . . , X0,d ). For
d = 1, this simply means that the spectral measure of (X0, X1) is symmetric.

In the univariate case, BFTCs have an additional structure which generalizes a multiplicative
random walk in that the distribution of the increment depends on the sign of the process in its
current state (Segers (2007)). The random walk structure of the forward tail chain was first
observed in Smith (1992) for one-sided extremes and extended to allow for both positive and
negative extremes in Bortot and Coles (2003).

6. Examples for BFTCs

We conclude the paper with some examples of BFTCs for multivariate Markov processes.
For univariate examples; see Segers (2007, Section 7).

Example 6.1. Let (At , Bt ), t ∈ Z, be i.i.d. with At ∈ R
d×d and Bt ∈ R

d . The stationary
distribution and asymptotic behavior of the corresponding random difference equation

Xt = AtXt−1 + Bt , t ∈ Z, (6.1)

has been studied in the seminal work by Kesten (1973). Let us assume that the distribution of
(At , Bt ) satisfies the technical, but mild assumptions of Theorems A and B or Theorem 6 in
Kesten (1973) (where the first two theorems deal with the nonnegative case, i.e. all components
of At, t ∈ Z, are nonnegative almost surely, and the last theorem treats the general case).
Together with the results in Boman and Lindskog (2009) this implies that the stationary
distribution of Xt for (6.1) is multivariate regularly varying in the nonnegative case. In the
general case, multivariate regular variation follows if κ1 > 0 in Kesten (1973, Equation (4.8)),
is not an integer, compare Basrak et al. (2002a). Let ϒ denote the spectral measure and α > 0
the index of regular variation of the stationary distribution of Xt . It can be shown that

E

[
f

(
AC

‖AC‖
)

‖AC‖α

]
= E[f (C)] (6.2)

for all bounded, continuous funtions f on S
d−1, where C ∈ S

d−1 has distribution ϒ and
A ∈ R

d×d is independent of C with L(A) = L(A1); compare Basrak and Segers (2009).
Due to the linear structure of (6.1), Theorem 2.1 applies with P(Y > y) = y−α, y >

1, L(M0) = ϒ and φ(Mj−1, εj ) = εjMj−1, where the εj ∈ R
d×d , j = 1, 2, . . . , are i.i.d.

with L(εj ) = L(A1). In order to find the distribution of the backward tail chain we note that
Remark 4.1 applies to this example by (6.2). So the law P

∗ of (M0, M−1) is given by

P
∗(E) = E

[
1E

(
AC

‖AC‖ ,
C

‖AC‖
)

‖AC‖α

]

for all Borel sets E ⊂ S
d−1 × R

d .
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Additional assumptions about L(A) allow us to simplify this characterization. Let us assume
that A has a multiplicative form as in Example 4.1, i.e. A = RQ for a positive random variable
R with E[Rα] = 1 and Q is an orthogonal matrix independent of R. Additionally, we may
assume that R has a density on R+ and that the support of the law of Q is equal to the orthogonal
group in dimension d . In this case, the spectral measure ϒ is the uniform distribution on S

d−1

(compare Buraczewski et al. (2009, p. 390)), α > 0 is the index of regular variation and

E

[
f

(
AC

‖AC‖
)

‖AC‖α

]
= E[f (QC)Rα] = E[f (QC)]E[Rα] = E[f (C)]

holds for all bounded, continuous functions f on S
d−1 with C ∼ Unif(Sd−1). Since L(C) =

L(QC), all assumptions of Example 4.1 are met and the adjoint measure P
∗ is determined

by (4.12) and equal to the law of (C∗, R∗Q∗C∗) with R∗, Q∗, C∗ independent, L(C∗) =
Unif(Sd−1), L(Q∗) = L(Q′), and R∗ has density fR∗(y) = fR(y−1)y−(2+α), y > 0, where
fR denotes the density of R. Thus, both the forward and the backward tail chains have a simple
multiplicative structure:

Mt = M0A1 · . . . · At, M−t = M0A−1 · . . . · A−t , t ≥ 1,

with A1, A2, . . . as above and A−1, A−2, . . . i.i.d. with the same distribution as R∗Q∗, all
independent of each other and of M0 ∼ Unif(Sd−1).

Example 6.2. While the preceding example dealt with random difference equations where the
random increment Bt has a relatively light tail (Kesten (1973) assumes that E(‖B1‖α) < ∞), the
following example deals with AR(1) processes where the innovations themselve are regularly
varying. Let

Xt = AXt−1 + Bt , t ∈ Z, (6.3)

where A is a deterministic R
d×d -matrix and Bt ∈ R

d , t ∈ Z, are i.i.d. and multivariate regularly
varying with index α > 0 and spectral measure λ on S

d−1. For extensions to random but light-
tailed random matrices At ; see, for instance, Hult and Samorodnitsky (2008).

If supx∈Sd−1 ‖Amx‖ < 1 for some positive integer m then (6.3) has the stationary solution

Xt =
∞∑

n=0

AnBt−n, t ∈ Z.

It has been shown in Meinguet and Segers (2010) that in this case the stationary distribution
of Xt is multivariate regularly varying as well, with the same index α and spectral measure
ϒ = ∑∞

n=0pnλn, where

pn := cn∑∞
k=0 ck

with cn :=
∫

Sd−1
‖Anθ‖αλ(dθ), n ∈ N0,

and where λn is the spectral measure of AnB1, provided cn > 0, i.e.

λn(f ) := 1

cn

∫
Sd−1

f

(
Ans

‖Ans‖
)

‖Ans‖αλ(ds), n ∈ N0 if cn > 0,

for all bounded, continuous functions f on S
d−1 (Meinguet and Segers (2010, Example 9.3)).

The spectral process {Mt : t ∈ Z} in Proposition 3.1 is of the form

M−N+t =
{

At	, t = 0, 1, 2, . . . ,

0, t = −1, −2, . . .
(6.4)
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for a random integer N with P(N = n) = pn, n ∈ N0, and a random vector 	 with distribution

P(	 ∈ E | N = n) = 1

cn

∫
Sd−1

1E

(
s

‖Ans‖
)

‖Ans‖αλ(ds)

for n ∈ N0 and Borel sets E ∈ R
d . Here, the forward tail chain has a deterministic multiplicative

structure with M0 ∼ ϒ and Mn = AMn−1 for n ≥ 1. The backward process is Markovian as
well, by Corollary 5.1. This is clear if we look at (6.4) and note that M−(n+h) = 0 if M−n = 0 for
all h ≥ 1, n ≥ 1. Furthermore, if M−n �= 0 then (M−n+1, . . . , M0) = (AM−n, . . . , A

nM−n)

contains no more information about M−(n+1) than M−n.
The distribution of (M0, M−1) is adjoint to the one of (M0, M1) = (M0, AM0). By (4.4)

and since M0 ∼ ϒ , we find, for every Borel set E ⊂ S
d−1 × (Rd \ {0}),

P((M0, M−1) ∈ E) = E

[
1E

(
M1

‖M1‖ ,
M0

‖M1‖
)

‖M1‖α

]

= 1∑∞
k=0 ck

∑
n≥0

∫
Sd−1

1E

(
An+1s

‖An+1s‖ ,
Ans

‖An+1s‖
)

‖An+1s‖αλ(ds).

Choosing E = S × (Rd \ {0}) for a Borel set S ⊂ S
d−1 yields, upon taking complements with

respect to {M0 ∈ S} and noting that ‖s‖ = 1 for s ∈ S
d−1,

P(M0 ∈ S, M−1 = 0) = 1∑∞
k=0 ck

λ(S). (6.5)

In particular, P(M−1 = 0) = p0 = P(N = 0). The backward tail chain now follows from
Definition 5.1(iii) together with the distribution of (M0, M−1).

In the special case that A is invertible, we find from (6.4) that M−(t+1) is equal to either
A−1M−t or 0 with conditional probabilities depending on M−t /‖M−t‖: if M−t = 0 then
M−(t+1) = 0 too, while if M−t = x �= 0 then

M−(t+1) =

⎧⎪⎪⎨
⎪⎪⎩

A−1x with probability 1 − P

(
M−1 = 0

∣∣∣∣M0 = x
‖x‖

)
,

0 with probability P

(
M−1 = 0

∣∣∣∣M0 = x
‖x‖

)
.

To derive a concrete form of the backward Markov kernel, let us assume that λ has a Lebesgue
density fλ on S

d−1. Then all measures λn and, thus, ϒ have Lebesgue densities as well and
(6.5) gives

P(M−1 = 0 | M0 = s) = 1∑∞
k=0 ck

fλ(s)

fϒ(s)

for all s ∈ S
d−1 such that fϒ(s) > 0.
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