
Math. Proc. Camb. Phil. Soc. (2023), 175, 595–624 595
doi:10.1017/S0305004123000348

First published online 13 July 2023

Projections of the minimal nilpotent orbit in a simple
Lie algebra and secant varieties†

BY DMITRI PANYUSHEV
Institute for Information Transmission Problems, Bolshoy Karetnyi per. 19,

Moscow 127051, Russia.
e-mail: panyushev@iitp.ru

(Received 10 May 2021; revised 17 March 2023; accepted 08 March 2023)

Abstract

Let G be a simple algebraic group with g= Lie G and Omin ⊂ g the minimal nilpo-
tent orbit. For a Z2-grading g= g0 ⊕ g1, let G0 be a connected subgroup of G with
Lie G0 = g0. We study the G0-equivariant projections ϕ : Omin → g0 and ψ :Omin → g1. It
is shown that the properties of ϕ(Omin) and ψ(Omin) essentially depend on whether the
intersection Omin ∩ g1 is empty or not. If Omin ∩ g1 �=∅, then both ϕ(Omin) and ψ(Omin)
contain a 1-parameter family of closed G0-orbits, while if Omin ∩ g1 =∅, then both are
G0-prehomogeneous. We prove that G·ϕ(Omin) = G·ψ(Omin). Moreover, if Omin ∩ g1 �=∅,
then this common variety is the affine cone over the secant variety of P(Omin) ⊂ P(g). As
a digression, we obtain some invariant-theoretic results on the affine cone over the secant
variety of the minimal orbit in an arbitrary simple G-module. In conclusion, we discuss more
general projections that are related to either arbitrary reductive subalgebras of g in place of
g0 or spherical nilpotent G-orbits in place of Omin.

2020 Mathematics Subject Classification: 17B08 (Primary); 17B70, 14L30,
14N07 (Secondary)

1. Introduction

Let G be a simple algebraic group with Lie G = g, N the nilpotent cone in g, and Omin ⊂
N the minimal non-trivial nilpotent G-orbit. The ground field k is algebraically closed and
char(k) = 0. Let σ be an involution of g and g= g0 ⊕ g1 the corresponding Z2-grading.
Write G0 for the connected (reductive) subgroup of G with Lie G0 = g0. In this paper, we
study invariant-theoretic properties of the G0-equivariant projections ϕ : Omin → g0 and
ψ : Omin → g1. The initial motivation came from the observation that if Omin ∩ g0 =∅,
then ψ is a finite morphism (and likewise for ϕ, if Omin ∩ g1 =∅). Our general description
shows that the structure of both Im(ϕ) and Im(ψ) crucially depends on the fact whether
Omin ∩ g1 is empty or not.

By the Morozov–Jacobson theorem, any nonzero e ∈N can be included in an sl2-triple
{e, h, f }. Here h is a semisimple element of g, which is called a characteristic of e. If e, f ∈ g1
and h ∈ g0, then such a triple is said to be normal. By [12], a normal sl2-triple exists for any
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596 D. PANYUSHEV

e ∈N∩ g1. Another reason for considering the intersection G·e ∩ g1 is that

G·e ∩ g1 �=∅ ⇐⇒ G·h ∩ g1 �=∅,

see [1]. If e ∈Omin, then the corresponding sl2-triples are said to be minimal. We begin our
study of ϕ andψ with classifying the Z2-gradings (involutions) of g such that Omin ∩ g0 =∅
or Omin ∩ g1 =∅. (It appears that there are two cases for the former and six cases for the
latter.) The equality Omin ∩ g1 =∅ is equivalent to that G0 has a dense orbit in Omin and
some other interesting properties, see Theorem 4·6.

For a subvariety X of a vector space V, we set

K(X) :=
⋃
t∈k∗

tX = k∗·X.

It is a closed cone in V, and dim K(X) is either dim X or dim X + 1. We say that X is conical,
if dim K(X) = dim X. Our description of ϕ(Omin) and ψ(Omin) can briefly be summarised
in the following two theorems, see Section 5 for the complete account.

THEOREM 1·1. Suppose that Omin ∩ g1 �=∅, and let {e, h, f } be a normal minimal sl2-
triple. Then

ϕ(Omin) =K(G0·h) and ϕ(Omin) =K(G0·h1),

where h1 = e − f . Here dim ϕ(Omin) = dim Omin − 1 and dimψ(Omin) = dim Omin.
Furthermore, deg (ψ) = 2 and we also describe generic fibres of ϕ and ψ .

Here both varieties contain a 1-parameter family of closed G0-orbits as a dense subset.
Actually, h1 can be replaced with an arbitrary non-trivial linear combination of e and f .

THEOREM 1·2. Suppose that Omin ∩ g1 =∅. Then both ϕ(Omin) and ψ(Omin) con-
tain a dense conical G0-orbit. In this case, dim ϕ(Omin) = dim Omin and dimψ(Omin)<
dim Omin.

An important structure that naturally comes into play is the secant variety of the projective
variety P(Omin) = G·[e] ⊂ P(g). Write Sec(POmin) or Sec(G·[e]) for this secant variety, and
let CS(Omin) ⊂ g denote the affine cone over it. A simple observation that relates the secant
variety to the morphisms ϕ and ψ is that

ϕ(Omin) ⊂ CS(Omin) ∩ g0 and ψ(Omin) ⊂ CS(Omin) ∩ g1,

see Lemma 5·1. The proofs of Theorems 1·1 and 1·2 exploit the equality Sec(G·[e]) = G·[h]
[10], where h is a characteristic of e ∈Omin. In our notation, this is equivalent to CS(Omin) =
K(G·h).

As a digression from the main route, a description of the secant variety for the minimal
G-orbit Omin(V) in a simple G-module V and its secant defect is given (Theorem 3·2). We
also derive some invariant-theoretic consequences of it. One of the applications is the list of
all simple G-modules V, where G is simple, such that CS(Omin(V)) =V, see Section 3.2.

Let us provide a selection of other results:

(i) if g1 is a simple g0-module, so that the minimal G0-orbit Omin(g1) exists, then some
properties of CS(Omin(g1)) are given, see Section 6.2.

(ii) our theory implies that G·ϕ(Omin) = G·ψ(Omin) for all Z2-gradings, see Section 6.3;
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(iii) we study in details the cases in which ϕ or ψ is a finite morphism. If Omin ∩ g0 =∅,
then we prove that Im(ψ) is normal and deg (ψ) = 2. Furthermore, the map Omin →
ψ(Omin) is the categorical quotient w.r.t. the linear action of Z/2Z. Here the generator
of Z/2Z is (−σ ) ∈ GL(g). If Omin ∩ g1 =∅, then the almost same results are true
for ϕ. The only difference is that the generator of Z/2Z is σ , see Propositions 5·4
and 5·10.

In Section 7, we briefly discuss possible generalisations of our main setting related to
involutions and Omin ⊂N. For instance, let H ⊂ G be semisimple and g= h⊕m, where
m= h⊥. We note that if Omin ∩m=∅, then the projection (with kernel m) of Omin to h is
finite and has other interesting properties. Another possibility is to consider projections of
spherical nilpotent orbits for some special involutions.

Main notation. Let G be a semisimple algebraic group and g= Lie G. Then:

(i) Gx is the isotropy group of x ∈ g in G and gx = Lie Gx is the centraliser of x in g;

(ii) � is the Killing form on g and h⊥ is the orthocomplement of h⊂ g w.r.t. �;

(iii) t is a Cartan subalgebra of g and �=�(g, t) is the root system with respect to t;

(iv) t∗
Q

is the Q-vector subspace of t∗ generated by� and ( , ) is the positive-definite form
on t∗

Q
induced by �; as usual, γ∨ = 2γ /(γ , γ ) for γ ∈�.

(v) given γ ∈�, then gγ is the root space in g and eγ ∈ gγ is a nonzero root vector;

(vi) if �+ ⊂� is a set of positive roots, then �⊂�+ is a set of simple roots;

(vii) if O = G·e ⊂N is a nontrivial orbit, then D(e) or D(O) is its weighted Dynkin
diagram;

A direct sum of Lie algebras is denoted by ‘�’ and Inv(g) is the set of involutions of g.
Our man reference for algebraic groups and Lie algebras is [22].

2. Recollections on nilpotent orbits, involutions, and Satake diagrams

Let g be a semisimple Lie algebra. For e ∈N \ {0}, let {e, h, f } be an sl2-triple in g, i.e.,
[h, e] = 2e, [e, f ] = h, and [h, f ] = −2f [22, chapter 6, section 2]. The semisimple element
h is called a characteristic of e. It is important that all sl2-triples with a given h are Gh-
conjugate (Mal’cev) and all sl2-triples with a given e are Ge-conjugate (Kostant) [5, 3·4].
Without loss of generality, one may assume that h ∈ t and α(h) � 0 for all α ∈�. Then h
is said to be the dominant characteristic (w.r.t. chosen t and �+). By a celebrated result
of Dynkin (1952), one then has α(h) ∈ {0, 1, 2} [22, chapter 6, section 2, proposition 2·2].
The weighted Dynkin diagram of O = G·e ⊂N, D(O), is the Dynkin diagram of g equipped
with labels {α(h)}α∈�. The set of zeros of D(O) is �0,O = {α ∈� | α(h) = 0}.

Let g=⊕
i∈Z g(i) be the Z-grading determined by h, i.e., g(j) = {v ∈ g | [h, v] = jv}. It will

be referred to as the (Z, h)- grading of g. Here g(0) = gh and e ∈ g(2). A nonzero e ∈N is
said to be even, if the h-eigenvalues in g are even.

Set g(�j) =⊕
i�j g(i). It follows from the sl2-theory that ad e : g(i) → g(i + 2) is injec-

tive (resp. surjective) if i �−1 (resp. i �−1). Hence ge ⊂ g(�0), dim ge = dim g(0) +
dim g(1) = dim gh + dim g(1), and e is even if and only if dim ge = dim gh. Furthermore,
(ad e)j : g(−j) → g(j) is bijective. The height of O, denoted ht(O), is max{j | g(j) �= 0}.
Equivalently, ht(O) = max{j | (ad e)j �= 0}. The height of O can be determined via D(O),
and if g is classical, then it is easily computed via the partition of O, see [17, section 2].
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Let g= g0 ⊕ g1 be a Z2-grading and σ the related involution of g, i.e., gi is the (−1)i-
eigenspace of σ . Then g0 is reductive, but not necessarily semisimple, and g1 is an
orthogonal g0-module. We also say that (g, g0) is a symmetric pair. Whenever we wish
to stress that gi is defined via certain σ ∈ Inv(g), we write g

(σ )
i for it. We can also write gσ

in place of g(σ )
0 .

If g is simple, then either g0 is semisimple and g1 is a simple g0-module, or g0 has a 1-
dimensional centre and g1 is a sum of two simple g0-modules, which are dual to each other
[22, chapter 4, section 1·4]. The second case is always related to a short Z-grading of g. That
is, there is a Z-grading g= g(−1) ⊕ g(0) ⊕ g(1) such that g0 = g(0) and g1 = g(−1) ⊕ g(1).
Here g(0) ⊕ g(1) is a maximal parabolic subalgebra of g with abelian nilradical.

The centraliser gx is σ -stable for any x ∈ gi, hence gx = gx
0 ⊕ gx

1. The following result of
Kostant–Rallis is frequently used below.

PROPOSITION 2·1. (cf. [12 proposition 5]. If x ∈ g1, then dim G0·x = 1
2 dim G·x.

A Cartan subspace of g1 is a maximal abelian subspace consisting of semisimple ele-
ments. By [12], all Cartan subspaces of g1 are G0-conjugate and if c is a Cartan subspace,
then G0·c is dense in g1. If x ∈ c is generic, then gx

1 = c.
The rank of the symmetric variety G/G0, r(G/G0), can be defined in many equivalent

ways. We use the following

r(G/G0) = dim c= dim g1 − max
x∈g1

dim G0·x. (2·1)

2·1. Satake diagrams

It is known that (for k=C) the real forms of g are represented by the Satake diagrams
(see e.g. [22, chapter 4, section 4·3]) and there is a one-to-one correspondence between the
real forms and Z2-gradings of g. Thereby, one associates the Satake diagram to an involution
(symmetric pair), cf. [20]. The Satake diagram of σ ∈ Inv(g), denoted Sat(σ ), is the Dynkin
diagram of g, with black and white nodes, where certain pairs of white nodes can be joined
by an arrow. Following [6, section 1], we give an approach to constructing Sat(σ ) that does
not refer to C and real forms. Let t= t0 ⊕ t1 be a σ -stable Cartan subalgebra of g such that
dim t1 is maximal, i.e., t1 is a Cartan subspace of g1. Let� be the root system of (g, t). Since
t is σ -stable, σ acts on �. One can choose the set of positive roots, �+, such that if γ ∈�+
and γ |t1 �= 0, then σ (γ ) ∈ −�+. Let� be the set of simple roots in�+ and {
α | α ∈�} the
corresponding fundamental weights. We identify � with the nodes of the Dynkin diagram.
Set �0 =�0,σ = {α ∈� | α|t1 ≡ 0} and �1 =�1,σ =� \�0. Then:

(i) the node α is black if and only if α ∈�0;

(ii) if α ∈�0, then σ (α) = α and the root space gα is contained in g0;

(iii) if α ∈�1, then σ (α) = −β +∑
j ajνj for some β ∈�1 and νj ∈�0. Then also

σ (
α) = −
β . In this case, if α �= β, then the white nodes α and β are joined by
an arrow. If α = β, then there is no arrow attached to α.

If Sat(σ ) has k arrows, i.e., �1 has k pairs of simple roots (αi, βi) such that σ (
αi) =
−
βi , then dim t0 = #�0 + k and dim t1 = #�1 − k. More precisely, let {hα | α ∈�} ⊂ t be
Chevalley generators, i.e., [hα , eγ ] = (α∨, γ )eγ for γ ∈�. Then
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t0 = 〈hα | α ∈�0〉 ⊕ 〈hαi − hβi | i = 1, . . . , k〉.
If �1 = {α1, β1, . . . , αk, βk, ν1, . . . , νs} and we identify t1 and t∗1 via the Killing form, then
t1 = 〈
αi +
βi | i = 1, . . . , k〉 ⊕ 〈
νj | j = 1, . . . , s〉. Moreover, if b is the Borel subalgebra
corresponding to �+, then b+ g0 = g and b∩ g1 = t1.

Let x ∈ t1 be a generic semisimple element. Then gx
1 = t1 and Sat(σ ) encodes the structure

of gx
0. Namely, gx is a Levi subalgebra such that the Dynkin diagram of [gx, gx] = [gx

0, gx
0] is

the subdiagram �0. Here the number of arrows equals dim (gx
0/[g

x
0, gx

0]).
Recall that an algebraic subgroup H ⊂ G is said to be spherical, if B has an open orbit

in G/H. Then one also says that G/H is a spherical homogeneous space and h= Lie H is a
spherical subalgebra of g. The above relation b+ g0 = g exhibits the well-known fact that
G0 ⊂ G is spherical for any σ .

Example 2·2. As G/G0 is a spherical homogeneous space, dim g1 = dim (G/G0) �
dim B. Hence dim g0 � dim U and dim g1 − dim g0 � rk(g) for any σ ∈ Inv(g). If dim g1 −
dim g0 = rk(g), then r(G/G0) = rk(g) and σ is said to be of maximal rank. (In [20], such
involutions are called split.) Equivalently, g1 contains a Cartan subalgebra of g. For any
simple g, there is a unique, up to G-conjugacy, involution of maximal rank, and we denote
it by ϑmax. In this case, gx ∩ g

(ϑmax)
0 = {0} for a generic x ∈ g

(ϑmax)
1 . Hence Sat(ϑmax) has

neither black nodes nor arrows. Yet another characterisation is that ϑmax corresponds to a
split real form of g, see [22, chapter 4, section 4·4].

Remark 2·3. By a fundamental result of Antonyan, for any σ ∈ Inv(g) and any sl2-triple
{e, h, f } ⊂ g, one has G·e ∩ g1 �=∅ if and only if G·h ∩ g1 �=∅, see [1, theorem 1]. This
readily implies that G·x ∩ g1 �=∅ for any x ∈ g if and only if σ = ϑmax ([1, theorem 2]). For
arbitrary σ and e ∈N, Antonyan’s results imply that G·e ∩ g1 �=∅ if and only if :

(i) the black nodes of Sat(σ ) are contained in the set of zeros of D(e), i.e.,�0,σ ⊂�0,G·e;

(ii) α(h) = β(h) whenever α, β ∈�1,σ are joined by an arrow in Sat(σ ).

3. Minimal orbits and their secant varieties

Let Vλ be a simple G-module with highest weight λ (with respect to some choice of
T ⊂ B). Then Omin(Vλ) denotes the G-orbit of the highest weight vectors. It is the unique
nonzero G-orbit of minimal dimension whose closure contains the origin. If vλ ∈Vλ is a
highest weight vector (i.e., a B-eigenvector), then Omin(Vλ) = G·vλ. The orbit Omin(Vλ) is
stable under homotheties, i.e., the dilation action of k∗ on Vλ, and P(Omin(Vλ)) is the unique
closed G-orbit in P(Vλ). Hence

Omin(Vλ) =Omin(Vλ) ∪ {0}, (3·1)

see [23, theorem 1]. We say that Omin(Vλ) is the minimal (G-)orbit in Vλ.
Let us recall some basic properties of the minimal orbits established in [23, section 1]:

(i) for any λ, the variety Omin(Vλ) is normal;

(ii) the algebra of regular functions k[Omin(Vλ)] is N-graded and the component of grade
n is the G-module (Vnλ)∗, the dual of Vnλ;

(iii) Omin(Vλ) is a factorial variety (i.e., k[Omin(Vλ)] is a UFD) if and only if λ is
fundamental.
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LEMMA 3·1. Let P⊂Vλ be a 2-dimensional subspace. Suppose that P∩Omin(Vλ)
contains at least three different lines. Then P⊂Omin(Vλ).

Proof This readily follows from the fact that the ideal of Omin(Vλ) in k[Vλ] is generated
by quadrics, see e.g. [16].

3·1. Secant varieties

Let Sec(X) denote the secant variety of an irreducible projective variety X ⊂ PN = P(V).
By definition, Sec(X) is the closure of the union of all secant lines to X. If x, y ∈ X are
different points and P1

xy ⊂ P(V) is the line through x and y, then

Sec(X) =
⋃

x,y∈X

P1
x,y,

see e.g. [14, chapter 5]. It follows that Sec(X) contains all tangent lines to X, too. If X is
irreducible, then so is Sec(X), and the expected dimension of Sec(X) is min{2 dim X + 1, N}.
If dim Sec(X)<min{2 dim X + 1, N}, then Sec(X) is said to be degenerate. We say that δ =
δX = 2 dim X + 1 − dim Sec(X) is the defect of Sec(X) or the secant defect of X.

Our primary goal is to use these notions for the projectivisation of minimal orbits, i.e., if
X = P(Omin(Vλ)) = G·[vλ] ⊂ P(Vλ), where [vλ] is the image of vλ in P(Vλ).

Notation: if v ∈Vλ, then [v] is a point in P(Vλ), whereas 〈v〉 is a 1-dimensional subspace
of Vλ. More generally, 〈v1, . . . , vk〉 is the linear span of v1, . . . , vk ∈Vλ.

For a projective variety X ⊂ P(V), let X̂ ⊂ V denote the closed cone over X. That is, if
π : V \ {0} → P(V) is the canonical map, then X̂ = π−1(X) ∪ {0}. Then Ŝec(X) is called the
conical secant variety of X̂. We also write CS(X̂) or CS(π−1(X)) for this affine version of
the secant variety. The formula for the defect of Sec(X) in terms of affine varieties reads

δX = 2 dim X̂ − dim CS(X̂). (3·2)

If Y ⊂Vλ is a subvariety, then we set K(Y) = k∗·Y ⊂Vλ. By definition, K(Y) is a closed cone
in Vλ. Here dim K(Y) = dim Y if and only if Y is already conical. Otherwise, dim K(Y) =
dim Y + 1. Clearly, if Y is G-stable, then so is K(Y).

The conical secant variety of a minimal orbit has a simple explicit description. Let μ be
the lowest weight of Vλ and vμ a lowest weight vector. If B− is the Borel subgroup opposite
to B (i.e., B ∩ B− = T), then vμ is just a B−-eigenvector. If w0 is the longest element of the
Weyl group W = NG(T)/T , then μ= w0(λ) and λ∗ := −w0(λ) is the highest weight of (Vλ)∗
[22, chapter 3, section 2·7]. Hence λ= −μ if and only if Vλ is a self-dual G-module.

The following assertion is not really new. Part (i) is implicit in [4] and part (ii) is stated in
[9, p.536]. However, to the best of my knowledge, an accurate proof is not easy to locate in
the literature. For this reason, we have chosen to give a complete proof, which, incidentally,
does not invoke Terracini’s lemma.

THEOREM 3·2. With notation as above, set hλ = vλ + v−λ∗ = vλ + vμ ∈Vλ. Then:

(i) Sec(G·[vλ]) = G·[hλ] = P(K(G·hλ)) and CS(G·vλ) =K(G·hλ);

(ii) the defect of Sec(G·[vλ]) equals δG·[vλ] = dim (g·vμ ∩ g·vλ).
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Proof. (i) It is clear that P(K(G·hλ)) = G·[hλ].
Note that [hλ] ∈ P1

[vμ],[vλ], hence [hλ] ∈ Sec(G·[vλ]). Moreover, since λ �=μ, the T-orbit of

[hλ] is dense in P1
[vμ],[vλ]. Therefore, in order to prove that G·[hλ] is dense in Sec(G·[vλ]), it

suffices to show that a generic secant line P1
x,y is G-conjugate to P1

[vμ],[vλ].

Indeed, because G·[vλ] is homogeneous, any secant line P1
x,y is G-conjugate to a line of

the form P1
x′,[vλ]

. Next, by the Bruhat decomposition, Cw0 := Bw0U is a dense open subset

of G (the big cell in G). Hence Cw0 ·[vλ] = B·[vμ] is dense in G·[vλ]. Since the isotropy group
of [vλ] contains B, we see that if x′ ∈ B·[vμ], then the secant line P1

x′,[vλ]
is B-conjugate to

P1
[vμ],[vλ], as required.

(ii) To compute the defect, we have to compare dim G·[hλ] and dim G·[vλ]. To this end,
we use the triangular decomposition g= u− ⊕ t⊕ u, where b= t⊕ u and b− = t⊕ u−. One
has u·vλ = 0 and u−·vμ = 0. Hence

g·hλ = u−·vλ + u·vμ + t·hλ.

Here dim u−·vλ = dim u·vμ = ( dim G·vλ) − 1 = dim G·[vλ]. Set p = dim (u·vμ ∩ u−·vλ).
Then dim (u−·vλ + u·vμ) = 2 dim G·[vλ] − p. If t ∈ t, then t·hλ = λ(t)vλ +μ(t)vμ. Hence

t·hλ =
⎧⎨⎩〈vλ, vμ〉, if λ �= −μ,

〈vλ − vμ〉, if λ= −μ.
(3·3)

(I) Suppose that vμ �∈ u−·vλ. Since g·vλ = b−·vλ = 〈vλ〉 ⊕ u−·vλ, we also have vμ �∈ g·vλ.
(By symmetry, this also means that vλ �∈ u·vμ, etc.) Then

g·hλ = (u−·vλ + u·vμ) ⊕ t·hλ (3·4)

and g·vμ ∩ g·vλ = b·vμ ∩ b−·vλ = u·vμ ∩ u−·vλ. Here one has two possibilities.
(a) if λ �= −μ, then it follows from (3·3) and (3·4) that dim g·hλ = 2 dim G·[vλ] − p + 2.

Moreover, here hλ ∈ t·hλ ⊂ g·hλ. Hence the orbit G·hλ is conical and

dim g·[hλ] = dim g·hλ − 1 = 2 dim G·[vλ] + 1 − p

Thus, here p = dim (g·vμ ∩ g·vλ) is the defect of Sec(G·[vλ]).
(b)if λ= −μ, then dim g·hλ = 2 dim G·[vλ] − p + 1. Here hλ �∈ t·hλ = 〈vλ − vμ〉. Hence

the orbit G·hλ is not conical and dim g·[hλ] = dim g·hλ = 2 dim G·[vλ] + 1 − p, with the
same conclusion as in (a).

(II) Suppose that vμ ∈ u−·vλ (equivalently, vλ ∈ u·vμ). Then

g·hλ = u−·vλ + u·vμ
and the orbit G·hλ is conical. Therefore,

dim g·[hλ] = 2 dim G·[vλ] − 1 − p = 2 dim G·[vλ] + 1 − (p + 2)

But in this case, g·vμ ∩ g·vλ = (u·vμ ∩ u−·vλ) ⊕ 〈vλ, vμ〉 and dim (g·vμ ∩ g·vλ) = p + 2.
Thus, one again obtains the required value for the defect.
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Remark 3·3. (1) Our proof of part (ii) shows that if vμ �∈ g·vλ, then g·vμ ∩ g·vλ = u·vμ ∩
u−·vλ. It was also noticed that if vμ �∈ g·vλ and μ= −λ, then the orbit G·hλ is not conical.
Actually, we prove below that in the last case G·hλ is closed in Vλ.

(2) If h′
λ = avλ + bvμ with a, b �= 0, then K(G·hλ) =K(G·h′

λ) and G·[hλ] = G·[h′
λ].

3·2. Some invariant-theoretic consequences

If a reductive group G acts on an affine variety Z, then the algebra of invariants k[Z]G is
finitely-generated and Z//G := Spec (k[Z]G) is the categorical quotient, see [24]. The inclu-
sion k[Z]G ⊂ k[Z] yields the morphism πZ : Z → Z//G, which is onto. Each fibre π−1

Z (ξ ),
ξ ∈ Z//G, contains a unique closed orbit, hence Z//G parametrises the closed G-orbits in Z.
If Z =V is a G-module, then the fibre NG(V) = π−1

V (πV(0)) is called the null-cone. It is also
true that

NG(V) = {v ∈V | G·v � 0}.
Recall that μ= −λ∗ is the lowest weight of Vλ. In the proof of Theorem 3·2, we considered
the condition that vμ �∈ g·vλ. Actually, if g is simple, then this condition is not satisfied only
for two cases.

LEMMA 3·4. Suppose that g is simple and vμ ∈ g·vλ. Then either g= sln+1 and {λ, λ∗} =
{
1,
n} or g= sp2n and λ= λ∗ =
1.

Proof. Here vμ ∈ u−·vλ and λ−μ= λ+ λ∗ ∈�+. Hence a dominant root can be writ-
ten as a sum of two dominant weights. This is only possible if λ+ λ∗ = θ and θ is not
fundamental, i.e., if g= sln+1 and θ =
1 +
n or g= sp2n and θ = 2
1.

PROPOSITION 3·5. If Vλ is self-dual and vμ �∈ g·vλ, then the orbit G·hλ ⊂Vλ is closed.

Proof. If Vλ is self-dual, then μ= −λ and hλ = vλ + v−λ. Let H be a reductive sub-
group of Ghλ . By Luna’s criterion, G·hλ is closed if and only if NG(H)·hλ is closed, see
[24, theorem 6·17].

Take H = (Ghλ ∩ T)0, the identity component of Ghλ ∩ T . It is a torus of codimension 1
in T . Then NG(H)0 = ZG(H) and ZG(H) is either T or H·SL2. The latter occurs only if λ is
proportional to a root. In both cases, one has to prove that the ZG(H)/H-orbit of hλ is closed.
For ZG(H)/H � k∗, the assertion follows from [24, Proposition 6·15].

If ZG(H)/H � SL2, then hλ is the sum of a highest and lowest weight vectors in a simple
SL2-submodule Rj ⊂Vλ, where dim Rj = j + 1. (If μ ∈�+ is the root of SL2 ⊂ ZG(H), then
j = (λ,μ∨).) The assumption that vμ �∈ g·vλ guarantees us that j> 1 and therefore SL2·hλ is
closed in Rj.

Using Theorem 3·2(i), we can characterise the cases in which CS(Omin(Vλ)) =Vλ.

THEOREM 3·6. Let Vλ be a simple G-module.

(i) If Vλ �� (Vλ)∗, then CS(Omin(Vλ)) ⊂NG(Vλ). Moreover, if Vλ//G �= {pt} (i.e.,
k[Vλ]G �= k), then CS(Omin(Vλ)) ⊂NG(Vλ) �Vλ.

(ii) If Vλ � (Vλ)∗ and dim Vλ//G> 1, then CS(Omin(Vλ)) �Vλ.

(iii) CS(Omin(Vλ)) =Vλ if and only if g·vλ + g·vμ = g.
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Table 1. The representations with CS(Omin(Vλ)) =Vλ: serial cases

g λ dim Vλ dim Omin(Vλ) δ self-dual dim Vλ//G

An, n � 1 
1,
n n+1 n+1 n+1 no 0
Bn, n � 2 
1 2n+1 2n 2n−1 orth. 1
Cn, n � 2 
1 2n 2n 2n sympl. 0
Dn, n � 5 
1 2n 2n−1 2n−2 orth. 1

Proof. (i) If Vλ �� (Vλ)∗, then λ �= λ∗ and the weights λ and μ= −λ∗ belong to an open
halfspace of t∗

Q
. Therefore hλ ∈NG(Vλ) and hence K(G·hλ) ⊂NG(Vλ). If Vλ//G �= {pt}, then

NG(Vλ) is a proper subvariety of Vλ.
(ii) If Vλ � (Vλ)∗, then G·hλ = G·hλ and the G-variety Z := K(G·hλ) contains a 1-

parameter family of closed G-orbits as a dense subset. Hence dim Z//G = 1. Therefore, if
dim Vλ//G> 1, then Z is a proper subvariety of Vλ.

(iii) By Theorem 3·2 and (3·2), dim (g·vλ + g·vμ) = 2 dim g·vλ − δ = dim CS(Omin(Vλ)).
It follows that the irreducible representations of simple algebraic groups G such that

CS(Omin(Vλ)) =Vλ can be extracted from the lists of:

(a) the non-self-dual G-modules Vλ with k[Vλ]G = k; and

(b) the self-dual G-modules Vλ with dim Vλ//G � 1.

All such representations occur in the “Summary Table” in [24], where the irreducible
representations of simple Lie groups with polynomial algebras of invariants are listed. If Vλ
satisfies either (a) or (b), then the condition K(G·hλ) =Vλ means that hλ ∈Vλ is a point of
general position in the sense of [7]. Since table 1 in [7] explicitly indicates such points for
all representations in question, one easily obtains the following tables, where the relevant
highest weights λ and the defect δ = δP(Omin(λ)) are given. If Vλ is self-dual, then we point
out whether it is orthogonal or symplectic. The numbering of simple roots follows [22] and
we write 
i in place of 
αi .

Remark 3·7. The simple G-modules with δ > 0 have been listed in [9]. The representations
in Tables 1 and 2 that do not occur in [9] are those with δ = 0.

We can also provide a quick approach to the classification in [9], which is outlined below.
For α ∈�, let [θ : α] denote the coefficient of α in the expression of θ via �. Set rα =
(θ , θ)/(α, α) ∈ {1, 2, 3}. In particular, rα = 1 for all α in the simply-laced case.

LEMMA 3·8. Let λ be a dominant weight. Then (λ, θ∨) = 1 if and only if λ=
α is
fundamental and [θ : α] = rα .

Proof. Write λ=∑l
i=1 ai
i and θ =∑l

i=1 niαi, i.e., ni = [θ : αi]. (Here l = rk g.) Then

(λ, θ∨) = 2

(θ , θ)

l∑
l=1

aini(
i, αi) =
l∑

l=1

aini
(αi, αi)

(θ , θ)
=

l∑
l=1

ai
ni

ri
,

where ri = rαi . Since θ is a long root, we have ni/ri ∈N for all i. The assertion follows.
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Table 2. The representations with CS(Omin(Vλ)) =Vλ: sporadic cases

g λ dim Vλ dim Omin(Vλ) δ self-dual dim Vλ//G

A1 2
1 3 2 1 orth. 1
3
1 4 2 0 sympl. 1

A3 
2 6 5 4 orth. 1
A4 
2,
3 10 7 4 no 0
A5 
3 20 10 0 sympl. 1
B3 
3 8 7 6 orth. 1
D4 
1,
3,
4 8 7 6 orth. 1
B4 
4 16 11 6 orth. 1
C3 
3 14 7 0 sympl. 1
D5 
4,
5 16 11 6 no 0
D6 
5,
6 32 16 0 sympl. 1
E7 
1 56 28 0 sympl. 1
G2 
1 7 6 5 orth. 1

THEOREM 3·9. Suppose that δ = δG·[vλ] > 0. Then:

(i) (λ, θ∨) = (λ∗, θ∨) ∈ {1, 2};
(ii) if (λ, θ∨) = 2, then δ = 1 and either λ= λ∗ = θ (the adjoint representation) or g=

sln+1 and {λ, λ∗} = {2
1, 2
n}.
Proof. (i) If δ = dim (g·vλ ∩ g·v−λ∗)> 0, then there are ν, ν′ ∈�+ ∪ {0} such that λ−

ν = −λ∗ + ν′. Hence λ+ λ∗ = ν + ν′ is a dominant weight in the root lattice. Since θ =
θ∗, we have (λ, θ∨) = (λ∗, θ∨) is a positive integer. On the other hand, (ν, θ∨), (ν′, θ∨) ∈
{0, 1, 2}. This implies that

2(λ, θ∨) = (λ+ λ∗, θ∨) = (ν + ν′, θ∨) ∈ {2, 4}.
(ii) If (λ, θ∨) = 2, then (ν, θ∨) = (ν′, θ∨) = 2. Hence ν = ν′ = θ and λ+ λ∗ = 2θ . If θ is a
multiple of a fundamental weight, then the only possibility is λ= λ∗ = θ . For g= sln+1, one
has θ =
1 +
n, which yields one more possibility. In either case, λ− θ = −λ∗ + θ is the
only weight occurring in g·vλ ∩ g·v−λ∗ , i.e., δ = 1.

Remark 3·10. It is worth noting that not every λ=
α such that [θ : α] = rα gives rise to the
G-module Vλ with δG·[vλ] > 0. For g= sln+1 or sp2n, all simple roots α satisfy that condition,
while one has δG·[vλ] = 0 in many cases. We can prove the following assertion, whose proof
and applications will appear in a forthcoming publication:

If λ is dominant and (λ, θ∨) = 1, then δG·[vλ] > 0 if and only if λ+ λ∗ − θ ∈ (�+ \ {θ}) ∪
{0}. Moreover, in this case δ � 2.

3·3. The minimal nilpotent orbit in g

For a simple Lie algebra g�Vθ , we usually write Omin in place of Omin(g) and say that
Omin ⊂ g is the minimal nilpotent orbit. If γ ∈� is a long root and eγ ∈ gγ , then Omin =
G·eγ . (In the simply-laced case, all roots are assumed to be long.)

Let {e, h, f } be an sl2-triple with e ∈Omin. Such an sl2-triple is said to be minimal. For
the minimal sl2-triples, the (Z, h)-grading of g has the following structure:
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g=⊕2
j=−2 g(i), g(2) = 〈e〉, and g(−2) = 〈f 〉. (3·5)

Since dim ge = dim g(0) + dim g(1) and gh = g(0), we have dim Omin = dim g(1) + 2 and
dim G·h = 2 dim g(1) + 2. Hence

dim G·h = 2 dim Omin − 2. (3·6)

Set s= 〈e, h, f 〉 � sl2. Let Ri denote a simple sl2-module of dimension i + 1. It follows from
(3·5) that

g|s = m0R0 + m1R1 +R2,

where m0 = dim g(0) − 1 and m1 = dim g(1). The G-orbit Omin is characterised by the prop-
erty that g|s contains no Rj with j � 3 and R2 occurs only once. A formulation that does not
invoke sl2-triples and Z-gradings is

e ∈Omin if and only if Im((ad e)2) = 〈e〉. (3·7)

Hence ht(Omin) = 2. However, if g �= sl2 or sl3, then there are other G-orbits of height 2.
Let θ ∈�+ be the highest root. Then eθ ∈ gθ is a highest weight vector and fθ ∈ g−θ is a

lowest weight vector. Under a suitable adjustment, three elements eθ , hθ = [eθ , fθ ], fθ form
an sl2-triple. Here eθ + fθ is conjugate to hθ in 〈eθ , hθ , fθ 〉 � sl2 and hence in g. Therefore,
it follows from Theorem 3·2(i) that

Sec(P(Omin)) = G·[h] and CS(Omin) =K(G·h), (3·8)

where h is the characteristic a minimal sl2-triple. This recovers the main result of [10]. Since
the orbit G·h is not conical, (3·6) can be written as dim G·[h] = 2 dim P(Omin), which again
shows that here δP(Omin) = 1. It is also easily seen that [g, eθ ] ∩ [g, fθ ] = 〈hθ 〉.
Remark 3·11. The G-modules Vλ such that CS(Omin(Vλ)) =Vλ and δ = 0 are related to
the minimal nilpotent orbits of the exceptional Lie algebras. If g is exceptional, then θ is
fundamental and the (Z, h)-grading (3·5) has the property that s= [g(0), g(0)] is simple.
Here rk s= rk g− 1, g(1) is a simple (symplectic) s-module, and the five pairs (s, g(1)) are
exactly the five items in Table 2 with δ = 0.

4. On the intersections of Omin with g0 and g1

Given σ ∈ Inv(g) and the related Z2-grading g= g0 ⊕ g1, let pi : g→ gi (i = 0, 1) be the
corresponding projections. That is,

p0(x) = x + σ (x)

2
and p1(x) = x − σ (x)

2
, x ∈ g.

Both projections are G0-equivariant. Set ϕ = p0|Omin
and ψ = p1|Omin

. To a great extent,
properties of ψ and ϕ depend on the varieties Omin ∩ g0 and Omin ∩ g1. We begin with a
simple observation.

PROPOSITION 4·1. Let g= g0 ⊕ g1 be a Z2-grading.

(i) Suppose that Omin ∩ g0 =∅. Then ψ : Omin →ψ(Omin) =ψ(Omin) is finite. In
particular, dim Omin = dimψ(Omin). Furthermore, if x ∈ψ(Omin), then
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#ψ−1(x) = 1 ⇐⇒ψ−1(x) = {x} ⇐⇒ x ∈Omin ∩ g1.

(ii) Suppose that Omin ∩ g1 =∅. Then ϕ : Omin → ϕ(Omin) = ϕ(Omin) is finite. In par-
ticular, dim Omin = dim ϕ(Omin). Furthermore, if x ∈ ϕ(Omin), then

#ϕ−1(x) = 1 ⇐⇒ ϕ−1(x) = {x} ⇐⇒ x ∈Omin ∩ g0.

Proof. (i) Here ψ−1(ψ(0)) =Omin ∩ g0 = {0}. Since both Omin and ψ(Omin) are k∗-
stable (= conical) and ψ is k∗-equivariant, this implies that ψ is finite.

Let x ∈Omin ∩ g1. Assume that y + x ∈ψ−1(x) for some nonzero y ∈ g0. Since σ (Omin) =
Omin, we have σ (y + x) = y − x ∈Omin and −y + x ∈ψ−1(x). As the plane P= 〈x, y〉 con-
tains three different lines from Omin, we conclude by Lemma 3·1 that y ∈Omin ∩ g0. A
contradiction! Hence ϕ−1(x) = {x}.

Conversely, if x ∈ψ(Omin) \Omin, then x =ψ(y + x) for some nonzero y ∈ g0. In this
case, we have −σ (x + y) = −y + x ∈ψ−1(x), i.e., #ψ−1(x)> 1.

(ii) Similar.

We prove below that whenever ψ or ϕ is finite, the degree of these morphisms equals 2.
Proposition 4·1 is fully symmetric relative to ψ and ϕ, but such symmetry fails below. We
shall see that Omin ∩ g1 is more important for the properties of Im(ϕ) and Im(ψ).

Our next goal is to classify all pairs (g, σ ) such that Omin ∩ g0 =∅ or Omin ∩ g1 =∅.

Example 4·2. (1) Take σ = ϑmax for g= sln. Then ϑmax(A) = −At for a matrix A ∈ sln.
Here

Omin = {A ∈ sln | rk A = 1} and dim (Omin) = 2n − 2.

Since rk A is even for any A ∈ son = g0, one has Omin ∩ g0 =∅ here. In this case

ψ(A) = A + At

2
and henceψ(Omin) ⊂ {B ∈ sln | B = Bt & rk B � 2}

Recall that a symmetric determinantal variety is Symk(n) = {B ∈ gln | B = Bt & rk B � k}.
It is irreducible, normal, and dim Symk(n) = k(2n − k + 1)/2 [13, 6.2.5]. Set Sym0

k(n) =
Symk(n) ∩ sln. Using the interpretation of Symk(n) as the categorical quotient nV//O(V),
where dim V= k [13, theorem 12·1·7·2], one readily realises that there is a normal irre-
ducible hypersurface D⊂ nV such that D//O(V) = Sym0

k(n). Hence the latter is also
irreducible and normal, with dimension one less. Since ψ(Omin) ⊂ Sym0

2(n) and their
dimensions are equal, we obtain ψ(Omin) = Sym0

2(n). In particular, ψ(Omin) is normal.
(2) Take σ = ϑmax for g= sp2n. Under a suitable choice of symplectic form on k2n, a

matrix M ∈ sp2n has the presentation M =
(

A B

C −At

)
, where A,B,C are n × n matrices,

B = Bt, and C = Ct. Then

g0 =
{(

A 0

0 −At

)}
� gln and g1 =

{(
0 B

C 0

)}
� Sym(n) × Sym(n).

One similarly has Omin = {M ∈ sp2n | rk M = 1} and rk M is even for any M ∈ g0. Hence
Omin ∩ g0 =∅ as well. Here dim Omin = 2n and ψ(Omin) � Sym1(n) × Sym1(n). It fol-
lows that ψ(Omin) is also normal here.

It appears that these are the only instances, where Omin ∩ g0 =∅.
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THEOREM 4·3. One has Omin ∩ g0 =∅ if and only if σ = ϑmax and g is either sln or
sp2n.

Proof. “if” part: see the preceding example.
“only if” part:

(i) if σ is inner, then we take t⊂ g0 and consider the natural partition of the root system
�=�(g0) ��(g1). Clearly, if �(g0) contains a long root, then Omin ∩ g0 �=∅. And
ϑmax for sp2n is the only inner involution such that all roots in �(g0) are short;

(ii) if σ ∈ Inv(g) is outer, then g ∈ {Am, Dm, E6}.
(a) For g= sl2n and g0 = sp2n, we know using the rank of matrices that

∅ �=Omin(sl2n) ∩ sp2n =Omin(sp2n)

(b) Let g= soN be the Lie algebra of skew-symmetric N × N matrices. Then

Omin = {A ∈ glN | A = −At, rk A = 2, A2 = 0}.
If σ is outer, then N is even and (g, g0) = (so2n+2m+2, so2n+1 � so2m+1) with
n + m> 0. It is clear that if, say, n> 0, then so2n+1 alone also contains such matrices
A.

(c) For g= E6, there are two outer involutions, with either g0 = sp8 or g0 = F4. Since g0
is simple in both cases, it suffices to verify that G·Omin(g0) =Omin(g). Let {e, h, f } ⊂
g0 be an sl2-triple with e ∈Omin(g0). Set s= 〈e, h, f 〉 � sl2.

(1) For g0 = sp8 = sp(V), the partition of e is (2, 1, . . . , 1) = (2, 16), i.e., V|s =R1 +
6R0. Then g0 � S2(V) and

g0|s = S2(R1 + 6R0) =R2 + 6R1 + 21R0.

Here g1 is the 4 th fundamental representation of sp8 and it is not hard to compute
that

g1|s = ∧4V/∧2 V= 14R1 + 14R0.

Hence g|s contains R2 only once and contains no Rj with j � 3. Thus, e ∈Omin(g).

(2) For g0 = F4, similar calculations yield the same conclusion.

Remark. A more conceptual (partial) argument is that if Sat(σ ) contains a black node
corresponding to a long root α ∈�, then gα ⊂ g0 and thereby Omin ∩ g0 �=∅. This applies
to (Dn+m+1, Bn � Bm) with |n − m|� 2 and (E6, F4).

To handle intersections Omin with g1, we need a simple but useful assertion.

PROPOSITION 4·4. If H is a spherical subgroup of G, then

max
v∈Omin

dim H·v � dim Omin − 1

and H has a dense orbit in P(Omin) ⊂ Pg.
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Proof. Since h is spherical, there is a Borel subalgebra b⊂ g such that h+ b= g. Fix
a Cartan subalgebra t⊂ b and the corresponding set of positive roots �+ in the root sys-
tem of (g, t). Let eθ ∈ b be a highest weight vector in b. Then eθ ∈Omin and [b, eθ ] = 〈eθ 〉.
Hence [g, eθ ] = [h, eθ ] + 〈eθ 〉. That is, dim H·eθ � dim Omin − 1 and the H-orbit of 〈e〉 ∈ Pg
is dense in P(Omin).

Remark 4·5. It follows from this proposition that either H has a dense orbit in Omin or there
is a dense open subset of Omin that consists of H-orbits of codimension 1. Moreover, H has
a dense orbit in Omin if and only if eθ ∈ [h, eθ ], i.e., the orbit H·eθ is a cone.

For any σ ∈ Inv(g), G0 is a spherical subgroup of G. Let us take a Borel subalgebra b such
that g0 + b= g and a b-eigenvector (i.e., a highest weight vector) eθ ∈Omin ∩ b.

THEOREM 4·6. The following conditions are equivalent:

(i) G0 has a dense orbit in Omin;

(ii) Omin ∩ g1 =∅;

(iii) ϕ : Omin → ϕ(Omin) ⊂ g0 is a finite morphism;

(iv) there is a black node α in Sat(σ ) such that (α, θ) �= 0;

(v) the orbit G0·eθ is conical.

Proof. If g0 + b= g, then t1 := g1 ∩ b is a Cartan subspace of g1. Taking a σ -stable
Cartan subalgebra t⊃ t1, we then make a suitable choice of �+, as described in Section
2.1, and obtain Sat(σ ). We use below the related description of t1 and t0 = t∩ g0 via �0,σ

and �1,σ .

(i) ⇔ (v): this follows from Proposition 4·4 and Remark 4·5 with H = G0.
(ii) ⇔ (iii): This follows from (3·1) and the fact that ϕ−1(0) = {0} ∪ (Omin ∩ g1). Cf. also

Proposition 4·1(ii).
(ii) ⇒ (iv): Recall that θ ∈�+ is the highest root. Then D(Omin) has the labels (α∨, θ) for

α ∈�. That is, if hθ ∈ t is the �+-dominant characteristic for Omin, then α(hθ ) = (α∨, θ)
for all α ∈�. If Omin ∩ g1 =∅, then G·hθ ∩ g1 =∅, i.e., G·hθ ∩ t1 =∅, i.e., hθ �∈ t1. By
Remark 2·1, this means that at least one thing should happen:

(a) (α, θ) �= 0 for some α ∈�0,σ , or

(b) (α, θ) �= (β, θ) for some α, β ∈� joined by an arrow in Sat(σ ).

However, the second thing never happens for Omin. For, if g �= sln+1, then there is a unique
α ∈� such that (α, θ) �= 0; and this α is never joined by an arrow with another node of the
Dynkin diagram. While for sln+1, there are two such simple roots, α1 and αn, and for them
(α1, θ) = (αn, θ).

(iv) ⇒ (ii): suppose that (α, θ) �= 0 for some α ∈�0,σ . Then the descriptions of t0 and t1
via Sat(σ ) show that hθ cannot belong to t1.

(iv) ⇔ (v): if α ∈�0,σ and (α, θ) �= 0, then hα ∈ t0 and [hα , eθ ] = (α∨, θ)eθ �= 0, i.e.,
G0·eθ is conical. Conversely, if [g0, eθ ] contains the line 〈eθ 〉, then [t0, eθ ] also does. Then
the description of t0 in Section 2.1 implies that there is α ∈�0,σ such that [hα , eθ ] �= 0, i.e.,
(α, θ) �= 0.
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Remark 4·7. If g �= sln+1, then θ is a multiple of a fundamental weight and there is a unique
α ∈� such that (α, θ) �= 0. Therefore, condition (iv) above should be verified for one node
of the Dynkin diagram. For g= sln, one has two such simple roots.

Example 4·8. Using condition (iv) and the table with Satake diagrams [22, table 4], one
readily compiles the list of all σ ∈ Inv(g) such that Omin ∩ g

(σ )
1 =∅. Here are the pairs

g⊃ g
(σ )
0 for them:

The involutions in the first column are outer, whereas the second column represents inner
involutions. Note also that these six cases can be organised in three chains (read the list
along the rows).

Remark 4·9. (1) For all six cases of Example 4·8, g0 appears to be semisimple. This can be
explained a priori, as follows. If g0 �= [g0, g0], then the Z2-grading in question arises from a
short Z-grading and g1 = g(−1) ⊕ g(1), see Section 2. Choose a Cartan subalgebra t⊂ g0 =
g(0). Then�=�(−1) ��(0) ��(1) and�(−1) = −�(1). It is clear that�(1) contains the
highest root for a suitable choice of �+. Hence g(1) ∩Omin �=∅ and g(−1) ∩Omin �=∅.

(2) The list of symmetric pairs (g, g0) such that Omin ∩ g1 =∅ occurs in [2, remark 2·2],
and the equivalence of (i) and (ii) in Theorem 4·6 is also mentioned therein. However, it
seems that the proofs promised in that remark have never been published.

It follows from Vinberg’s lemma [21, section 3, n.2] that, for a G-orbit O ⊂ g, each irre-
ducible component of O ∩ g1 is a G0-orbit. For O =Omin, this can be made more precise.
We use the notation of Remark 4·9(1).

PROPOSITION 4·10. If Omin ∩ g1 �=∅, then

Omin ∩ g1 =
{Omin(g1), if g is a simple g0-module,

Omin(g(1)) �Omin(g(−1)), if g1 = g(−1) ⊕ g(1)

Proof. Recall that g1 is a simple g0-module if and only if g0 is semisimple.

If the closure of an irreducible component of Omin ∩ g1 contains a nontrivial G0-orbit
O0, then dim O0 < dim (Omin ∩ g1) = ( dim Omin)/2. Then G·O0 is a G-orbit such that
dim G·O0 = 2 dim O0 < dim Omin. A contradiction! Hence each irreducible component of
Omin ∩ g1 is the minimal G0-orbit in a simple g0-submodule of g1.

Example 4.2 (2) provides an illustration to the second possibility of Proposition
4·10. In that example, g0 = gln, g1 = Sym(n) ⊕ Sym(n)∗ as gln-module, and Omin ∩ g1 =
Sym1(n) � Sym1(n).

5. Projections of Omin to g0 and g1

In this section, the varieties ψ(Omin) ⊂ g1 and ϕ(Omin) ⊂ g0 are described. Both of them
are irreducible, conical, and G0-stable. We show that their structure essentially depends on
whether the intersection Omin ∩ g1 is empty or not.
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Unless otherwise stated, {e, h, f } is a minimal sl2-triple. In the presence of a Z2-grading,
an sl2-triple is said to be normal, if e, f ∈ g1 and h ∈ g0. By [12, Proposition 4], every e ∈
N∩ g1 can be included in a normal sl2-triple. Recall from Section 3.1 that

CS(Omin) =K(G·h) ⊂ g. (5·1)

The following result provides a link between both projections and conical secant varieties.

LEMMA 5·1. For any σ ∈ Inv(g), one has

ψ(Omin) ⊂ CS(Omin) ∩ g1 and ϕ(Omin) ⊂ CS(Omin) ∩ g0

Proof. Let x = x0 + x1 ∈Omin with xi ∈ gi. Then σ (x) = x0 − x1 ∈ σ (Omin) =Omin. For a
generic x, both summands are nonzero. Hence [x0], [x1] ∈ Sec(Omin). Therefore x0 = ϕ(x) ∈
CS(Omin) ∩ g0 and x1 =ψ(x) ∈ CS(Omin) ∩ g1.

5·1. The case with Omin ∩ g1 �=∅

There are two reasons why the intersection Omin ∩ g1 is important. First, one has Omin ∩
g1 �=∅ ⇐⇒ G·h ∩ g1 �=∅, which is a special case of [1, theorem 1], cf. Remark 2·3. The
implication “⇒” is easy (and will be presented in the next proof), while the converse is not.
Second, Omin ∩ g1 �=∅ if and only if normal minimal sl2-triples exist.

5·1·1. Projections to g1

THEOREM 5·2. Suppose that Omin ∩ g1 �=∅. Let {e, h, f } be a normal minimal sl2-triple
and h1 = e − f ∈ g1. Then:

(i) h1 ∈K(G·h) ∩ g1;

(ii) ψ(Omin) =K(G0·h1) and dimψ(Omin) = dim Omin.

Proof. (i) If i = √−1, then ih1 =
(

0 i

−i 0

)
is conjugate to h =

(
1 0

0 −1

)
in 〈e, h, f 〉 � sl2 and

thereby in g. Hence ih1 ∈ G·h ∩ g1.
(ii) Since h is semisimple, G·h ∩ g1 is a sole G0-orbit [3, Proposition 6·6], hence G·h ∩

g1 = G0·ih1. Using Proposition 2·1 and (3·6), we obtain

dim G0·h1 = dim G0·ih1 = 1

2
dim G·h = dim Omin − 1.

Then dim K(G0·h1) = dim G0·h1 + 1 = dim Omin. Next step is to show that h1 ∈ψ(Omin).
Indeed, one has

v := exp (ad f )·e = e + [f , e] + 1

2
[f , [f , e]] = e − h − f ∈Omin (5·2)

and ψ(v) = e − f = h1. Since ψ(Omin) is a cone, the whole variety K(G0·h1) is contained in
ψ(Omin). Because the latter is irreducible and dimψ(Omin) � dim Omin = dim K(G0·h1),
the result follows.
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Since dim Omin = dimψ(Omin) in Theorem 5·2, the degree ofψ , deg (ψ), is well-defined.
By definition, deg (ψ) = #ψ−1(z) for generic z ∈ψ(Omin). Here the structure of ψ(Omin)
shows that deg (ψ) = #ψ−1(h1).

THEOREM 5·3. If Omin ∩ g1 �=∅, {e, h, f } is a normal sl2-triple for Omin, and h1 = e −
f , then

ψ−1(h1) = {e − h − f , e + h − f } = {h1 − h, h1 + h}.
In particular, deg (ψ) = 2.

Proof. Computations in 〈e, h, f 〉 � sl2 show that {e − h − f , e + h − f } ⊂ψ−1(h1) =
ψ−1(e − f ). Conversely, suppose that z := h1 + x ∈ψ−1(h1) for some x ∈ g0. Then
Im(ad z)2 = 〈z〉, see (3·7). In particular, (ad z)2(e) = ζ z and (ad z)2(f ) = ηz for some ζ , η ∈ k.

Equating the g0- and g1-components in both relations yields two systems of equations:⎧⎨⎩[f , [e, x]] − [h, x] = ζx

(ad x)2e − 2(e + f ) = ζh1 = ζe − ζ f
and

⎧⎨⎩[e, [x, f ]] − [h, x] = ηx

(ad x)2f − 2(e + f ) = ηh1 = ηe − ηf .

For computations with the g0-components, we use the fact that [e, [x, e]] ∈ g0 ∩ 〈e〉 = {0},
and likewise for f . Then we rearrange the above relations as follows:

(I):

⎧⎨⎩[f , [e, x]] − [h, x] = ζx

−[e, [f , x]] − [h, x] = ηx
and (II) :

⎧⎨⎩(ad x)2e = (ζ + 2)e + (2 − ζ )f

(ad x)2f = (η+ 2)e + (2 − η)f .

(i) System (II) means that the plane 〈e, f 〉 is (ad x)2-stable and

(II′) :

⎧⎨⎩(ad x)2(e − f ) = (ζ − η)(e − f )

(ad x)2(e + f ) = (ζ + η)(e − f ) + 4(e + f ).

(ii) Taking the sum in (I) and using the Jacobi identity, we obtain −3[h, x] = (ζ + η)x.

(iii) Assume that ζ + η �= 0. Then x is nilpotent and hence the determinant of (II) or
(II)’ must be zero, i.e., ζ = η. But in this case we have (ad x)2(e − f ) = 0 and
(ad x)2(e + f ) = 2ζ (e − f ) + 4(e + f ). Therefore, (ad x)2k(e + f ) �= 0 for all k ∈N, i.e.,
ad x is not nilpotent. This contradiction means that ζ + η= 0 and [h, x] = 0.

(iv) For the minimal sl2-triples, one has gh = 〈h〉� l, where l is the centraliser of the
whole sl2-triple {e, h, f }. Therefore,

x = ah + h̃,

where h̃ ∈ l and a ∈ k. Substituting this x into system (I) and using the relations
[h̃, e] = [h̃, f ] = 0, one readily obtains h̃ = 0, ζ = 2, and η= −2.

(v) Thus, z = h1 + x = e − f + ah ∈Omin. But elements of this form are nilpotent in
〈e, h, f 〉 � sl2 if and only if a = ±1.
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By Theorem 4·3, there are two cases in which ψ is finite (of degree 2). A more precise
assertion for them is

PROPOSITION 5·4. If Omin ∩ g0 =∅, thenψ : Omin →ψ(Omin) is the categorical quotient
by the linear action of the cyclic group C2 with generator (−σ ) ∈ GL(g).

Proof. Let π : Omin →Omin/C2 be the quotient morphism. Since the map

(x ∈Omin) �−→ (ψ(x) = (x − σ (x))/2 ∈ g1)

is C2-equivariant, we obtain the commutative diagram

whereψ is onto. Our goal is to prove that κ is an isomorphism. Since deg (ψ) = deg (π) = 2,
the map κ is birational. Since Omin is normal [23], so is Omin/C2. Therefore, it suffices to
prove that ψ(Omin) is a normal variety. And this follows from the description of Im(ψ) in
Example 4·2.

5·1·2. Projections to g0

To describe ϕ(Omin), we need Lemma 5·1 and the relation K(G·h) = CS(Omin). Since
G·h is a closed (hence non-conical) G-orbit, it follows from (3·6) that

dim K(G·h) = dim G·h + 1 = 2 dim Omin − 1.

THEOREM 5·5. Suppose that Omin ∩ g1 �=∅, and let {e, h, f } be a normal minimal sl2-
triple. Then ϕ(Omin) =K(G0·h) and dim ϕ(Omin) = dim Omin − 1.

Proof. By (5·2), we have e − h − f ∈Omin. Hence −h ∈ ϕ(Omin) and K(G0·h) ⊂
ϕ(Omin). On the other hand, ϕ(Omin) ⊂K(G·h) ∩ g0 (Lemma 5·1), and since G0·h is an irre-
ducible component of G·h ∩ g0 [19, theorem 3·1], it is clear that K(G0·h) is an irreducible
component of K(G·h) ∩ g0. Hence ϕ(Omin) =K(G0·h).

To compute dim G0·h, we use the (Z, h)-grading related to our normal minimal sl2-
triple, see (3·5). By the assumption, we have g(2) ⊕ g(−2) = 〈e, f 〉 ⊂ g1. Hence g0 ⊂ g(1) ⊕
g(0) ⊕ g(−1). Furthermore, if v ∈ g(1) ∩ g0, then [f , v] ⊂ g(−1) ∩ g1, and vice versa. (Note

that [e, [f , v]] = v for any v ∈ g(1).) This implies that dim
(
g0 ∩ (g(1) ⊕ g(−1)

))= dim g(1).

Therefore,

dim G0·h = dim g0 − dim (g0 ∩ g(0)) = dim g(1) = dim Omin − 2.

Thus, dim K(G0·h) = dim Omin − 1, and we are done.

Since dim Omin − dim ϕ(Omin) = 1, generic fibres of ϕ : Omin →K(G0·h) are one-
dimensional. Therefore, dim ϕ−1(h) = 1. Here a slight modification of (5·2) provides a clue
about the structure of ϕ−1(h). For any t ∈ k∗, one has

exp (ad te)·1
t

f = 1

t
f + [e, f ] + 1

2
[te, [te,

1

t
f ]] = 1

t
f + h − te ∈ ϕ−1(h). (5·3)
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We prove below that this actually yields the whole fibre ϕ−1(h) and thereby generic fibres
of ϕ are irreducible.

THEOREM 5·6. Suppose that Omin ∩ g1 �=∅. Let {e, h, f } be a normal minimal sl2-triple
and ϕ : Omin → ϕ(Omin) =K(G0·h). Then ϕ−1(h) = { 1

t f + h − te ∈ ϕ−1(h) | t ∈ k∗}.
Proof. The inclusion ‘⊃’ is shown in (5·3).

Our proof for ‘⊂’ is close in spirit to the proof of Theorem 5·3, though some details are
different. Suppose that z = h + x ∈ ϕ−1(h) for some x ∈ g1. Then Im(ad z)2 = 〈z〉, see (3·7).
In particular, (ad z)2(e) = ζ z and (ad z)2(f ) = ηz for some ζ , η ∈ k.

Equating the g0- and g1-components in both relations yields two systems of equations:⎧⎨⎩[h, [x, e]] + 2[x, e] = ζh

(ad x)2e + 4e = ζx
and

⎧⎨⎩[h, [x, f ]] − 2[x, f ] = ηh

(ad x)2f + 4f = ηx.

Using the Jacoby identity and certain rearrangements, we obtain:

(I) :

⎧⎨⎩[[h, x] + 4x, e] = ζh

[[h, x] − 4x, f ] = ηh
and (II) :

⎧⎨⎩(ad x)2e = −4e + ζx

(ad x)2f = −4f + ηx.

For a while, we concentrate on system (I). Using the relations for the sl2-triple, one derives
from (I) that

(I’) :

⎧⎨⎩[h, x] + 4x = −ζ f + ae

[h, x] − 4x = ηe + bf ,

where ae ∈ ge and bf ∈ gf . Taking the sum and difference in (I’), we obtain

2[h, x] = ηe − ζ f + ae + bf , (5·4)

8x = −ηe − ζ f + ae − bf . (5·5)

Next, we apply ad h to equality (5·5) and then substitute [h,x] from (5·4) into the equality
obtained. We get

6ηe − 6ζ f = −4ae − 4bf + [h, ae] − [h, bf ]. (5·6)

Recall that associated with the (normal) sl2-triple {e, h, f }, we have the (Z, h)-grading g=⊕2
i=−2 g(i), see (3·5). Here ae ∈ ge ⊂ g( � 0) and bf ∈ gf ⊂ g( � 0), i.e., ae = a0 + a1 + a2

and bf = b0 + b−1 + b−2, where ai ∈ g(i) and b−j ∈ g(−j).

(i) Comparing the Z-homogeneous components of (5·6) in g(i) with i = −1, 0, 1, we
conclude that a1 = b−1 = 0 and a0 = −b0 =: 2r. This also means that r ∈ zg(e, h, f ).

(ii) Since g(2) = 〈e〉, we have a2 = ce and then comparing the g(2)-components in (5·6)
implies that c = −3η. Likewise, b−2 = c̃f and then c̃ = 3ζ .
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Thus, our current achievement is that ae = a0 + ce = 2r − 3ηe and bf = b0 + c̃f = −2r +
3ζ f . Substituting these ae and bf into (5·5), we obtain

x = 1

2
(−ηe − ζ f + r).

Let us remember that there are also equations (II). Substituting this x into, say, the first
equation in (II), we obtain

ζηe = −4e + ζ r/2.

Therefore, ζη= −4 and r = 0. In other words, x = −te + f /t, as required.

5·2. The case with Omin ∩ g1 =∅

If Omin ∩ g1 =∅, then G·h ∩ g1 =∅ and normal minimal sl2-triples do not exist. On the
other hand, we have assertions of Theorem 4·6 at our disposal, and there are only six such
cases (Example 4·8).

5·2·1. Projections to g1

We give a uniform description of ψ(Omin) using (partly) a case-by-case argument.

THEOREM 5·7. Suppose that Omin ∩ g1 =∅. Then

(i) ψ(Omin) is the closure of a nilpotent G0-orbit in g1 and dimψ(Omin)< dim Omin.

(ii) More precisely, ψ(Omin) =Omin(g1).

Proof. (i) By Theorem 4·6, G0 has a dense orbit in Omin. Then ψ(Omin) has a dense
G0-orbit, too. Since ψ(Omin) is conical, this G0-orbit is also conical, hence nilpotent.

To estimate dimψ(Omin), we use CS(Omin). By (5·1) and Lemma 5·1, we have
ψ(Omin) ⊂K(G·h) ∩ g1. By (3·6), all G-orbits in K(G·h) has dimension at most
2 dim Omin − 2. On the other hand, for any G-orbit Ô ⊂ g, each irreducible component of
Ô ∩ g1 is a G0-orbit [21, section 3, n·2] and dim (Ô ∩ g1) = 1

2 dim Ô. Therefore, it follows
from the preceding paragraph that ψ(Omin) is the closure of an irreducible component of
Ô ∩ g1 for some Ô ⊂K(G·h) ∩N and hence dimψ(Omin) � dim Omin − 1.

(ii) Since Omin ∩ g1 =∅, the subalgebra g0 is semisimple and g1 is a simple G0-module,
see Remark 4·9(1). Hence there is the minimal G0-orbit Omin(g1) and Omin(g1) ⊂ψ(Omin).
Then Õ := G·Omin(g1) is a nilpotent G-orbit in K(G·h), and Õ �=Omin by the assumption.
The G-orbits in K(G·h) are known [11], and using Sat(σ ) and Remark 2·3, one readily
verifies that Õ is the only G-orbit in K(G·h) meeting g1, cf. examples below. Hence Õ ∩ g1

is irreducible and ψ(Omin) = Õ ∩ g1 =Omin(g1).

Example 5·8. We point out Sat(σ ) and the weighted Dynkin diagrams of the nilpotent
orbits in CS(Omin) for two symmetric pairs in Example 4 with exceptional g. We use the
standard labels for the nilpotent orbits in the exceptional Lie algebras, see [5, chapter 8].
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In both cases, Omin =A1 and the next orbit Õ is either 2A1 or Ã1. Looking at these data,
one sees that Õ is the only orbit such that the set of black nodes of Sat(σ ) is contained in
the set of zeros of the weighted Dynkin diagram, i.e., Õ ∩ g1 �=∅, see Remark 2·3.

Example 5·9. (1) For (sl2n, sp2n), n � 2, the Satake diagram is:

and the orbits in K(G·h) ∩N are:

(2) For (sp2n, sp2k � sp2n−2k), k � n − k, the Satake diagram is:

and the orbits in K(G·h) ∩N are:

Here λ(O) is the partition of 2n corresponding to O, and again Õ is the only orbit meeting
g1. A similar situation occurs for the involutions of son. The complete list of orbits Õ appears
in Table 3.
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Table 3. The representations with CS(Omin(Vλ)) =Vλ: sporadic cases

g, g0 dim g1 dim Omin Õ dim Õ O0

1 E6, F4 26 22 2A1 32 Ã1

2 F4, B4 16 16 Ã1 22 (24, 1)
3 Dn+1, Bn 2n+1 4n−2 (3, 12n−1) 4n (3, 12n−2)
4 Bn, Dn 2n 4n−4 (3, 12n−2) 4n−2 (3, 12n−3)
5 A2n−1, Cn 2n2−n−1 4n−2 (22, 12n−4) 8n−8 (22, 12n−4)
6 Cn, Ck�Cn−k 4k(n−k) 2n (22, 12n−4) 4n−2 Omin(Ck)×Omin(Cn−k)

5·2·2. Projections to g0

If Omin ∩ g1 =∅, then G0 has a dense orbit in Omin and ϕ : Omin → ϕ(Omin) = ϕ(Omin)
is finite, see Theorem 4·6. Therefore, ϕ(Omin) is the closure of a nilpotent G0-orbit in g0, and
we write O0 for this G0-orbit. We prove below that ht(G·O0) = 2, i.e., (ad x)3 = 0 for x ∈O0

(Theorem 6·2(i)). In particular the height of the G0-orbit O0 equals 2, too. If x ∈ ϕ(Omin) \
Omin and y ∈ ϕ−1(x), then σ (y) ∈ ϕ−1(x) and also y �= σ (y). This shows that deg (ϕ) is even.
We prove in Theorem 6·2(ii) below that actually deg (ϕ) = 2 for all six cases with Omin ∩
g1 =∅. This yields a ϕ-analogue of Proposition 5·4.

PROPOSITION 5·10. If Omin ∩ g1 =∅, then ϕ : Omin →O0 is the categorical quotient by
the linear action of the cyclic group Ĉ2 with generator σ ∈ GL(g).

Proof. Let π : Omin →Omin/Ĉ2 be the quotient morphism. Since the map

(x ∈Omin) �→ (ϕ(x) = (x + σ (x))/2 ∈ g0)

is Ĉ2-equivariant, we obtain the commutative diagram

where ϕ is onto. Since deg (ϕ) = deg (π) = 2, the map κ is birational. Again, to prove that
κ is an isomorphism, it suffices to know that O0 is a normal variety. Here ht(O0) = 2, and
by an old result of Hesselink [8, section 5], the nilpotent orbits of height 2 have normal
closure.

In Table 3, we gather information on ψ(Omin) and ϕ(Omin) for the six cases in which
Omin ∩ g1 =∅. If g or g0 is a classical Lie algebra, then the corresponding orbits are rep-
resented by partitions. For Ck, the partition of Omin is (2, 12k−2). As in Section 5.2.1, Õ
is the nilpotent G-orbit such that Õ ∩ g1 =Omin(g1) =ψ(Omin) and hence dimψ(Omin) =
1
2 dim Õ. It is the only orbit in CS(Omin) meeting g1. While O0 is the nilpotent G0-orbit
such that ϕ(Omin) =O0. To explicitly identify O0 ⊂ g0, we use the relations ht(O0) = 2
and dim Omin = dim O0 (since ϕ is finite). For the classical cases, one can also exploit some
easy arguments with partitions.

https://doi.org/10.1017/S0305004123000348 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000348


Projections of the minimal nilpotent orbit 617

5·3. Summary

It follows from our results that, for any σ ∈ Inv(g), exactly one of the two projections
ϕ : Omin → g0 and ψ : Omin → g1 is generically finite-to-one.

(i) If Omin ∩ g1 �=∅, then dimψ(Omin) = dim Omin (Theorem 5·2), while
dim ϕ(Omin) = dim Omin − 1 (Theorem 5·5). In this case either of the projections
contains a 1-parameter family of closed G0-orbits.

(ii) If Omin ∩ g1 =∅, then dimψ(Omin)< dim Omin (Theorem 5·7), while
dim ϕ(Omin) = dim Omin (Theorem 4·4). In this case either of the projections
contains a dense G0-orbit.

6. Some applications and complements

Let H be a connected reductive algebraic subgroup of G with h= Lie H. Then �|h is
non-degenerate and g= h⊕ h⊥ is a direct sum of H-modules. Set m= h⊥. For any x ∈ g,
write x = a + b, where a ∈ h and b ∈m. Let ϕ : g→ h (resp.ψ : g→m) be the H-equivariant
projection with kernel m (resp. h), i.e., ϕ(x) = a and ψ(x) = b.

THEOREM 6·1 Let O ⊂ g be an arbitrary G-orbit. Suppose that H has a dense orbit in
O, and let �⊂O be the dense H-orbit. Then:

(i) the centraliser of h in g is trivial. In particular, h is semisimple;

(ii) if x ∈�, then ha = hx ⊂ hb;

(iii) for any x = a + b ∈O, we have [a, b] = 0;

(iv) dim ϕ(O) = dim O;

(v) Suppose that O ⊂N and e = a + b ∈O. Then a, b ∈N.

Furthermore, if a + b ∈� and ha ∈ h is a characteristic of a, then [ha, b] = 2b.
Proof.

(i) Any nonzero f ∈ gh gives rise to an H-invariant polynomial function on O.

(ii) If x ∈�, then [h, x] = [g, x]. Hence h+ gx = g and h⊥ ∩ (gx)⊥ =m∩ [g, x] = {0}. If
y ∈ ha, then [y, x] = [y, b] ⊂m∩ [g, x] = {0}.

(iii) Taking y = a, we derive from (i) that [a, b] = 0 whenever x ∈�. Since the H-
equivariant polynomial mapping (x ∈O) �→ ([a, b] ∈m) vanishes on a dense subset
of O, it is identically zero.

(iv) We have [g, x] =Tx(O), the tangent space at x ∈O. Here dϕx : Tx(O) →Tϕ(x)(ϕ(O))
has trivial kernel for all x ∈�. Therefore dim O = dim ϕ(O).

(v) Here O is a conical G-orbit. Hence � is a conical H-orbit. Therefore, ϕ(O) = ϕ(�)
(resp. ψ(O)) is the closure of a conical H-orbit in h (resp. m).

Consider the (Z, ha)-grading of g. Then [ha, a] = 2a. Let us write b as a sum of ha-
eigenvectors, b =∑

j∈Z bj, such that [ha, b] =∑
j∈Z jbj. (Since we know that [a, b] = 0, the

sum ranges over j ∈N, but this is not important below.)
Let Λ : k∗ → G0 be the 1-parameter subgroup corresponding to ha, i.e., dΛ1(0) = ha.

Then Λ(t)·a = t2a and Λ(t)·b =∑
j tjbj. Since O is conical,
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et := t−2Λ(t)·e = a +
∑

j

tj−2bj ∈O.

This means that et ∈ ϕ−1(ϕ(e)) = ϕ−1(a) for any t ∈ k∗. On the other hand, if e = a + b ∈�,
then the fibre ϕ−1(a) is finite. Clearly, this is only possible if b = b2.

If h= g0 for some σ ∈ Inv(g), then H has a dense orbit in Omin if and only if Omin ∩ g1 =
∅. That is, there are six cases in which Theorem 6·1 applies to H = G0 and O =Omin.

We assume below that g is simple, h= g0, and Omin ∩ g1 =∅. For e ∈Omin, we write
e = a + b, where a ∈ g0 and b ∈ g1. Then a �= 0 and a, b ∈N, see Section 5.2.

THEOREM 6·2. Under the assumption that h= g0 and Omin ∩ g1 =∅, we have:

(i) (ad a)3 = (ad b)3 = 0 for any e ∈Omin. In other words, ht(G·a) = ht(G·b) = 2;

(ii) if e = a + b ∈Omin belongs to the open G0-orbit in Omin, then ϕ−1(ϕ(a)) = {a +
b, a − b}; hence deg (ϕ) = 2.

Proof. (i) Take e ∈Omin such that b �= 0 (otherwise, there is nothing to prove). By
Theorem 6·1 (iii), we have [a, b] = 0. Our aim is to prove that (ad a)3(y0) = (ad a)3(y1) = 0
for any yi ∈ gi; and likewise for b.

Let y = y0 + y1 ∈ g be arbitrary. Since e ∈Omin,

(ad e)2(y) = η(y)e

for some η= ηe ∈ g∗. To simplify notation, we write below ab(yi) in place of [[a, [b, yi]],
a2(yi) in place of [[a, [a, yi]], and likewise for any other ordered word of length �2 in a and
b. Extracting the components of (ad e)2(y) lying in g0 and g1, we get⎧⎨⎩(a2 + b2)(y0) + (ab + ba)(y1) = η(y)a

(ab + ba)(y0) + (a2 + b2)(y1) = η(y)b.

Taking either y = y0 or y = y1, we obtain four relations

(1) (a2 + b2)(y0) = η(y0)a, (2) (ab + ba)(y1) = η(y1)a,

(3) (ab + ba)(y0) = η(y0)b, (4) (a2 + b2)(y1) = η(y1)b.

(a) Set x1 = a3(y0), x2 = ab2(y0), x3 = bab(y0), x4 = b2a(y0). Our aim here is to prove
that x1 = 0. Applying ad a to (1) and ad b to (3), we obtain x1 + x2 = 0 and x3 + x4 =
0. It follows from the relation [a, b] = 0 that x2 = x3 = x4. Hence all xi = 0.

(b) Set z1 = a3(y1), z2 = ab2(y1), z3 = bab(y1), z4 = b2a(y1). Our next aim is to prove that
z1 = 0. Applying ad a to (4) and ad b to (2), we obtain z1 + z2 = 0 and z3 + z4 = 0.
Again, here z2 = z3 = z4, hence all zi = 0. That is, we have proved that ht(G·a) = 2.

(c) We leave it to the reader to prove, in a similar way, that b3(y0) = 0 and b3(y1) = 0.

(ii) Since σ (e) = a − b ∈Omin, we have a ± b ∈ ϕ−1(ϕ(a)). Suppose that a + c ∈Omin for
some other c ∈ g1. By Theorem 6·1 (v), we have [ha, c] = 2c, i.e., c ∈ g1(2). Next, a direct
verification shows that, for all six cases in which Omin ∩ g1 =∅, one has dim g1(2) = 1.
Therefore, c = ηb for some η ∈ k∗. Assume that η �= ±1. Then 〈a + b〉, 〈a − b〉, 〈a + ηb〉 are
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three lines in the plane 〈a, b〉 that belong to Omin. Then the whole plane belongs to Omin in
view of Lemma 3·1, and thereby b ∈Omin ∩ g1. A contradiction!

In the notation of Section 5.2, G·a = G·O0 and G·b = Õ. Therefore, Theorem 6·2(i) yields
an a priori proof for the fact, which is used in Proposition 5·10, that the height of the G0-
orbit O0 equals 2. Moreover, we have proved the assertion that deg (ϕ) = 2, which has also
been used in Section 5.2.2. We will prove in Section 6.3 that G·a = G·b.

6·2. On the secant variety of Omin(g1)

Suppose that g1 is a simple g0-module, i.e., g0 is semisimple. Then the minimal G0-orbit
Omin(g1) exists, and the general description of the conical secant variety CS(Omin(g1)) from
Section 3.1 can be made more explicit.

Take ẽ ∈Omin(g1) and a normal sl2-triple {ẽ, h, f̃ } for the orbit Õ = G·ẽ ⊂N. This yields
the (Z, h)-grading g=⊕

i∈Z g(i). We also write Omin(g1) = G0·ẽ and P(Omin(g1)) = G0·[ẽ].

THEOREM 6·3. Let g1 be a simple g0-module and ẽ ∈Omin(g1). Then:

(i) ht(G·Omin(g1)) = 2 and thereby g(�3) = 0;

(ii) CS(G0·e) =K(G0·h1), where h1 = ẽ + f̃ ;

(iii) the defect of Sec(G0·[ẽ]) equals δG0·[ẽ] = dim g(2) − 1;

(iv) δG0·[ẽ] = 0 if and only if Omin(g1) =Omin ∩ g1.

Proof. (i) If Omin ∩ g1 �=∅, then G·Omin(g1) = Õ =Omin and we know that
ht(Omin) = 2.

If Omin ∩ g1 =∅, then the assertion follows from Theorem 6·2(i).
(ii) If ẽ is a highest weight vector in g1, then f̃ is a lowest weight vector (under a suit-

able choice of a Cartan and Borel subalgebras of g0). Then CS(G0·ẽ) =K(G0·h1) and
Sec(G0·[ẽ]) = G0·[h1] (Theorem 3·2).

(iii) To compute the secant defect of G0·[ẽ], we use properties of (Z, h)-gradings and the
fact that h1 ∈ k∗(G·h). Recall that gh = g(0), dim gẽ = dim g(0) + dim g(1), and dim g(i) =
dim g(−i). Therefore

dim G0·h1 = 1
2 dim G·h = dim g(�1) and dim G0·ẽ = 1

2 dim G·ẽ = 1
2 dim g(1) +

dim g(�2).
Since dim K(G0·h1) = dim (G0·h1) + 1, the defect is equal to

δG0·[ẽ] = 2 dim G0·ẽ − dim CS(G0·ẽ) = dim g(�2) − 1 = dim g(2) − 1.

(iv) If dim g(�2) = 1, then g(2) = 〈ẽ〉. Hence ẽ ∈Omin. In this case, we also have
Omin(g1) =Omin ∩ g1 by Proposition 4·10.

Remark 6·4. It follows from (iv) and Example 4·8 that there are only six cases in which
G·Omin(g1) �=Omin and hence δG0·[ẽ] > 0. One can prove that, for all involutions σ with
g0 semisimple and the (Z, h)-gradings corresponding to G·Omin(g1), one has dim g1(2) = 1.
Hence δG0·[ẽ] = dim g(2) − 1 = dim g0(2).

COROLLARY 6·5. Sec(P(Omin(g1)) = P(g1) if and only if G/G0 is a symmetric variety of
rank 1.
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Proof. It follows from the theorem that Sec(P(Omin(g1)) = P(g1) if and only if
K(G0·h1) = g1, i.e., codim (G0·h1) = 1. Then r(G/G0) = 1 in view of (2·1).

As is well known, the symmetric pairs (g, g0) with g0 semisimple and r(G/G0) = 1 are:

(sp2n, sp2 � sp2n−2), n � 2; (son, son−1), n � 7; (sl4, sp4); (F4, B4)

Using Proposition 4·10 and Theorem 5·2, we also obtain a connection with projections of
Omin.

COROLLARY 6·6. If Omin ∩ g1 �=∅, then ψ(Omin) = CS(Omin ∩ g1) = CS(Omin(g1)).

6·3. A relation between ϕ(Omin) and ψ(Omin)

A careful look at our results in Section 5 allows to reveal a curious unexpected
coincidence.

THEOREM 6·7. For any σ ∈ Inv(g), we have G·ϕ(Omin) = G·ψ(Omin). More precisely,

this common variety is

⎧⎨⎩CS(Omin), if Omin ∩ g1 �=∅,

Õ, if Omin ∩ g1 =∅.
, where Õ = G·Omin(g1).

Proof. 1o. Suppose that Omin ∩ g1 �=∅. By Theorems 5·2 and 5·5, we have ψ(Omin) =
K(G0·h1) and ϕ(Omin) =K(G0·h). Since h and h1 = e − f are G-conjugate, the common
closure of the G-saturation for these two varieties is CS(Omin) =K(G·h).

2o. If Omin ∩ g1 =∅, then G·ϕ(Omin) = G·O0 and G·ψ(Omin) = Õ (with the notation of
Section 5.2). Hence the assertion is equivalent to that the G-orbits G·O0 and Õ coincide.
Let us check this for the six cases of Table 3.

(i) For item 1, one has to check that the F4-orbit of type Ã1 generates the E6-orbit of type
2A1. To this end, we use Lawther’s tables [15]. Let k⊂ g0 = F4 be the sl2-subalgebra
corresponding to the orbit O0 = Ã1. Here g1 is the 26-dimensional F4-module. Then
g0|k = 15R0 + 8R1 + 7R2 ([15, table 4]) and g1|k = 7R0 + 8R1 +R2 ([15, table 3]).
Hence g|k = 22R0 + 16R1 + 8R2. Comparing this with data in [15, table 6], we find
that k yields the orbit of type 2A1 in g= E6.

(ii) For item 2, similar computations apply. If sl2 � k⊂ so9 = so(V) corresponds to the
orbit O0 with partition (24, 1), then V|k = 4R1 +R0. Here g0 �∧2 V and g1 is the
spinor so9-module. Hence g0|k = 10R0 + 4R1 + 6R2 and g1|k = 5R0 + 4R1 +R2.
Hence g|k = 15R0 + 8R1 + 7R2. Using again [15, table 4], we conclude that g|k
corresponds to the orbit of type Ã1 in g= F4.

(iii) In item 5, both orbits (in sl2n and sp2n) have the same partition. An easy argument
with partitions settles also the remaining cases 3, 4, 6.

Another (partial) possibility to proceed in part 2o of the proof is that Õ and G·O0 are two
orbits of height 2 in CS(Omin) that are different from Omin. And if g �= son, then there is
only one such orbit, i.e., it works for items 1,2,5,6 in Table 3. It might be most illuminating
to have a proof of Theorem 6·7 that does not resort to case-by-case considerations.
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Remark 6·8. In the same vein, one can prove that ϕ(Omin) (resp. ψ(Omin)) is an irreducible
component of G·ψ(Omin) ∩ g0 (resp. G·ϕ(Omin) ∩ g1). Furthermore:

(i) If Omin ∩ g1 =∅, i.e., G·ψ(Omin) = G·ϕ(Omin) = Õ, then Õ ∩ g1 =Omin(g1) is

irreducible. Hence G·ϕ(Omin) ∩ g1 =ψ(Omin). However, Õ ∩ g0 is reducible for
items 2 and 6;

(ii) if Omin ∩ g1 �=∅, then CS(Omin) ∩ g0 can be reducible. But we do not know whether
the intersection CS(Omin) ∩ g1 is always irreducible.

7. More general projections

In Section 5, we studied the projections of Omin associated with σ ∈ Inv(g). Some of the
previous results, see e.g. Proposition 4·4 and Theorem 6·1, suggest that this setup can be
generalised in several ways.

First, one can eliminate involutions and study projections of Omin associated with
arbitrary reductive subalgebras h⊂ g in place of symmetric subalgebras g0.

Second, it makes sense to consider projections to g0 or g1 for other nilpotent orbits.
Here we only provide a preliminary incomplete treatment for both. A thorough exposition

will appear elsewhere.

7·1. Projections of Omin associated with reductive subalgebras of g

Let G/H be an affine homogeneous space. Here h= Lie H is reductive and �|h is non-
degenerate. As above, m= h⊥ is a complementary h-module, i.e., g= h⊕m and [h, m] ⊂m.
Let ϕ : Omin → h and ψ : Omin →m be the corresponding projections. Clearly, both ϕ and
ψ are H-equivariant. Using previous results, we obtain the following.

LEMMA 7·1. Suppose that Omin ∩m=∅. Then:

(i) ϕ : Omin → ϕ(Omin) ⊂ h is finite and dim Omin = dim ϕ(Omin);

(ii) the Lie algebra h is semisimple;

(iii) Furthermore, if H is spherical, then H has a dense orbit in Omin, ϕ(Omin), and
ψ(Omin).

Proof.

(i) The proof is the same as in Proposition 4·1.

(ii) Assume that the centre of h, z(h), is nontrivial. Then h is contained in the Levi
subalgebra l= gz(h). Here

m̂= l⊥ ⊂ h⊥ =m

and m̂ contains a long root space w.r.t. a Cartan subalgebra t⊂ l. Hence Omin∩
m̂ �=∅.

(iii) By Proposition 4·4, maxv∈Omin dim H·v � dim Omin − 1. Since dim Omin is even, ϕ
is finite, and the dimension of any H-orbit in h is even, H must have a dense orbit in
ϕ(Omin). This readily implies the rest.
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Remarks. 1o. It is not claimed in part (iii) that dim Omin = dimψ(Omin).
2o. The sphericity of H is not necessary for H to have a dense orbit in Omin, see below.

We already proved that, for h= g0 and m= g1, there are six cases in which Omin ∩m=∅
(Example 4·8). However, it is not hard to provide examples with such property that are not
related to involutions.

Example 7·2. Let g be a simple Lie algebra with two root lengths and h= glg the subal-
gebra that is the sum of t and the long root spaces. It is easily seen that h is semisimple. Here
m is the sum of all short root spaces. Therefore, Omin ∩m=∅. This yields the following
suitable pairs (g, glg):

(1o) (Bn, Dn); (2o) (Cn, C1 � · · ·� C1︸ ︷︷ ︸
n

); (3o) (F4, D4); (4o) (G2, A2).

Pair (1o) is symmetric, but the other three items provide new instances. Moreover, if glg
is not a maximal subalgebra and glg ⊂ h′ ⊂ g, then h′ is also semisimple and Omin ∩m′ =
∅. Specifically, one can take any h′ = Cn1 � · · ·� Cnk with n1 + · · · + nk = n in (2o) and
h′ = B4 in (3o). Here H is not spherical in (2o) for n � 3 and in (3o). Furthermore, the above
subalgebra h′ for (2o) is not spherical, if k � 3. Nevertheless, H = Glg always has a dense
orbit in Omin, regardless of sphericity.

7·2. Projections of spherical G-orbits in g

Let g= g0 ⊕ g1 be a Z2-grading corresponding to an involution of maximal rank ϑmax.
In this case g1 = g

(ϑmax)
1 contains a Cartan subalgebra of g and dim g1 = dim b. Recall that

p1 : g→ g1 is the projection with kernel g0. Let O ⊂ g be an arbitrary G-orbit, not necessar-
ily nilpotent. Write ψ for the restriction of p1 to O. Whenever we wish to keep track of O
in the projection, we write ψ =ψO.

THEOREM 7·3. If O is spherical, then dim O = dimψ(O), i.e., generic fibres of ψ =ψO
are finite.

Proof. By definition, O is spherical if and only if there is x ∈O such that B·x is dense in
O, i.e., gx + b= g. By [18], the sphericity of O is equivalent to that there is z ∈O such that
gz + g1 = g. Clearly, �= {z ∈O | gz + g1 = g} is open in O (and dense, if O is spherical).
Taking the orthogonal complements with respect to � shows that [g, z] ∩ g0 = {0} for any
z ∈�. Recall that Tz(Z) denotes the tangent space at z ∈ Z. Then

Tz(O) ∩ g0 = {0}.

Since ψ comes from the projection with kernel g0, the last equality means that the
differential of ψ at z has trivial kernel, i.e.,

dzψ : Tz(O) −→Tψ(z)(ψ(O))

is bijective for generic z ∈O.

For ϑmax, one has O ∩ g1 �=∅ for every G-orbit O ⊂ g (Remark 2·1). In particular, for
O =Omin, it follows from Theorem 5·3 that deg (ψOmin) = 2.

Question. Is there a reasonable formula for deg (ψO) for any spherical G-orbit O ⊂ g?
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Let Nsph denote the union of all spherical nilpotent orbits. It is a closed irreducible
subvariety of N [17, section 6]. The irreducibility stems from the fact that there is a
unique maximal spherical nilpotent orbit, which is denoted Osph. Hence Nsph =Osph.
Furthermore, dim Nsph = dim b− ind b, where ind ( · ) is the index of a Lie algebra, see [17,
6·4]. That is, in our case dim Nsph = dim g1 − ind b. It is known that ind b= 0 if and only if
−1 ∈ W, i.e., g �= An, D2n+1, E6. In this case, the projection ψsph : Nsph → g1 is dominant.

In Proposition 4·1 and Lemma 5·1, we use the obvious fact that σ (Omin) =Omin for any
σ ∈ Inv(g). However, for σ = ϑmax, the similar property holds for any O ⊂N. Therefore,
an analogue of Lemma 5·1 holds for any nilpotent orbit whenever σ = ϑmax.
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