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Abstract
There is a need for accurate, inexpensive and field-friendly methods to assess body composition in children. Bioelectrical impedance analysis
(BIA) is a promising approach; however, there have been limited validation and use among young children in resource-poor settings. We aim to
develop and validate population-specific prediction equations for estimating total fat mass (FM), fat free-mass (FFM) and percentage body
fat (PBF) in Vietnamese children (4–7 years) using reactance and resistance from BIA, anthropometric variables and demographic information.
We conducted a cross-sectional survey of 120 children. Body composition was measured using dual-energy X-ray absorptiometry (DXA), BIA
and anthropometry. To develop prediction equations, we split all data into development (70 %) and validation datasets (30 %). The model
performance was evaluated using predicted residual error sum of squares, root mean squared error (RMSE), mean absolute error (MAE)
and R2. We identified a top performing model with the least number of parameters (age, sex, weight and resistance index or resistance and
height), low RMSE (FM 0·70, FFM 0·74, PBF 3·10), low MAE (FM 0·55, FFM 0·62, PBF 2·49), high R2 (FM 0·95, FFM 0·92, PBF 0·82) and the least
difference between predicted values and actual values from DXA (FM 0·03 kg or 0·01 SD, FFM 0·06 kg or 0·02 SD, PBF 0·27 % or 0·04 SD). In
conclusion, we developed the first valid and highly predictive equations to estimate FM, FFM and PBF in Vietnamese children using BIA.
These findings have important implications for future research on the double burden of disease and risks associatedwith overweight and obesity
in young children.
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Child obesity is a growing public health epidemic across the
globe in which currently 50 million girls and 74 million boys
are obese(1). The increased prevalence of overweight and
obesity is especially alarming in low- and middle-incomes coun-
tries (LMIC), such as Vietnam, that are undergoing the nutrition
transition and shifting from traditional to obesogenic diets(2).
These countries also face the dual burden of a high prevalence
of undernutrition and obesity and often accompanied by micro-
nutrient deficiencies(3–5). Poor nutrition and growth early in life
can also increase the risk for non-communicable chronic dis-
eases later in life(6–10). However, existing tools that are used to
measure child growth and body composition, especially in re-
source poor settings, are often either non-field friendly and/or
inaccurate and unreliable(11). Therefore, the objective of the

present study was to develop and validate a relatively inexpensive
and ‘field-friendly’ tool to assess body composition in children
in LMIC.

Historically, large cohort studies and national surveys have
relied on relatively inexpensive and generally reliable anthropo-
metric measures, such as weight, height, waist circumference
and skinfold measures, to estimate body composition in children
and adults(12–15). However, these methods are generally not
generalisable and may create biased estimates especially when
body composition compartments, such as percentage body fat,
have been calculated using prediction equations developed
from populations that differ by age, race and/or ethnicity(16–21).
For example, Hoffman et al.(15) reported that skinfold prediction
equations consistently underestimated body fat mass (FM)

Abbreviations: BIA, bioelectrical impedance analysis; DXA, dual-energy X-ray absorptiometry; FM, fat mass; FFM, fat-free mass; LMIC, low- and middle-incomes
countries; MAE, mean absolute error; PBF, percentage body fat; RMSE, root mean squared error.
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compared with dual-energy X-ray absorptiometry (DXA) and 2H
dilution. In addition, Rodríguez et al.(14) found that skinfold pre-
diction equations had poor agreement with body composition
measurements estimated by DXA. More recently, many studies
are now relying on simpler and more reliable methods that have
minimal operator error, such as bioelectric impedance analysis
(BIA). While BIA may be considered to less prone to operator
error compared with anthropometrics, it is not without limita-
tions, and a recent review described varying degrees of bias
attributed to the use of different prediction equations and the
inconsistent use of protocols between studies(22).

Estimating body composition with BIA is based on the
principle that electricity is impeded as it is conducted through
a cylinder and passes easily through hydrated tissue, that is,
fat-free mass (FFM), yet resisted by tissue with little to no water,
fat mass (FM)(23). Yet, the human body is not one cylinder and
can be thought to be composed of five cylinders, the trunk, arms
and legs, and differences in proportions between these areas can
yield different results for the same BIA. Moreover, the use of BIA
is not without challenges as most manufacturers create propri-
etary equations that cannot be altered and have not been widely
validated in children(24). Still, a number of groups have published
accurate prediction equations for paediatric uses of BIA(25–27).
Developing population-specific prediction equations for BIA
is typically done(28–30) by comparing estimates against a ‘gold
standard’, such as 2H dilution or DXA to assess body composi-
tion. For example, DXA was used to develop a nationally repre-
sentative BIA prediction equation for children in the USA(28).
These approaches have also been used for special populations,
such as neonates(31) and severely obese adolescents(32).
However, gaps remain in the use of BIA to assess body compo-
sition in young children from LMIC that may differ by race and
ethnicity which have been related to body composition(33).

Given the rise of obesity in LMIC, there is an urgent need
for simple yet valid measures of body composition that can be
used easily to estimate body fat in young children in resource-
poor environments and better understand how specific early
life factors influence the development of adiposity across the
lifespan. The objective of this paper was to develop and validate
population-specific prediction equations for estimating FM
and FFM in young Vietnamese children using reactance, resis-
tance from bioelectrical impedance as well as anthropometric
variables.

Methods

Study setting and sample

The present study is a collaboration between investigators
based at Emory University, Rutgers University and Thai Nguyen
University of Medicine and Pharmacy. We conducted a cross-
sectional survey of 120 healthy children aged 4–7 years who were
recruited from local schools and daycare centres in the city
of Thai Nguyen, Vietnam. The study site was selected based
on an existing partnership between Emory University and Thai
Nguyen University of Medicine and Pharmacy and availability of
resources, especially trained personnel and ease of access to a
DXA machine at Thai Nguyen National Hospital, teaching

hospital for Thai Nguyen University of Medicine and Pharmacy.
We employed a convenience sampling framework to recruit
children with an equal distribution of BMI z-score (underweight,
normal and overweight), sex and age. Written informed consent
was obtained from all mothers and/or primary caregiver, and all
study protocols were approved by the Human Investigations
Committees in Vietnam and Emory University.

Measures

Seven anthropometric measurements, height, weight, triceps
and subscapular skinfolds and waist, hip, and mid upper arm
circumferences, were obtained in duplicate by trained staff
using standardised procedures(34–36). Weight and height were
measured using a calibrated digital scale (Seca Corporation)
and a fixed stadiometer (Seca Corporation), respectively.
Skinfold thicknesses and circumferences were measured using
Lange skinfold calipers and flexible, non-stretchable measuring
tape. BMI z-scores were calculated by comparing each child’s
weight and height measurements with the WHO standards(37),
and children were categorised as low BMI (<–1 SD), normal
(–1 to 1 SD) or overweight (>1 SD).

Body composition was measured using two different
methods. First, we assessed body composition using a Seca
mBCA 525 multifrequency BIA (Seca Corporation). All subjects
had been fasting for at least 4 hwith no vigorous exercise for 24 h
before themeasurement. All childrenworeminimal clothing and
rested in the prone position for 5 min prior to the measurement.
The position of each child’s arms and legs was done according
to the manufacturer’s protocol. Specifically, the feet and thighs
are not in contact with each other, and the hands and arms
are placed beside the body without touching the body.
Finally, the children were told to lie still and remain relaxed
during the measurement. Using an 8-polar tactile-electrode
impedance meter, four electrodes were placed on the palm
and thumb of both hands, and four electrodes were placed on
the anterior and posterior aspects of the soles of both feet.
The raw values of total body resistance and reactance at
50 kHz were recorded for the data presented. Second, whole-
body DXA scanning was used as the reference body composi-
tion measurement (Hologic Discovery DXA System, Hologic
Inc). Scans were conducted using paediatric software according
to the manufacturer-recommended protocol to obtain estimates
of total FM, total FFM and percentage body fat (PBF).

Statistical methods

Descriptive analyses were conducted for general characteristics
of study sample. The candidate predictors for the models were
selected based on their clinical importance as reported in
previous studies(25,38). Predictor variables included age, sex, five
anthropometric variables (height, weight, waist circumference,
hip circumference, subscapular skinfold), resistance and react-
ance as well as resistance index (RI, height in cm2/resistance).

We developed prediction equations by following the four
steps of model development that have been used in previous
validation studies(25,28). In step 1, the random-split method
was used to create the development and validation datasets with
70 and 30 % of the total observations in the original dataset,
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respectively. All potential models were built in the development
set and tested in the validation set. In step 2, models were gen-
erated in the development dataset using the Least Absolute
Shrinkage and Selection Operator technique(39). Estimation of
the penalty parameter for the Least Absolute Shrinkage and
Selection Operator was based on grid search with 10-fold
cross-validation as the optimisation criterion. In step 3, all final
model equations were tested in the validation dataset. The pre-
dicted FM, FFM and PBF (FMPRED, FFM PRED and PBFPRED) were
calculated in the validation data using the coefficients of the
models selected in step 2 and then compared with the actual val-
ues from DXA (denoted as DXAFM, DXAFFM and DXAPBF). The
model performance was evaluated using the following four met-
rics: predicted residual error sum of squares, root mean squared
error (RMSE), mean absolute error (MAE) and R2. The PRESS,
RMSE and MAE measure the discrepancy between the predicted
and the actual value, thus the smaller value, the closer the fit
between the model and the data. The R2 provides the proportion
of the variance of an outcome variable that is explained by pre-
dictor variables in a multiple linear regression model such that a
higher R2 indicates a better fit. In step 4, the final equations for
FMPRED, FFMPRED and PBFPRED were produced based on the
selected model using the full dataset.

Sensitivity analyses were conducted to compare the perfor-
mance of models that were developed from a list of candidate
variables in which seven different subsets of candidate predic-
tors were tested (models 1–7). All candidate predictors were first
included inmodel 1 and thenwere removed one by one for each
subsequentmodel until model 6 that contained only age, sex and
weight andmodel 7 that included only RI and reactance. We also
developed two sets of models, the first set included RI without
height (as height in already included in the RI) and the second
set included resistance and height to determine if using RI pro-
vided a better fit than the including the variables independently.

All statistical analyses were performed using Stata (version
15.2) and R (version 3.5.0), and statistical significance was set
at P< 0·05.

Results

Descriptive statistics for anthropometric measurements and
other sample characteristics are presented in Table 1, while
estimates of body composition from BIA and DXA are shown
in Table 2. There were no statistical differences in mean age,
sex, height, weight, skinfold thicknesses or anthropometric

Table 1. Anthropometric characteristics of children in Vietnam by total sample and development and validation groups
(Mean values and standard deviations; numbers and percentages)

Total (n 119) Development (n 83) Validation (n 36)

PMean SD Mean SD Mean SD

Age (months) 74·3 11·8 74·7 11·5 73·3 12·5 0·573
Min–max 53·2–95·3 54·6–95·3 53·2–89·5

Sex (%)
Female 49·6 47·0 55·6 0·510
Male 50·4 53·0 44·4

Height (cm) 114·4 7·9 114·9 7·9 113·2 8·0 0·311
Weight (kg) 21·1 5·6 21·3 5·8 20·6 5·3 0·503
Weight for age (z-score) –0·2 1·6 –0·2 1·5 –0·3 1·6 0·634
Height for age (z-score) –0·4 1·0 –0·4 1·0 –0·5 1·1 0·431
BMI (z-score) 0·0 1·6 0·1 1·6 –0·0 1·6 0·846
Triceps skinfold (mm) 10·3 4·9 10·4 5·0 9·9 4·9 0·607
Subscapular skinfold (mm) 8·4 4·9 8·5 5·0 8·0 4·8 0·644
Mid-upper arm circumference (cm) 18·6 3·0 18·8 3·1 18·2 2·9 0·346
Waist circumference (cm) 53·5 7·1 53·8 7·3 52·9 6·6 0·499
Hip circumference (cm) 57·8 6·9 58·0 7·0 57·3 6·7 0·621

Table 2. Body composition data of children in Vietnam by total sample and development and validation groups using bioelectrical impedance analysis (BIA)
or dual-energy X-ray absorptiometry (DXA)
(Mean values and standard deviations)

Total (n 119) Development (n 83) Validation (n 36)

PMean SD Mean SD Mean SD

Resistance (50 kHz) 745·5 82·6 748·0 82·8 739·8 82·9 0·620
Reactance (50 kHz) 61·3 6·9 61·9 7·4 60·0 5·4 0·107
RI 17·9 3·6 18·0 3·7 17·7 3·4 0·634
DXA fat mass (kg) 6·6 3·2 6·7 3·2 6·3 3·1 0·559
DXA percentage fat (%) 30·0 7·2 30·2 7·1 29·6 7·4 0·700
DXA fat-free mass (kg) 14·5 2·9 14·6 3·0 14·1 2·6 0·355
DXA weight (kg) 21·1 12·5 21·3 5·8 20·5 5·3 0·435
Bone mineral density (mg/cm2) 0·7 0·1 0·7 0·1 0·7 0·1 0·873

RI, resistance index (height (cm)2/resistance).
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indicators including WAZ, WHZ or HAZ or skinfold measures
between the development and validation sub-samples. There
were also no differences in mean values of resistance and react-
ance, RI, FM, FFM or PBF between the development and valida-
tion sub-samples.

The development of prediction equations for total FM
resulted in seven models that were applied to the validation
sub-sample as shown in Table 3. Models 6 and 7 had the poorest
performance with highest RMSE and MAE and lowest R2.
Although there were modest differences between the RMSE,
MAE and R2 for models 1–5, model 5 performed the best with
the least number of parameters (age, sex, weight and resistance
index) compared with 5–8 parameters in models 1–4, while
maintaining a low RMSE (0·70), low MAE (0·55), high R2 (0·95)
and least difference between FMPRED and DXAFM (0·03 kg).
We obtained similar results for FFM (Table 4) with model 5
(using resistance and height instead of resistance index).
Results for the development of a prediction equation for PBF
are provided in Table 5 in which model 5 also performed the
best, but with a lower R2 (0·82) compared with the model for
FM or FFM (>0·90).

Results by sex are provided in the supplemental tables. There
were no significant differences between sex for raw anthropo-
metric measures except waist circumference which was higher
in boys than girls (online Supplementary Table S1). Boys also
had higher resistance, lower reactance and a higher RI compared

with girls. As well, boys had greater LBM and BMD compared
with girls.

For sensitivity analyses, we tested different variables for pre-
diction models using height and resistance as two independent
variables or as RI. For prediction of FM (online Supplementary
Table S2), we obtained models with only slightly higher RMSE
and MAE and minimally lower R2, but larger mean differences
between FMPRED and DXAFM. For prediction of FFM (online
Supplementary Table S3), the models with RI generated greater
mean differences between FFMPRED andDXAFFM comparedwith
models using height and resistance as two independent predic-
tors. In contrast, for prediction of PBF (online Supplementary
Table S4), the models with RI generated smaller mean
differences between PBFPRED and DXAPBF compared with mod-
els using height and resistance as two independent predictors.

Discussion

Given the increased prevalence of the double burden of malnu-
trition (DBM) in many LMIC, it is imperative that validated tech-
niques be developed to assess body composition in children to
better understand the aetiology of the DBM and assess pro-
grammes to prevent the DBM. To that end, we successfully
developed a prediction equation that allows us to use BIA to
obtain accurate estimates of FFM, FM and PBF in a sample of
young children in Vietnam. The final equation that included

Table 3. Prediction models developed for total fat mass (FM) and statistics from the validation sample using novel models in the validation sample of children
in Vietnam
(Mean values and standard deviations; coefficient values and 95 % confidence intervals)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Applied model*

Regression coefficients to predict FM from selected variables in the development sub-sample
Intercept –2·130 –2·379 –2·039 1·645 –0·255 –1·577 –2·282 –0·579
Age –0·025 –0·031 –0·030 –0·030 –0·040 –0·061 – –0·039
Female 0·271 0·413 0·456 0·317 0·503 0·798 – 0·501
Weight 0·519 0·655 0·661 0·800 0·788 0·587 – 0·796
Resistance index –0·276 –0·375 –0·369 –0·438 –0·391 – 0·598 –0·385
Reactance –0·019 –0·021 –0·021 –0·032 – – –0·029 –
Waist circumference 0·060 0·070 0·087 – – – – –
Hip circumference 0·024 0·027 – – – – – –
Subscapular skinfold 0·122 – – – – – – –

Statistics from the validation sub-sample using models created in the development sub-sample
PRESS 14·58 18·89 18·94 18·65 17·6 30·73 173·45
RMSE 0·63 0·72 0·73 0·72 0·70 0·92 2·20
MAE 0·51 0·60 0·60 0·58 0·55 0·75 1·65
R2 0·958 0·945 0·945 0·946 0·949 0·911 0·498
DXAFM

Mean 6·34 6·34 6·34 6·34 6·34 6·34 6·34
SD 3·14 3·14 3·14 3·14 3·14 3·14 3·14

FMPRED

Mean 6·39 6·39 6·39 6·40 6·36 6·43 6·57
SD 2·88 2·86 2·85 2·84 2·83 2·77 2·10

MSD (DXAFM – FMPRED) –0·05 –0·06 –0·06 –0·06 –0·03 –0·09 –0·23
MSD 95% CI (LB) –0·35 –0·33 –0·33 –0·66 –0·71 –1·52 –3·78
MSD 95% CI (UB) 0·07 0·15 0·15 –0·18 –0·25 –0·91 –2·33
MSDboy –0·16 –0·16 –0·15 –0·12 0·00 –0·07 –0·69
MSDgirl 0·03 0·03 0·02 –0·02 –0·05 –0·12 0·14

PRESS, predicted residual error sum of squares; RMSE, root mean square error; MAE, mean absolute error; DXAFM, FM from dual-energy X-ray absorptiometry; FMPRED, predicted
FM; MSD, mean signed difference; LB, lower bound; UB, upper bound.
* Final equation after model 5 was applied to all data. FM=−0·039 × age (months)þ 0·501 × female (1)þ 0·796 ×weight (kg)− 0·385 × resistance index – 0·579.
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raw data from BIA along with sex, age and body weight pre-
dicted FM within 25 g of DXAFM with an R2 of 0·94 and FFM
within 8 g of DXAFFM with an R2 of 0·93. As well, the prediction
equation developed for PBF had an R2 of 0·82with that estimated
fromDXA. It is also important to note that the standard deviations
of the absolute values of the predicted FM and FFM compared
withDXAFM andDXAFFMwere similar, suggesting good agreement
between the predicted and actual measures. The correlation
between our prediction equations developed in Vietnamese
children is similar with studies that used other population-specific
BIA prediction equations and reported R2 between 0·80 and
0·93(16,29,30).

Techniques to estimate body composition in children
that are logistically simple for field and survey research have
generally relied on skinfold measures and other anthropometric
techniques(34,36). Skinfold measurements are found to be predic-
tive of body composition in a diverse population of childrenwith
correlation coefficients as high as 0·85–1·00 for DXAFM and
DXAFFM, respectively(40). However, skinfold measures are prone
to operator error and can differ by population groups as reported
by Hoffman et al.(15) in which three skinfold predictions were
found to underestimate PBF by 2–4 percentage points compared
with that measured by DXA. Thus, the use of BIA may reduce
operator error, but without consistent protocols, bias between

BIA and ‘gold standards’may persist(41–43). As well, BIA requires
a specific prediction equation to generate the estimate of body
composition from the requisite resistance and reactance data
of the BIA.

The benefits of BIA are many, but mainly centered around
ease of use and the relatively inexpensive equipment compared
with DXA or stable isotopes. However, a key challenge for the
use of BIA in children has been the lack of universal prediction
equations for estimating body composition. To address this
issue, investigators throughout the world have developed and
validated specific prediction equations for children living in dif-
ferent populations. For example, in a study of Asian neonates,
the use of weight, length, sex and RI (height (cm)2/resistance)
had an R2 of 0·90 compared with the FFM estimate from air-
displacement plethysmography(31). A study of 3-year-old chil-
dren in Denmark reported the estimation of FFM using weight,
height, sum of skinfolds and RI had an R2 of 0·85 compared with
the FFM estimate from DXA(44). As well, in a study of 2-year-old
multi-ethnic children, RI, weight, height and sex were used to
predict FFM with an R2 of 0·89 compared with the FFM estimate
from DXA(45). Finally, in a study of Mexican children, using FFM
estimated from 2H dilution compared with a BIA prediction
equation that included only RI and weight yielded an R2 of
0·96(46). Thus, our results, using age, sex, weight and RI, resulted

Table 4. Prediction models developed for total fat-free mass (FFM) and statistics from the validation sample using novel models in the validation sample of
children in Vietnam
(Mean values and standard deviations; coefficient values and 95 % confidence intervals)

Predictors

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Applied model*

Results from development sample
Intercept −5·134 −6·248 −6·248 −6·227 −6·380 −10·830 26·669 −5·539
Age 0·013 0·012 0·012 0·012 0·013 0·008 − 0·008
Female −0·374 −0·422 −0·422 −0·424 −0·546 −0·741 − −0·638
Height 0·170 0·189 0·189 0·188 0·193 0·171 − 0·189
Weight 0·231 0·169 0·169 0·169 0·169 0·262 − 0·167
Resistance −0·008 −0·008 −0·008 −0·008 −0·007 − −0·026 −0·007
Reactance 0·022 0·019 0·019 0·020 − − 0·122
Waist circumference −0·007 X X − − − −
Hip circumference X† X − − − − −
Subscapular skinfold −0·040 − − − − − −

Statistics from the validation sample using models created in the development sample
PRESS 19·22 19·79 19·79 19·87 19·73 25·55 151·34
RMSE 0·73 0·74 0·74 0·74 0·74 0·84 2·05
MAE 0·60 0·61 0·61 0·61 0·62 0·72 1·63
R2 0·920 0·918 0·918 0·918 0·918 0·894 0·373
DXAFFM

Mean 14·12 14·12 14·12 14·12 14·12 14·12 14·12
SD 2·63 2·63 2·63 2·63 2·63 2·63 2·63

FFMPRED

Mean 14·18 14·18 14·18 14·17 14·18 14·08 14·60
SD 2·79 2·80 2·80 2·80 2·83 2·75 1·95

MSD (DXAFFM – FFMPRED) −0·06 −0·06 −0·06 −0·05 −0·06 0·04 −0·48
MSD 95% CI (LB) −0·33 −0·37 −0·37 −0·37 −0·40 −0·22 0·57
MSD 95% CI (UB) 0·15 0·12 0·12 0·12 0·09 0·34 1·89
MSDboy 0·14 0·13 0·13 0·13 0·06 0·12 0·18
MSDgirl −0·23 −0·21 −0·21 −0·21 −0·17 −0·04 −1·02

PRESS, predicted residual error sum of squares; RMSE, root mean square error; MAE, mean absolute error; DXAFFM, FFM from dual energy X-ray absorptiometry; FFMPRED, pre-
dicted FFM; MSD, mean signed difference; LB, lower bound; UB, upper bound.
* Final equation after model 5 was applied to all data. FFM= 0·008 × age (months) – 0·638 × female (1)þ 0·189 × height (cm)þ 0·167 ×weight (kg) – 0·007 × resistance – 5·539.
† X: Predictor was excluded by LASSO.
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in a R2 of 0·93 compared with the FFM estimate from DXA are
comparable to other studies using similar techniques in different
ethnic and geographic groups.

Our findings are consistent with other studies, but some lim-
itations remain that merit discussion. First, the choice of outcome
variable is important as it has implications for subsequent uses.
For example, we relied on a two-compartment model that
estimated FM and FFM and did not consider the contribution
of other compartments, such as total body water, that would
have required additional assessments, such as isotope dilution,
that are more invasive and time consuming. However, DXA is
considered a ‘gold standard’ for human body composition that
is comparable to three- or four-compartment models of body
composition. Second, including key variables that are meaning-
ful and inherently related to the outcome of interest, such as
height, weight, resistance, and accompanying skinfold mea-
sures, increases the validity, but caution needs to be exercised
when such measures may introduce bias and operator error.
While a number of other papers on this topic have developed
prediction equations that include both height and RI(31,45), we
followed the protocol that did not include height in any models
that also contained RI(28) as doing so overcontrols for the influ-
ence of height on the relationship between other variables and
the DXA outcome given that it is already accounted for in the RI.
Moreover, some anthropometric variables that were dropped in
our analyses, such as waist circumference, may still be relevant
given they are risk factors for hypertension, elevated TAG and

insulin resistance. Yet, it should be noted there are other valid
reasons for dropping variables when considering models of
similar statistical properties, such as subscapular skinfold mea-
sures that required additional equipment the partial removal
of clothes, a protocol that may be poorly accepted in many cul-
tures, especially when measuring women and adolescent girls.
Third, it has been suggested to correct for the disparity in body
composition compartments owing to DXA measures that may
underestimate one compartment over the other and estimate
total body weights that are not equal to digital scales. We did
not use a correction factor as the body weights estimated by
DXA were statistically equal to that of the digital scale. Finally,
it is important to note that the prediction equations developed
in this cohort of healthy Vietnamese children may not be gener-
alisable for other ethnicities but the fact that such equations
are not generalisable underscores the need and importance
of developing population-specific prediction equations. We
tested our equations with another equation developed in a
multi-national sample of children(26) that had a much lower
R2 (0·73) compared with ours (0·91) as summarised in online
Supplementary Table S5.

Our findings will be useful to better characterise the DBM that
is amajor public health problem inmany LMIC, especially in Asia
as well as immigrant groups in many developed countries, such
as the USA(5,47). In fact, one study from Vietnam reported that up
to 22 % of children were found to be obese(48). As well, improv-
ing our understanding of specific biological or environmental

Table 5. Prediction models developed for percentage body fat (PBF) and statistics from the validation sample using novel models in the validation sample of
children in Vietnam
(Mean values and standard deviations; coefficient values and 95 % confidence intervals)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Predictors Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Applied model*

Regression coefficients to predict PBF from selected variables in the development sub-sample
Intercept 23·70 22·91 24·26 38·39 29·96 24·63 30·34 28·00
Age −0·13 −0·15 −0·15 −0·15 −0·19 −0·28 0·65 −0·19
Female 1·90 2·32 2·55 2·03 2·85 4·00 −0·19 2·84
Weight 1·06 1·45 1·46 2·00 1·95 1·14 − 2·01
Resistance index† −1·26 −1·54 −1·49 −1·77 −1·56 − − −1·54
Reactance −0·09 −0·10 −0·10 −0·14 − − − −
Waist circumference 0·20 0·23 0·33 − − − − −
Hip circumference 0·13 0·14 − − − − − −
Subscapular skinfold 0·36 − − − − − − −

Statistics from the validation sub-sample using models created in the development sub-sample
PRESS 314·36 353·06 355·15 347·70 345·01 540·05 1547·2
RMSE 2·95 3·13 3·14 3·11 3·10 3·87 6·56
MAE 2·34 2·52 2·58 2·50 2·49 3·39 5·23
R2 0·836 0·816 0·815 0·819 0·820 0·719 0·194
DXAPBF

Mean 29·59 29·59 29·59 29·59 29·59 29·59 29·59
SD 7·41 7·41 7·41 7·41 7·41 7·41 7·41

PBFPRED

Mean 29·90 29·91 29·90 29·94 29·77 30·04 30·31
SD 5·88 5·84 5·76 5·73 5·75 5·37 2·70

MSDDXAPBF – PBFPRED −0·31 −0·32 −0·31 −0·35 −0·27 −0·45 −0·72
MSD 95% CI (LB) −2·88 −2·78 −2·84 −4·03 −4·30 −7·48 −11·57
MSD 95% CI (UB) −0·93 −0·72 −0·77 −1·98 −2·25 −4·93 −7·25
MSDboy −0·69 −0·67 −0·61 −0·53 0·04 −0·26 −2·49
MSDgirl −0·02 −0·04 −0·07 −0·22 −0·36 −0·62 0·68

PRESS, predicted residual error sum of squares; RMSE, root mean square error; MAE, mean absolute error; DXAPBF, PBF from dual-energy X-ray absorptiometry; PBFPRED, pre-
dicted PBF; MSD, mean signed difference; LB, lower bound; UB, upper bound.
* Final equation after model 5 was applied to all data. PBF=−0·19 × age (months)þ 2·84 × female (1)þ 2·01 ×weight (kg) – 1·54 × resistance indexþ 28·00.
† Resistance index (height in cm2/resistance).
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factors that promote the DMB remains a priority for research and
development programmes. Therefore, developing techniques
and research tools to more accurately address the issue of paedi-
atric body composition in LMICwill greatly enhance the ability to
address the DMB.

The results of the present study have a number of broad
implications for research and policies in LMIC. For example,
groups in a number of countries in South East Asia will benefit
from this work by having access to accurate estimates of body
composition in children. Both national and international organ-
isations need simple and inexpensivemethods to better evaluate
the impact of programmes that are designed to promote healthy
growth and lower the prevalence of childhood obesity. Finally,
improving the ability to measure body composition in LMIC sets
the stage for improving protocols and programmes to reverse
the DBM.

In summary, we developed the first valid and highly predic-
tive equations to estimate FM, FFM and PBF in Vietnamese
children using BIA. This work is a major contribution that will
allow ongoing research studies and national surveys to better
estimate the burden and risks associated with overweight and
obesity in young children. There is an urgent need to have these
methods to support global efforts to prevent DBM as well as
understand changes in body composition that occur over the
life course especially in settings experiencing during rapid
economic development to design appropriate interventions.
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